xref: /titanic_41/usr/src/lib/libdtrace/common/dt_proc.c (revision 7cdcb8abb9b4700219e82028dac3d78699314b6d)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 /*
30  * DTrace Process Control
31  *
32  * This file provides a set of routines that permit libdtrace and its clients
33  * to create and grab process handles using libproc, and to share these handles
34  * between library mechanisms that need libproc access, such as ustack(), and
35  * client mechanisms that need libproc access, such as dtrace(1M) -c and -p.
36  * The library provides several mechanisms in the libproc control layer:
37  *
38  * Reference Counting: The library code and client code can independently grab
39  * the same process handles without interfering with one another.  Only when
40  * the reference count drops to zero and the handle is not being cached (see
41  * below for more information on caching) will Prelease() be called on it.
42  *
43  * Handle Caching: If a handle is grabbed PGRAB_RDONLY (e.g. by ustack()) and
44  * the reference count drops to zero, the handle is not immediately released.
45  * Instead, libproc handles are maintained on dph_lrulist in order from most-
46  * recently accessed to least-recently accessed.  Idle handles are maintained
47  * until a pre-defined LRU cache limit is exceeded, permitting repeated calls
48  * to ustack() to avoid the overhead of releasing and re-grabbing processes.
49  *
50  * Process Control: For processes that are grabbed for control (~PGRAB_RDONLY)
51  * or created by dt_proc_create(), a control thread is created to provide
52  * callbacks on process exit and symbol table caching on dlopen()s.
53  *
54  * MT-Safety: Libproc is not MT-Safe, so dt_proc_lock() and dt_proc_unlock()
55  * are provided to synchronize access to the libproc handle between libdtrace
56  * code and client code and the control thread's use of the ps_prochandle.
57  *
58  * NOTE: MT-Safety is NOT provided for libdtrace itself, or for use of the
59  * dtrace_proc_grab/dtrace_proc_create mechanisms.  Like all exported libdtrace
60  * calls, these are assumed to be MT-Unsafe.  MT-Safety is ONLY provided for
61  * synchronization between libdtrace control threads and the client thread.
62  *
63  * The ps_prochandles themselves are maintained along with a dt_proc_t struct
64  * in a hash table indexed by PID.  This provides basic locking and reference
65  * counting.  The dt_proc_t is also maintained in LRU order on dph_lrulist.
66  * The dph_lrucnt and dph_lrulim count the number of cacheable processes and
67  * the current limit on the number of actively cached entries.
68  *
69  * The control thread for a process establishes breakpoints at the rtld_db
70  * locations of interest, updates mappings and symbol tables at these points,
71  * and handles exec and fork (by always following the parent).  The control
72  * thread automatically exits when the process dies or control is lost.
73  *
74  * A simple notification mechanism is provided for libdtrace clients using
75  * dtrace_handle_proc() for notification of PS_UNDEAD or PS_LOST events.  If
76  * such an event occurs, the dt_proc_t itself is enqueued on a notification
77  * list and the control thread broadcasts to dph_cv.  dtrace_sleep() will wake
78  * up using this condition and will then call the client handler as necessary.
79  */
80 
81 #include <sys/wait.h>
82 #include <sys/lwp.h>
83 #include <strings.h>
84 #include <signal.h>
85 #include <assert.h>
86 #include <errno.h>
87 
88 #include <dt_proc.h>
89 #include <dt_pid.h>
90 #include <dt_impl.h>
91 
92 #define	IS_SYS_EXEC(w)	(w == SYS_exec || w == SYS_execve)
93 #define	IS_SYS_FORK(w)	(w == SYS_vfork || w == SYS_fork1 ||	\
94 			w == SYS_forkall || w == SYS_forksys)
95 
96 static dt_bkpt_t *
97 dt_proc_bpcreate(dt_proc_t *dpr, uintptr_t addr, dt_bkpt_f *func, void *data)
98 {
99 	struct ps_prochandle *P = dpr->dpr_proc;
100 	dt_bkpt_t *dbp;
101 
102 	assert(DT_MUTEX_HELD(&dpr->dpr_lock));
103 
104 	if ((dbp = dt_zalloc(dpr->dpr_hdl, sizeof (dt_bkpt_t))) != NULL) {
105 		dbp->dbp_func = func;
106 		dbp->dbp_data = data;
107 		dbp->dbp_addr = addr;
108 
109 		if (Psetbkpt(P, dbp->dbp_addr, &dbp->dbp_instr) == 0)
110 			dbp->dbp_active = B_TRUE;
111 
112 		dt_list_append(&dpr->dpr_bps, dbp);
113 	}
114 
115 	return (dbp);
116 }
117 
118 static void
119 dt_proc_bpdestroy(dt_proc_t *dpr, int delbkpts)
120 {
121 	int state = Pstate(dpr->dpr_proc);
122 	dt_bkpt_t *dbp, *nbp;
123 
124 	assert(DT_MUTEX_HELD(&dpr->dpr_lock));
125 
126 	for (dbp = dt_list_next(&dpr->dpr_bps); dbp != NULL; dbp = nbp) {
127 		if (delbkpts && dbp->dbp_active &&
128 		    state != PS_LOST && state != PS_UNDEAD) {
129 			(void) Pdelbkpt(dpr->dpr_proc,
130 			    dbp->dbp_addr, dbp->dbp_instr);
131 		}
132 		nbp = dt_list_next(dbp);
133 		dt_list_delete(&dpr->dpr_bps, dbp);
134 		dt_free(dpr->dpr_hdl, dbp);
135 	}
136 }
137 
138 static void
139 dt_proc_bpmatch(dtrace_hdl_t *dtp, dt_proc_t *dpr)
140 {
141 	const lwpstatus_t *psp = &Pstatus(dpr->dpr_proc)->pr_lwp;
142 	dt_bkpt_t *dbp;
143 
144 	assert(DT_MUTEX_HELD(&dpr->dpr_lock));
145 
146 	for (dbp = dt_list_next(&dpr->dpr_bps);
147 	    dbp != NULL; dbp = dt_list_next(dbp)) {
148 		if (psp->pr_reg[R_PC] == dbp->dbp_addr)
149 			break;
150 	}
151 
152 	if (dbp == NULL) {
153 		dt_dprintf("pid %d: spurious breakpoint wakeup for %lx\n",
154 		    (int)dpr->dpr_pid, (ulong_t)psp->pr_reg[R_PC]);
155 		return;
156 	}
157 
158 	dt_dprintf("pid %d: hit breakpoint at %lx (%lu)\n",
159 	    (int)dpr->dpr_pid, (ulong_t)dbp->dbp_addr, ++dbp->dbp_hits);
160 
161 	dbp->dbp_func(dtp, dpr, dbp->dbp_data);
162 	(void) Pxecbkpt(dpr->dpr_proc, dbp->dbp_instr);
163 }
164 
165 static void
166 dt_proc_bpenable(dt_proc_t *dpr)
167 {
168 	dt_bkpt_t *dbp;
169 
170 	assert(DT_MUTEX_HELD(&dpr->dpr_lock));
171 
172 	for (dbp = dt_list_next(&dpr->dpr_bps);
173 	    dbp != NULL; dbp = dt_list_next(dbp)) {
174 		if (!dbp->dbp_active && Psetbkpt(dpr->dpr_proc,
175 		    dbp->dbp_addr, &dbp->dbp_instr) == 0)
176 			dbp->dbp_active = B_TRUE;
177 	}
178 
179 	dt_dprintf("breakpoints enabled\n");
180 }
181 
182 static void
183 dt_proc_bpdisable(dt_proc_t *dpr)
184 {
185 	dt_bkpt_t *dbp;
186 
187 	assert(DT_MUTEX_HELD(&dpr->dpr_lock));
188 
189 	for (dbp = dt_list_next(&dpr->dpr_bps);
190 	    dbp != NULL; dbp = dt_list_next(dbp)) {
191 		if (dbp->dbp_active && Pdelbkpt(dpr->dpr_proc,
192 		    dbp->dbp_addr, dbp->dbp_instr) == 0)
193 			dbp->dbp_active = B_FALSE;
194 	}
195 
196 	dt_dprintf("breakpoints disabled\n");
197 }
198 
199 static void
200 dt_proc_notify(dtrace_hdl_t *dtp, dt_proc_hash_t *dph, dt_proc_t *dpr,
201     const char *msg)
202 {
203 	dt_proc_notify_t *dprn = dt_alloc(dtp, sizeof (dt_proc_notify_t));
204 
205 	if (dprn == NULL) {
206 		dt_dprintf("failed to allocate notification for %d %s\n",
207 		    (int)dpr->dpr_pid, msg);
208 	} else {
209 		dprn->dprn_dpr = dpr;
210 		if (msg == NULL)
211 			dprn->dprn_errmsg[0] = '\0';
212 		else
213 			(void) strlcpy(dprn->dprn_errmsg, msg,
214 			    sizeof (dprn->dprn_errmsg));
215 
216 		(void) pthread_mutex_lock(&dph->dph_lock);
217 
218 		dprn->dprn_next = dph->dph_notify;
219 		dph->dph_notify = dprn;
220 
221 		(void) pthread_cond_broadcast(&dph->dph_cv);
222 		(void) pthread_mutex_unlock(&dph->dph_lock);
223 	}
224 }
225 
226 /*
227  * Check to see if the control thread was requested to stop when the victim
228  * process reached a particular event (why) rather than continuing the victim.
229  * If 'why' is set in the stop mask, we wait on dpr_cv for dt_proc_continue().
230  * If 'why' is not set, this function returns immediately and does nothing.
231  */
232 static void
233 dt_proc_stop(dt_proc_t *dpr, uint8_t why)
234 {
235 	assert(DT_MUTEX_HELD(&dpr->dpr_lock));
236 	assert(why != DT_PROC_STOP_IDLE);
237 
238 	if (dpr->dpr_stop & why) {
239 		dpr->dpr_stop |= DT_PROC_STOP_IDLE;
240 		dpr->dpr_stop &= ~why;
241 
242 		(void) pthread_cond_broadcast(&dpr->dpr_cv);
243 
244 		/*
245 		 * We disable breakpoints while stopped to preserve the
246 		 * integrity of the program text for both our own disassembly
247 		 * and that of the kernel.
248 		 */
249 		dt_proc_bpdisable(dpr);
250 
251 		while (dpr->dpr_stop & DT_PROC_STOP_IDLE)
252 			(void) pthread_cond_wait(&dpr->dpr_cv, &dpr->dpr_lock);
253 
254 		dt_proc_bpenable(dpr);
255 	}
256 }
257 
258 /*ARGSUSED*/
259 static void
260 dt_proc_bpmain(dtrace_hdl_t *dtp, dt_proc_t *dpr, const char *fname)
261 {
262 	dt_dprintf("pid %d: breakpoint at %s()\n", (int)dpr->dpr_pid, fname);
263 	dt_proc_stop(dpr, DT_PROC_STOP_MAIN);
264 }
265 
266 static void
267 dt_proc_rdevent(dtrace_hdl_t *dtp, dt_proc_t *dpr, const char *evname)
268 {
269 	rd_event_msg_t rdm;
270 	rd_err_e err;
271 
272 	if ((err = rd_event_getmsg(dpr->dpr_rtld, &rdm)) != RD_OK) {
273 		dt_dprintf("pid %d: failed to get %s event message: %s\n",
274 		    (int)dpr->dpr_pid, evname, rd_errstr(err));
275 		return;
276 	}
277 
278 	dt_dprintf("pid %d: rtld event %s type=%d state %d\n",
279 	    (int)dpr->dpr_pid, evname, rdm.type, rdm.u.state);
280 
281 	switch (rdm.type) {
282 	case RD_DLACTIVITY:
283 		if (rdm.u.state != RD_CONSISTENT)
284 			break;
285 
286 		Pupdate_syms(dpr->dpr_proc);
287 		if (dt_pid_create_probes_module(dtp, dpr) != 0)
288 			dt_proc_notify(dtp, dtp->dt_procs, dpr,
289 			    dpr->dpr_errmsg);
290 
291 		break;
292 	case RD_PREINIT:
293 		Pupdate_syms(dpr->dpr_proc);
294 		dt_proc_stop(dpr, DT_PROC_STOP_PREINIT);
295 		break;
296 	case RD_POSTINIT:
297 		Pupdate_syms(dpr->dpr_proc);
298 		dt_proc_stop(dpr, DT_PROC_STOP_POSTINIT);
299 		break;
300 	}
301 }
302 
303 static void
304 dt_proc_rdwatch(dt_proc_t *dpr, rd_event_e event, const char *evname)
305 {
306 	rd_notify_t rdn;
307 	rd_err_e err;
308 
309 	if ((err = rd_event_addr(dpr->dpr_rtld, event, &rdn)) != RD_OK) {
310 		dt_dprintf("pid %d: failed to get event address for %s: %s\n",
311 		    (int)dpr->dpr_pid, evname, rd_errstr(err));
312 		return;
313 	}
314 
315 	if (rdn.type != RD_NOTIFY_BPT) {
316 		dt_dprintf("pid %d: event %s has unexpected type %d\n",
317 		    (int)dpr->dpr_pid, evname, rdn.type);
318 		return;
319 	}
320 
321 	(void) dt_proc_bpcreate(dpr, rdn.u.bptaddr,
322 	    (dt_bkpt_f *)dt_proc_rdevent, (void *)evname);
323 }
324 
325 /*
326  * Common code for enabling events associated with the run-time linker after
327  * attaching to a process or after a victim process completes an exec(2).
328  */
329 static void
330 dt_proc_attach(dt_proc_t *dpr, int exec)
331 {
332 	const pstatus_t *psp = Pstatus(dpr->dpr_proc);
333 	rd_err_e err;
334 	GElf_Sym sym;
335 
336 	assert(DT_MUTEX_HELD(&dpr->dpr_lock));
337 
338 	if (exec) {
339 		if (psp->pr_lwp.pr_errno != 0)
340 			return; /* exec failed: nothing needs to be done */
341 
342 		dt_proc_bpdestroy(dpr, B_FALSE);
343 		Preset_maps(dpr->dpr_proc);
344 	}
345 
346 	if ((dpr->dpr_rtld = Prd_agent(dpr->dpr_proc)) != NULL &&
347 	    (err = rd_event_enable(dpr->dpr_rtld, B_TRUE)) == RD_OK) {
348 		dt_proc_rdwatch(dpr, RD_PREINIT, "RD_PREINIT");
349 		dt_proc_rdwatch(dpr, RD_POSTINIT, "RD_POSTINIT");
350 		dt_proc_rdwatch(dpr, RD_DLACTIVITY, "RD_DLACTIVITY");
351 	} else {
352 		dt_dprintf("pid %d: failed to enable rtld events: %s\n",
353 		    (int)dpr->dpr_pid, dpr->dpr_rtld ? rd_errstr(err) :
354 		    "rtld_db agent initialization failed");
355 	}
356 
357 	Pupdate_maps(dpr->dpr_proc);
358 
359 	if (Pxlookup_by_name(dpr->dpr_proc, LM_ID_BASE,
360 	    "a.out", "main", &sym, NULL) == 0) {
361 		(void) dt_proc_bpcreate(dpr, (uintptr_t)sym.st_value,
362 		    (dt_bkpt_f *)dt_proc_bpmain, "a.out`main");
363 	} else {
364 		dt_dprintf("pid %d: failed to find a.out`main: %s\n",
365 		    (int)dpr->dpr_pid, strerror(errno));
366 	}
367 }
368 
369 /*
370  * Wait for a stopped process to be set running again by some other debugger.
371  * This is typically not required by /proc-based debuggers, since the usual
372  * model is that one debugger controls one victim.  But DTrace, as usual, has
373  * its own needs: the stop() action assumes that prun(1) or some other tool
374  * will be applied to resume the victim process.  This could be solved by
375  * adding a PCWRUN directive to /proc, but that seems like overkill unless
376  * other debuggers end up needing this functionality, so we implement a cheap
377  * equivalent to PCWRUN using the set of existing kernel mechanisms.
378  *
379  * Our intent is really not just to wait for the victim to run, but rather to
380  * wait for it to run and then stop again for a reason other than the current
381  * PR_REQUESTED stop.  Since PCWSTOP/Pstopstatus() can be applied repeatedly
382  * to a stopped process and will return the same result without affecting the
383  * victim, we can just perform these operations repeatedly until Pstate()
384  * changes, the representative LWP ID changes, or the stop timestamp advances.
385  * dt_proc_control() will then rediscover the new state and continue as usual.
386  * When the process is still stopped in the same exact state, we sleep for a
387  * brief interval before waiting again so as not to spin consuming CPU cycles.
388  */
389 static void
390 dt_proc_waitrun(dt_proc_t *dpr)
391 {
392 	struct ps_prochandle *P = dpr->dpr_proc;
393 	const lwpstatus_t *psp = &Pstatus(P)->pr_lwp;
394 
395 	int krflag = psp->pr_flags & (PR_KLC | PR_RLC);
396 	timestruc_t tstamp = psp->pr_tstamp;
397 	lwpid_t lwpid = psp->pr_lwpid;
398 
399 	const long wstop = PCWSTOP;
400 	int pfd = Pctlfd(P);
401 
402 	assert(DT_MUTEX_HELD(&dpr->dpr_lock));
403 	assert(psp->pr_flags & PR_STOPPED);
404 	assert(Pstate(P) == PS_STOP);
405 
406 	/*
407 	 * While we are waiting for the victim to run, clear PR_KLC and PR_RLC
408 	 * so that if the libdtrace client is killed, the victim stays stopped.
409 	 * dt_proc_destroy() will also observe this and perform PRELEASE_HANG.
410 	 */
411 	(void) Punsetflags(P, krflag);
412 	Psync(P);
413 
414 	(void) pthread_mutex_unlock(&dpr->dpr_lock);
415 
416 	while (!dpr->dpr_quit) {
417 		if (write(pfd, &wstop, sizeof (wstop)) == -1 && errno == EINTR)
418 			continue; /* check dpr_quit and continue waiting */
419 
420 		(void) pthread_mutex_lock(&dpr->dpr_lock);
421 		(void) Pstopstatus(P, PCNULL, 0);
422 		psp = &Pstatus(P)->pr_lwp;
423 
424 		/*
425 		 * If we've reached a new state, found a new representative, or
426 		 * the stop timestamp has changed, restore PR_KLC/PR_RLC to its
427 		 * original setting and then return with dpr_lock held.
428 		 */
429 		if (Pstate(P) != PS_STOP || psp->pr_lwpid != lwpid ||
430 		    bcmp(&psp->pr_tstamp, &tstamp, sizeof (tstamp)) != 0) {
431 			(void) Psetflags(P, krflag);
432 			Psync(P);
433 			return;
434 		}
435 
436 		(void) pthread_mutex_unlock(&dpr->dpr_lock);
437 		(void) poll(NULL, 0, MILLISEC / 2);
438 	}
439 
440 	(void) pthread_mutex_lock(&dpr->dpr_lock);
441 }
442 
443 typedef struct dt_proc_control_data {
444 	dtrace_hdl_t *dpcd_hdl;			/* DTrace handle */
445 	dt_proc_t *dpcd_proc;			/* proccess to control */
446 } dt_proc_control_data_t;
447 
448 /*
449  * Main loop for all victim process control threads.  We initialize all the
450  * appropriate /proc control mechanisms, and then enter a loop waiting for
451  * the process to stop on an event or die.  We process any events by calling
452  * appropriate subroutines, and exit when the victim dies or we lose control.
453  *
454  * The control thread synchronizes the use of dpr_proc with other libdtrace
455  * threads using dpr_lock.  We hold the lock for all of our operations except
456  * waiting while the process is running: this is accomplished by writing a
457  * PCWSTOP directive directly to the underlying /proc/<pid>/ctl file.  If the
458  * libdtrace client wishes to exit or abort our wait, SIGCANCEL can be used.
459  */
460 static void *
461 dt_proc_control(void *arg)
462 {
463 	dt_proc_control_data_t *datap = arg;
464 	dtrace_hdl_t *dtp = datap->dpcd_hdl;
465 	dt_proc_t *dpr = datap->dpcd_proc;
466 	dt_proc_hash_t *dph = dpr->dpr_hdl->dt_procs;
467 	struct ps_prochandle *P = dpr->dpr_proc;
468 
469 	int pfd = Pctlfd(P);
470 	int pid = dpr->dpr_pid;
471 
472 	const long wstop = PCWSTOP;
473 	int notify = B_FALSE;
474 
475 	/*
476 	 * We disable the POSIX thread cancellation mechanism so that the
477 	 * client program using libdtrace can't accidentally cancel our thread.
478 	 * dt_proc_destroy() uses SIGCANCEL explicitly to simply poke us out
479 	 * of PCWSTOP with EINTR, at which point we will see dpr_quit and exit.
480 	 */
481 	(void) pthread_setcancelstate(PTHREAD_CANCEL_DISABLE, NULL);
482 
483 	/*
484 	 * Set up the corresponding process for tracing by libdtrace.  We want
485 	 * to be able to catch breakpoints and efficiently single-step over
486 	 * them, and we need to enable librtld_db to watch libdl activity.
487 	 */
488 	(void) pthread_mutex_lock(&dpr->dpr_lock);
489 
490 	(void) Punsetflags(P, PR_ASYNC);	/* require synchronous mode */
491 	(void) Psetflags(P, PR_BPTADJ);		/* always adjust eip on x86 */
492 	(void) Punsetflags(P, PR_FORK);		/* do not inherit on fork */
493 
494 	(void) Pfault(P, FLTBPT, B_TRUE);	/* always trace breakpoints */
495 	(void) Pfault(P, FLTTRACE, B_TRUE);	/* always trace single-step */
496 
497 	/*
498 	 * We must trace exit from exec() system calls so that if the exec is
499 	 * successful, we can reset our breakpoints and re-initialize libproc.
500 	 */
501 	(void) Psysexit(P, SYS_exec, B_TRUE);
502 	(void) Psysexit(P, SYS_execve, B_TRUE);
503 
504 	/*
505 	 * We must trace entry and exit for fork() system calls in order to
506 	 * disable our breakpoints temporarily during the fork.  We do not set
507 	 * the PR_FORK flag, so if fork succeeds the child begins executing and
508 	 * does not inherit any other tracing behaviors or a control thread.
509 	 */
510 	(void) Psysentry(P, SYS_vfork, B_TRUE);
511 	(void) Psysexit(P, SYS_vfork, B_TRUE);
512 	(void) Psysentry(P, SYS_fork1, B_TRUE);
513 	(void) Psysexit(P, SYS_fork1, B_TRUE);
514 	(void) Psysentry(P, SYS_forkall, B_TRUE);
515 	(void) Psysexit(P, SYS_forkall, B_TRUE);
516 	(void) Psysentry(P, SYS_forksys, B_TRUE);
517 	(void) Psysexit(P, SYS_forksys, B_TRUE);
518 
519 	Psync(P);				/* enable all /proc changes */
520 	dt_proc_attach(dpr, B_FALSE);		/* enable rtld breakpoints */
521 
522 	/*
523 	 * If PR_KLC is set, we created the process; otherwise we grabbed it.
524 	 * Check for an appropriate stop request and wait for dt_proc_continue.
525 	 */
526 	if (Pstatus(P)->pr_flags & PR_KLC)
527 		dt_proc_stop(dpr, DT_PROC_STOP_CREATE);
528 	else
529 		dt_proc_stop(dpr, DT_PROC_STOP_GRAB);
530 
531 	if (Psetrun(P, 0, 0) == -1) {
532 		dt_dprintf("pid %d: failed to set running: %s\n",
533 		    (int)dpr->dpr_pid, strerror(errno));
534 	}
535 
536 	(void) pthread_mutex_unlock(&dpr->dpr_lock);
537 
538 	/*
539 	 * Wait for the process corresponding to this control thread to stop,
540 	 * process the event, and then set it running again.  We want to sleep
541 	 * with dpr_lock *unheld* so that other parts of libdtrace can use the
542 	 * ps_prochandle in the meantime (e.g. ustack()).  To do this, we write
543 	 * a PCWSTOP directive directly to the underlying /proc/<pid>/ctl file.
544 	 * Once the process stops, we wake up, grab dpr_lock, and then call
545 	 * Pwait() (which will return immediately) and do our processing.
546 	 */
547 	while (!dpr->dpr_quit) {
548 		const lwpstatus_t *psp;
549 
550 		if (write(pfd, &wstop, sizeof (wstop)) == -1 && errno == EINTR)
551 			continue; /* check dpr_quit and continue waiting */
552 
553 		(void) pthread_mutex_lock(&dpr->dpr_lock);
554 pwait_locked:
555 		if (Pstopstatus(P, PCNULL, 0) == -1 && errno == EINTR) {
556 			(void) pthread_mutex_unlock(&dpr->dpr_lock);
557 			continue; /* check dpr_quit and continue waiting */
558 		}
559 
560 		switch (Pstate(P)) {
561 		case PS_STOP:
562 			psp = &Pstatus(P)->pr_lwp;
563 
564 			dt_dprintf("pid %d: proc stopped showing %d/%d\n",
565 			    pid, psp->pr_why, psp->pr_what);
566 
567 			/*
568 			 * If the process stops showing PR_REQUESTED, then the
569 			 * DTrace stop() action was applied to it or another
570 			 * debugging utility (e.g. pstop(1)) asked it to stop.
571 			 * In either case, the user's intention is for the
572 			 * process to remain stopped until another external
573 			 * mechanism (e.g. prun(1)) is applied.  So instead of
574 			 * setting the process running ourself, we wait for
575 			 * someone else to do so.  Once that happens, we return
576 			 * to our normal loop waiting for an event of interest.
577 			 */
578 			if (psp->pr_why == PR_REQUESTED) {
579 				dt_proc_waitrun(dpr);
580 				(void) pthread_mutex_unlock(&dpr->dpr_lock);
581 				continue;
582 			}
583 
584 			/*
585 			 * If the process stops showing one of the events that
586 			 * we are tracing, perform the appropriate response.
587 			 * Note that we ignore PR_SUSPENDED, PR_CHECKPOINT, and
588 			 * PR_JOBCONTROL by design: if one of these conditions
589 			 * occurs, we will fall through to Psetrun() but the
590 			 * process will remain stopped in the kernel by the
591 			 * corresponding mechanism (e.g. job control stop).
592 			 */
593 			if (psp->pr_why == PR_FAULTED && psp->pr_what == FLTBPT)
594 				dt_proc_bpmatch(dtp, dpr);
595 			else if (psp->pr_why == PR_SYSENTRY &&
596 			    IS_SYS_FORK(psp->pr_what))
597 				dt_proc_bpdisable(dpr);
598 			else if (psp->pr_why == PR_SYSEXIT &&
599 			    IS_SYS_FORK(psp->pr_what))
600 				dt_proc_bpenable(dpr);
601 			else if (psp->pr_why == PR_SYSEXIT &&
602 			    IS_SYS_EXEC(psp->pr_what))
603 				dt_proc_attach(dpr, B_TRUE);
604 			break;
605 
606 		case PS_LOST:
607 			if (Preopen(P) == 0)
608 				goto pwait_locked;
609 
610 			dt_dprintf("pid %d: proc lost: %s\n",
611 			    pid, strerror(errno));
612 
613 			dpr->dpr_quit = B_TRUE;
614 			notify = B_TRUE;
615 			break;
616 
617 		case PS_UNDEAD:
618 			dt_dprintf("pid %d: proc died\n", pid);
619 			dpr->dpr_quit = B_TRUE;
620 			notify = B_TRUE;
621 			break;
622 		}
623 
624 		if (Pstate(P) != PS_UNDEAD && Psetrun(P, 0, 0) == -1) {
625 			dt_dprintf("pid %d: failed to set running: %s\n",
626 			    (int)dpr->dpr_pid, strerror(errno));
627 		}
628 
629 		(void) pthread_mutex_unlock(&dpr->dpr_lock);
630 	}
631 
632 	/*
633 	 * If the control thread detected PS_UNDEAD or PS_LOST, then enqueue
634 	 * the dt_proc_t structure on the dt_proc_hash_t notification list.
635 	 */
636 	if (notify)
637 		dt_proc_notify(dtp, dph, dpr, NULL);
638 
639 	/*
640 	 * Destroy and remove any remaining breakpoints, set dpr_done and clear
641 	 * dpr_tid to indicate the control thread has exited, and notify any
642 	 * waiting thread in dt_proc_destroy() that we have succesfully exited.
643 	 */
644 	(void) pthread_mutex_lock(&dpr->dpr_lock);
645 
646 	dt_proc_bpdestroy(dpr, B_TRUE);
647 	dpr->dpr_done = B_TRUE;
648 	dpr->dpr_tid = 0;
649 
650 	(void) pthread_cond_broadcast(&dpr->dpr_cv);
651 	(void) pthread_mutex_unlock(&dpr->dpr_lock);
652 
653 	return (NULL);
654 }
655 
656 /*PRINTFLIKE3*/
657 static struct ps_prochandle *
658 dt_proc_error(dtrace_hdl_t *dtp, dt_proc_t *dpr, const char *format, ...)
659 {
660 	va_list ap;
661 
662 	va_start(ap, format);
663 	dt_set_errmsg(dtp, NULL, NULL, NULL, 0, format, ap);
664 	va_end(ap);
665 
666 	if (dpr->dpr_proc != NULL)
667 		Prelease(dpr->dpr_proc, 0);
668 
669 	dt_free(dtp, dpr);
670 	(void) dt_set_errno(dtp, EDT_COMPILER);
671 	return (NULL);
672 }
673 
674 dt_proc_t *
675 dt_proc_lookup(dtrace_hdl_t *dtp, struct ps_prochandle *P, int remove)
676 {
677 	dt_proc_hash_t *dph = dtp->dt_procs;
678 	pid_t pid = Pstatus(P)->pr_pid;
679 	dt_proc_t *dpr, **dpp = &dph->dph_hash[pid & (dph->dph_hashlen - 1)];
680 
681 	for (dpr = *dpp; dpr != NULL; dpr = dpr->dpr_hash) {
682 		if (dpr->dpr_pid == pid)
683 			break;
684 		else
685 			dpp = &dpr->dpr_hash;
686 	}
687 
688 	assert(dpr != NULL);
689 	assert(dpr->dpr_proc == P);
690 
691 	if (remove)
692 		*dpp = dpr->dpr_hash; /* remove from pid hash chain */
693 
694 	return (dpr);
695 }
696 
697 static void
698 dt_proc_destroy(dtrace_hdl_t *dtp, struct ps_prochandle *P)
699 {
700 	dt_proc_t *dpr = dt_proc_lookup(dtp, P, B_FALSE);
701 	dt_proc_hash_t *dph = dtp->dt_procs;
702 	dt_proc_notify_t *npr, **npp;
703 	int rflag;
704 
705 	assert(dpr != NULL);
706 
707 	/*
708 	 * If neither PR_KLC nor PR_RLC is set, then the process is stopped by
709 	 * an external debugger and we were waiting in dt_proc_waitrun().
710 	 * Leave the process in this condition using PRELEASE_HANG.
711 	 */
712 	if (!(Pstatus(dpr->dpr_proc)->pr_flags & (PR_KLC | PR_RLC))) {
713 		dt_dprintf("abandoning pid %d\n", (int)dpr->dpr_pid);
714 		rflag = PRELEASE_HANG;
715 	} else {
716 		dt_dprintf("releasing pid %d\n", (int)dpr->dpr_pid);
717 		rflag = 0; /* apply kill or run-on-last-close */
718 	}
719 
720 	if (dpr->dpr_tid) {
721 		/*
722 		 * Set the dpr_quit flag to tell the daemon thread to exit.  We
723 		 * send it a SIGCANCEL to poke it out of PCWSTOP or any other
724 		 * long-term /proc system call.  Our daemon threads have POSIX
725 		 * cancellation disabled, so EINTR will be the only effect.  We
726 		 * then wait for dpr_done to indicate the thread has exited.
727 		 *
728 		 * We can't use pthread_kill() to send SIGCANCEL because the
729 		 * interface forbids it and we can't use pthread_cancel()
730 		 * because with cancellation disabled it won't actually
731 		 * send SIGCANCEL to the target thread, so we use _lwp_kill()
732 		 * to do the job.  This is all built on evil knowledge of
733 		 * the details of the cancellation mechanism in libc.
734 		 */
735 		(void) pthread_mutex_lock(&dpr->dpr_lock);
736 		dpr->dpr_quit = B_TRUE;
737 		(void) _lwp_kill(dpr->dpr_tid, SIGCANCEL);
738 
739 		/*
740 		 * If the process is currently idling in dt_proc_stop(), re-
741 		 * enable breakpoints and poke it into running again.
742 		 */
743 		if (dpr->dpr_stop & DT_PROC_STOP_IDLE) {
744 			dt_proc_bpenable(dpr);
745 			dpr->dpr_stop &= ~DT_PROC_STOP_IDLE;
746 			(void) pthread_cond_broadcast(&dpr->dpr_cv);
747 		}
748 
749 		while (!dpr->dpr_done)
750 			(void) pthread_cond_wait(&dpr->dpr_cv, &dpr->dpr_lock);
751 
752 		(void) pthread_mutex_unlock(&dpr->dpr_lock);
753 	}
754 
755 	/*
756 	 * Before we free the process structure, remove this dt_proc_t from the
757 	 * lookup hash, and then walk the dt_proc_hash_t's notification list
758 	 * and remove this dt_proc_t if it is enqueued.
759 	 */
760 	(void) pthread_mutex_lock(&dph->dph_lock);
761 	(void) dt_proc_lookup(dtp, P, B_TRUE);
762 	npp = &dph->dph_notify;
763 
764 	while ((npr = *npp) != NULL) {
765 		if (npr->dprn_dpr == dpr) {
766 			*npp = npr->dprn_next;
767 			dt_free(dtp, npr);
768 		} else {
769 			npp = &npr->dprn_next;
770 		}
771 	}
772 
773 	(void) pthread_mutex_unlock(&dph->dph_lock);
774 
775 	/*
776 	 * Remove the dt_proc_list from the LRU list, release the underlying
777 	 * libproc handle, and free our dt_proc_t data structure.
778 	 */
779 	if (dpr->dpr_cacheable) {
780 		assert(dph->dph_lrucnt != 0);
781 		dph->dph_lrucnt--;
782 	}
783 
784 	dt_list_delete(&dph->dph_lrulist, dpr);
785 	Prelease(dpr->dpr_proc, rflag);
786 	dt_free(dtp, dpr);
787 }
788 
789 static int
790 dt_proc_create_thread(dtrace_hdl_t *dtp, dt_proc_t *dpr, uint_t stop)
791 {
792 	dt_proc_control_data_t data;
793 	sigset_t nset, oset;
794 	pthread_attr_t a;
795 	int err;
796 
797 	(void) pthread_mutex_lock(&dpr->dpr_lock);
798 	dpr->dpr_stop |= stop; /* set bit for initial rendezvous */
799 
800 	(void) pthread_attr_init(&a);
801 	(void) pthread_attr_setdetachstate(&a, PTHREAD_CREATE_DETACHED);
802 
803 	(void) sigfillset(&nset);
804 	(void) sigdelset(&nset, SIGABRT);	/* unblocked for assert() */
805 	(void) sigdelset(&nset, SIGCANCEL);	/* see dt_proc_destroy() */
806 
807 	data.dpcd_hdl = dtp;
808 	data.dpcd_proc = dpr;
809 
810 	(void) pthread_sigmask(SIG_SETMASK, &nset, &oset);
811 	err = pthread_create(&dpr->dpr_tid, &a, dt_proc_control, &data);
812 	(void) pthread_sigmask(SIG_SETMASK, &oset, NULL);
813 
814 	/*
815 	 * If the control thread was created, then wait on dpr_cv for either
816 	 * dpr_done to be set (the victim died or the control thread failed)
817 	 * or DT_PROC_STOP_IDLE to be set, indicating that the victim is now
818 	 * stopped by /proc and the control thread is at the rendezvous event.
819 	 * On success, we return with the process and control thread stopped:
820 	 * the caller can then apply dt_proc_continue() to resume both.
821 	 */
822 	if (err == 0) {
823 		while (!dpr->dpr_done && !(dpr->dpr_stop & DT_PROC_STOP_IDLE))
824 			(void) pthread_cond_wait(&dpr->dpr_cv, &dpr->dpr_lock);
825 
826 		/*
827 		 * If dpr_done is set, the control thread aborted before it
828 		 * reached the rendezvous event.  This is either due to PS_LOST
829 		 * or PS_UNDEAD (i.e. the process died).  We try to provide a
830 		 * small amount of useful information to help figure it out.
831 		 */
832 		if (dpr->dpr_done) {
833 			const psinfo_t *prp = Ppsinfo(dpr->dpr_proc);
834 			int stat = prp ? prp->pr_wstat : 0;
835 			int pid = dpr->dpr_pid;
836 
837 			if (Pstate(dpr->dpr_proc) == PS_LOST) {
838 				(void) dt_proc_error(dpr->dpr_hdl, dpr,
839 				    "failed to control pid %d: process exec'd "
840 				    "set-id or unobservable program\n", pid);
841 			} else if (WIFSIGNALED(stat)) {
842 				(void) dt_proc_error(dpr->dpr_hdl, dpr,
843 				    "failed to control pid %d: process died "
844 				    "from signal %d\n", pid, WTERMSIG(stat));
845 			} else {
846 				(void) dt_proc_error(dpr->dpr_hdl, dpr,
847 				    "failed to control pid %d: process exited "
848 				    "with status %d\n", pid, WEXITSTATUS(stat));
849 			}
850 
851 			err = ESRCH; /* cause grab() or create() to fail */
852 		}
853 	} else {
854 		(void) dt_proc_error(dpr->dpr_hdl, dpr,
855 		    "failed to create control thread for process-id %d: %s\n",
856 		    (int)dpr->dpr_pid, strerror(err));
857 	}
858 
859 	(void) pthread_mutex_unlock(&dpr->dpr_lock);
860 	(void) pthread_attr_destroy(&a);
861 
862 	return (err);
863 }
864 
865 struct ps_prochandle *
866 dt_proc_create(dtrace_hdl_t *dtp, const char *file, char *const *argv)
867 {
868 	dt_proc_hash_t *dph = dtp->dt_procs;
869 	dt_proc_t *dpr;
870 	int err;
871 
872 	if ((dpr = dt_zalloc(dtp, sizeof (dt_proc_t))) == NULL)
873 		return (NULL); /* errno is set for us */
874 
875 	(void) pthread_mutex_init(&dpr->dpr_lock, NULL);
876 	(void) pthread_cond_init(&dpr->dpr_cv, NULL);
877 
878 	if ((dpr->dpr_proc = Pcreate(file, argv, &err, NULL, 0)) == NULL) {
879 		return (dt_proc_error(dtp, dpr,
880 		    "failed to execute %s: %s\n", file, Pcreate_error(err)));
881 	}
882 
883 	dpr->dpr_hdl = dtp;
884 	dpr->dpr_pid = Pstatus(dpr->dpr_proc)->pr_pid;
885 
886 	(void) Punsetflags(dpr->dpr_proc, PR_RLC);
887 	(void) Psetflags(dpr->dpr_proc, PR_KLC);
888 
889 	if (dt_proc_create_thread(dtp, dpr, dtp->dt_prcmode) != 0)
890 		return (NULL); /* dt_proc_error() has been called for us */
891 
892 	dpr->dpr_hash = dph->dph_hash[dpr->dpr_pid & (dph->dph_hashlen - 1)];
893 	dph->dph_hash[dpr->dpr_pid & (dph->dph_hashlen - 1)] = dpr;
894 	dt_list_prepend(&dph->dph_lrulist, dpr);
895 
896 	dt_dprintf("created pid %d\n", (int)dpr->dpr_pid);
897 	dpr->dpr_refs++;
898 
899 	return (dpr->dpr_proc);
900 }
901 
902 struct ps_prochandle *
903 dt_proc_grab(dtrace_hdl_t *dtp, pid_t pid, int flags, int nomonitor)
904 {
905 	dt_proc_hash_t *dph = dtp->dt_procs;
906 	uint_t h = pid & (dph->dph_hashlen - 1);
907 	dt_proc_t *dpr, *opr;
908 	int err;
909 
910 	/*
911 	 * Search the hash table for the pid.  If it is already grabbed or
912 	 * created, move the handle to the front of the lrulist, increment
913 	 * the reference count, and return the existing ps_prochandle.
914 	 */
915 	for (dpr = dph->dph_hash[h]; dpr != NULL; dpr = dpr->dpr_hash) {
916 		if (dpr->dpr_pid == pid && !dpr->dpr_stale) {
917 			/*
918 			 * If the cached handle was opened read-only and
919 			 * this request is for a writeable handle, mark
920 			 * the cached handle as stale and open a new handle.
921 			 * Since it's stale, unmark it as cacheable.
922 			 */
923 			if (dpr->dpr_rdonly && !(flags & PGRAB_RDONLY)) {
924 				dt_dprintf("upgrading pid %d\n", (int)pid);
925 				dpr->dpr_stale = B_TRUE;
926 				dpr->dpr_cacheable = B_FALSE;
927 				dph->dph_lrucnt--;
928 				break;
929 			}
930 
931 			dt_dprintf("grabbed pid %d (cached)\n", (int)pid);
932 			dt_list_delete(&dph->dph_lrulist, dpr);
933 			dt_list_prepend(&dph->dph_lrulist, dpr);
934 			dpr->dpr_refs++;
935 			return (dpr->dpr_proc);
936 		}
937 	}
938 
939 	if ((dpr = dt_zalloc(dtp, sizeof (dt_proc_t))) == NULL)
940 		return (NULL); /* errno is set for us */
941 
942 	(void) pthread_mutex_init(&dpr->dpr_lock, NULL);
943 	(void) pthread_cond_init(&dpr->dpr_cv, NULL);
944 
945 	if ((dpr->dpr_proc = Pgrab(pid, flags, &err)) == NULL) {
946 		return (dt_proc_error(dtp, dpr,
947 		    "failed to grab pid %d: %s\n", (int)pid, Pgrab_error(err)));
948 	}
949 
950 	dpr->dpr_hdl = dtp;
951 	dpr->dpr_pid = pid;
952 
953 	(void) Punsetflags(dpr->dpr_proc, PR_KLC);
954 	(void) Psetflags(dpr->dpr_proc, PR_RLC);
955 
956 	/*
957 	 * If we are attempting to grab the process without a monitor
958 	 * thread, then mark the process cacheable only if it's being
959 	 * grabbed read-only.  If we're currently caching more process
960 	 * handles than dph_lrulim permits, attempt to find the
961 	 * least-recently-used handle that is currently unreferenced and
962 	 * release it from the cache.  Otherwise we are grabbing the process
963 	 * for control: create a control thread for this process and store
964 	 * its ID in dpr->dpr_tid.
965 	 */
966 	if (nomonitor || (flags & PGRAB_RDONLY)) {
967 		if (dph->dph_lrucnt >= dph->dph_lrulim) {
968 			for (opr = dt_list_prev(&dph->dph_lrulist);
969 			    opr != NULL; opr = dt_list_prev(opr)) {
970 				if (opr->dpr_cacheable && opr->dpr_refs == 0) {
971 					dt_proc_destroy(dtp, opr->dpr_proc);
972 					break;
973 				}
974 			}
975 		}
976 
977 		if (flags & PGRAB_RDONLY) {
978 			dpr->dpr_cacheable = B_TRUE;
979 			dpr->dpr_rdonly = B_TRUE;
980 			dph->dph_lrucnt++;
981 		}
982 
983 	} else if (dt_proc_create_thread(dtp, dpr, DT_PROC_STOP_GRAB) != 0)
984 		return (NULL); /* dt_proc_error() has been called for us */
985 
986 	dpr->dpr_hash = dph->dph_hash[h];
987 	dph->dph_hash[h] = dpr;
988 	dt_list_prepend(&dph->dph_lrulist, dpr);
989 
990 	dt_dprintf("grabbed pid %d\n", (int)pid);
991 	dpr->dpr_refs++;
992 
993 	return (dpr->dpr_proc);
994 }
995 
996 void
997 dt_proc_release(dtrace_hdl_t *dtp, struct ps_prochandle *P)
998 {
999 	dt_proc_t *dpr = dt_proc_lookup(dtp, P, B_FALSE);
1000 	dt_proc_hash_t *dph = dtp->dt_procs;
1001 
1002 	assert(dpr != NULL);
1003 	assert(dpr->dpr_refs != 0);
1004 
1005 	if (--dpr->dpr_refs == 0 &&
1006 	    (!dpr->dpr_cacheable || dph->dph_lrucnt > dph->dph_lrulim))
1007 		dt_proc_destroy(dtp, P);
1008 }
1009 
1010 void
1011 dt_proc_continue(dtrace_hdl_t *dtp, struct ps_prochandle *P)
1012 {
1013 	dt_proc_t *dpr = dt_proc_lookup(dtp, P, B_FALSE);
1014 
1015 	(void) pthread_mutex_lock(&dpr->dpr_lock);
1016 
1017 	if (dpr->dpr_stop & DT_PROC_STOP_IDLE) {
1018 		dpr->dpr_stop &= ~DT_PROC_STOP_IDLE;
1019 		(void) pthread_cond_broadcast(&dpr->dpr_cv);
1020 	}
1021 
1022 	(void) pthread_mutex_unlock(&dpr->dpr_lock);
1023 }
1024 
1025 void
1026 dt_proc_lock(dtrace_hdl_t *dtp, struct ps_prochandle *P)
1027 {
1028 	dt_proc_t *dpr = dt_proc_lookup(dtp, P, B_FALSE);
1029 	int err = pthread_mutex_lock(&dpr->dpr_lock);
1030 	assert(err == 0); /* check for recursion */
1031 }
1032 
1033 void
1034 dt_proc_unlock(dtrace_hdl_t *dtp, struct ps_prochandle *P)
1035 {
1036 	dt_proc_t *dpr = dt_proc_lookup(dtp, P, B_FALSE);
1037 	int err = pthread_mutex_unlock(&dpr->dpr_lock);
1038 	assert(err == 0); /* check for unheld lock */
1039 }
1040 
1041 void
1042 dt_proc_hash_create(dtrace_hdl_t *dtp)
1043 {
1044 	if ((dtp->dt_procs = dt_zalloc(dtp, sizeof (dt_proc_hash_t) +
1045 	    sizeof (dt_proc_t *) * _dtrace_pidbuckets - 1)) != NULL) {
1046 
1047 		(void) pthread_mutex_init(&dtp->dt_procs->dph_lock, NULL);
1048 		(void) pthread_cond_init(&dtp->dt_procs->dph_cv, NULL);
1049 
1050 		dtp->dt_procs->dph_hashlen = _dtrace_pidbuckets;
1051 		dtp->dt_procs->dph_lrulim = _dtrace_pidlrulim;
1052 	}
1053 }
1054 
1055 void
1056 dt_proc_hash_destroy(dtrace_hdl_t *dtp)
1057 {
1058 	dt_proc_hash_t *dph = dtp->dt_procs;
1059 	dt_proc_t *dpr;
1060 
1061 	while ((dpr = dt_list_next(&dph->dph_lrulist)) != NULL)
1062 		dt_proc_destroy(dtp, dpr->dpr_proc);
1063 
1064 	dtp->dt_procs = NULL;
1065 	dt_free(dtp, dph);
1066 }
1067 
1068 struct ps_prochandle *
1069 dtrace_proc_create(dtrace_hdl_t *dtp, const char *file, char *const *argv)
1070 {
1071 	dt_ident_t *idp = dt_idhash_lookup(dtp->dt_macros, "target");
1072 	struct ps_prochandle *P = dt_proc_create(dtp, file, argv);
1073 
1074 	if (P != NULL && idp != NULL && idp->di_id == 0)
1075 		idp->di_id = Pstatus(P)->pr_pid; /* $target = created pid */
1076 
1077 	return (P);
1078 }
1079 
1080 struct ps_prochandle *
1081 dtrace_proc_grab(dtrace_hdl_t *dtp, pid_t pid, int flags)
1082 {
1083 	dt_ident_t *idp = dt_idhash_lookup(dtp->dt_macros, "target");
1084 	struct ps_prochandle *P = dt_proc_grab(dtp, pid, flags, 0);
1085 
1086 	if (P != NULL && idp != NULL && idp->di_id == 0)
1087 		idp->di_id = pid; /* $target = grabbed pid */
1088 
1089 	return (P);
1090 }
1091 
1092 void
1093 dtrace_proc_release(dtrace_hdl_t *dtp, struct ps_prochandle *P)
1094 {
1095 	dt_proc_release(dtp, P);
1096 }
1097 
1098 void
1099 dtrace_proc_continue(dtrace_hdl_t *dtp, struct ps_prochandle *P)
1100 {
1101 	dt_proc_continue(dtp, P);
1102 }
1103