1 %{ 2 /* 3 * CDDL HEADER START 4 * 5 * The contents of this file are subject to the terms of the 6 * Common Development and Distribution License, Version 1.0 only 7 * (the "License"). You may not use this file except in compliance 8 * with the License. 9 * 10 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 11 * or http://www.opensolaris.org/os/licensing. 12 * See the License for the specific language governing permissions 13 * and limitations under the License. 14 * 15 * When distributing Covered Code, include this CDDL HEADER in each 16 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 17 * If applicable, add the following below this CDDL HEADER, with the 18 * fields enclosed by brackets "[]" replaced with your own identifying 19 * information: Portions Copyright [yyyy] [name of copyright owner] 20 * 21 * CDDL HEADER END 22 * 23 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 #include <string.h> 30 #include <stdlib.h> 31 #include <stdio.h> 32 #include <assert.h> 33 #include <ctype.h> 34 #include <errno.h> 35 36 #include <dt_impl.h> 37 #include <dt_grammar.h> 38 #include <dt_parser.h> 39 #include <dt_string.h> 40 41 /* 42 * We need to undefine lex's input and unput macros so that references to these 43 * call the functions provided at the end of this source file. 44 */ 45 #undef input 46 #undef unput 47 48 static int id_or_type(const char *); 49 static int input(void); 50 static void unput(int); 51 52 /* 53 * We first define a set of labeled states for use in the D lexer and then a 54 * set of regular expressions to simplify things below. The lexer states are: 55 * 56 * S0 - D program clause and expression lexing 57 * S1 - D comments (i.e. skip everything until end of comment) 58 * S2 - D program outer scope (probe specifiers and declarations) 59 * S3 - D control line parsing (i.e. after ^# is seen but before \n) 60 */ 61 %} 62 63 %e 1400 /* maximum nodes */ 64 %p 3700 /* maximum positions */ 65 66 %s S0 S1 S2 S3 67 68 RGX_AGG "@"[a-zA-Z_][0-9a-zA-Z_]* 69 RGX_PSPEC [-$:a-zA-Z_.?*\\\[\]!][-$:0-9a-zA-Z_.`?*\\\[\]!]* 70 RGX_IDENT [a-zA-Z_`][0-9a-zA-Z_`]* 71 RGX_INT ([0-9]+|0[xX][0-9A-Fa-f]+)[uU]?[lL]?[lL]? 72 RGX_FP ([0-9]+("."?)[0-9]*|"."[0-9]+)((e|E)("+"|-)?[0-9]+)?[fFlL]? 73 RGX_WS [\f\n\r\t\v ] 74 RGX_STR ([^"\\\n]|\\[^"\n]|\\\")* 75 RGX_CHR ([^'\\\n]|\\[^'\n]|\\')* 76 RGX_INTERP ^[\f\t\v ]*#!.* 77 RGX_CTL ^[\f\t\v ]*# 78 79 %% 80 81 %{ 82 83 /* 84 * We insert a special prologue into yylex() itself: if the pcb contains a 85 * context token, we return that prior to running the normal lexer. This 86 * allows libdtrace to force yacc into one of our three parsing contexts: D 87 * expression (DT_CTX_DEXPR), D program (DT_CTX_DPROG) or D type (DT_CTX_DTYPE). 88 * Once the token is returned, we clear it so this only happens once. 89 */ 90 if (yypcb->pcb_token != 0) { 91 int tok = yypcb->pcb_token; 92 yypcb->pcb_token = 0; 93 return (tok); 94 } 95 96 %} 97 98 <S0>auto return (DT_KEY_AUTO); 99 <S0>break return (DT_KEY_BREAK); 100 <S0>case return (DT_KEY_CASE); 101 <S0>char return (DT_KEY_CHAR); 102 <S0>const return (DT_KEY_CONST); 103 <S0>continue return (DT_KEY_CONTINUE); 104 <S0>counter return (DT_KEY_COUNTER); 105 <S0>default return (DT_KEY_DEFAULT); 106 <S0>do return (DT_KEY_DO); 107 <S0>double return (DT_KEY_DOUBLE); 108 <S0>else return (DT_KEY_ELSE); 109 <S0>enum return (DT_KEY_ENUM); 110 <S0>extern return (DT_KEY_EXTERN); 111 <S0>float return (DT_KEY_FLOAT); 112 <S0>for return (DT_KEY_FOR); 113 <S0>goto return (DT_KEY_GOTO); 114 <S0>if return (DT_KEY_IF); 115 <S0>import return (DT_KEY_IMPORT); 116 <S0>inline return (DT_KEY_INLINE); 117 <S0>int return (DT_KEY_INT); 118 <S0>long return (DT_KEY_LONG); 119 <S0>offsetof return (DT_TOK_OFFSETOF); 120 <S0>probe return (DT_KEY_PROBE); 121 <S0>provider return (DT_KEY_PROVIDER); 122 <S0>register return (DT_KEY_REGISTER); 123 <S0>restrict return (DT_KEY_RESTRICT); 124 <S0>return return (DT_KEY_RETURN); 125 <S0>self return (DT_KEY_SELF); 126 <S0>short return (DT_KEY_SHORT); 127 <S0>signed return (DT_KEY_SIGNED); 128 <S0>sizeof return (DT_TOK_SIZEOF); 129 <S0>static return (DT_KEY_STATIC); 130 <S0>string return (DT_KEY_STRING); 131 <S0>stringof return (DT_TOK_STRINGOF); 132 <S0>struct return (DT_KEY_STRUCT); 133 <S0>switch return (DT_KEY_SWITCH); 134 <S0>this return (DT_KEY_THIS); 135 <S0>translator return (DT_KEY_XLATOR); 136 <S0>typedef return (DT_KEY_TYPEDEF); 137 <S0>union return (DT_KEY_UNION); 138 <S0>unsigned return (DT_KEY_UNSIGNED); 139 <S0>void return (DT_KEY_VOID); 140 <S0>volatile return (DT_KEY_VOLATILE); 141 <S0>while return (DT_KEY_WHILE); 142 <S0>xlate return (DT_TOK_XLATE); 143 144 <S2>auto { yybegin(YYS_EXPR); return (DT_KEY_AUTO); } 145 <S2>char { yybegin(YYS_EXPR); return (DT_KEY_CHAR); } 146 <S2>const { yybegin(YYS_EXPR); return (DT_KEY_CONST); } 147 <S2>counter { yybegin(YYS_DEFINE); return (DT_KEY_COUNTER); } 148 <S2>double { yybegin(YYS_EXPR); return (DT_KEY_DOUBLE); } 149 <S2>enum { yybegin(YYS_EXPR); return (DT_KEY_ENUM); } 150 <S2>extern { yybegin(YYS_EXPR); return (DT_KEY_EXTERN); } 151 <S2>float { yybegin(YYS_EXPR); return (DT_KEY_FLOAT); } 152 <S2>import { yybegin(YYS_EXPR); return (DT_KEY_IMPORT); } 153 <S2>inline { yybegin(YYS_DEFINE); return (DT_KEY_INLINE); } 154 <S2>int { yybegin(YYS_EXPR); return (DT_KEY_INT); } 155 <S2>long { yybegin(YYS_EXPR); return (DT_KEY_LONG); } 156 <S2>provider { yybegin(YYS_DEFINE); return (DT_KEY_PROVIDER); } 157 <S2>register { yybegin(YYS_EXPR); return (DT_KEY_REGISTER); } 158 <S2>restrict { yybegin(YYS_EXPR); return (DT_KEY_RESTRICT); } 159 <S2>self { yybegin(YYS_EXPR); return (DT_KEY_SELF); } 160 <S2>short { yybegin(YYS_EXPR); return (DT_KEY_SHORT); } 161 <S2>signed { yybegin(YYS_EXPR); return (DT_KEY_SIGNED); } 162 <S2>static { yybegin(YYS_EXPR); return (DT_KEY_STATIC); } 163 <S2>string { yybegin(YYS_EXPR); return (DT_KEY_STRING); } 164 <S2>struct { yybegin(YYS_EXPR); return (DT_KEY_STRUCT); } 165 <S2>this { yybegin(YYS_EXPR); return (DT_KEY_THIS); } 166 <S2>translator { yybegin(YYS_DEFINE); return (DT_KEY_XLATOR); } 167 <S2>typedef { yybegin(YYS_EXPR); return (DT_KEY_TYPEDEF); } 168 <S2>union { yybegin(YYS_EXPR); return (DT_KEY_UNION); } 169 <S2>unsigned { yybegin(YYS_EXPR); return (DT_KEY_UNSIGNED); } 170 <S2>void { yybegin(YYS_EXPR); return (DT_KEY_VOID); } 171 <S2>volatile { yybegin(YYS_EXPR); return (DT_KEY_VOLATILE); } 172 173 <S0>"$$"[0-9]+ { 174 int i = atoi(yytext + 2); 175 char *v = ""; 176 177 /* 178 * A macro argument reference substitutes the text of 179 * an argument in place of the current token. When we 180 * see $$<d> we fetch the saved string from pcb_sargv 181 * (or use the default argument if the option has been 182 * set and the argument hasn't been specified) and 183 * return a token corresponding to this string. 184 */ 185 if (i < 0 || (i >= yypcb->pcb_sargc && 186 !(yypcb->pcb_cflags & DTRACE_C_DEFARG))) { 187 xyerror(D_MACRO_UNDEF, "macro argument %s is " 188 "not defined\n", yytext); 189 } 190 191 if (i < yypcb->pcb_sargc) { 192 v = yypcb->pcb_sargv[i]; /* get val from pcb */ 193 yypcb->pcb_sflagv[i] |= DT_IDFLG_REF; 194 } 195 196 if ((yylval.l_str = strdup(v)) == NULL) 197 longjmp(yypcb->pcb_jmpbuf, EDT_NOMEM); 198 199 (void) stresc2chr(yylval.l_str); 200 return (DT_TOK_STRING); 201 } 202 203 <S0>"$"[0-9]+ { 204 int i = atoi(yytext + 1); 205 char *p, *v = "0"; 206 207 /* 208 * A macro argument reference substitutes the text of 209 * one identifier or integer pattern for another. When 210 * we see $<d> we fetch the saved string from pcb_sargv 211 * (or use the default argument if the option has been 212 * set and the argument hasn't been specified) and 213 * return a token corresponding to this string. 214 */ 215 if (i < 0 || (i >= yypcb->pcb_sargc && 216 !(yypcb->pcb_cflags & DTRACE_C_DEFARG))) { 217 xyerror(D_MACRO_UNDEF, "macro argument %s is " 218 "not defined\n", yytext); 219 } 220 221 if (i < yypcb->pcb_sargc) { 222 v = yypcb->pcb_sargv[i]; /* get val from pcb */ 223 yypcb->pcb_sflagv[i] |= DT_IDFLG_REF; 224 } 225 226 /* 227 * If the macro text is not a valid integer or ident, 228 * then we treat it as a string. The string may be 229 * optionally enclosed in quotes, which we strip. 230 */ 231 if (strbadidnum(v)) { 232 size_t len = strlen(v); 233 234 if (len != 1 && *v == '"' && v[len - 1] == '"') 235 yylval.l_str = strndup(v + 1, len - 2); 236 else 237 yylval.l_str = strndup(v, len); 238 239 if (yylval.l_str == NULL) 240 longjmp(yypcb->pcb_jmpbuf, EDT_NOMEM); 241 242 (void) stresc2chr(yylval.l_str); 243 return (DT_TOK_STRING); 244 } 245 246 /* 247 * If the macro text is not a string an begins with a 248 * digit or a +/- sign, process it as an integer token. 249 */ 250 if (isdigit(v[0]) || v[0] == '-' || v[0] == '+') { 251 if (isdigit(v[0])) 252 yyintprefix = 0; 253 else 254 yyintprefix = *v++; 255 256 errno = 0; 257 yylval.l_int = strtoull(v, &p, 0); 258 (void) strncpy(yyintsuffix, p, 259 sizeof (yyintsuffix)); 260 yyintdecimal = *v != '0'; 261 262 if (errno == ERANGE) { 263 xyerror(D_MACRO_OFLOW, "macro argument" 264 " %s constant %s results in integer" 265 " overflow\n", yytext, v); 266 } 267 268 return (DT_TOK_INT); 269 } 270 271 return (id_or_type(v)); 272 } 273 274 <S0>"$$"{RGX_IDENT} { 275 dt_ident_t *idp = dt_idhash_lookup( 276 yypcb->pcb_hdl->dt_macros, yytext + 2); 277 278 char s[16]; /* enough for UINT_MAX + \0 */ 279 280 if (idp == NULL) { 281 xyerror(D_MACRO_UNDEF, "macro variable %s " 282 "is not defined\n", yytext); 283 } 284 285 /* 286 * For the moment, all current macro variables are of 287 * type id_t (refer to dtrace_update() for details). 288 */ 289 (void) snprintf(s, sizeof (s), "%u", idp->di_id); 290 if ((yylval.l_str = strdup(s)) == NULL) 291 longjmp(yypcb->pcb_jmpbuf, EDT_NOMEM); 292 293 return (DT_TOK_STRING); 294 } 295 296 <S0>"$"{RGX_IDENT} { 297 dt_ident_t *idp = dt_idhash_lookup( 298 yypcb->pcb_hdl->dt_macros, yytext + 1); 299 300 if (idp == NULL) { 301 xyerror(D_MACRO_UNDEF, "macro variable %s " 302 "is not defined\n", yytext); 303 } 304 305 /* 306 * For the moment, all current macro variables are of 307 * type id_t (refer to dtrace_update() for details). 308 */ 309 yylval.l_int = (intmax_t)(int)idp->di_id; 310 yyintprefix = 0; 311 yyintsuffix[0] = '\0'; 312 yyintdecimal = 1; 313 314 return (DT_TOK_INT); 315 } 316 317 <S0>{RGX_IDENT} { 318 return (id_or_type(yytext)); 319 } 320 321 <S0>{RGX_AGG} { 322 if ((yylval.l_str = strdup(yytext)) == NULL) 323 longjmp(yypcb->pcb_jmpbuf, EDT_NOMEM); 324 return (DT_TOK_AGG); 325 } 326 327 <S0>"@" { 328 if ((yylval.l_str = strdup("@_")) == NULL) 329 longjmp(yypcb->pcb_jmpbuf, EDT_NOMEM); 330 return (DT_TOK_AGG); 331 } 332 333 <S0>{RGX_INT} | 334 <S2>{RGX_INT} | 335 <S3>{RGX_INT} { 336 char *p; 337 338 errno = 0; 339 yylval.l_int = strtoull(yytext, &p, 0); 340 yyintprefix = 0; 341 (void) strncpy(yyintsuffix, p, sizeof (yyintsuffix)); 342 yyintdecimal = yytext[0] != '0'; 343 344 if (errno == ERANGE) { 345 xyerror(D_INT_OFLOW, "constant %s results in " 346 "integer overflow\n", yytext); 347 } 348 349 if (*p != '\0' && strchr("uUlL", *p) == NULL) { 350 xyerror(D_INT_DIGIT, "constant %s contains " 351 "invalid digit %c\n", yytext, *p); 352 } 353 354 if ((YYSTATE) != S3) 355 return (DT_TOK_INT); 356 357 yypragma = dt_node_link(yypragma, 358 dt_node_int(yylval.l_int)); 359 } 360 361 <S0>{RGX_FP} yyerror("floating-point constants are not permitted\n"); 362 363 <S0>\"{RGX_STR}$ | 364 <S3>\"{RGX_STR}$ xyerror(D_STR_NL, "newline encountered in string literal"); 365 366 <S0>\"{RGX_STR}\" | 367 <S3>\"{RGX_STR}\" { 368 /* 369 * Quoted string -- convert C escape sequences and 370 * return the string as a token. 371 */ 372 yylval.l_str = strndup(yytext + 1, yyleng - 2); 373 374 if (yylval.l_str == NULL) 375 longjmp(yypcb->pcb_jmpbuf, EDT_NOMEM); 376 377 (void) stresc2chr(yylval.l_str); 378 if ((YYSTATE) != S3) 379 return (DT_TOK_STRING); 380 381 yypragma = dt_node_link(yypragma, 382 dt_node_string(yylval.l_str)); 383 } 384 385 <S0>'{RGX_CHR}$ xyerror(D_CHR_NL, "newline encountered in character constant"); 386 387 <S0>'{RGX_CHR}' { 388 char *s, *p, *q; 389 size_t nbytes; 390 391 /* 392 * Character constant -- convert C escape sequences and 393 * return the character as an integer immediate value. 394 */ 395 if (yyleng == 2) 396 xyerror(D_CHR_NULL, "empty character constant"); 397 398 s = yytext + 1; 399 yytext[yyleng - 1] = '\0'; 400 nbytes = stresc2chr(s); 401 yylval.l_int = 0; 402 yyintprefix = 0; 403 yyintsuffix[0] = '\0'; 404 yyintdecimal = 1; 405 406 if (nbytes > sizeof (yylval.l_int)) { 407 xyerror(D_CHR_OFLOW, "character constant is " 408 "too long"); 409 } 410 #ifdef _LITTLE_ENDIAN 411 p = ((char *)&yylval.l_int) + nbytes - 1; 412 for (q = s; nbytes != 0; nbytes--) 413 *p-- = *q++; 414 #else 415 bcopy(s, ((char *)&yylval.l_int) + 416 sizeof (yylval.l_int) - nbytes, nbytes); 417 #endif 418 return (DT_TOK_INT); 419 } 420 421 <S0>"/*" | 422 <S2>"/*" { 423 yypcb->pcb_cstate = (YYSTATE); 424 BEGIN(S1); 425 } 426 427 <S0>{RGX_INTERP} | 428 <S2>{RGX_INTERP} ; /* discard any #! lines */ 429 430 <S0>{RGX_CTL} | 431 <S2>{RGX_CTL} { 432 assert(yypragma == NULL); 433 yypcb->pcb_cstate = (YYSTATE); 434 BEGIN(S3); 435 } 436 437 <S0>"/" { 438 int c, tok; 439 440 /* 441 * The use of "/" as the predicate delimiter and as the 442 * integer division symbol requires special lookahead 443 * to avoid a shift/reduce conflict in the D grammar. 444 * We look ahead to the next non-whitespace character. 445 * If we encounter EOF, ";", "{", or "/", then this "/" 446 * closes the predicate and we return DT_TOK_EPRED. 447 * If we encounter anything else, it's DT_TOK_DIV. 448 */ 449 while ((c = input()) != 0) { 450 if (strchr("\f\n\r\t\v ", c) == NULL) 451 break; 452 } 453 454 if (c == 0 || c == ';' || c == '{' || c == '/') { 455 if (yypcb->pcb_parens != 0) { 456 yyerror("closing ) expected in " 457 "predicate before /\n"); 458 } 459 if (yypcb->pcb_brackets != 0) { 460 yyerror("closing ] expected in " 461 "predicate before /\n"); 462 } 463 tok = DT_TOK_EPRED; 464 } else 465 tok = DT_TOK_DIV; 466 467 unput(c); 468 return (tok); 469 } 470 471 <S0>"(" { 472 yypcb->pcb_parens++; 473 return (DT_TOK_LPAR); 474 } 475 476 <S0>")" { 477 if (--yypcb->pcb_parens < 0) 478 yyerror("extra ) in input stream\n"); 479 return (DT_TOK_RPAR); 480 } 481 482 <S0>"[" { 483 yypcb->pcb_brackets++; 484 return (DT_TOK_LBRAC); 485 } 486 487 <S0>"]" { 488 if (--yypcb->pcb_brackets < 0) 489 yyerror("extra ] in input stream\n"); 490 return (DT_TOK_RBRAC); 491 } 492 493 <S0>"{" | 494 <S2>"{" { 495 yypcb->pcb_braces++; 496 return ('{'); 497 } 498 499 <S0>"}" { 500 if (--yypcb->pcb_braces < 0) 501 yyerror("extra } in input stream\n"); 502 return ('}'); 503 } 504 505 <S0>"|" return (DT_TOK_BOR); 506 <S0>"^" return (DT_TOK_XOR); 507 <S0>"&" return (DT_TOK_BAND); 508 <S0>"&&" return (DT_TOK_LAND); 509 <S0>"^^" return (DT_TOK_LXOR); 510 <S0>"||" return (DT_TOK_LOR); 511 <S0>"==" return (DT_TOK_EQU); 512 <S0>"!=" return (DT_TOK_NEQ); 513 <S0>"<" return (DT_TOK_LT); 514 <S0>"<=" return (DT_TOK_LE); 515 <S0>">" return (DT_TOK_GT); 516 <S0>">=" return (DT_TOK_GE); 517 <S0>"<<" return (DT_TOK_LSH); 518 <S0>">>" return (DT_TOK_RSH); 519 <S0>"+" return (DT_TOK_ADD); 520 <S0>"-" return (DT_TOK_SUB); 521 <S0>"*" return (DT_TOK_MUL); 522 <S0>"%" return (DT_TOK_MOD); 523 <S0>"~" return (DT_TOK_BNEG); 524 <S0>"!" return (DT_TOK_LNEG); 525 <S0>"?" return (DT_TOK_QUESTION); 526 <S0>":" return (DT_TOK_COLON); 527 <S0>"." return (DT_TOK_DOT); 528 <S0>"->" return (DT_TOK_PTR); 529 <S0>"=" return (DT_TOK_ASGN); 530 <S0>"+=" return (DT_TOK_ADD_EQ); 531 <S0>"-=" return (DT_TOK_SUB_EQ); 532 <S0>"*=" return (DT_TOK_MUL_EQ); 533 <S0>"/=" return (DT_TOK_DIV_EQ); 534 <S0>"%=" return (DT_TOK_MOD_EQ); 535 <S0>"&=" return (DT_TOK_AND_EQ); 536 <S0>"^=" return (DT_TOK_XOR_EQ); 537 <S0>"|=" return (DT_TOK_OR_EQ); 538 <S0>"<<=" return (DT_TOK_LSH_EQ); 539 <S0>">>=" return (DT_TOK_RSH_EQ); 540 <S0>"++" return (DT_TOK_ADDADD); 541 <S0>"--" return (DT_TOK_SUBSUB); 542 <S0>"..." return (DT_TOK_ELLIPSIS); 543 <S0>"," return (DT_TOK_COMMA); 544 <S0>";" return (';'); 545 <S0>{RGX_WS} ; /* discard */ 546 <S0>"\\"\n ; /* discard */ 547 <S0>. yyerror("syntax error near \"%c\"\n", yytext[0]); 548 549 <S1>"/*" yyerror("/* encountered inside a comment\n"); 550 <S1>"*/" BEGIN(yypcb->pcb_cstate); 551 <S1>.|\n ; /* discard */ 552 553 <S2>{RGX_PSPEC} { 554 /* 555 * S2 has an ambiguity because RGX_PSPEC includes '*' 556 * as a glob character and '*' also can be DT_TOK_STAR. 557 * Since lex always matches the longest token, this 558 * rule can be matched by an input string like "int*", 559 * which could begin a global variable declaration such 560 * as "int*x;" or could begin a RGX_PSPEC with globbing 561 * such as "int* { trace(timestamp); }". If C_PSPEC is 562 * not set, we must resolve the ambiguity in favor of 563 * the type and perform lexer pushback if the fragment 564 * before '*' or entire fragment matches a type name. 565 * If C_PSPEC is set, we always return a PSPEC token. 566 * If C_PSPEC is off, the user can avoid ambiguity by 567 * including a ':' delimiter in the specifier, which 568 * they should be doing anyway to specify the provider. 569 */ 570 if (!(yypcb->pcb_cflags & DTRACE_C_PSPEC) && 571 strchr(yytext, ':') == NULL) { 572 573 char *p = strchr(yytext, '*'); 574 char *q = yytext + yyleng - 1; 575 576 if (p != NULL && p > yytext) 577 *p = '\0'; /* prune yytext */ 578 579 if (dt_type_lookup(yytext, NULL) == 0) { 580 yylval.l_str = strdup(yytext); 581 582 if (yylval.l_str == NULL) { 583 longjmp(yypcb->pcb_jmpbuf, 584 EDT_NOMEM); 585 } 586 587 if (p != NULL && p > yytext) { 588 for (*p = '*'; q >= p; q--) 589 unput(*q); 590 } 591 592 yybegin(YYS_EXPR); 593 return (DT_TOK_TNAME); 594 } 595 596 if (p != NULL && p > yytext) 597 *p = '*'; /* restore yytext */ 598 } 599 600 if ((yylval.l_str = strdup(yytext)) == NULL) 601 longjmp(yypcb->pcb_jmpbuf, EDT_NOMEM); 602 603 return (DT_TOK_PSPEC); 604 } 605 606 <S2>"/" return (DT_TOK_DIV); 607 <S2>"," return (DT_TOK_COMMA); 608 609 <S2>{RGX_WS} ; /* discard */ 610 <S2>. yyerror("syntax error near \"%c\"\n", yytext[0]); 611 612 <S3>\n { 613 dt_pragma(yypragma); 614 yypragma = NULL; 615 BEGIN(yypcb->pcb_cstate); 616 } 617 618 <S3>[\f\t\v ]+ ; /* discard */ 619 620 <S3>[^\f\n\t\v "]+ { 621 dt_node_t *dnp; 622 623 if ((yylval.l_str = strdup(yytext)) == NULL) 624 longjmp(yypcb->pcb_jmpbuf, EDT_NOMEM); 625 626 /* 627 * We want to call dt_node_ident() here, but we can't 628 * because it will expand inlined identifiers, which we 629 * don't want to do from #pragma context in order to 630 * support pragmas that apply to the ident itself. We 631 * call dt_node_string() and then reset dn_op instead. 632 */ 633 dnp = dt_node_string(yylval.l_str); 634 dnp->dn_kind = DT_NODE_IDENT; 635 dnp->dn_op = DT_TOK_IDENT; 636 yypragma = dt_node_link(yypragma, dnp); 637 } 638 639 <S3>. yyerror("syntax error near \"%c\"\n", yytext[0]); 640 641 %% 642 643 /* 644 * yybegin provides a wrapper for use from C code around the lex BEGIN() macro. 645 * We use two main states for lexing because probe descriptions use a syntax 646 * that is incompatible with the normal D tokens (e.g. names can contain "-"). 647 * yybegin also handles the job of switching between two lists of dt_nodes 648 * as we allocate persistent definitions, like inlines, and transient nodes 649 * that will be freed once we are done parsing the current program file. 650 */ 651 void 652 yybegin(yystate_t state) 653 { 654 #ifdef YYDEBUG 655 yydebug = _dtrace_debug; 656 #endif 657 if (yypcb->pcb_yystate == state) 658 return; /* nothing to do if we're in the state already */ 659 660 if (yypcb->pcb_yystate == YYS_DEFINE) { 661 yypcb->pcb_list = yypcb->pcb_hold; 662 yypcb->pcb_hold = NULL; 663 } 664 665 switch (state) { 666 case YYS_CLAUSE: 667 BEGIN(S2); 668 break; 669 case YYS_DEFINE: 670 assert(yypcb->pcb_hold == NULL); 671 yypcb->pcb_hold = yypcb->pcb_list; 672 yypcb->pcb_list = NULL; 673 /*FALLTHRU*/ 674 case YYS_EXPR: 675 BEGIN(S0); 676 break; 677 case YYS_DONE: 678 break; 679 default: 680 xyerror(D_UNKNOWN, "internal error -- bad yystate %d\n", state); 681 } 682 683 yypcb->pcb_yystate = state; 684 } 685 686 void 687 yyinit(dt_pcb_t *pcb) 688 { 689 yypcb = pcb; 690 yylineno = 1; 691 yypragma = NULL; 692 yysptr = yysbuf; 693 } 694 695 /* 696 * Given a lexeme 's' (typically yytext), set yylval and return an appropriate 697 * token to the parser indicating either an identifier or a typedef name. 698 * User-defined global variables always take precedence over types, but we do 699 * use some heuristics because D programs can look at an ever-changing set of 700 * kernel types and also can implicitly instantiate variables by assignment, 701 * unlike in C. The code here is ordered carefully as lookups are not cheap. 702 */ 703 static int 704 id_or_type(const char *s) 705 { 706 dtrace_hdl_t *dtp = yypcb->pcb_hdl; 707 dt_decl_t *ddp = yypcb->pcb_dstack.ds_decl; 708 int c0, c1, ttok = DT_TOK_TNAME; 709 dt_ident_t *idp; 710 711 if ((s = yylval.l_str = strdup(s)) == NULL) 712 longjmp(yypcb->pcb_jmpbuf, EDT_NOMEM); 713 714 /* 715 * If the lexeme is a global variable or likely identifier or *not* a 716 * type_name, then it is an identifier token. 717 */ 718 if (dt_idstack_lookup(&yypcb->pcb_globals, s) != NULL || 719 dt_idhash_lookup(yypcb->pcb_idents, s) != NULL || 720 dt_type_lookup(s, NULL) != 0) 721 return (DT_TOK_IDENT); 722 723 /* 724 * If we're in the midst of parsing a declaration and a type_specifier 725 * has already been shifted, then return DT_TOK_IDENT instead of TNAME. 726 * This semantic is necessary to permit valid ISO C code such as: 727 * 728 * typedef int foo; 729 * struct s { foo foo; }; 730 * 731 * without causing shift/reduce conflicts in the direct_declarator part 732 * of the grammar. The result is that we must check for conflicting 733 * redeclarations of the same identifier as part of dt_node_decl(). 734 */ 735 if (ddp != NULL && ddp->dd_name != NULL) 736 return (DT_TOK_IDENT); 737 738 /* 739 * If the lexeme is a type name and we are not in a program clause, 740 * then always interpret it as a type and return DT_TOK_TNAME. 741 */ 742 if ((YYSTATE) != S0) 743 return (DT_TOK_TNAME); 744 745 /* 746 * If the lexeme matches a type name but is in a program clause, then 747 * it could be a type or it could be an undefined variable. Peek at 748 * the next token to decide. If we see ++, --, [, or =, we know there 749 * might be an assignment that is trying to create a global variable, 750 * so we optimistically return DT_TOK_IDENT. There is no harm in being 751 * wrong: a type_name followed by ++, --, [, or = is a syntax error. 752 */ 753 while ((c0 = input()) != 0) { 754 if (strchr("\f\n\r\t\v ", c0) == NULL) 755 break; 756 } 757 758 switch (c0) { 759 case '+': 760 case '-': 761 if ((c1 = input()) == c0) 762 ttok = DT_TOK_IDENT; 763 unput(c1); 764 break; 765 766 case '=': 767 if ((c1 = input()) != c0) 768 ttok = DT_TOK_IDENT; 769 unput(c1); 770 break; 771 case '[': 772 ttok = DT_TOK_IDENT; 773 break; 774 } 775 776 if (ttok == DT_TOK_IDENT) { 777 idp = dt_idhash_insert(yypcb->pcb_idents, s, DT_IDENT_SCALAR, 0, 778 0, _dtrace_defattr, 0, &dt_idops_thaw, NULL, dtp->dt_gen); 779 780 if (idp == NULL) 781 longjmp(yypcb->pcb_jmpbuf, EDT_NOMEM); 782 } 783 784 unput(c0); 785 return (ttok); 786 } 787 788 static int 789 input(void) 790 { 791 int c; 792 793 if (yysptr > yysbuf) 794 c = *--yysptr; 795 else if (yypcb->pcb_fileptr != NULL) 796 c = fgetc(yypcb->pcb_fileptr); 797 else if (yypcb->pcb_strptr < yypcb->pcb_string + yypcb->pcb_strlen) 798 c = *yypcb->pcb_strptr++; 799 else 800 c = EOF; 801 802 if (c == '\n') 803 yylineno++; 804 805 if (c != EOF) 806 return (c); 807 808 if ((YYSTATE) == S1) 809 yyerror("end-of-file encountered before matching */\n"); 810 811 if ((YYSTATE) == S3) 812 yyerror("end-of-file encountered before end of control line\n"); 813 814 if (yypcb->pcb_fileptr != NULL && ferror(yypcb->pcb_fileptr)) 815 longjmp(yypcb->pcb_jmpbuf, EDT_FIO); 816 817 return (0); /* EOF */ 818 } 819 820 static void 821 unput(int c) 822 { 823 if (c == '\n') 824 yylineno--; 825 826 *yysptr++ = c; 827 yytchar = c; 828 } 829