1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 /* 30 * DTrace Process Control 31 * 32 * This file provides a set of routines that permit libdtrace and its clients 33 * to create and grab process handles using libproc, and to share these handles 34 * between library mechanisms that need libproc access, such as ustack(), and 35 * client mechanisms that need libproc access, such as dtrace(1M) -c and -p. 36 * The library provides several mechanisms in the libproc control layer: 37 * 38 * Reference Counting: The library code and client code can independently grab 39 * the same process handles without interfering with one another. Only when 40 * the reference count drops to zero and the handle is not being cached (see 41 * below for more information on caching) will Prelease() be called on it. 42 * 43 * Handle Caching: If a handle is grabbed PGRAB_RDONLY (e.g. by ustack()) and 44 * the reference count drops to zero, the handle is not immediately released. 45 * Instead, libproc handles are maintained on dph_lrulist in order from most- 46 * recently accessed to least-recently accessed. Idle handles are maintained 47 * until a pre-defined LRU cache limit is exceeded, permitting repeated calls 48 * to ustack() to avoid the overhead of releasing and re-grabbing processes. 49 * 50 * Process Control: For processes that are grabbed for control (~PGRAB_RDONLY) 51 * or created by dt_proc_create(), a control thread is created to provide 52 * callbacks on process exit and symbol table caching on dlopen()s. 53 * 54 * MT-Safety: Libproc is not MT-Safe, so dt_proc_lock() and dt_proc_unlock() 55 * are provided to synchronize access to the libproc handle between libdtrace 56 * code and client code and the control thread's use of the ps_prochandle. 57 * 58 * NOTE: MT-Safety is NOT provided for libdtrace itself, or for use of the 59 * dtrace_proc_grab/dtrace_proc_create mechanisms. Like all exported libdtrace 60 * calls, these are assumed to be MT-Unsafe. MT-Safety is ONLY provided for 61 * synchronization between libdtrace control threads and the client thread. 62 * 63 * The ps_prochandles themselves are maintained along with a dt_proc_t struct 64 * in a hash table indexed by PID. This provides basic locking and reference 65 * counting. The dt_proc_t is also maintained in LRU order on dph_lrulist. 66 * The dph_lrucnt and dph_lrulim count the number of cacheable processes and 67 * the current limit on the number of actively cached entries. 68 * 69 * The control thread for a process establishes breakpoints at the rtld_db 70 * locations of interest, updates mappings and symbol tables at these points, 71 * and handles exec and fork (by always following the parent). The control 72 * thread automatically exits when the process dies or control is lost. 73 * 74 * A simple notification mechanism is provided for libdtrace clients using 75 * dtrace_handle_proc() for notification of PS_UNDEAD or PS_LOST events. If 76 * such an event occurs, the dt_proc_t itself is enqueued on a notification 77 * list and the control thread broadcasts to dph_cv. dtrace_sleep() will wake 78 * up using this condition and will then call the client handler as necessary. 79 */ 80 81 #include <sys/wait.h> 82 #include <sys/lwp.h> 83 #include <strings.h> 84 #include <signal.h> 85 #include <assert.h> 86 #include <errno.h> 87 88 #include <dt_proc.h> 89 #include <dt_pid.h> 90 #include <dt_impl.h> 91 92 #define IS_SYS_EXEC(w) (w == SYS_exec || w == SYS_execve) 93 #define IS_SYS_FORK(w) (w == SYS_vfork || w == SYS_fork1 || \ 94 w == SYS_forkall || w == SYS_forksys) 95 96 static dt_bkpt_t * 97 dt_proc_bpcreate(dt_proc_t *dpr, uintptr_t addr, dt_bkpt_f *func, void *data) 98 { 99 struct ps_prochandle *P = dpr->dpr_proc; 100 dt_bkpt_t *dbp; 101 102 assert(DT_MUTEX_HELD(&dpr->dpr_lock)); 103 104 if ((dbp = dt_zalloc(dpr->dpr_hdl, sizeof (dt_bkpt_t))) != NULL) { 105 dbp->dbp_func = func; 106 dbp->dbp_data = data; 107 dbp->dbp_addr = addr; 108 109 if (Psetbkpt(P, dbp->dbp_addr, &dbp->dbp_instr) == 0) 110 dbp->dbp_active = B_TRUE; 111 112 dt_list_append(&dpr->dpr_bps, dbp); 113 } 114 115 return (dbp); 116 } 117 118 static void 119 dt_proc_bpdestroy(dt_proc_t *dpr, int delbkpts) 120 { 121 int state = Pstate(dpr->dpr_proc); 122 dt_bkpt_t *dbp, *nbp; 123 124 assert(DT_MUTEX_HELD(&dpr->dpr_lock)); 125 126 for (dbp = dt_list_next(&dpr->dpr_bps); dbp != NULL; dbp = nbp) { 127 if (delbkpts && dbp->dbp_active && 128 state != PS_LOST && state != PS_UNDEAD) { 129 (void) Pdelbkpt(dpr->dpr_proc, 130 dbp->dbp_addr, dbp->dbp_instr); 131 } 132 nbp = dt_list_next(dbp); 133 dt_list_delete(&dpr->dpr_bps, dbp); 134 dt_free(dpr->dpr_hdl, dbp); 135 } 136 } 137 138 static void 139 dt_proc_bpmatch(dtrace_hdl_t *dtp, dt_proc_t *dpr) 140 { 141 const lwpstatus_t *psp = &Pstatus(dpr->dpr_proc)->pr_lwp; 142 dt_bkpt_t *dbp; 143 144 assert(DT_MUTEX_HELD(&dpr->dpr_lock)); 145 146 for (dbp = dt_list_next(&dpr->dpr_bps); 147 dbp != NULL; dbp = dt_list_next(dbp)) { 148 if (psp->pr_reg[R_PC] == dbp->dbp_addr) 149 break; 150 } 151 152 if (dbp == NULL) { 153 dt_dprintf("pid %d: spurious breakpoint wakeup for %lx\n", 154 (int)dpr->dpr_pid, (ulong_t)psp->pr_reg[R_PC]); 155 return; 156 } 157 158 dt_dprintf("pid %d: hit breakpoint at %lx (%lu)\n", 159 (int)dpr->dpr_pid, (ulong_t)dbp->dbp_addr, ++dbp->dbp_hits); 160 161 dbp->dbp_func(dtp, dpr, dbp->dbp_data); 162 (void) Pxecbkpt(dpr->dpr_proc, dbp->dbp_instr); 163 } 164 165 void 166 dt_proc_bpenable(dt_proc_t *dpr) 167 { 168 dt_bkpt_t *dbp; 169 170 assert(DT_MUTEX_HELD(&dpr->dpr_lock)); 171 172 for (dbp = dt_list_next(&dpr->dpr_bps); 173 dbp != NULL; dbp = dt_list_next(dbp)) { 174 if (!dbp->dbp_active && Psetbkpt(dpr->dpr_proc, 175 dbp->dbp_addr, &dbp->dbp_instr) == 0) 176 dbp->dbp_active = B_TRUE; 177 } 178 179 dt_dprintf("breakpoints enabled\n"); 180 } 181 182 void 183 dt_proc_bpdisable(dt_proc_t *dpr) 184 { 185 dt_bkpt_t *dbp; 186 187 assert(DT_MUTEX_HELD(&dpr->dpr_lock)); 188 189 for (dbp = dt_list_next(&dpr->dpr_bps); 190 dbp != NULL; dbp = dt_list_next(dbp)) { 191 if (dbp->dbp_active && Pdelbkpt(dpr->dpr_proc, 192 dbp->dbp_addr, dbp->dbp_instr) == 0) 193 dbp->dbp_active = B_FALSE; 194 } 195 196 dt_dprintf("breakpoints disabled\n"); 197 } 198 199 static void 200 dt_proc_notify(dtrace_hdl_t *dtp, dt_proc_hash_t *dph, dt_proc_t *dpr, 201 const char *msg) 202 { 203 dt_proc_notify_t *dprn = dt_alloc(dtp, sizeof (dt_proc_notify_t)); 204 205 if (dprn == NULL) { 206 dt_dprintf("failed to allocate notification for %d %s\n", 207 (int)dpr->dpr_pid, msg); 208 } else { 209 dprn->dprn_dpr = dpr; 210 if (msg == NULL) 211 dprn->dprn_errmsg[0] = '\0'; 212 else 213 (void) strlcpy(dprn->dprn_errmsg, msg, 214 sizeof (dprn->dprn_errmsg)); 215 216 (void) pthread_mutex_lock(&dph->dph_lock); 217 218 dprn->dprn_next = dph->dph_notify; 219 dph->dph_notify = dprn; 220 221 (void) pthread_cond_broadcast(&dph->dph_cv); 222 (void) pthread_mutex_unlock(&dph->dph_lock); 223 } 224 } 225 226 /* 227 * Check to see if the control thread was requested to stop when the victim 228 * process reached a particular event (why) rather than continuing the victim. 229 * If 'why' is set in the stop mask, we wait on dpr_cv for dt_proc_continue(). 230 * If 'why' is not set, this function returns immediately and does nothing. 231 */ 232 static void 233 dt_proc_stop(dt_proc_t *dpr, uint8_t why) 234 { 235 assert(DT_MUTEX_HELD(&dpr->dpr_lock)); 236 assert(why != DT_PROC_STOP_IDLE); 237 238 if (dpr->dpr_stop & why) { 239 dpr->dpr_stop |= DT_PROC_STOP_IDLE; 240 dpr->dpr_stop &= ~why; 241 242 (void) pthread_cond_broadcast(&dpr->dpr_cv); 243 244 while (dpr->dpr_stop & DT_PROC_STOP_IDLE) 245 (void) pthread_cond_wait(&dpr->dpr_cv, &dpr->dpr_lock); 246 } 247 } 248 249 /*ARGSUSED*/ 250 static void 251 dt_proc_bpmain(dtrace_hdl_t *dtp, dt_proc_t *dpr, const char *fname) 252 { 253 dt_dprintf("pid %d: breakpoint at %s()\n", (int)dpr->dpr_pid, fname); 254 dt_proc_stop(dpr, DT_PROC_STOP_MAIN); 255 } 256 257 static void 258 dt_proc_rdevent(dtrace_hdl_t *dtp, dt_proc_t *dpr, const char *evname) 259 { 260 rd_event_msg_t rdm; 261 rd_err_e err; 262 263 if ((err = rd_event_getmsg(dpr->dpr_rtld, &rdm)) != RD_OK) { 264 dt_dprintf("pid %d: failed to get %s event message: %s\n", 265 (int)dpr->dpr_pid, evname, rd_errstr(err)); 266 return; 267 } 268 269 dt_dprintf("pid %d: rtld event %s type=%d state %d\n", 270 (int)dpr->dpr_pid, evname, rdm.type, rdm.u.state); 271 272 switch (rdm.type) { 273 case RD_DLACTIVITY: 274 if (rdm.u.state != RD_CONSISTENT) 275 break; 276 277 Pupdate_syms(dpr->dpr_proc); 278 if (dt_pid_create_probes_module(dtp, dpr) != 0) 279 dt_proc_notify(dtp, dtp->dt_procs, dpr, 280 dpr->dpr_errmsg); 281 282 break; 283 case RD_PREINIT: 284 Pupdate_syms(dpr->dpr_proc); 285 dt_proc_stop(dpr, DT_PROC_STOP_PREINIT); 286 break; 287 case RD_POSTINIT: 288 Pupdate_syms(dpr->dpr_proc); 289 dt_proc_stop(dpr, DT_PROC_STOP_POSTINIT); 290 break; 291 } 292 } 293 294 static void 295 dt_proc_rdwatch(dt_proc_t *dpr, rd_event_e event, const char *evname) 296 { 297 rd_notify_t rdn; 298 rd_err_e err; 299 300 if ((err = rd_event_addr(dpr->dpr_rtld, event, &rdn)) != RD_OK) { 301 dt_dprintf("pid %d: failed to get event address for %s: %s\n", 302 (int)dpr->dpr_pid, evname, rd_errstr(err)); 303 return; 304 } 305 306 if (rdn.type != RD_NOTIFY_BPT) { 307 dt_dprintf("pid %d: event %s has unexpected type %d\n", 308 (int)dpr->dpr_pid, evname, rdn.type); 309 return; 310 } 311 312 (void) dt_proc_bpcreate(dpr, rdn.u.bptaddr, 313 (dt_bkpt_f *)dt_proc_rdevent, (void *)evname); 314 } 315 316 /* 317 * Common code for enabling events associated with the run-time linker after 318 * attaching to a process or after a victim process completes an exec(2). 319 */ 320 static void 321 dt_proc_attach(dt_proc_t *dpr, int exec) 322 { 323 const pstatus_t *psp = Pstatus(dpr->dpr_proc); 324 rd_err_e err; 325 GElf_Sym sym; 326 327 assert(DT_MUTEX_HELD(&dpr->dpr_lock)); 328 329 if (exec) { 330 if (psp->pr_lwp.pr_errno != 0) 331 return; /* exec failed: nothing needs to be done */ 332 333 dt_proc_bpdestroy(dpr, B_FALSE); 334 Preset_maps(dpr->dpr_proc); 335 } 336 337 if ((dpr->dpr_rtld = Prd_agent(dpr->dpr_proc)) != NULL && 338 (err = rd_event_enable(dpr->dpr_rtld, B_TRUE)) == RD_OK) { 339 dt_proc_rdwatch(dpr, RD_PREINIT, "RD_PREINIT"); 340 dt_proc_rdwatch(dpr, RD_POSTINIT, "RD_POSTINIT"); 341 dt_proc_rdwatch(dpr, RD_DLACTIVITY, "RD_DLACTIVITY"); 342 } else { 343 dt_dprintf("pid %d: failed to enable rtld events: %s\n", 344 (int)dpr->dpr_pid, dpr->dpr_rtld ? rd_errstr(err) : 345 "rtld_db agent initialization failed"); 346 } 347 348 Pupdate_maps(dpr->dpr_proc); 349 350 if (Pxlookup_by_name(dpr->dpr_proc, LM_ID_BASE, 351 "a.out", "main", &sym, NULL) == 0) { 352 (void) dt_proc_bpcreate(dpr, (uintptr_t)sym.st_value, 353 (dt_bkpt_f *)dt_proc_bpmain, "a.out`main"); 354 } else { 355 dt_dprintf("pid %d: failed to find a.out`main: %s\n", 356 (int)dpr->dpr_pid, strerror(errno)); 357 } 358 } 359 360 /* 361 * Wait for a stopped process to be set running again by some other debugger. 362 * This is typically not required by /proc-based debuggers, since the usual 363 * model is that one debugger controls one victim. But DTrace, as usual, has 364 * its own needs: the stop() action assumes that prun(1) or some other tool 365 * will be applied to resume the victim process. This could be solved by 366 * adding a PCWRUN directive to /proc, but that seems like overkill unless 367 * other debuggers end up needing this functionality, so we implement a cheap 368 * equivalent to PCWRUN using the set of existing kernel mechanisms. 369 * 370 * Our intent is really not just to wait for the victim to run, but rather to 371 * wait for it to run and then stop again for a reason other than the current 372 * PR_REQUESTED stop. Since PCWSTOP/Pstopstatus() can be applied repeatedly 373 * to a stopped process and will return the same result without affecting the 374 * victim, we can just perform these operations repeatedly until Pstate() 375 * changes, the representative LWP ID changes, or the stop timestamp advances. 376 * dt_proc_control() will then rediscover the new state and continue as usual. 377 * When the process is still stopped in the same exact state, we sleep for a 378 * brief interval before waiting again so as not to spin consuming CPU cycles. 379 */ 380 static void 381 dt_proc_waitrun(dt_proc_t *dpr) 382 { 383 struct ps_prochandle *P = dpr->dpr_proc; 384 const lwpstatus_t *psp = &Pstatus(P)->pr_lwp; 385 386 int krflag = psp->pr_flags & (PR_KLC | PR_RLC); 387 timestruc_t tstamp = psp->pr_tstamp; 388 lwpid_t lwpid = psp->pr_lwpid; 389 390 const long wstop = PCWSTOP; 391 int pfd = Pctlfd(P); 392 393 assert(DT_MUTEX_HELD(&dpr->dpr_lock)); 394 assert(psp->pr_flags & PR_STOPPED); 395 assert(Pstate(P) == PS_STOP); 396 397 /* 398 * While we are waiting for the victim to run, clear PR_KLC and PR_RLC 399 * so that if the libdtrace client is killed, the victim stays stopped. 400 * dt_proc_destroy() will also observe this and perform PRELEASE_HANG. 401 */ 402 (void) Punsetflags(P, krflag); 403 Psync(P); 404 405 (void) pthread_mutex_unlock(&dpr->dpr_lock); 406 407 while (!dpr->dpr_quit) { 408 if (write(pfd, &wstop, sizeof (wstop)) == -1 && errno == EINTR) 409 continue; /* check dpr_quit and continue waiting */ 410 411 (void) pthread_mutex_lock(&dpr->dpr_lock); 412 (void) Pstopstatus(P, PCNULL, 0); 413 psp = &Pstatus(P)->pr_lwp; 414 415 /* 416 * If we've reached a new state, found a new representative, or 417 * the stop timestamp has changed, restore PR_KLC/PR_RLC to its 418 * original setting and then return with dpr_lock held. 419 */ 420 if (Pstate(P) != PS_STOP || psp->pr_lwpid != lwpid || 421 bcmp(&psp->pr_tstamp, &tstamp, sizeof (tstamp)) != 0) { 422 (void) Psetflags(P, krflag); 423 Psync(P); 424 return; 425 } 426 427 (void) pthread_mutex_unlock(&dpr->dpr_lock); 428 (void) poll(NULL, 0, MILLISEC / 2); 429 } 430 431 (void) pthread_mutex_lock(&dpr->dpr_lock); 432 } 433 434 typedef struct dt_proc_control_data { 435 dtrace_hdl_t *dpcd_hdl; /* DTrace handle */ 436 dt_proc_t *dpcd_proc; /* proccess to control */ 437 } dt_proc_control_data_t; 438 439 /* 440 * Main loop for all victim process control threads. We initialize all the 441 * appropriate /proc control mechanisms, and then enter a loop waiting for 442 * the process to stop on an event or die. We process any events by calling 443 * appropriate subroutines, and exit when the victim dies or we lose control. 444 * 445 * The control thread synchronizes the use of dpr_proc with other libdtrace 446 * threads using dpr_lock. We hold the lock for all of our operations except 447 * waiting while the process is running: this is accomplished by writing a 448 * PCWSTOP directive directly to the underlying /proc/<pid>/ctl file. If the 449 * libdtrace client wishes to exit or abort our wait, SIGCANCEL can be used. 450 */ 451 static void * 452 dt_proc_control(void *arg) 453 { 454 dt_proc_control_data_t *datap = arg; 455 dtrace_hdl_t *dtp = datap->dpcd_hdl; 456 dt_proc_t *dpr = datap->dpcd_proc; 457 dt_proc_hash_t *dph = dpr->dpr_hdl->dt_procs; 458 struct ps_prochandle *P = dpr->dpr_proc; 459 460 int pfd = Pctlfd(P); 461 int pid = dpr->dpr_pid; 462 463 const long wstop = PCWSTOP; 464 int notify = B_FALSE; 465 466 /* 467 * We disable the POSIX thread cancellation mechanism so that the 468 * client program using libdtrace can't accidentally cancel our thread. 469 * dt_proc_destroy() uses SIGCANCEL explicitly to simply poke us out 470 * of PCWSTOP with EINTR, at which point we will see dpr_quit and exit. 471 */ 472 (void) pthread_setcancelstate(PTHREAD_CANCEL_DISABLE, NULL); 473 474 /* 475 * Set up the corresponding process for tracing by libdtrace. We want 476 * to be able to catch breakpoints and efficiently single-step over 477 * them, and we need to enable librtld_db to watch libdl activity. 478 */ 479 (void) pthread_mutex_lock(&dpr->dpr_lock); 480 481 (void) Punsetflags(P, PR_ASYNC); /* require synchronous mode */ 482 (void) Psetflags(P, PR_BPTADJ); /* always adjust eip on x86 */ 483 (void) Punsetflags(P, PR_FORK); /* do not inherit on fork */ 484 485 (void) Pfault(P, FLTBPT, B_TRUE); /* always trace breakpoints */ 486 (void) Pfault(P, FLTTRACE, B_TRUE); /* always trace single-step */ 487 488 /* 489 * We must trace exit from exec() system calls so that if the exec is 490 * successful, we can reset our breakpoints and re-initialize libproc. 491 */ 492 (void) Psysexit(P, SYS_exec, B_TRUE); 493 (void) Psysexit(P, SYS_execve, B_TRUE); 494 495 /* 496 * We must trace entry and exit for fork() system calls in order to 497 * disable our breakpoints temporarily during the fork. We do not set 498 * the PR_FORK flag, so if fork succeeds the child begins executing and 499 * does not inherit any other tracing behaviors or a control thread. 500 */ 501 (void) Psysentry(P, SYS_vfork, B_TRUE); 502 (void) Psysexit(P, SYS_vfork, B_TRUE); 503 (void) Psysentry(P, SYS_fork1, B_TRUE); 504 (void) Psysexit(P, SYS_fork1, B_TRUE); 505 (void) Psysentry(P, SYS_forkall, B_TRUE); 506 (void) Psysexit(P, SYS_forkall, B_TRUE); 507 (void) Psysentry(P, SYS_forksys, B_TRUE); 508 (void) Psysexit(P, SYS_forksys, B_TRUE); 509 510 Psync(P); /* enable all /proc changes */ 511 dt_proc_attach(dpr, B_FALSE); /* enable rtld breakpoints */ 512 513 /* 514 * If PR_KLC is set, we created the process; otherwise we grabbed it. 515 * Check for an appropriate stop request and wait for dt_proc_continue. 516 */ 517 if (Pstatus(P)->pr_flags & PR_KLC) 518 dt_proc_stop(dpr, DT_PROC_STOP_CREATE); 519 else 520 dt_proc_stop(dpr, DT_PROC_STOP_GRAB); 521 522 if (Psetrun(P, 0, 0) == -1) { 523 dt_dprintf("pid %d: failed to set running: %s\n", 524 (int)dpr->dpr_pid, strerror(errno)); 525 } 526 527 (void) pthread_mutex_unlock(&dpr->dpr_lock); 528 529 /* 530 * Wait for the process corresponding to this control thread to stop, 531 * process the event, and then set it running again. We want to sleep 532 * with dpr_lock *unheld* so that other parts of libdtrace can use the 533 * ps_prochandle in the meantime (e.g. ustack()). To do this, we write 534 * a PCWSTOP directive directly to the underlying /proc/<pid>/ctl file. 535 * Once the process stops, we wake up, grab dpr_lock, and then call 536 * Pwait() (which will return immediately) and do our processing. 537 */ 538 while (!dpr->dpr_quit) { 539 const lwpstatus_t *psp; 540 541 if (write(pfd, &wstop, sizeof (wstop)) == -1 && errno == EINTR) 542 continue; /* check dpr_quit and continue waiting */ 543 544 (void) pthread_mutex_lock(&dpr->dpr_lock); 545 pwait_locked: 546 if (Pstopstatus(P, PCNULL, 0) == -1 && errno == EINTR) { 547 (void) pthread_mutex_unlock(&dpr->dpr_lock); 548 continue; /* check dpr_quit and continue waiting */ 549 } 550 551 switch (Pstate(P)) { 552 case PS_STOP: 553 psp = &Pstatus(P)->pr_lwp; 554 555 dt_dprintf("pid %d: proc stopped showing %d/%d\n", 556 pid, psp->pr_why, psp->pr_what); 557 558 /* 559 * If the process stops showing PR_REQUESTED, then the 560 * DTrace stop() action was applied to it or another 561 * debugging utility (e.g. pstop(1)) asked it to stop. 562 * In either case, the user's intention is for the 563 * process to remain stopped until another external 564 * mechanism (e.g. prun(1)) is applied. So instead of 565 * setting the process running ourself, we wait for 566 * someone else to do so. Once that happens, we return 567 * to our normal loop waiting for an event of interest. 568 */ 569 if (psp->pr_why == PR_REQUESTED) { 570 dt_proc_waitrun(dpr); 571 (void) pthread_mutex_unlock(&dpr->dpr_lock); 572 continue; 573 } 574 575 /* 576 * If the process stops showing one of the events that 577 * we are tracing, perform the appropriate response. 578 * Note that we ignore PR_SUSPENDED, PR_CHECKPOINT, and 579 * PR_JOBCONTROL by design: if one of these conditions 580 * occurs, we will fall through to Psetrun() but the 581 * process will remain stopped in the kernel by the 582 * corresponding mechanism (e.g. job control stop). 583 */ 584 if (psp->pr_why == PR_FAULTED && psp->pr_what == FLTBPT) 585 dt_proc_bpmatch(dtp, dpr); 586 else if (psp->pr_why == PR_SYSENTRY && 587 IS_SYS_FORK(psp->pr_what)) 588 dt_proc_bpdisable(dpr); 589 else if (psp->pr_why == PR_SYSEXIT && 590 IS_SYS_FORK(psp->pr_what)) 591 dt_proc_bpenable(dpr); 592 else if (psp->pr_why == PR_SYSEXIT && 593 IS_SYS_EXEC(psp->pr_what)) 594 dt_proc_attach(dpr, B_TRUE); 595 break; 596 597 case PS_LOST: 598 if (Preopen(P) == 0) 599 goto pwait_locked; 600 601 dt_dprintf("pid %d: proc lost: %s\n", 602 pid, strerror(errno)); 603 604 dpr->dpr_quit = B_TRUE; 605 notify = B_TRUE; 606 break; 607 608 case PS_UNDEAD: 609 dt_dprintf("pid %d: proc died\n", pid); 610 dpr->dpr_quit = B_TRUE; 611 notify = B_TRUE; 612 break; 613 } 614 615 if (Pstate(P) != PS_UNDEAD && Psetrun(P, 0, 0) == -1) { 616 dt_dprintf("pid %d: failed to set running: %s\n", 617 (int)dpr->dpr_pid, strerror(errno)); 618 } 619 620 (void) pthread_mutex_unlock(&dpr->dpr_lock); 621 } 622 623 /* 624 * If the control thread detected PS_UNDEAD or PS_LOST, then enqueue 625 * the dt_proc_t structure on the dt_proc_hash_t notification list. 626 */ 627 if (notify) 628 dt_proc_notify(dtp, dph, dpr, NULL); 629 630 /* 631 * Destroy and remove any remaining breakpoints, set dpr_done and clear 632 * dpr_tid to indicate the control thread has exited, and notify any 633 * waiting thread in dt_proc_destroy() that we have succesfully exited. 634 */ 635 (void) pthread_mutex_lock(&dpr->dpr_lock); 636 637 dt_proc_bpdestroy(dpr, B_TRUE); 638 dpr->dpr_done = B_TRUE; 639 dpr->dpr_tid = 0; 640 641 (void) pthread_cond_broadcast(&dpr->dpr_cv); 642 (void) pthread_mutex_unlock(&dpr->dpr_lock); 643 644 return (NULL); 645 } 646 647 /*PRINTFLIKE3*/ 648 static struct ps_prochandle * 649 dt_proc_error(dtrace_hdl_t *dtp, dt_proc_t *dpr, const char *format, ...) 650 { 651 va_list ap; 652 653 va_start(ap, format); 654 dt_set_errmsg(dtp, NULL, NULL, NULL, 0, format, ap); 655 va_end(ap); 656 657 if (dpr->dpr_proc != NULL) 658 Prelease(dpr->dpr_proc, 0); 659 660 dt_free(dtp, dpr); 661 (void) dt_set_errno(dtp, EDT_COMPILER); 662 return (NULL); 663 } 664 665 dt_proc_t * 666 dt_proc_lookup(dtrace_hdl_t *dtp, struct ps_prochandle *P, int remove) 667 { 668 dt_proc_hash_t *dph = dtp->dt_procs; 669 pid_t pid = Pstatus(P)->pr_pid; 670 dt_proc_t *dpr, **dpp = &dph->dph_hash[pid & (dph->dph_hashlen - 1)]; 671 672 for (dpr = *dpp; dpr != NULL; dpr = dpr->dpr_hash) { 673 if (dpr->dpr_pid == pid) 674 break; 675 else 676 dpp = &dpr->dpr_hash; 677 } 678 679 assert(dpr != NULL); 680 assert(dpr->dpr_proc == P); 681 682 if (remove) 683 *dpp = dpr->dpr_hash; /* remove from pid hash chain */ 684 685 return (dpr); 686 } 687 688 static void 689 dt_proc_destroy(dtrace_hdl_t *dtp, struct ps_prochandle *P) 690 { 691 dt_proc_t *dpr = dt_proc_lookup(dtp, P, B_FALSE); 692 dt_proc_hash_t *dph = dtp->dt_procs; 693 dt_proc_notify_t *npr, **npp; 694 int rflag; 695 696 assert(dpr != NULL); 697 698 /* 699 * If neither PR_KLC nor PR_RLC is set, then the process is stopped by 700 * an external debugger and we were waiting in dt_proc_waitrun(). 701 * Leave the process in this condition using PRELEASE_HANG. 702 */ 703 if (!(Pstatus(dpr->dpr_proc)->pr_flags & (PR_KLC | PR_RLC))) { 704 dt_dprintf("abandoning pid %d\n", (int)dpr->dpr_pid); 705 rflag = PRELEASE_HANG; 706 } else { 707 dt_dprintf("releasing pid %d\n", (int)dpr->dpr_pid); 708 rflag = 0; /* apply kill or run-on-last-close */ 709 } 710 711 if (dpr->dpr_tid) { 712 /* 713 * Set the dpr_quit flag to tell the daemon thread to exit. We 714 * send it a SIGCANCEL to poke it out of PCWSTOP or any other 715 * long-term /proc system call. Our daemon threads have POSIX 716 * cancellation disabled, so EINTR will be the only effect. We 717 * then wait for dpr_done to indicate the thread has exited. 718 * 719 * We can't use pthread_kill() to send SIGCANCEL because the 720 * interface forbids it and we can't use pthread_cancel() 721 * because with cancellation disabled it won't actually 722 * send SIGCANCEL to the target thread, so we use _lwp_kill() 723 * to do the job. This is all built on evil knowledge of 724 * the details of the cancellation mechanism in libc. 725 */ 726 (void) pthread_mutex_lock(&dpr->dpr_lock); 727 dpr->dpr_quit = B_TRUE; 728 (void) _lwp_kill(dpr->dpr_tid, SIGCANCEL); 729 730 /* 731 * If the process is currently idling in dt_proc_stop(), re- 732 * enable breakpoints and poke it into running again. 733 */ 734 if (dpr->dpr_stop & DT_PROC_STOP_IDLE) { 735 dt_proc_bpenable(dpr); 736 dpr->dpr_stop &= ~DT_PROC_STOP_IDLE; 737 (void) pthread_cond_broadcast(&dpr->dpr_cv); 738 } 739 740 while (!dpr->dpr_done) 741 (void) pthread_cond_wait(&dpr->dpr_cv, &dpr->dpr_lock); 742 743 (void) pthread_mutex_unlock(&dpr->dpr_lock); 744 } 745 746 /* 747 * Before we free the process structure, remove this dt_proc_t from the 748 * lookup hash, and then walk the dt_proc_hash_t's notification list 749 * and remove this dt_proc_t if it is enqueued. 750 */ 751 (void) pthread_mutex_lock(&dph->dph_lock); 752 (void) dt_proc_lookup(dtp, P, B_TRUE); 753 npp = &dph->dph_notify; 754 755 while ((npr = *npp) != NULL) { 756 if (npr->dprn_dpr == dpr) { 757 *npp = npr->dprn_next; 758 dt_free(dtp, npr); 759 } else { 760 npp = &npr->dprn_next; 761 } 762 } 763 764 (void) pthread_mutex_unlock(&dph->dph_lock); 765 766 /* 767 * Remove the dt_proc_list from the LRU list, release the underlying 768 * libproc handle, and free our dt_proc_t data structure. 769 */ 770 if (dpr->dpr_cacheable) { 771 assert(dph->dph_lrucnt != 0); 772 dph->dph_lrucnt--; 773 } 774 775 dt_list_delete(&dph->dph_lrulist, dpr); 776 Prelease(dpr->dpr_proc, rflag); 777 dt_free(dtp, dpr); 778 } 779 780 static int 781 dt_proc_create_thread(dtrace_hdl_t *dtp, dt_proc_t *dpr, uint_t stop) 782 { 783 dt_proc_control_data_t data; 784 sigset_t nset, oset; 785 pthread_attr_t a; 786 int err; 787 788 (void) pthread_mutex_lock(&dpr->dpr_lock); 789 dpr->dpr_stop |= stop; /* set bit for initial rendezvous */ 790 791 (void) pthread_attr_init(&a); 792 (void) pthread_attr_setdetachstate(&a, PTHREAD_CREATE_DETACHED); 793 794 (void) sigfillset(&nset); 795 (void) sigdelset(&nset, SIGABRT); /* unblocked for assert() */ 796 (void) sigdelset(&nset, SIGCANCEL); /* see dt_proc_destroy() */ 797 798 data.dpcd_hdl = dtp; 799 data.dpcd_proc = dpr; 800 801 (void) pthread_sigmask(SIG_SETMASK, &nset, &oset); 802 err = pthread_create(&dpr->dpr_tid, &a, dt_proc_control, &data); 803 (void) pthread_sigmask(SIG_SETMASK, &oset, NULL); 804 805 /* 806 * If the control thread was created, then wait on dpr_cv for either 807 * dpr_done to be set (the victim died or the control thread failed) 808 * or DT_PROC_STOP_IDLE to be set, indicating that the victim is now 809 * stopped by /proc and the control thread is at the rendezvous event. 810 * On success, we return with the process and control thread stopped: 811 * the caller can then apply dt_proc_continue() to resume both. 812 */ 813 if (err == 0) { 814 while (!dpr->dpr_done && !(dpr->dpr_stop & DT_PROC_STOP_IDLE)) 815 (void) pthread_cond_wait(&dpr->dpr_cv, &dpr->dpr_lock); 816 817 /* 818 * If dpr_done is set, the control thread aborted before it 819 * reached the rendezvous event. This is either due to PS_LOST 820 * or PS_UNDEAD (i.e. the process died). We try to provide a 821 * small amount of useful information to help figure it out. 822 */ 823 if (dpr->dpr_done) { 824 const psinfo_t *prp = Ppsinfo(dpr->dpr_proc); 825 int stat = prp ? prp->pr_wstat : 0; 826 int pid = dpr->dpr_pid; 827 828 if (Pstate(dpr->dpr_proc) == PS_LOST) { 829 (void) dt_proc_error(dpr->dpr_hdl, dpr, 830 "failed to control pid %d: process exec'd " 831 "set-id or unobservable program\n", pid); 832 } else if (WIFSIGNALED(stat)) { 833 (void) dt_proc_error(dpr->dpr_hdl, dpr, 834 "failed to control pid %d: process died " 835 "from signal %d\n", pid, WTERMSIG(stat)); 836 } else { 837 (void) dt_proc_error(dpr->dpr_hdl, dpr, 838 "failed to control pid %d: process exited " 839 "with status %d\n", pid, WEXITSTATUS(stat)); 840 } 841 842 err = ESRCH; /* cause grab() or create() to fail */ 843 } 844 } else { 845 (void) dt_proc_error(dpr->dpr_hdl, dpr, 846 "failed to create control thread for process-id %d: %s\n", 847 (int)dpr->dpr_pid, strerror(err)); 848 } 849 850 (void) pthread_mutex_unlock(&dpr->dpr_lock); 851 (void) pthread_attr_destroy(&a); 852 853 return (err); 854 } 855 856 struct ps_prochandle * 857 dt_proc_create(dtrace_hdl_t *dtp, const char *file, char *const *argv) 858 { 859 dt_proc_hash_t *dph = dtp->dt_procs; 860 dt_proc_t *dpr; 861 int err; 862 863 if ((dpr = dt_zalloc(dtp, sizeof (dt_proc_t))) == NULL) 864 return (NULL); /* errno is set for us */ 865 866 (void) pthread_mutex_init(&dpr->dpr_lock, NULL); 867 (void) pthread_cond_init(&dpr->dpr_cv, NULL); 868 869 if ((dpr->dpr_proc = Pcreate(file, argv, &err, NULL, 0)) == NULL) { 870 return (dt_proc_error(dtp, dpr, 871 "failed to execute %s: %s\n", file, Pcreate_error(err))); 872 } 873 874 dpr->dpr_hdl = dtp; 875 dpr->dpr_pid = Pstatus(dpr->dpr_proc)->pr_pid; 876 877 (void) Punsetflags(dpr->dpr_proc, PR_RLC); 878 (void) Psetflags(dpr->dpr_proc, PR_KLC); 879 880 if (dt_proc_create_thread(dtp, dpr, dtp->dt_prcmode) != 0) 881 return (NULL); /* dt_proc_error() has been called for us */ 882 883 dpr->dpr_hash = dph->dph_hash[dpr->dpr_pid & (dph->dph_hashlen - 1)]; 884 dph->dph_hash[dpr->dpr_pid & (dph->dph_hashlen - 1)] = dpr; 885 dt_list_prepend(&dph->dph_lrulist, dpr); 886 887 dt_dprintf("created pid %d\n", (int)dpr->dpr_pid); 888 dpr->dpr_refs++; 889 890 return (dpr->dpr_proc); 891 } 892 893 struct ps_prochandle * 894 dt_proc_grab(dtrace_hdl_t *dtp, pid_t pid, int flags, int nomonitor) 895 { 896 dt_proc_hash_t *dph = dtp->dt_procs; 897 uint_t h = pid & (dph->dph_hashlen - 1); 898 dt_proc_t *dpr, *opr; 899 int err; 900 901 /* 902 * Search the hash table for the pid. If it is already grabbed or 903 * created, move the handle to the front of the lrulist, increment 904 * the reference count, and return the existing ps_prochandle. 905 */ 906 for (dpr = dph->dph_hash[h]; dpr != NULL; dpr = dpr->dpr_hash) { 907 if (dpr->dpr_pid == pid && !dpr->dpr_stale) { 908 /* 909 * If the cached handle was opened read-only and 910 * this request is for a writeable handle, mark 911 * the cached handle as stale and open a new handle. 912 * Since it's stale, unmark it as cacheable. 913 */ 914 if (dpr->dpr_rdonly && !(flags & PGRAB_RDONLY)) { 915 dt_dprintf("upgrading pid %d\n", (int)pid); 916 dpr->dpr_stale = B_TRUE; 917 dpr->dpr_cacheable = B_FALSE; 918 dph->dph_lrucnt--; 919 break; 920 } 921 922 dt_dprintf("grabbed pid %d (cached)\n", (int)pid); 923 dt_list_delete(&dph->dph_lrulist, dpr); 924 dt_list_prepend(&dph->dph_lrulist, dpr); 925 dpr->dpr_refs++; 926 return (dpr->dpr_proc); 927 } 928 } 929 930 if ((dpr = dt_zalloc(dtp, sizeof (dt_proc_t))) == NULL) 931 return (NULL); /* errno is set for us */ 932 933 (void) pthread_mutex_init(&dpr->dpr_lock, NULL); 934 (void) pthread_cond_init(&dpr->dpr_cv, NULL); 935 936 if ((dpr->dpr_proc = Pgrab(pid, flags, &err)) == NULL) { 937 return (dt_proc_error(dtp, dpr, 938 "failed to grab pid %d: %s\n", (int)pid, Pgrab_error(err))); 939 } 940 941 dpr->dpr_hdl = dtp; 942 dpr->dpr_pid = pid; 943 944 (void) Punsetflags(dpr->dpr_proc, PR_KLC); 945 (void) Psetflags(dpr->dpr_proc, PR_RLC); 946 947 /* 948 * If we are attempting to grab the process without a monitor 949 * thread, then mark the process cacheable only if it's being 950 * grabbed read-only. If we're currently caching more process 951 * handles than dph_lrulim permits, attempt to find the 952 * least-recently-used handle that is currently unreferenced and 953 * release it from the cache. Otherwise we are grabbing the process 954 * for control: create a control thread for this process and store 955 * its ID in dpr->dpr_tid. 956 */ 957 if (nomonitor || (flags & PGRAB_RDONLY)) { 958 if (dph->dph_lrucnt >= dph->dph_lrulim) { 959 for (opr = dt_list_prev(&dph->dph_lrulist); 960 opr != NULL; opr = dt_list_prev(opr)) { 961 if (opr->dpr_cacheable && opr->dpr_refs == 0) { 962 dt_proc_destroy(dtp, opr->dpr_proc); 963 break; 964 } 965 } 966 } 967 968 if (flags & PGRAB_RDONLY) { 969 dpr->dpr_cacheable = B_TRUE; 970 dpr->dpr_rdonly = B_TRUE; 971 dph->dph_lrucnt++; 972 } 973 974 } else if (dt_proc_create_thread(dtp, dpr, DT_PROC_STOP_GRAB) != 0) 975 return (NULL); /* dt_proc_error() has been called for us */ 976 977 dpr->dpr_hash = dph->dph_hash[h]; 978 dph->dph_hash[h] = dpr; 979 dt_list_prepend(&dph->dph_lrulist, dpr); 980 981 dt_dprintf("grabbed pid %d\n", (int)pid); 982 dpr->dpr_refs++; 983 984 return (dpr->dpr_proc); 985 } 986 987 void 988 dt_proc_release(dtrace_hdl_t *dtp, struct ps_prochandle *P) 989 { 990 dt_proc_t *dpr = dt_proc_lookup(dtp, P, B_FALSE); 991 dt_proc_hash_t *dph = dtp->dt_procs; 992 993 assert(dpr != NULL); 994 assert(dpr->dpr_refs != 0); 995 996 if (--dpr->dpr_refs == 0 && 997 (!dpr->dpr_cacheable || dph->dph_lrucnt > dph->dph_lrulim)) 998 dt_proc_destroy(dtp, P); 999 } 1000 1001 void 1002 dt_proc_continue(dtrace_hdl_t *dtp, struct ps_prochandle *P) 1003 { 1004 dt_proc_t *dpr = dt_proc_lookup(dtp, P, B_FALSE); 1005 1006 (void) pthread_mutex_lock(&dpr->dpr_lock); 1007 1008 if (dpr->dpr_stop & DT_PROC_STOP_IDLE) { 1009 dpr->dpr_stop &= ~DT_PROC_STOP_IDLE; 1010 (void) pthread_cond_broadcast(&dpr->dpr_cv); 1011 } 1012 1013 (void) pthread_mutex_unlock(&dpr->dpr_lock); 1014 } 1015 1016 void 1017 dt_proc_lock(dtrace_hdl_t *dtp, struct ps_prochandle *P) 1018 { 1019 dt_proc_t *dpr = dt_proc_lookup(dtp, P, B_FALSE); 1020 int err = pthread_mutex_lock(&dpr->dpr_lock); 1021 assert(err == 0); /* check for recursion */ 1022 } 1023 1024 void 1025 dt_proc_unlock(dtrace_hdl_t *dtp, struct ps_prochandle *P) 1026 { 1027 dt_proc_t *dpr = dt_proc_lookup(dtp, P, B_FALSE); 1028 int err = pthread_mutex_unlock(&dpr->dpr_lock); 1029 assert(err == 0); /* check for unheld lock */ 1030 } 1031 1032 void 1033 dt_proc_hash_create(dtrace_hdl_t *dtp) 1034 { 1035 if ((dtp->dt_procs = dt_zalloc(dtp, sizeof (dt_proc_hash_t) + 1036 sizeof (dt_proc_t *) * _dtrace_pidbuckets - 1)) != NULL) { 1037 1038 (void) pthread_mutex_init(&dtp->dt_procs->dph_lock, NULL); 1039 (void) pthread_cond_init(&dtp->dt_procs->dph_cv, NULL); 1040 1041 dtp->dt_procs->dph_hashlen = _dtrace_pidbuckets; 1042 dtp->dt_procs->dph_lrulim = _dtrace_pidlrulim; 1043 } 1044 } 1045 1046 void 1047 dt_proc_hash_destroy(dtrace_hdl_t *dtp) 1048 { 1049 dt_proc_hash_t *dph = dtp->dt_procs; 1050 dt_proc_t *dpr; 1051 1052 while ((dpr = dt_list_next(&dph->dph_lrulist)) != NULL) 1053 dt_proc_destroy(dtp, dpr->dpr_proc); 1054 1055 dtp->dt_procs = NULL; 1056 dt_free(dtp, dph); 1057 } 1058 1059 struct ps_prochandle * 1060 dtrace_proc_create(dtrace_hdl_t *dtp, const char *file, char *const *argv) 1061 { 1062 dt_ident_t *idp = dt_idhash_lookup(dtp->dt_macros, "target"); 1063 struct ps_prochandle *P = dt_proc_create(dtp, file, argv); 1064 1065 if (P != NULL && idp != NULL && idp->di_id == 0) 1066 idp->di_id = Pstatus(P)->pr_pid; /* $target = created pid */ 1067 1068 return (P); 1069 } 1070 1071 struct ps_prochandle * 1072 dtrace_proc_grab(dtrace_hdl_t *dtp, pid_t pid, int flags) 1073 { 1074 dt_ident_t *idp = dt_idhash_lookup(dtp->dt_macros, "target"); 1075 struct ps_prochandle *P = dt_proc_grab(dtp, pid, flags, 0); 1076 1077 if (P != NULL && idp != NULL && idp->di_id == 0) 1078 idp->di_id = pid; /* $target = grabbed pid */ 1079 1080 return (P); 1081 } 1082 1083 void 1084 dtrace_proc_release(dtrace_hdl_t *dtp, struct ps_prochandle *P) 1085 { 1086 dt_proc_release(dtp, P); 1087 } 1088 1089 void 1090 dtrace_proc_continue(dtrace_hdl_t *dtp, struct ps_prochandle *P) 1091 { 1092 dt_proc_continue(dtp, P); 1093 } 1094