xref: /titanic_41/usr/src/lib/libdtrace/common/dt_proc.c (revision e8ee2240af37f707c9910893e48444352a47a0c5)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2010 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 /*
28  * DTrace Process Control
29  *
30  * This file provides a set of routines that permit libdtrace and its clients
31  * to create and grab process handles using libproc, and to share these handles
32  * between library mechanisms that need libproc access, such as ustack(), and
33  * client mechanisms that need libproc access, such as dtrace(1M) -c and -p.
34  * The library provides several mechanisms in the libproc control layer:
35  *
36  * Reference Counting: The library code and client code can independently grab
37  * the same process handles without interfering with one another.  Only when
38  * the reference count drops to zero and the handle is not being cached (see
39  * below for more information on caching) will Prelease() be called on it.
40  *
41  * Handle Caching: If a handle is grabbed PGRAB_RDONLY (e.g. by ustack()) and
42  * the reference count drops to zero, the handle is not immediately released.
43  * Instead, libproc handles are maintained on dph_lrulist in order from most-
44  * recently accessed to least-recently accessed.  Idle handles are maintained
45  * until a pre-defined LRU cache limit is exceeded, permitting repeated calls
46  * to ustack() to avoid the overhead of releasing and re-grabbing processes.
47  *
48  * Process Control: For processes that are grabbed for control (~PGRAB_RDONLY)
49  * or created by dt_proc_create(), a control thread is created to provide
50  * callbacks on process exit and symbol table caching on dlopen()s.
51  *
52  * MT-Safety: Libproc is not MT-Safe, so dt_proc_lock() and dt_proc_unlock()
53  * are provided to synchronize access to the libproc handle between libdtrace
54  * code and client code and the control thread's use of the ps_prochandle.
55  *
56  * NOTE: MT-Safety is NOT provided for libdtrace itself, or for use of the
57  * dtrace_proc_grab/dtrace_proc_create mechanisms.  Like all exported libdtrace
58  * calls, these are assumed to be MT-Unsafe.  MT-Safety is ONLY provided for
59  * synchronization between libdtrace control threads and the client thread.
60  *
61  * The ps_prochandles themselves are maintained along with a dt_proc_t struct
62  * in a hash table indexed by PID.  This provides basic locking and reference
63  * counting.  The dt_proc_t is also maintained in LRU order on dph_lrulist.
64  * The dph_lrucnt and dph_lrulim count the number of cacheable processes and
65  * the current limit on the number of actively cached entries.
66  *
67  * The control thread for a process establishes breakpoints at the rtld_db
68  * locations of interest, updates mappings and symbol tables at these points,
69  * and handles exec and fork (by always following the parent).  The control
70  * thread automatically exits when the process dies or control is lost.
71  *
72  * A simple notification mechanism is provided for libdtrace clients using
73  * dtrace_handle_proc() for notification of PS_UNDEAD or PS_LOST events.  If
74  * such an event occurs, the dt_proc_t itself is enqueued on a notification
75  * list and the control thread broadcasts to dph_cv.  dtrace_sleep() will wake
76  * up using this condition and will then call the client handler as necessary.
77  */
78 
79 #include <sys/wait.h>
80 #include <sys/lwp.h>
81 #include <strings.h>
82 #include <signal.h>
83 #include <assert.h>
84 #include <errno.h>
85 
86 #include <dt_proc.h>
87 #include <dt_pid.h>
88 #include <dt_impl.h>
89 
90 #define	IS_SYS_EXEC(w)	(w == SYS_exec || w == SYS_execve)
91 #define	IS_SYS_FORK(w)	(w == SYS_vfork || w == SYS_fork1 ||	\
92 			w == SYS_forkall || w == SYS_forksys)
93 
94 static dt_bkpt_t *
95 dt_proc_bpcreate(dt_proc_t *dpr, uintptr_t addr, dt_bkpt_f *func, void *data)
96 {
97 	struct ps_prochandle *P = dpr->dpr_proc;
98 	dt_bkpt_t *dbp;
99 
100 	assert(MUTEX_HELD(&dpr->dpr_lock));
101 
102 	if ((dbp = dt_zalloc(dpr->dpr_hdl, sizeof (dt_bkpt_t))) != NULL) {
103 		dbp->dbp_func = func;
104 		dbp->dbp_data = data;
105 		dbp->dbp_addr = addr;
106 
107 		if (Psetbkpt(P, dbp->dbp_addr, &dbp->dbp_instr) == 0)
108 			dbp->dbp_active = B_TRUE;
109 
110 		dt_list_append(&dpr->dpr_bps, dbp);
111 	}
112 
113 	return (dbp);
114 }
115 
116 static void
117 dt_proc_bpdestroy(dt_proc_t *dpr, int delbkpts)
118 {
119 	int state = Pstate(dpr->dpr_proc);
120 	dt_bkpt_t *dbp, *nbp;
121 
122 	assert(MUTEX_HELD(&dpr->dpr_lock));
123 
124 	for (dbp = dt_list_next(&dpr->dpr_bps); dbp != NULL; dbp = nbp) {
125 		if (delbkpts && dbp->dbp_active &&
126 		    state != PS_LOST && state != PS_UNDEAD) {
127 			(void) Pdelbkpt(dpr->dpr_proc,
128 			    dbp->dbp_addr, dbp->dbp_instr);
129 		}
130 		nbp = dt_list_next(dbp);
131 		dt_list_delete(&dpr->dpr_bps, dbp);
132 		dt_free(dpr->dpr_hdl, dbp);
133 	}
134 }
135 
136 static void
137 dt_proc_bpmatch(dtrace_hdl_t *dtp, dt_proc_t *dpr)
138 {
139 	const lwpstatus_t *psp = &Pstatus(dpr->dpr_proc)->pr_lwp;
140 	dt_bkpt_t *dbp;
141 
142 	assert(MUTEX_HELD(&dpr->dpr_lock));
143 
144 	for (dbp = dt_list_next(&dpr->dpr_bps);
145 	    dbp != NULL; dbp = dt_list_next(dbp)) {
146 		if (psp->pr_reg[R_PC] == dbp->dbp_addr)
147 			break;
148 	}
149 
150 	if (dbp == NULL) {
151 		dt_dprintf("pid %d: spurious breakpoint wakeup for %lx\n",
152 		    (int)dpr->dpr_pid, (ulong_t)psp->pr_reg[R_PC]);
153 		return;
154 	}
155 
156 	dt_dprintf("pid %d: hit breakpoint at %lx (%lu)\n",
157 	    (int)dpr->dpr_pid, (ulong_t)dbp->dbp_addr, ++dbp->dbp_hits);
158 
159 	dbp->dbp_func(dtp, dpr, dbp->dbp_data);
160 	(void) Pxecbkpt(dpr->dpr_proc, dbp->dbp_instr);
161 }
162 
163 static void
164 dt_proc_bpenable(dt_proc_t *dpr)
165 {
166 	dt_bkpt_t *dbp;
167 
168 	assert(MUTEX_HELD(&dpr->dpr_lock));
169 
170 	for (dbp = dt_list_next(&dpr->dpr_bps);
171 	    dbp != NULL; dbp = dt_list_next(dbp)) {
172 		if (!dbp->dbp_active && Psetbkpt(dpr->dpr_proc,
173 		    dbp->dbp_addr, &dbp->dbp_instr) == 0)
174 			dbp->dbp_active = B_TRUE;
175 	}
176 
177 	dt_dprintf("breakpoints enabled\n");
178 }
179 
180 static void
181 dt_proc_bpdisable(dt_proc_t *dpr)
182 {
183 	dt_bkpt_t *dbp;
184 
185 	assert(MUTEX_HELD(&dpr->dpr_lock));
186 
187 	for (dbp = dt_list_next(&dpr->dpr_bps);
188 	    dbp != NULL; dbp = dt_list_next(dbp)) {
189 		if (dbp->dbp_active && Pdelbkpt(dpr->dpr_proc,
190 		    dbp->dbp_addr, dbp->dbp_instr) == 0)
191 			dbp->dbp_active = B_FALSE;
192 	}
193 
194 	dt_dprintf("breakpoints disabled\n");
195 }
196 
197 static void
198 dt_proc_notify(dtrace_hdl_t *dtp, dt_proc_hash_t *dph, dt_proc_t *dpr,
199     const char *msg)
200 {
201 	dt_proc_notify_t *dprn = dt_alloc(dtp, sizeof (dt_proc_notify_t));
202 
203 	if (dprn == NULL) {
204 		dt_dprintf("failed to allocate notification for %d %s\n",
205 		    (int)dpr->dpr_pid, msg);
206 	} else {
207 		dprn->dprn_dpr = dpr;
208 		if (msg == NULL)
209 			dprn->dprn_errmsg[0] = '\0';
210 		else
211 			(void) strlcpy(dprn->dprn_errmsg, msg,
212 			    sizeof (dprn->dprn_errmsg));
213 
214 		(void) pthread_mutex_lock(&dph->dph_lock);
215 
216 		dprn->dprn_next = dph->dph_notify;
217 		dph->dph_notify = dprn;
218 
219 		(void) pthread_cond_broadcast(&dph->dph_cv);
220 		(void) pthread_mutex_unlock(&dph->dph_lock);
221 	}
222 }
223 
224 /*
225  * Check to see if the control thread was requested to stop when the victim
226  * process reached a particular event (why) rather than continuing the victim.
227  * If 'why' is set in the stop mask, we wait on dpr_cv for dt_proc_continue().
228  * If 'why' is not set, this function returns immediately and does nothing.
229  */
230 static void
231 dt_proc_stop(dt_proc_t *dpr, uint8_t why)
232 {
233 	assert(MUTEX_HELD(&dpr->dpr_lock));
234 	assert(why != DT_PROC_STOP_IDLE);
235 
236 	if (dpr->dpr_stop & why) {
237 		dpr->dpr_stop |= DT_PROC_STOP_IDLE;
238 		dpr->dpr_stop &= ~why;
239 
240 		(void) pthread_cond_broadcast(&dpr->dpr_cv);
241 
242 		/*
243 		 * We disable breakpoints while stopped to preserve the
244 		 * integrity of the program text for both our own disassembly
245 		 * and that of the kernel.
246 		 */
247 		dt_proc_bpdisable(dpr);
248 
249 		while (dpr->dpr_stop & DT_PROC_STOP_IDLE)
250 			(void) pthread_cond_wait(&dpr->dpr_cv, &dpr->dpr_lock);
251 
252 		dt_proc_bpenable(dpr);
253 	}
254 }
255 
256 /*ARGSUSED*/
257 static void
258 dt_proc_bpmain(dtrace_hdl_t *dtp, dt_proc_t *dpr, const char *fname)
259 {
260 	dt_dprintf("pid %d: breakpoint at %s()\n", (int)dpr->dpr_pid, fname);
261 	dt_proc_stop(dpr, DT_PROC_STOP_MAIN);
262 }
263 
264 static void
265 dt_proc_rdevent(dtrace_hdl_t *dtp, dt_proc_t *dpr, const char *evname)
266 {
267 	rd_event_msg_t rdm;
268 	rd_err_e err;
269 
270 	if ((err = rd_event_getmsg(dpr->dpr_rtld, &rdm)) != RD_OK) {
271 		dt_dprintf("pid %d: failed to get %s event message: %s\n",
272 		    (int)dpr->dpr_pid, evname, rd_errstr(err));
273 		return;
274 	}
275 
276 	dt_dprintf("pid %d: rtld event %s type=%d state %d\n",
277 	    (int)dpr->dpr_pid, evname, rdm.type, rdm.u.state);
278 
279 	switch (rdm.type) {
280 	case RD_DLACTIVITY:
281 		if (rdm.u.state != RD_CONSISTENT)
282 			break;
283 
284 		Pupdate_syms(dpr->dpr_proc);
285 		if (dt_pid_create_probes_module(dtp, dpr) != 0)
286 			dt_proc_notify(dtp, dtp->dt_procs, dpr,
287 			    dpr->dpr_errmsg);
288 
289 		break;
290 	case RD_PREINIT:
291 		Pupdate_syms(dpr->dpr_proc);
292 		dt_proc_stop(dpr, DT_PROC_STOP_PREINIT);
293 		break;
294 	case RD_POSTINIT:
295 		Pupdate_syms(dpr->dpr_proc);
296 		dt_proc_stop(dpr, DT_PROC_STOP_POSTINIT);
297 		break;
298 	}
299 }
300 
301 static void
302 dt_proc_rdwatch(dt_proc_t *dpr, rd_event_e event, const char *evname)
303 {
304 	rd_notify_t rdn;
305 	rd_err_e err;
306 
307 	if ((err = rd_event_addr(dpr->dpr_rtld, event, &rdn)) != RD_OK) {
308 		dt_dprintf("pid %d: failed to get event address for %s: %s\n",
309 		    (int)dpr->dpr_pid, evname, rd_errstr(err));
310 		return;
311 	}
312 
313 	if (rdn.type != RD_NOTIFY_BPT) {
314 		dt_dprintf("pid %d: event %s has unexpected type %d\n",
315 		    (int)dpr->dpr_pid, evname, rdn.type);
316 		return;
317 	}
318 
319 	(void) dt_proc_bpcreate(dpr, rdn.u.bptaddr,
320 	    (dt_bkpt_f *)dt_proc_rdevent, (void *)evname);
321 }
322 
323 /*
324  * Common code for enabling events associated with the run-time linker after
325  * attaching to a process or after a victim process completes an exec(2).
326  */
327 static void
328 dt_proc_attach(dt_proc_t *dpr, int exec)
329 {
330 	const pstatus_t *psp = Pstatus(dpr->dpr_proc);
331 	rd_err_e err;
332 	GElf_Sym sym;
333 
334 	assert(MUTEX_HELD(&dpr->dpr_lock));
335 
336 	if (exec) {
337 		if (psp->pr_lwp.pr_errno != 0)
338 			return; /* exec failed: nothing needs to be done */
339 
340 		dt_proc_bpdestroy(dpr, B_FALSE);
341 		Preset_maps(dpr->dpr_proc);
342 	}
343 
344 	if ((dpr->dpr_rtld = Prd_agent(dpr->dpr_proc)) != NULL &&
345 	    (err = rd_event_enable(dpr->dpr_rtld, B_TRUE)) == RD_OK) {
346 		dt_proc_rdwatch(dpr, RD_PREINIT, "RD_PREINIT");
347 		dt_proc_rdwatch(dpr, RD_POSTINIT, "RD_POSTINIT");
348 		dt_proc_rdwatch(dpr, RD_DLACTIVITY, "RD_DLACTIVITY");
349 	} else {
350 		dt_dprintf("pid %d: failed to enable rtld events: %s\n",
351 		    (int)dpr->dpr_pid, dpr->dpr_rtld ? rd_errstr(err) :
352 		    "rtld_db agent initialization failed");
353 	}
354 
355 	Pupdate_maps(dpr->dpr_proc);
356 
357 	if (Pxlookup_by_name(dpr->dpr_proc, LM_ID_BASE,
358 	    "a.out", "main", &sym, NULL) == 0) {
359 		(void) dt_proc_bpcreate(dpr, (uintptr_t)sym.st_value,
360 		    (dt_bkpt_f *)dt_proc_bpmain, "a.out`main");
361 	} else {
362 		dt_dprintf("pid %d: failed to find a.out`main: %s\n",
363 		    (int)dpr->dpr_pid, strerror(errno));
364 	}
365 }
366 
367 /*
368  * Wait for a stopped process to be set running again by some other debugger.
369  * This is typically not required by /proc-based debuggers, since the usual
370  * model is that one debugger controls one victim.  But DTrace, as usual, has
371  * its own needs: the stop() action assumes that prun(1) or some other tool
372  * will be applied to resume the victim process.  This could be solved by
373  * adding a PCWRUN directive to /proc, but that seems like overkill unless
374  * other debuggers end up needing this functionality, so we implement a cheap
375  * equivalent to PCWRUN using the set of existing kernel mechanisms.
376  *
377  * Our intent is really not just to wait for the victim to run, but rather to
378  * wait for it to run and then stop again for a reason other than the current
379  * PR_REQUESTED stop.  Since PCWSTOP/Pstopstatus() can be applied repeatedly
380  * to a stopped process and will return the same result without affecting the
381  * victim, we can just perform these operations repeatedly until Pstate()
382  * changes, the representative LWP ID changes, or the stop timestamp advances.
383  * dt_proc_control() will then rediscover the new state and continue as usual.
384  * When the process is still stopped in the same exact state, we sleep for a
385  * brief interval before waiting again so as not to spin consuming CPU cycles.
386  */
387 static void
388 dt_proc_waitrun(dt_proc_t *dpr)
389 {
390 	struct ps_prochandle *P = dpr->dpr_proc;
391 	const lwpstatus_t *psp = &Pstatus(P)->pr_lwp;
392 
393 	int krflag = psp->pr_flags & (PR_KLC | PR_RLC);
394 	timestruc_t tstamp = psp->pr_tstamp;
395 	lwpid_t lwpid = psp->pr_lwpid;
396 
397 	const long wstop = PCWSTOP;
398 	int pfd = Pctlfd(P);
399 
400 	assert(MUTEX_HELD(&dpr->dpr_lock));
401 	assert(psp->pr_flags & PR_STOPPED);
402 	assert(Pstate(P) == PS_STOP);
403 
404 	/*
405 	 * While we are waiting for the victim to run, clear PR_KLC and PR_RLC
406 	 * so that if the libdtrace client is killed, the victim stays stopped.
407 	 * dt_proc_destroy() will also observe this and perform PRELEASE_HANG.
408 	 */
409 	(void) Punsetflags(P, krflag);
410 	Psync(P);
411 
412 	(void) pthread_mutex_unlock(&dpr->dpr_lock);
413 
414 	while (!dpr->dpr_quit) {
415 		if (write(pfd, &wstop, sizeof (wstop)) == -1 && errno == EINTR)
416 			continue; /* check dpr_quit and continue waiting */
417 
418 		(void) pthread_mutex_lock(&dpr->dpr_lock);
419 		(void) Pstopstatus(P, PCNULL, 0);
420 		psp = &Pstatus(P)->pr_lwp;
421 
422 		/*
423 		 * If we've reached a new state, found a new representative, or
424 		 * the stop timestamp has changed, restore PR_KLC/PR_RLC to its
425 		 * original setting and then return with dpr_lock held.
426 		 */
427 		if (Pstate(P) != PS_STOP || psp->pr_lwpid != lwpid ||
428 		    bcmp(&psp->pr_tstamp, &tstamp, sizeof (tstamp)) != 0) {
429 			(void) Psetflags(P, krflag);
430 			Psync(P);
431 			return;
432 		}
433 
434 		(void) pthread_mutex_unlock(&dpr->dpr_lock);
435 		(void) poll(NULL, 0, MILLISEC / 2);
436 	}
437 
438 	(void) pthread_mutex_lock(&dpr->dpr_lock);
439 }
440 
441 typedef struct dt_proc_control_data {
442 	dtrace_hdl_t *dpcd_hdl;			/* DTrace handle */
443 	dt_proc_t *dpcd_proc;			/* proccess to control */
444 } dt_proc_control_data_t;
445 
446 /*
447  * Main loop for all victim process control threads.  We initialize all the
448  * appropriate /proc control mechanisms, and then enter a loop waiting for
449  * the process to stop on an event or die.  We process any events by calling
450  * appropriate subroutines, and exit when the victim dies or we lose control.
451  *
452  * The control thread synchronizes the use of dpr_proc with other libdtrace
453  * threads using dpr_lock.  We hold the lock for all of our operations except
454  * waiting while the process is running: this is accomplished by writing a
455  * PCWSTOP directive directly to the underlying /proc/<pid>/ctl file.  If the
456  * libdtrace client wishes to exit or abort our wait, SIGCANCEL can be used.
457  */
458 static void *
459 dt_proc_control(void *arg)
460 {
461 	dt_proc_control_data_t *datap = arg;
462 	dtrace_hdl_t *dtp = datap->dpcd_hdl;
463 	dt_proc_t *dpr = datap->dpcd_proc;
464 	dt_proc_hash_t *dph = dpr->dpr_hdl->dt_procs;
465 	struct ps_prochandle *P = dpr->dpr_proc;
466 
467 	int pfd = Pctlfd(P);
468 	int pid = dpr->dpr_pid;
469 
470 	const long wstop = PCWSTOP;
471 	int notify = B_FALSE;
472 
473 	/*
474 	 * We disable the POSIX thread cancellation mechanism so that the
475 	 * client program using libdtrace can't accidentally cancel our thread.
476 	 * dt_proc_destroy() uses SIGCANCEL explicitly to simply poke us out
477 	 * of PCWSTOP with EINTR, at which point we will see dpr_quit and exit.
478 	 */
479 	(void) pthread_setcancelstate(PTHREAD_CANCEL_DISABLE, NULL);
480 
481 	/*
482 	 * Set up the corresponding process for tracing by libdtrace.  We want
483 	 * to be able to catch breakpoints and efficiently single-step over
484 	 * them, and we need to enable librtld_db to watch libdl activity.
485 	 */
486 	(void) pthread_mutex_lock(&dpr->dpr_lock);
487 
488 	(void) Punsetflags(P, PR_ASYNC);	/* require synchronous mode */
489 	(void) Psetflags(P, PR_BPTADJ);		/* always adjust eip on x86 */
490 	(void) Punsetflags(P, PR_FORK);		/* do not inherit on fork */
491 
492 	(void) Pfault(P, FLTBPT, B_TRUE);	/* always trace breakpoints */
493 	(void) Pfault(P, FLTTRACE, B_TRUE);	/* always trace single-step */
494 
495 	/*
496 	 * We must trace exit from exec() system calls so that if the exec is
497 	 * successful, we can reset our breakpoints and re-initialize libproc.
498 	 */
499 	(void) Psysexit(P, SYS_exec, B_TRUE);
500 	(void) Psysexit(P, SYS_execve, B_TRUE);
501 
502 	/*
503 	 * We must trace entry and exit for fork() system calls in order to
504 	 * disable our breakpoints temporarily during the fork.  We do not set
505 	 * the PR_FORK flag, so if fork succeeds the child begins executing and
506 	 * does not inherit any other tracing behaviors or a control thread.
507 	 */
508 	(void) Psysentry(P, SYS_vfork, B_TRUE);
509 	(void) Psysexit(P, SYS_vfork, B_TRUE);
510 	(void) Psysentry(P, SYS_fork1, B_TRUE);
511 	(void) Psysexit(P, SYS_fork1, B_TRUE);
512 	(void) Psysentry(P, SYS_forkall, B_TRUE);
513 	(void) Psysexit(P, SYS_forkall, B_TRUE);
514 	(void) Psysentry(P, SYS_forksys, B_TRUE);
515 	(void) Psysexit(P, SYS_forksys, B_TRUE);
516 
517 	Psync(P);				/* enable all /proc changes */
518 	dt_proc_attach(dpr, B_FALSE);		/* enable rtld breakpoints */
519 
520 	/*
521 	 * If PR_KLC is set, we created the process; otherwise we grabbed it.
522 	 * Check for an appropriate stop request and wait for dt_proc_continue.
523 	 */
524 	if (Pstatus(P)->pr_flags & PR_KLC)
525 		dt_proc_stop(dpr, DT_PROC_STOP_CREATE);
526 	else
527 		dt_proc_stop(dpr, DT_PROC_STOP_GRAB);
528 
529 	if (Psetrun(P, 0, 0) == -1) {
530 		dt_dprintf("pid %d: failed to set running: %s\n",
531 		    (int)dpr->dpr_pid, strerror(errno));
532 	}
533 
534 	(void) pthread_mutex_unlock(&dpr->dpr_lock);
535 
536 	/*
537 	 * Wait for the process corresponding to this control thread to stop,
538 	 * process the event, and then set it running again.  We want to sleep
539 	 * with dpr_lock *unheld* so that other parts of libdtrace can use the
540 	 * ps_prochandle in the meantime (e.g. ustack()).  To do this, we write
541 	 * a PCWSTOP directive directly to the underlying /proc/<pid>/ctl file.
542 	 * Once the process stops, we wake up, grab dpr_lock, and then call
543 	 * Pwait() (which will return immediately) and do our processing.
544 	 */
545 	while (!dpr->dpr_quit) {
546 		const lwpstatus_t *psp;
547 
548 		if (write(pfd, &wstop, sizeof (wstop)) == -1 && errno == EINTR)
549 			continue; /* check dpr_quit and continue waiting */
550 
551 		(void) pthread_mutex_lock(&dpr->dpr_lock);
552 pwait_locked:
553 		if (Pstopstatus(P, PCNULL, 0) == -1 && errno == EINTR) {
554 			(void) pthread_mutex_unlock(&dpr->dpr_lock);
555 			continue; /* check dpr_quit and continue waiting */
556 		}
557 
558 		switch (Pstate(P)) {
559 		case PS_STOP:
560 			psp = &Pstatus(P)->pr_lwp;
561 
562 			dt_dprintf("pid %d: proc stopped showing %d/%d\n",
563 			    pid, psp->pr_why, psp->pr_what);
564 
565 			/*
566 			 * If the process stops showing PR_REQUESTED, then the
567 			 * DTrace stop() action was applied to it or another
568 			 * debugging utility (e.g. pstop(1)) asked it to stop.
569 			 * In either case, the user's intention is for the
570 			 * process to remain stopped until another external
571 			 * mechanism (e.g. prun(1)) is applied.  So instead of
572 			 * setting the process running ourself, we wait for
573 			 * someone else to do so.  Once that happens, we return
574 			 * to our normal loop waiting for an event of interest.
575 			 */
576 			if (psp->pr_why == PR_REQUESTED) {
577 				dt_proc_waitrun(dpr);
578 				(void) pthread_mutex_unlock(&dpr->dpr_lock);
579 				continue;
580 			}
581 
582 			/*
583 			 * If the process stops showing one of the events that
584 			 * we are tracing, perform the appropriate response.
585 			 * Note that we ignore PR_SUSPENDED, PR_CHECKPOINT, and
586 			 * PR_JOBCONTROL by design: if one of these conditions
587 			 * occurs, we will fall through to Psetrun() but the
588 			 * process will remain stopped in the kernel by the
589 			 * corresponding mechanism (e.g. job control stop).
590 			 */
591 			if (psp->pr_why == PR_FAULTED && psp->pr_what == FLTBPT)
592 				dt_proc_bpmatch(dtp, dpr);
593 			else if (psp->pr_why == PR_SYSENTRY &&
594 			    IS_SYS_FORK(psp->pr_what))
595 				dt_proc_bpdisable(dpr);
596 			else if (psp->pr_why == PR_SYSEXIT &&
597 			    IS_SYS_FORK(psp->pr_what))
598 				dt_proc_bpenable(dpr);
599 			else if (psp->pr_why == PR_SYSEXIT &&
600 			    IS_SYS_EXEC(psp->pr_what))
601 				dt_proc_attach(dpr, B_TRUE);
602 			break;
603 
604 		case PS_LOST:
605 			if (Preopen(P) == 0)
606 				goto pwait_locked;
607 
608 			dt_dprintf("pid %d: proc lost: %s\n",
609 			    pid, strerror(errno));
610 
611 			dpr->dpr_quit = B_TRUE;
612 			notify = B_TRUE;
613 			break;
614 
615 		case PS_UNDEAD:
616 			dt_dprintf("pid %d: proc died\n", pid);
617 			dpr->dpr_quit = B_TRUE;
618 			notify = B_TRUE;
619 			break;
620 		}
621 
622 		if (Pstate(P) != PS_UNDEAD && Psetrun(P, 0, 0) == -1) {
623 			dt_dprintf("pid %d: failed to set running: %s\n",
624 			    (int)dpr->dpr_pid, strerror(errno));
625 		}
626 
627 		(void) pthread_mutex_unlock(&dpr->dpr_lock);
628 	}
629 
630 	/*
631 	 * If the control thread detected PS_UNDEAD or PS_LOST, then enqueue
632 	 * the dt_proc_t structure on the dt_proc_hash_t notification list.
633 	 */
634 	if (notify)
635 		dt_proc_notify(dtp, dph, dpr, NULL);
636 
637 	/*
638 	 * Destroy and remove any remaining breakpoints, set dpr_done and clear
639 	 * dpr_tid to indicate the control thread has exited, and notify any
640 	 * waiting thread in dt_proc_destroy() that we have succesfully exited.
641 	 */
642 	(void) pthread_mutex_lock(&dpr->dpr_lock);
643 
644 	dt_proc_bpdestroy(dpr, B_TRUE);
645 	dpr->dpr_done = B_TRUE;
646 	dpr->dpr_tid = 0;
647 
648 	(void) pthread_cond_broadcast(&dpr->dpr_cv);
649 	(void) pthread_mutex_unlock(&dpr->dpr_lock);
650 
651 	return (NULL);
652 }
653 
654 /*PRINTFLIKE3*/
655 static struct ps_prochandle *
656 dt_proc_error(dtrace_hdl_t *dtp, dt_proc_t *dpr, const char *format, ...)
657 {
658 	va_list ap;
659 
660 	va_start(ap, format);
661 	dt_set_errmsg(dtp, NULL, NULL, NULL, 0, format, ap);
662 	va_end(ap);
663 
664 	if (dpr->dpr_proc != NULL)
665 		Prelease(dpr->dpr_proc, 0);
666 
667 	dt_free(dtp, dpr);
668 	(void) dt_set_errno(dtp, EDT_COMPILER);
669 	return (NULL);
670 }
671 
672 dt_proc_t *
673 dt_proc_lookup(dtrace_hdl_t *dtp, struct ps_prochandle *P, int remove)
674 {
675 	dt_proc_hash_t *dph = dtp->dt_procs;
676 	pid_t pid = Pstatus(P)->pr_pid;
677 	dt_proc_t *dpr, **dpp = &dph->dph_hash[pid & (dph->dph_hashlen - 1)];
678 
679 	for (dpr = *dpp; dpr != NULL; dpr = dpr->dpr_hash) {
680 		if (dpr->dpr_pid == pid)
681 			break;
682 		else
683 			dpp = &dpr->dpr_hash;
684 	}
685 
686 	assert(dpr != NULL);
687 	assert(dpr->dpr_proc == P);
688 
689 	if (remove)
690 		*dpp = dpr->dpr_hash; /* remove from pid hash chain */
691 
692 	return (dpr);
693 }
694 
695 static void
696 dt_proc_destroy(dtrace_hdl_t *dtp, struct ps_prochandle *P)
697 {
698 	dt_proc_t *dpr = dt_proc_lookup(dtp, P, B_FALSE);
699 	dt_proc_hash_t *dph = dtp->dt_procs;
700 	dt_proc_notify_t *npr, **npp;
701 	int rflag;
702 
703 	assert(dpr != NULL);
704 
705 	/*
706 	 * If neither PR_KLC nor PR_RLC is set, then the process is stopped by
707 	 * an external debugger and we were waiting in dt_proc_waitrun().
708 	 * Leave the process in this condition using PRELEASE_HANG.
709 	 */
710 	if (!(Pstatus(dpr->dpr_proc)->pr_flags & (PR_KLC | PR_RLC))) {
711 		dt_dprintf("abandoning pid %d\n", (int)dpr->dpr_pid);
712 		rflag = PRELEASE_HANG;
713 	} else if (Pstatus(dpr->dpr_proc)->pr_flags & PR_KLC) {
714 		dt_dprintf("killing pid %d\n", (int)dpr->dpr_pid);
715 		rflag = PRELEASE_KILL; /* apply kill-on-last-close */
716 	} else {
717 		dt_dprintf("releasing pid %d\n", (int)dpr->dpr_pid);
718 		rflag = 0; /* apply run-on-last-close */
719 	}
720 
721 	if (dpr->dpr_tid) {
722 		/*
723 		 * Set the dpr_quit flag to tell the daemon thread to exit.  We
724 		 * send it a SIGCANCEL to poke it out of PCWSTOP or any other
725 		 * long-term /proc system call.  Our daemon threads have POSIX
726 		 * cancellation disabled, so EINTR will be the only effect.  We
727 		 * then wait for dpr_done to indicate the thread has exited.
728 		 *
729 		 * We can't use pthread_kill() to send SIGCANCEL because the
730 		 * interface forbids it and we can't use pthread_cancel()
731 		 * because with cancellation disabled it won't actually
732 		 * send SIGCANCEL to the target thread, so we use _lwp_kill()
733 		 * to do the job.  This is all built on evil knowledge of
734 		 * the details of the cancellation mechanism in libc.
735 		 */
736 		(void) pthread_mutex_lock(&dpr->dpr_lock);
737 		dpr->dpr_quit = B_TRUE;
738 		(void) _lwp_kill(dpr->dpr_tid, SIGCANCEL);
739 
740 		/*
741 		 * If the process is currently idling in dt_proc_stop(), re-
742 		 * enable breakpoints and poke it into running again.
743 		 */
744 		if (dpr->dpr_stop & DT_PROC_STOP_IDLE) {
745 			dt_proc_bpenable(dpr);
746 			dpr->dpr_stop &= ~DT_PROC_STOP_IDLE;
747 			(void) pthread_cond_broadcast(&dpr->dpr_cv);
748 		}
749 
750 		while (!dpr->dpr_done)
751 			(void) pthread_cond_wait(&dpr->dpr_cv, &dpr->dpr_lock);
752 
753 		(void) pthread_mutex_unlock(&dpr->dpr_lock);
754 	}
755 
756 	/*
757 	 * Before we free the process structure, remove this dt_proc_t from the
758 	 * lookup hash, and then walk the dt_proc_hash_t's notification list
759 	 * and remove this dt_proc_t if it is enqueued.
760 	 */
761 	(void) pthread_mutex_lock(&dph->dph_lock);
762 	(void) dt_proc_lookup(dtp, P, B_TRUE);
763 	npp = &dph->dph_notify;
764 
765 	while ((npr = *npp) != NULL) {
766 		if (npr->dprn_dpr == dpr) {
767 			*npp = npr->dprn_next;
768 			dt_free(dtp, npr);
769 		} else {
770 			npp = &npr->dprn_next;
771 		}
772 	}
773 
774 	(void) pthread_mutex_unlock(&dph->dph_lock);
775 
776 	/*
777 	 * Remove the dt_proc_list from the LRU list, release the underlying
778 	 * libproc handle, and free our dt_proc_t data structure.
779 	 */
780 	if (dpr->dpr_cacheable) {
781 		assert(dph->dph_lrucnt != 0);
782 		dph->dph_lrucnt--;
783 	}
784 
785 	dt_list_delete(&dph->dph_lrulist, dpr);
786 	Prelease(dpr->dpr_proc, rflag);
787 	dt_free(dtp, dpr);
788 }
789 
790 static int
791 dt_proc_create_thread(dtrace_hdl_t *dtp, dt_proc_t *dpr, uint_t stop)
792 {
793 	dt_proc_control_data_t data;
794 	sigset_t nset, oset;
795 	pthread_attr_t a;
796 	int err;
797 
798 	(void) pthread_mutex_lock(&dpr->dpr_lock);
799 	dpr->dpr_stop |= stop; /* set bit for initial rendezvous */
800 
801 	(void) pthread_attr_init(&a);
802 	(void) pthread_attr_setdetachstate(&a, PTHREAD_CREATE_DETACHED);
803 
804 	(void) sigfillset(&nset);
805 	(void) sigdelset(&nset, SIGABRT);	/* unblocked for assert() */
806 	(void) sigdelset(&nset, SIGCANCEL);	/* see dt_proc_destroy() */
807 
808 	data.dpcd_hdl = dtp;
809 	data.dpcd_proc = dpr;
810 
811 	(void) pthread_sigmask(SIG_SETMASK, &nset, &oset);
812 	err = pthread_create(&dpr->dpr_tid, &a, dt_proc_control, &data);
813 	(void) pthread_sigmask(SIG_SETMASK, &oset, NULL);
814 
815 	/*
816 	 * If the control thread was created, then wait on dpr_cv for either
817 	 * dpr_done to be set (the victim died or the control thread failed)
818 	 * or DT_PROC_STOP_IDLE to be set, indicating that the victim is now
819 	 * stopped by /proc and the control thread is at the rendezvous event.
820 	 * On success, we return with the process and control thread stopped:
821 	 * the caller can then apply dt_proc_continue() to resume both.
822 	 */
823 	if (err == 0) {
824 		while (!dpr->dpr_done && !(dpr->dpr_stop & DT_PROC_STOP_IDLE))
825 			(void) pthread_cond_wait(&dpr->dpr_cv, &dpr->dpr_lock);
826 
827 		/*
828 		 * If dpr_done is set, the control thread aborted before it
829 		 * reached the rendezvous event.  This is either due to PS_LOST
830 		 * or PS_UNDEAD (i.e. the process died).  We try to provide a
831 		 * small amount of useful information to help figure it out.
832 		 */
833 		if (dpr->dpr_done) {
834 			const psinfo_t *prp = Ppsinfo(dpr->dpr_proc);
835 			int stat = prp ? prp->pr_wstat : 0;
836 			int pid = dpr->dpr_pid;
837 
838 			if (Pstate(dpr->dpr_proc) == PS_LOST) {
839 				(void) dt_proc_error(dpr->dpr_hdl, dpr,
840 				    "failed to control pid %d: process exec'd "
841 				    "set-id or unobservable program\n", pid);
842 			} else if (WIFSIGNALED(stat)) {
843 				(void) dt_proc_error(dpr->dpr_hdl, dpr,
844 				    "failed to control pid %d: process died "
845 				    "from signal %d\n", pid, WTERMSIG(stat));
846 			} else {
847 				(void) dt_proc_error(dpr->dpr_hdl, dpr,
848 				    "failed to control pid %d: process exited "
849 				    "with status %d\n", pid, WEXITSTATUS(stat));
850 			}
851 
852 			err = ESRCH; /* cause grab() or create() to fail */
853 		}
854 	} else {
855 		(void) dt_proc_error(dpr->dpr_hdl, dpr,
856 		    "failed to create control thread for process-id %d: %s\n",
857 		    (int)dpr->dpr_pid, strerror(err));
858 	}
859 
860 	(void) pthread_mutex_unlock(&dpr->dpr_lock);
861 	(void) pthread_attr_destroy(&a);
862 
863 	return (err);
864 }
865 
866 struct ps_prochandle *
867 dt_proc_create(dtrace_hdl_t *dtp, const char *file, char *const *argv)
868 {
869 	dt_proc_hash_t *dph = dtp->dt_procs;
870 	dt_proc_t *dpr;
871 	int err;
872 
873 	if ((dpr = dt_zalloc(dtp, sizeof (dt_proc_t))) == NULL)
874 		return (NULL); /* errno is set for us */
875 
876 	(void) pthread_mutex_init(&dpr->dpr_lock, NULL);
877 	(void) pthread_cond_init(&dpr->dpr_cv, NULL);
878 
879 	if ((dpr->dpr_proc = Pcreate(file, argv, &err, NULL, 0)) == NULL) {
880 		return (dt_proc_error(dtp, dpr,
881 		    "failed to execute %s: %s\n", file, Pcreate_error(err)));
882 	}
883 
884 	dpr->dpr_hdl = dtp;
885 	dpr->dpr_pid = Pstatus(dpr->dpr_proc)->pr_pid;
886 
887 	(void) Punsetflags(dpr->dpr_proc, PR_RLC);
888 	(void) Psetflags(dpr->dpr_proc, PR_KLC);
889 
890 	if (dt_proc_create_thread(dtp, dpr, dtp->dt_prcmode) != 0)
891 		return (NULL); /* dt_proc_error() has been called for us */
892 
893 	dpr->dpr_hash = dph->dph_hash[dpr->dpr_pid & (dph->dph_hashlen - 1)];
894 	dph->dph_hash[dpr->dpr_pid & (dph->dph_hashlen - 1)] = dpr;
895 	dt_list_prepend(&dph->dph_lrulist, dpr);
896 
897 	dt_dprintf("created pid %d\n", (int)dpr->dpr_pid);
898 	dpr->dpr_refs++;
899 
900 	return (dpr->dpr_proc);
901 }
902 
903 struct ps_prochandle *
904 dt_proc_grab(dtrace_hdl_t *dtp, pid_t pid, int flags, int nomonitor)
905 {
906 	dt_proc_hash_t *dph = dtp->dt_procs;
907 	uint_t h = pid & (dph->dph_hashlen - 1);
908 	dt_proc_t *dpr, *opr;
909 	int err;
910 
911 	/*
912 	 * Search the hash table for the pid.  If it is already grabbed or
913 	 * created, move the handle to the front of the lrulist, increment
914 	 * the reference count, and return the existing ps_prochandle.
915 	 */
916 	for (dpr = dph->dph_hash[h]; dpr != NULL; dpr = dpr->dpr_hash) {
917 		if (dpr->dpr_pid == pid && !dpr->dpr_stale) {
918 			/*
919 			 * If the cached handle was opened read-only and
920 			 * this request is for a writeable handle, mark
921 			 * the cached handle as stale and open a new handle.
922 			 * Since it's stale, unmark it as cacheable.
923 			 */
924 			if (dpr->dpr_rdonly && !(flags & PGRAB_RDONLY)) {
925 				dt_dprintf("upgrading pid %d\n", (int)pid);
926 				dpr->dpr_stale = B_TRUE;
927 				dpr->dpr_cacheable = B_FALSE;
928 				dph->dph_lrucnt--;
929 				break;
930 			}
931 
932 			dt_dprintf("grabbed pid %d (cached)\n", (int)pid);
933 			dt_list_delete(&dph->dph_lrulist, dpr);
934 			dt_list_prepend(&dph->dph_lrulist, dpr);
935 			dpr->dpr_refs++;
936 			return (dpr->dpr_proc);
937 		}
938 	}
939 
940 	if ((dpr = dt_zalloc(dtp, sizeof (dt_proc_t))) == NULL)
941 		return (NULL); /* errno is set for us */
942 
943 	(void) pthread_mutex_init(&dpr->dpr_lock, NULL);
944 	(void) pthread_cond_init(&dpr->dpr_cv, NULL);
945 
946 	if ((dpr->dpr_proc = Pgrab(pid, flags, &err)) == NULL) {
947 		return (dt_proc_error(dtp, dpr,
948 		    "failed to grab pid %d: %s\n", (int)pid, Pgrab_error(err)));
949 	}
950 
951 	dpr->dpr_hdl = dtp;
952 	dpr->dpr_pid = pid;
953 
954 	(void) Punsetflags(dpr->dpr_proc, PR_KLC);
955 	(void) Psetflags(dpr->dpr_proc, PR_RLC);
956 
957 	/*
958 	 * If we are attempting to grab the process without a monitor
959 	 * thread, then mark the process cacheable only if it's being
960 	 * grabbed read-only.  If we're currently caching more process
961 	 * handles than dph_lrulim permits, attempt to find the
962 	 * least-recently-used handle that is currently unreferenced and
963 	 * release it from the cache.  Otherwise we are grabbing the process
964 	 * for control: create a control thread for this process and store
965 	 * its ID in dpr->dpr_tid.
966 	 */
967 	if (nomonitor || (flags & PGRAB_RDONLY)) {
968 		if (dph->dph_lrucnt >= dph->dph_lrulim) {
969 			for (opr = dt_list_prev(&dph->dph_lrulist);
970 			    opr != NULL; opr = dt_list_prev(opr)) {
971 				if (opr->dpr_cacheable && opr->dpr_refs == 0) {
972 					dt_proc_destroy(dtp, opr->dpr_proc);
973 					break;
974 				}
975 			}
976 		}
977 
978 		if (flags & PGRAB_RDONLY) {
979 			dpr->dpr_cacheable = B_TRUE;
980 			dpr->dpr_rdonly = B_TRUE;
981 			dph->dph_lrucnt++;
982 		}
983 
984 	} else if (dt_proc_create_thread(dtp, dpr, DT_PROC_STOP_GRAB) != 0)
985 		return (NULL); /* dt_proc_error() has been called for us */
986 
987 	dpr->dpr_hash = dph->dph_hash[h];
988 	dph->dph_hash[h] = dpr;
989 	dt_list_prepend(&dph->dph_lrulist, dpr);
990 
991 	dt_dprintf("grabbed pid %d\n", (int)pid);
992 	dpr->dpr_refs++;
993 
994 	return (dpr->dpr_proc);
995 }
996 
997 void
998 dt_proc_release(dtrace_hdl_t *dtp, struct ps_prochandle *P)
999 {
1000 	dt_proc_t *dpr = dt_proc_lookup(dtp, P, B_FALSE);
1001 	dt_proc_hash_t *dph = dtp->dt_procs;
1002 
1003 	assert(dpr != NULL);
1004 	assert(dpr->dpr_refs != 0);
1005 
1006 	if (--dpr->dpr_refs == 0 &&
1007 	    (!dpr->dpr_cacheable || dph->dph_lrucnt > dph->dph_lrulim))
1008 		dt_proc_destroy(dtp, P);
1009 }
1010 
1011 void
1012 dt_proc_continue(dtrace_hdl_t *dtp, struct ps_prochandle *P)
1013 {
1014 	dt_proc_t *dpr = dt_proc_lookup(dtp, P, B_FALSE);
1015 
1016 	(void) pthread_mutex_lock(&dpr->dpr_lock);
1017 
1018 	if (dpr->dpr_stop & DT_PROC_STOP_IDLE) {
1019 		dpr->dpr_stop &= ~DT_PROC_STOP_IDLE;
1020 		(void) pthread_cond_broadcast(&dpr->dpr_cv);
1021 	}
1022 
1023 	(void) pthread_mutex_unlock(&dpr->dpr_lock);
1024 }
1025 
1026 void
1027 dt_proc_lock(dtrace_hdl_t *dtp, struct ps_prochandle *P)
1028 {
1029 	dt_proc_t *dpr = dt_proc_lookup(dtp, P, B_FALSE);
1030 	int err = pthread_mutex_lock(&dpr->dpr_lock);
1031 	assert(err == 0); /* check for recursion */
1032 }
1033 
1034 void
1035 dt_proc_unlock(dtrace_hdl_t *dtp, struct ps_prochandle *P)
1036 {
1037 	dt_proc_t *dpr = dt_proc_lookup(dtp, P, B_FALSE);
1038 	int err = pthread_mutex_unlock(&dpr->dpr_lock);
1039 	assert(err == 0); /* check for unheld lock */
1040 }
1041 
1042 void
1043 dt_proc_hash_create(dtrace_hdl_t *dtp)
1044 {
1045 	if ((dtp->dt_procs = dt_zalloc(dtp, sizeof (dt_proc_hash_t) +
1046 	    sizeof (dt_proc_t *) * _dtrace_pidbuckets - 1)) != NULL) {
1047 
1048 		(void) pthread_mutex_init(&dtp->dt_procs->dph_lock, NULL);
1049 		(void) pthread_cond_init(&dtp->dt_procs->dph_cv, NULL);
1050 
1051 		dtp->dt_procs->dph_hashlen = _dtrace_pidbuckets;
1052 		dtp->dt_procs->dph_lrulim = _dtrace_pidlrulim;
1053 	}
1054 }
1055 
1056 void
1057 dt_proc_hash_destroy(dtrace_hdl_t *dtp)
1058 {
1059 	dt_proc_hash_t *dph = dtp->dt_procs;
1060 	dt_proc_t *dpr;
1061 
1062 	while ((dpr = dt_list_next(&dph->dph_lrulist)) != NULL)
1063 		dt_proc_destroy(dtp, dpr->dpr_proc);
1064 
1065 	dtp->dt_procs = NULL;
1066 	dt_free(dtp, dph);
1067 }
1068 
1069 struct ps_prochandle *
1070 dtrace_proc_create(dtrace_hdl_t *dtp, const char *file, char *const *argv)
1071 {
1072 	dt_ident_t *idp = dt_idhash_lookup(dtp->dt_macros, "target");
1073 	struct ps_prochandle *P = dt_proc_create(dtp, file, argv);
1074 
1075 	if (P != NULL && idp != NULL && idp->di_id == 0)
1076 		idp->di_id = Pstatus(P)->pr_pid; /* $target = created pid */
1077 
1078 	return (P);
1079 }
1080 
1081 struct ps_prochandle *
1082 dtrace_proc_grab(dtrace_hdl_t *dtp, pid_t pid, int flags)
1083 {
1084 	dt_ident_t *idp = dt_idhash_lookup(dtp->dt_macros, "target");
1085 	struct ps_prochandle *P = dt_proc_grab(dtp, pid, flags, 0);
1086 
1087 	if (P != NULL && idp != NULL && idp->di_id == 0)
1088 		idp->di_id = pid; /* $target = grabbed pid */
1089 
1090 	return (P);
1091 }
1092 
1093 void
1094 dtrace_proc_release(dtrace_hdl_t *dtp, struct ps_prochandle *P)
1095 {
1096 	dt_proc_release(dtp, P);
1097 }
1098 
1099 void
1100 dtrace_proc_continue(dtrace_hdl_t *dtp, struct ps_prochandle *P)
1101 {
1102 	dt_proc_continue(dtp, P);
1103 }
1104