1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* 27 * Copyright (c) 2011, Joyent, Inc. All rights reserved. 28 * Copyright (c) 2012 by Delphix. All rights reserved. 29 */ 30 31 #include <stdlib.h> 32 #include <strings.h> 33 #include <errno.h> 34 #include <unistd.h> 35 #include <limits.h> 36 #include <assert.h> 37 #include <ctype.h> 38 #include <alloca.h> 39 #include <dt_impl.h> 40 #include <dt_pq.h> 41 42 #define DT_MASK_LO 0x00000000FFFFFFFFULL 43 44 /* 45 * We declare this here because (1) we need it and (2) we want to avoid a 46 * dependency on libm in libdtrace. 47 */ 48 static long double 49 dt_fabsl(long double x) 50 { 51 if (x < 0) 52 return (-x); 53 54 return (x); 55 } 56 57 /* 58 * 128-bit arithmetic functions needed to support the stddev() aggregating 59 * action. 60 */ 61 static int 62 dt_gt_128(uint64_t *a, uint64_t *b) 63 { 64 return (a[1] > b[1] || (a[1] == b[1] && a[0] > b[0])); 65 } 66 67 static int 68 dt_ge_128(uint64_t *a, uint64_t *b) 69 { 70 return (a[1] > b[1] || (a[1] == b[1] && a[0] >= b[0])); 71 } 72 73 static int 74 dt_le_128(uint64_t *a, uint64_t *b) 75 { 76 return (a[1] < b[1] || (a[1] == b[1] && a[0] <= b[0])); 77 } 78 79 /* 80 * Shift the 128-bit value in a by b. If b is positive, shift left. 81 * If b is negative, shift right. 82 */ 83 static void 84 dt_shift_128(uint64_t *a, int b) 85 { 86 uint64_t mask; 87 88 if (b == 0) 89 return; 90 91 if (b < 0) { 92 b = -b; 93 if (b >= 64) { 94 a[0] = a[1] >> (b - 64); 95 a[1] = 0; 96 } else { 97 a[0] >>= b; 98 mask = 1LL << (64 - b); 99 mask -= 1; 100 a[0] |= ((a[1] & mask) << (64 - b)); 101 a[1] >>= b; 102 } 103 } else { 104 if (b >= 64) { 105 a[1] = a[0] << (b - 64); 106 a[0] = 0; 107 } else { 108 a[1] <<= b; 109 mask = a[0] >> (64 - b); 110 a[1] |= mask; 111 a[0] <<= b; 112 } 113 } 114 } 115 116 static int 117 dt_nbits_128(uint64_t *a) 118 { 119 int nbits = 0; 120 uint64_t tmp[2]; 121 uint64_t zero[2] = { 0, 0 }; 122 123 tmp[0] = a[0]; 124 tmp[1] = a[1]; 125 126 dt_shift_128(tmp, -1); 127 while (dt_gt_128(tmp, zero)) { 128 dt_shift_128(tmp, -1); 129 nbits++; 130 } 131 132 return (nbits); 133 } 134 135 static void 136 dt_subtract_128(uint64_t *minuend, uint64_t *subtrahend, uint64_t *difference) 137 { 138 uint64_t result[2]; 139 140 result[0] = minuend[0] - subtrahend[0]; 141 result[1] = minuend[1] - subtrahend[1] - 142 (minuend[0] < subtrahend[0] ? 1 : 0); 143 144 difference[0] = result[0]; 145 difference[1] = result[1]; 146 } 147 148 static void 149 dt_add_128(uint64_t *addend1, uint64_t *addend2, uint64_t *sum) 150 { 151 uint64_t result[2]; 152 153 result[0] = addend1[0] + addend2[0]; 154 result[1] = addend1[1] + addend2[1] + 155 (result[0] < addend1[0] || result[0] < addend2[0] ? 1 : 0); 156 157 sum[0] = result[0]; 158 sum[1] = result[1]; 159 } 160 161 /* 162 * The basic idea is to break the 2 64-bit values into 4 32-bit values, 163 * use native multiplication on those, and then re-combine into the 164 * resulting 128-bit value. 165 * 166 * (hi1 << 32 + lo1) * (hi2 << 32 + lo2) = 167 * hi1 * hi2 << 64 + 168 * hi1 * lo2 << 32 + 169 * hi2 * lo1 << 32 + 170 * lo1 * lo2 171 */ 172 static void 173 dt_multiply_128(uint64_t factor1, uint64_t factor2, uint64_t *product) 174 { 175 uint64_t hi1, hi2, lo1, lo2; 176 uint64_t tmp[2]; 177 178 hi1 = factor1 >> 32; 179 hi2 = factor2 >> 32; 180 181 lo1 = factor1 & DT_MASK_LO; 182 lo2 = factor2 & DT_MASK_LO; 183 184 product[0] = lo1 * lo2; 185 product[1] = hi1 * hi2; 186 187 tmp[0] = hi1 * lo2; 188 tmp[1] = 0; 189 dt_shift_128(tmp, 32); 190 dt_add_128(product, tmp, product); 191 192 tmp[0] = hi2 * lo1; 193 tmp[1] = 0; 194 dt_shift_128(tmp, 32); 195 dt_add_128(product, tmp, product); 196 } 197 198 /* 199 * This is long-hand division. 200 * 201 * We initialize subtrahend by shifting divisor left as far as possible. We 202 * loop, comparing subtrahend to dividend: if subtrahend is smaller, we 203 * subtract and set the appropriate bit in the result. We then shift 204 * subtrahend right by one bit for the next comparison. 205 */ 206 static void 207 dt_divide_128(uint64_t *dividend, uint64_t divisor, uint64_t *quotient) 208 { 209 uint64_t result[2] = { 0, 0 }; 210 uint64_t remainder[2]; 211 uint64_t subtrahend[2]; 212 uint64_t divisor_128[2]; 213 uint64_t mask[2] = { 1, 0 }; 214 int log = 0; 215 216 assert(divisor != 0); 217 218 divisor_128[0] = divisor; 219 divisor_128[1] = 0; 220 221 remainder[0] = dividend[0]; 222 remainder[1] = dividend[1]; 223 224 subtrahend[0] = divisor; 225 subtrahend[1] = 0; 226 227 while (divisor > 0) { 228 log++; 229 divisor >>= 1; 230 } 231 232 dt_shift_128(subtrahend, 128 - log); 233 dt_shift_128(mask, 128 - log); 234 235 while (dt_ge_128(remainder, divisor_128)) { 236 if (dt_ge_128(remainder, subtrahend)) { 237 dt_subtract_128(remainder, subtrahend, remainder); 238 result[0] |= mask[0]; 239 result[1] |= mask[1]; 240 } 241 242 dt_shift_128(subtrahend, -1); 243 dt_shift_128(mask, -1); 244 } 245 246 quotient[0] = result[0]; 247 quotient[1] = result[1]; 248 } 249 250 /* 251 * This is the long-hand method of calculating a square root. 252 * The algorithm is as follows: 253 * 254 * 1. Group the digits by 2 from the right. 255 * 2. Over the leftmost group, find the largest single-digit number 256 * whose square is less than that group. 257 * 3. Subtract the result of the previous step (2 or 4, depending) and 258 * bring down the next two-digit group. 259 * 4. For the result R we have so far, find the largest single-digit number 260 * x such that 2 * R * 10 * x + x^2 is less than the result from step 3. 261 * (Note that this is doubling R and performing a decimal left-shift by 1 262 * and searching for the appropriate decimal to fill the one's place.) 263 * The value x is the next digit in the square root. 264 * Repeat steps 3 and 4 until the desired precision is reached. (We're 265 * dealing with integers, so the above is sufficient.) 266 * 267 * In decimal, the square root of 582,734 would be calculated as so: 268 * 269 * __7__6__3 270 * | 58 27 34 271 * -49 (7^2 == 49 => 7 is the first digit in the square root) 272 * -- 273 * 9 27 (Subtract and bring down the next group.) 274 * 146 8 76 (2 * 7 * 10 * 6 + 6^2 == 876 => 6 is the next digit in 275 * ----- the square root) 276 * 51 34 (Subtract and bring down the next group.) 277 * 1523 45 69 (2 * 76 * 10 * 3 + 3^2 == 4569 => 3 is the next digit in 278 * ----- the square root) 279 * 5 65 (remainder) 280 * 281 * The above algorithm applies similarly in binary, but note that the 282 * only possible non-zero value for x in step 4 is 1, so step 4 becomes a 283 * simple decision: is 2 * R * 2 * 1 + 1^2 (aka R << 2 + 1) less than the 284 * preceding difference? 285 * 286 * In binary, the square root of 11011011 would be calculated as so: 287 * 288 * __1__1__1__0 289 * | 11 01 10 11 290 * 01 (0 << 2 + 1 == 1 < 11 => this bit is 1) 291 * -- 292 * 10 01 10 11 293 * 101 1 01 (1 << 2 + 1 == 101 < 1001 => next bit is 1) 294 * ----- 295 * 1 00 10 11 296 * 1101 11 01 (11 << 2 + 1 == 1101 < 10010 => next bit is 1) 297 * ------- 298 * 1 01 11 299 * 11101 1 11 01 (111 << 2 + 1 == 11101 > 10111 => last bit is 0) 300 * 301 */ 302 static uint64_t 303 dt_sqrt_128(uint64_t *square) 304 { 305 uint64_t result[2] = { 0, 0 }; 306 uint64_t diff[2] = { 0, 0 }; 307 uint64_t one[2] = { 1, 0 }; 308 uint64_t next_pair[2]; 309 uint64_t next_try[2]; 310 uint64_t bit_pairs, pair_shift; 311 int i; 312 313 bit_pairs = dt_nbits_128(square) / 2; 314 pair_shift = bit_pairs * 2; 315 316 for (i = 0; i <= bit_pairs; i++) { 317 /* 318 * Bring down the next pair of bits. 319 */ 320 next_pair[0] = square[0]; 321 next_pair[1] = square[1]; 322 dt_shift_128(next_pair, -pair_shift); 323 next_pair[0] &= 0x3; 324 next_pair[1] = 0; 325 326 dt_shift_128(diff, 2); 327 dt_add_128(diff, next_pair, diff); 328 329 /* 330 * next_try = R << 2 + 1 331 */ 332 next_try[0] = result[0]; 333 next_try[1] = result[1]; 334 dt_shift_128(next_try, 2); 335 dt_add_128(next_try, one, next_try); 336 337 if (dt_le_128(next_try, diff)) { 338 dt_subtract_128(diff, next_try, diff); 339 dt_shift_128(result, 1); 340 dt_add_128(result, one, result); 341 } else { 342 dt_shift_128(result, 1); 343 } 344 345 pair_shift -= 2; 346 } 347 348 assert(result[1] == 0); 349 350 return (result[0]); 351 } 352 353 uint64_t 354 dt_stddev(uint64_t *data, uint64_t normal) 355 { 356 uint64_t avg_of_squares[2]; 357 uint64_t square_of_avg[2]; 358 int64_t norm_avg; 359 uint64_t diff[2]; 360 361 /* 362 * The standard approximation for standard deviation is 363 * sqrt(average(x**2) - average(x)**2), i.e. the square root 364 * of the average of the squares minus the square of the average. 365 */ 366 dt_divide_128(data + 2, normal, avg_of_squares); 367 dt_divide_128(avg_of_squares, data[0], avg_of_squares); 368 369 norm_avg = (int64_t)data[1] / (int64_t)normal / (int64_t)data[0]; 370 371 if (norm_avg < 0) 372 norm_avg = -norm_avg; 373 374 dt_multiply_128((uint64_t)norm_avg, (uint64_t)norm_avg, square_of_avg); 375 376 dt_subtract_128(avg_of_squares, square_of_avg, diff); 377 378 return (dt_sqrt_128(diff)); 379 } 380 381 static int 382 dt_flowindent(dtrace_hdl_t *dtp, dtrace_probedata_t *data, dtrace_epid_t last, 383 dtrace_bufdesc_t *buf, size_t offs) 384 { 385 dtrace_probedesc_t *pd = data->dtpda_pdesc, *npd; 386 dtrace_eprobedesc_t *epd = data->dtpda_edesc, *nepd; 387 char *p = pd->dtpd_provider, *n = pd->dtpd_name, *sub; 388 dtrace_flowkind_t flow = DTRACEFLOW_NONE; 389 const char *str = NULL; 390 static const char *e_str[2] = { " -> ", " => " }; 391 static const char *r_str[2] = { " <- ", " <= " }; 392 static const char *ent = "entry", *ret = "return"; 393 static int entlen = 0, retlen = 0; 394 dtrace_epid_t next, id = epd->dtepd_epid; 395 int rval; 396 397 if (entlen == 0) { 398 assert(retlen == 0); 399 entlen = strlen(ent); 400 retlen = strlen(ret); 401 } 402 403 /* 404 * If the name of the probe is "entry" or ends with "-entry", we 405 * treat it as an entry; if it is "return" or ends with "-return", 406 * we treat it as a return. (This allows application-provided probes 407 * like "method-entry" or "function-entry" to participate in flow 408 * indentation -- without accidentally misinterpreting popular probe 409 * names like "carpentry", "gentry" or "Coventry".) 410 */ 411 if ((sub = strstr(n, ent)) != NULL && sub[entlen] == '\0' && 412 (sub == n || sub[-1] == '-')) { 413 flow = DTRACEFLOW_ENTRY; 414 str = e_str[strcmp(p, "syscall") == 0]; 415 } else if ((sub = strstr(n, ret)) != NULL && sub[retlen] == '\0' && 416 (sub == n || sub[-1] == '-')) { 417 flow = DTRACEFLOW_RETURN; 418 str = r_str[strcmp(p, "syscall") == 0]; 419 } 420 421 /* 422 * If we're going to indent this, we need to check the ID of our last 423 * call. If we're looking at the same probe ID but a different EPID, 424 * we _don't_ want to indent. (Yes, there are some minor holes in 425 * this scheme -- it's a heuristic.) 426 */ 427 if (flow == DTRACEFLOW_ENTRY) { 428 if ((last != DTRACE_EPIDNONE && id != last && 429 pd->dtpd_id == dtp->dt_pdesc[last]->dtpd_id)) 430 flow = DTRACEFLOW_NONE; 431 } 432 433 /* 434 * If we're going to unindent this, it's more difficult to see if 435 * we don't actually want to unindent it -- we need to look at the 436 * _next_ EPID. 437 */ 438 if (flow == DTRACEFLOW_RETURN) { 439 offs += epd->dtepd_size; 440 441 do { 442 if (offs >= buf->dtbd_size) 443 goto out; 444 445 next = *(uint32_t *)((uintptr_t)buf->dtbd_data + offs); 446 447 if (next == DTRACE_EPIDNONE) 448 offs += sizeof (id); 449 } while (next == DTRACE_EPIDNONE); 450 451 if ((rval = dt_epid_lookup(dtp, next, &nepd, &npd)) != 0) 452 return (rval); 453 454 if (next != id && npd->dtpd_id == pd->dtpd_id) 455 flow = DTRACEFLOW_NONE; 456 } 457 458 out: 459 if (flow == DTRACEFLOW_ENTRY || flow == DTRACEFLOW_RETURN) { 460 data->dtpda_prefix = str; 461 } else { 462 data->dtpda_prefix = "| "; 463 } 464 465 if (flow == DTRACEFLOW_RETURN && data->dtpda_indent > 0) 466 data->dtpda_indent -= 2; 467 468 data->dtpda_flow = flow; 469 470 return (0); 471 } 472 473 static int 474 dt_nullprobe() 475 { 476 return (DTRACE_CONSUME_THIS); 477 } 478 479 static int 480 dt_nullrec() 481 { 482 return (DTRACE_CONSUME_NEXT); 483 } 484 485 int 486 dt_print_quantline(dtrace_hdl_t *dtp, FILE *fp, int64_t val, 487 uint64_t normal, long double total, char positives, char negatives) 488 { 489 long double f; 490 uint_t depth, len = 40; 491 492 const char *ats = "@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@"; 493 const char *spaces = " "; 494 495 assert(strlen(ats) == len && strlen(spaces) == len); 496 assert(!(total == 0 && (positives || negatives))); 497 assert(!(val < 0 && !negatives)); 498 assert(!(val > 0 && !positives)); 499 assert(!(val != 0 && total == 0)); 500 501 if (!negatives) { 502 if (positives) { 503 f = (dt_fabsl((long double)val) * len) / total; 504 depth = (uint_t)(f + 0.5); 505 } else { 506 depth = 0; 507 } 508 509 return (dt_printf(dtp, fp, "|%s%s %-9lld\n", ats + len - depth, 510 spaces + depth, (long long)val / normal)); 511 } 512 513 if (!positives) { 514 f = (dt_fabsl((long double)val) * len) / total; 515 depth = (uint_t)(f + 0.5); 516 517 return (dt_printf(dtp, fp, "%s%s| %-9lld\n", spaces + depth, 518 ats + len - depth, (long long)val / normal)); 519 } 520 521 /* 522 * If we're here, we have both positive and negative bucket values. 523 * To express this graphically, we're going to generate both positive 524 * and negative bars separated by a centerline. These bars are half 525 * the size of normal quantize()/lquantize() bars, so we divide the 526 * length in half before calculating the bar length. 527 */ 528 len /= 2; 529 ats = &ats[len]; 530 spaces = &spaces[len]; 531 532 f = (dt_fabsl((long double)val) * len) / total; 533 depth = (uint_t)(f + 0.5); 534 535 if (val <= 0) { 536 return (dt_printf(dtp, fp, "%s%s|%*s %-9lld\n", spaces + depth, 537 ats + len - depth, len, "", (long long)val / normal)); 538 } else { 539 return (dt_printf(dtp, fp, "%20s|%s%s %-9lld\n", "", 540 ats + len - depth, spaces + depth, 541 (long long)val / normal)); 542 } 543 } 544 545 int 546 dt_print_quantize(dtrace_hdl_t *dtp, FILE *fp, const void *addr, 547 size_t size, uint64_t normal) 548 { 549 const int64_t *data = addr; 550 int i, first_bin = 0, last_bin = DTRACE_QUANTIZE_NBUCKETS - 1; 551 long double total = 0; 552 char positives = 0, negatives = 0; 553 554 if (size != DTRACE_QUANTIZE_NBUCKETS * sizeof (uint64_t)) 555 return (dt_set_errno(dtp, EDT_DMISMATCH)); 556 557 while (first_bin < DTRACE_QUANTIZE_NBUCKETS - 1 && data[first_bin] == 0) 558 first_bin++; 559 560 if (first_bin == DTRACE_QUANTIZE_NBUCKETS - 1) { 561 /* 562 * There isn't any data. This is possible if (and only if) 563 * negative increment values have been used. In this case, 564 * we'll print the buckets around 0. 565 */ 566 first_bin = DTRACE_QUANTIZE_ZEROBUCKET - 1; 567 last_bin = DTRACE_QUANTIZE_ZEROBUCKET + 1; 568 } else { 569 if (first_bin > 0) 570 first_bin--; 571 572 while (last_bin > 0 && data[last_bin] == 0) 573 last_bin--; 574 575 if (last_bin < DTRACE_QUANTIZE_NBUCKETS - 1) 576 last_bin++; 577 } 578 579 for (i = first_bin; i <= last_bin; i++) { 580 positives |= (data[i] > 0); 581 negatives |= (data[i] < 0); 582 total += dt_fabsl((long double)data[i]); 583 } 584 585 if (dt_printf(dtp, fp, "\n%16s %41s %-9s\n", "value", 586 "------------- Distribution -------------", "count") < 0) 587 return (-1); 588 589 for (i = first_bin; i <= last_bin; i++) { 590 if (dt_printf(dtp, fp, "%16lld ", 591 (long long)DTRACE_QUANTIZE_BUCKETVAL(i)) < 0) 592 return (-1); 593 594 if (dt_print_quantline(dtp, fp, data[i], normal, total, 595 positives, negatives) < 0) 596 return (-1); 597 } 598 599 return (0); 600 } 601 602 int 603 dt_print_lquantize(dtrace_hdl_t *dtp, FILE *fp, const void *addr, 604 size_t size, uint64_t normal) 605 { 606 const int64_t *data = addr; 607 int i, first_bin, last_bin, base; 608 uint64_t arg; 609 long double total = 0; 610 uint16_t step, levels; 611 char positives = 0, negatives = 0; 612 613 if (size < sizeof (uint64_t)) 614 return (dt_set_errno(dtp, EDT_DMISMATCH)); 615 616 arg = *data++; 617 size -= sizeof (uint64_t); 618 619 base = DTRACE_LQUANTIZE_BASE(arg); 620 step = DTRACE_LQUANTIZE_STEP(arg); 621 levels = DTRACE_LQUANTIZE_LEVELS(arg); 622 623 first_bin = 0; 624 last_bin = levels + 1; 625 626 if (size != sizeof (uint64_t) * (levels + 2)) 627 return (dt_set_errno(dtp, EDT_DMISMATCH)); 628 629 while (first_bin <= levels + 1 && data[first_bin] == 0) 630 first_bin++; 631 632 if (first_bin > levels + 1) { 633 first_bin = 0; 634 last_bin = 2; 635 } else { 636 if (first_bin > 0) 637 first_bin--; 638 639 while (last_bin > 0 && data[last_bin] == 0) 640 last_bin--; 641 642 if (last_bin < levels + 1) 643 last_bin++; 644 } 645 646 for (i = first_bin; i <= last_bin; i++) { 647 positives |= (data[i] > 0); 648 negatives |= (data[i] < 0); 649 total += dt_fabsl((long double)data[i]); 650 } 651 652 if (dt_printf(dtp, fp, "\n%16s %41s %-9s\n", "value", 653 "------------- Distribution -------------", "count") < 0) 654 return (-1); 655 656 for (i = first_bin; i <= last_bin; i++) { 657 char c[32]; 658 int err; 659 660 if (i == 0) { 661 (void) snprintf(c, sizeof (c), "< %d", 662 base / (uint32_t)normal); 663 err = dt_printf(dtp, fp, "%16s ", c); 664 } else if (i == levels + 1) { 665 (void) snprintf(c, sizeof (c), ">= %d", 666 base + (levels * step)); 667 err = dt_printf(dtp, fp, "%16s ", c); 668 } else { 669 err = dt_printf(dtp, fp, "%16d ", 670 base + (i - 1) * step); 671 } 672 673 if (err < 0 || dt_print_quantline(dtp, fp, data[i], normal, 674 total, positives, negatives) < 0) 675 return (-1); 676 } 677 678 return (0); 679 } 680 681 int 682 dt_print_llquantize(dtrace_hdl_t *dtp, FILE *fp, const void *addr, 683 size_t size, uint64_t normal) 684 { 685 int i, first_bin, last_bin, bin = 1, order, levels; 686 uint16_t factor, low, high, nsteps; 687 const int64_t *data = addr; 688 int64_t value = 1, next, step; 689 char positives = 0, negatives = 0; 690 long double total = 0; 691 uint64_t arg; 692 char c[32]; 693 694 if (size < sizeof (uint64_t)) 695 return (dt_set_errno(dtp, EDT_DMISMATCH)); 696 697 arg = *data++; 698 size -= sizeof (uint64_t); 699 700 factor = DTRACE_LLQUANTIZE_FACTOR(arg); 701 low = DTRACE_LLQUANTIZE_LOW(arg); 702 high = DTRACE_LLQUANTIZE_HIGH(arg); 703 nsteps = DTRACE_LLQUANTIZE_NSTEP(arg); 704 705 /* 706 * We don't expect to be handed invalid llquantize() parameters here, 707 * but sanity check them (to a degree) nonetheless. 708 */ 709 if (size > INT32_MAX || factor < 2 || low >= high || 710 nsteps == 0 || factor > nsteps) 711 return (dt_set_errno(dtp, EDT_DMISMATCH)); 712 713 levels = (int)size / sizeof (uint64_t); 714 715 first_bin = 0; 716 last_bin = levels - 1; 717 718 while (first_bin < levels && data[first_bin] == 0) 719 first_bin++; 720 721 if (first_bin == levels) { 722 first_bin = 0; 723 last_bin = 1; 724 } else { 725 if (first_bin > 0) 726 first_bin--; 727 728 while (last_bin > 0 && data[last_bin] == 0) 729 last_bin--; 730 731 if (last_bin < levels - 1) 732 last_bin++; 733 } 734 735 for (i = first_bin; i <= last_bin; i++) { 736 positives |= (data[i] > 0); 737 negatives |= (data[i] < 0); 738 total += dt_fabsl((long double)data[i]); 739 } 740 741 if (dt_printf(dtp, fp, "\n%16s %41s %-9s\n", "value", 742 "------------- Distribution -------------", "count") < 0) 743 return (-1); 744 745 for (order = 0; order < low; order++) 746 value *= factor; 747 748 next = value * factor; 749 step = next > nsteps ? next / nsteps : 1; 750 751 if (first_bin == 0) { 752 (void) snprintf(c, sizeof (c), "< %lld", value); 753 754 if (dt_printf(dtp, fp, "%16s ", c) < 0) 755 return (-1); 756 757 if (dt_print_quantline(dtp, fp, data[0], normal, 758 total, positives, negatives) < 0) 759 return (-1); 760 } 761 762 while (order <= high) { 763 if (bin >= first_bin && bin <= last_bin) { 764 if (dt_printf(dtp, fp, "%16lld ", (long long)value) < 0) 765 return (-1); 766 767 if (dt_print_quantline(dtp, fp, data[bin], 768 normal, total, positives, negatives) < 0) 769 return (-1); 770 } 771 772 assert(value < next); 773 bin++; 774 775 if ((value += step) != next) 776 continue; 777 778 next = value * factor; 779 step = next > nsteps ? next / nsteps : 1; 780 order++; 781 } 782 783 if (last_bin < bin) 784 return (0); 785 786 assert(last_bin == bin); 787 (void) snprintf(c, sizeof (c), ">= %lld", value); 788 789 if (dt_printf(dtp, fp, "%16s ", c) < 0) 790 return (-1); 791 792 return (dt_print_quantline(dtp, fp, data[bin], normal, 793 total, positives, negatives)); 794 } 795 796 /*ARGSUSED*/ 797 static int 798 dt_print_average(dtrace_hdl_t *dtp, FILE *fp, caddr_t addr, 799 size_t size, uint64_t normal) 800 { 801 /* LINTED - alignment */ 802 int64_t *data = (int64_t *)addr; 803 804 return (dt_printf(dtp, fp, " %16lld", data[0] ? 805 (long long)(data[1] / (int64_t)normal / data[0]) : 0)); 806 } 807 808 /*ARGSUSED*/ 809 static int 810 dt_print_stddev(dtrace_hdl_t *dtp, FILE *fp, caddr_t addr, 811 size_t size, uint64_t normal) 812 { 813 /* LINTED - alignment */ 814 uint64_t *data = (uint64_t *)addr; 815 816 return (dt_printf(dtp, fp, " %16llu", data[0] ? 817 (unsigned long long) dt_stddev(data, normal) : 0)); 818 } 819 820 /*ARGSUSED*/ 821 int 822 dt_print_bytes(dtrace_hdl_t *dtp, FILE *fp, caddr_t addr, 823 size_t nbytes, int width, int quiet, int forceraw) 824 { 825 /* 826 * If the byte stream is a series of printable characters, followed by 827 * a terminating byte, we print it out as a string. Otherwise, we 828 * assume that it's something else and just print the bytes. 829 */ 830 int i, j, margin = 5; 831 char *c = (char *)addr; 832 833 if (nbytes == 0) 834 return (0); 835 836 if (forceraw) 837 goto raw; 838 839 if (dtp->dt_options[DTRACEOPT_RAWBYTES] != DTRACEOPT_UNSET) 840 goto raw; 841 842 for (i = 0; i < nbytes; i++) { 843 /* 844 * We define a "printable character" to be one for which 845 * isprint(3C) returns non-zero, isspace(3C) returns non-zero, 846 * or a character which is either backspace or the bell. 847 * Backspace and the bell are regrettably special because 848 * they fail the first two tests -- and yet they are entirely 849 * printable. These are the only two control characters that 850 * have meaning for the terminal and for which isprint(3C) and 851 * isspace(3C) return 0. 852 */ 853 if (isprint(c[i]) || isspace(c[i]) || 854 c[i] == '\b' || c[i] == '\a') 855 continue; 856 857 if (c[i] == '\0' && i > 0) { 858 /* 859 * This looks like it might be a string. Before we 860 * assume that it is indeed a string, check the 861 * remainder of the byte range; if it contains 862 * additional non-nul characters, we'll assume that 863 * it's a binary stream that just happens to look like 864 * a string, and we'll print out the individual bytes. 865 */ 866 for (j = i + 1; j < nbytes; j++) { 867 if (c[j] != '\0') 868 break; 869 } 870 871 if (j != nbytes) 872 break; 873 874 if (quiet) 875 return (dt_printf(dtp, fp, "%s", c)); 876 else 877 return (dt_printf(dtp, fp, " %-*s", width, c)); 878 } 879 880 break; 881 } 882 883 if (i == nbytes) { 884 /* 885 * The byte range is all printable characters, but there is 886 * no trailing nul byte. We'll assume that it's a string and 887 * print it as such. 888 */ 889 char *s = alloca(nbytes + 1); 890 bcopy(c, s, nbytes); 891 s[nbytes] = '\0'; 892 return (dt_printf(dtp, fp, " %-*s", width, s)); 893 } 894 895 raw: 896 if (dt_printf(dtp, fp, "\n%*s ", margin, "") < 0) 897 return (-1); 898 899 for (i = 0; i < 16; i++) 900 if (dt_printf(dtp, fp, " %c", "0123456789abcdef"[i]) < 0) 901 return (-1); 902 903 if (dt_printf(dtp, fp, " 0123456789abcdef\n") < 0) 904 return (-1); 905 906 907 for (i = 0; i < nbytes; i += 16) { 908 if (dt_printf(dtp, fp, "%*s%5x:", margin, "", i) < 0) 909 return (-1); 910 911 for (j = i; j < i + 16 && j < nbytes; j++) { 912 if (dt_printf(dtp, fp, " %02x", (uchar_t)c[j]) < 0) 913 return (-1); 914 } 915 916 while (j++ % 16) { 917 if (dt_printf(dtp, fp, " ") < 0) 918 return (-1); 919 } 920 921 if (dt_printf(dtp, fp, " ") < 0) 922 return (-1); 923 924 for (j = i; j < i + 16 && j < nbytes; j++) { 925 if (dt_printf(dtp, fp, "%c", 926 c[j] < ' ' || c[j] > '~' ? '.' : c[j]) < 0) 927 return (-1); 928 } 929 930 if (dt_printf(dtp, fp, "\n") < 0) 931 return (-1); 932 } 933 934 return (0); 935 } 936 937 int 938 dt_print_stack(dtrace_hdl_t *dtp, FILE *fp, const char *format, 939 caddr_t addr, int depth, int size) 940 { 941 dtrace_syminfo_t dts; 942 GElf_Sym sym; 943 int i, indent; 944 char c[PATH_MAX * 2]; 945 uint64_t pc; 946 947 if (dt_printf(dtp, fp, "\n") < 0) 948 return (-1); 949 950 if (format == NULL) 951 format = "%s"; 952 953 if (dtp->dt_options[DTRACEOPT_STACKINDENT] != DTRACEOPT_UNSET) 954 indent = (int)dtp->dt_options[DTRACEOPT_STACKINDENT]; 955 else 956 indent = _dtrace_stkindent; 957 958 for (i = 0; i < depth; i++) { 959 switch (size) { 960 case sizeof (uint32_t): 961 /* LINTED - alignment */ 962 pc = *((uint32_t *)addr); 963 break; 964 965 case sizeof (uint64_t): 966 /* LINTED - alignment */ 967 pc = *((uint64_t *)addr); 968 break; 969 970 default: 971 return (dt_set_errno(dtp, EDT_BADSTACKPC)); 972 } 973 974 if (pc == NULL) 975 break; 976 977 addr += size; 978 979 if (dt_printf(dtp, fp, "%*s", indent, "") < 0) 980 return (-1); 981 982 if (dtrace_lookup_by_addr(dtp, pc, &sym, &dts) == 0) { 983 if (pc > sym.st_value) { 984 (void) snprintf(c, sizeof (c), "%s`%s+0x%llx", 985 dts.dts_object, dts.dts_name, 986 pc - sym.st_value); 987 } else { 988 (void) snprintf(c, sizeof (c), "%s`%s", 989 dts.dts_object, dts.dts_name); 990 } 991 } else { 992 /* 993 * We'll repeat the lookup, but this time we'll specify 994 * a NULL GElf_Sym -- indicating that we're only 995 * interested in the containing module. 996 */ 997 if (dtrace_lookup_by_addr(dtp, pc, NULL, &dts) == 0) { 998 (void) snprintf(c, sizeof (c), "%s`0x%llx", 999 dts.dts_object, pc); 1000 } else { 1001 (void) snprintf(c, sizeof (c), "0x%llx", pc); 1002 } 1003 } 1004 1005 if (dt_printf(dtp, fp, format, c) < 0) 1006 return (-1); 1007 1008 if (dt_printf(dtp, fp, "\n") < 0) 1009 return (-1); 1010 } 1011 1012 return (0); 1013 } 1014 1015 int 1016 dt_print_ustack(dtrace_hdl_t *dtp, FILE *fp, const char *format, 1017 caddr_t addr, uint64_t arg) 1018 { 1019 /* LINTED - alignment */ 1020 uint64_t *pc = (uint64_t *)addr; 1021 uint32_t depth = DTRACE_USTACK_NFRAMES(arg); 1022 uint32_t strsize = DTRACE_USTACK_STRSIZE(arg); 1023 const char *strbase = addr + (depth + 1) * sizeof (uint64_t); 1024 const char *str = strsize ? strbase : NULL; 1025 int err = 0; 1026 1027 char name[PATH_MAX], objname[PATH_MAX], c[PATH_MAX * 2]; 1028 struct ps_prochandle *P; 1029 GElf_Sym sym; 1030 int i, indent; 1031 pid_t pid; 1032 1033 if (depth == 0) 1034 return (0); 1035 1036 pid = (pid_t)*pc++; 1037 1038 if (dt_printf(dtp, fp, "\n") < 0) 1039 return (-1); 1040 1041 if (format == NULL) 1042 format = "%s"; 1043 1044 if (dtp->dt_options[DTRACEOPT_STACKINDENT] != DTRACEOPT_UNSET) 1045 indent = (int)dtp->dt_options[DTRACEOPT_STACKINDENT]; 1046 else 1047 indent = _dtrace_stkindent; 1048 1049 /* 1050 * Ultimately, we need to add an entry point in the library vector for 1051 * determining <symbol, offset> from <pid, address>. For now, if 1052 * this is a vector open, we just print the raw address or string. 1053 */ 1054 if (dtp->dt_vector == NULL) 1055 P = dt_proc_grab(dtp, pid, PGRAB_RDONLY | PGRAB_FORCE, 0); 1056 else 1057 P = NULL; 1058 1059 if (P != NULL) 1060 dt_proc_lock(dtp, P); /* lock handle while we perform lookups */ 1061 1062 for (i = 0; i < depth && pc[i] != NULL; i++) { 1063 const prmap_t *map; 1064 1065 if ((err = dt_printf(dtp, fp, "%*s", indent, "")) < 0) 1066 break; 1067 1068 if (P != NULL && Plookup_by_addr(P, pc[i], 1069 name, sizeof (name), &sym) == 0) { 1070 (void) Pobjname(P, pc[i], objname, sizeof (objname)); 1071 1072 if (pc[i] > sym.st_value) { 1073 (void) snprintf(c, sizeof (c), 1074 "%s`%s+0x%llx", dt_basename(objname), name, 1075 (u_longlong_t)(pc[i] - sym.st_value)); 1076 } else { 1077 (void) snprintf(c, sizeof (c), 1078 "%s`%s", dt_basename(objname), name); 1079 } 1080 } else if (str != NULL && str[0] != '\0' && str[0] != '@' && 1081 (P != NULL && ((map = Paddr_to_map(P, pc[i])) == NULL || 1082 (map->pr_mflags & MA_WRITE)))) { 1083 /* 1084 * If the current string pointer in the string table 1085 * does not point to an empty string _and_ the program 1086 * counter falls in a writable region, we'll use the 1087 * string from the string table instead of the raw 1088 * address. This last condition is necessary because 1089 * some (broken) ustack helpers will return a string 1090 * even for a program counter that they can't 1091 * identify. If we have a string for a program 1092 * counter that falls in a segment that isn't 1093 * writable, we assume that we have fallen into this 1094 * case and we refuse to use the string. 1095 */ 1096 (void) snprintf(c, sizeof (c), "%s", str); 1097 } else { 1098 if (P != NULL && Pobjname(P, pc[i], objname, 1099 sizeof (objname)) != NULL) { 1100 (void) snprintf(c, sizeof (c), "%s`0x%llx", 1101 dt_basename(objname), (u_longlong_t)pc[i]); 1102 } else { 1103 (void) snprintf(c, sizeof (c), "0x%llx", 1104 (u_longlong_t)pc[i]); 1105 } 1106 } 1107 1108 if ((err = dt_printf(dtp, fp, format, c)) < 0) 1109 break; 1110 1111 if ((err = dt_printf(dtp, fp, "\n")) < 0) 1112 break; 1113 1114 if (str != NULL && str[0] == '@') { 1115 /* 1116 * If the first character of the string is an "at" sign, 1117 * then the string is inferred to be an annotation -- 1118 * and it is printed out beneath the frame and offset 1119 * with brackets. 1120 */ 1121 if ((err = dt_printf(dtp, fp, "%*s", indent, "")) < 0) 1122 break; 1123 1124 (void) snprintf(c, sizeof (c), " [ %s ]", &str[1]); 1125 1126 if ((err = dt_printf(dtp, fp, format, c)) < 0) 1127 break; 1128 1129 if ((err = dt_printf(dtp, fp, "\n")) < 0) 1130 break; 1131 } 1132 1133 if (str != NULL) { 1134 str += strlen(str) + 1; 1135 if (str - strbase >= strsize) 1136 str = NULL; 1137 } 1138 } 1139 1140 if (P != NULL) { 1141 dt_proc_unlock(dtp, P); 1142 dt_proc_release(dtp, P); 1143 } 1144 1145 return (err); 1146 } 1147 1148 static int 1149 dt_print_usym(dtrace_hdl_t *dtp, FILE *fp, caddr_t addr, dtrace_actkind_t act) 1150 { 1151 /* LINTED - alignment */ 1152 uint64_t pid = ((uint64_t *)addr)[0]; 1153 /* LINTED - alignment */ 1154 uint64_t pc = ((uint64_t *)addr)[1]; 1155 const char *format = " %-50s"; 1156 char *s; 1157 int n, len = 256; 1158 1159 if (act == DTRACEACT_USYM && dtp->dt_vector == NULL) { 1160 struct ps_prochandle *P; 1161 1162 if ((P = dt_proc_grab(dtp, pid, 1163 PGRAB_RDONLY | PGRAB_FORCE, 0)) != NULL) { 1164 GElf_Sym sym; 1165 1166 dt_proc_lock(dtp, P); 1167 1168 if (Plookup_by_addr(P, pc, NULL, 0, &sym) == 0) 1169 pc = sym.st_value; 1170 1171 dt_proc_unlock(dtp, P); 1172 dt_proc_release(dtp, P); 1173 } 1174 } 1175 1176 do { 1177 n = len; 1178 s = alloca(n); 1179 } while ((len = dtrace_uaddr2str(dtp, pid, pc, s, n)) > n); 1180 1181 return (dt_printf(dtp, fp, format, s)); 1182 } 1183 1184 int 1185 dt_print_umod(dtrace_hdl_t *dtp, FILE *fp, const char *format, caddr_t addr) 1186 { 1187 /* LINTED - alignment */ 1188 uint64_t pid = ((uint64_t *)addr)[0]; 1189 /* LINTED - alignment */ 1190 uint64_t pc = ((uint64_t *)addr)[1]; 1191 int err = 0; 1192 1193 char objname[PATH_MAX], c[PATH_MAX * 2]; 1194 struct ps_prochandle *P; 1195 1196 if (format == NULL) 1197 format = " %-50s"; 1198 1199 /* 1200 * See the comment in dt_print_ustack() for the rationale for 1201 * printing raw addresses in the vectored case. 1202 */ 1203 if (dtp->dt_vector == NULL) 1204 P = dt_proc_grab(dtp, pid, PGRAB_RDONLY | PGRAB_FORCE, 0); 1205 else 1206 P = NULL; 1207 1208 if (P != NULL) 1209 dt_proc_lock(dtp, P); /* lock handle while we perform lookups */ 1210 1211 if (P != NULL && Pobjname(P, pc, objname, sizeof (objname)) != NULL) { 1212 (void) snprintf(c, sizeof (c), "%s", dt_basename(objname)); 1213 } else { 1214 (void) snprintf(c, sizeof (c), "0x%llx", (u_longlong_t)pc); 1215 } 1216 1217 err = dt_printf(dtp, fp, format, c); 1218 1219 if (P != NULL) { 1220 dt_proc_unlock(dtp, P); 1221 dt_proc_release(dtp, P); 1222 } 1223 1224 return (err); 1225 } 1226 1227 static int 1228 dt_print_sym(dtrace_hdl_t *dtp, FILE *fp, const char *format, caddr_t addr) 1229 { 1230 /* LINTED - alignment */ 1231 uint64_t pc = *((uint64_t *)addr); 1232 dtrace_syminfo_t dts; 1233 GElf_Sym sym; 1234 char c[PATH_MAX * 2]; 1235 1236 if (format == NULL) 1237 format = " %-50s"; 1238 1239 if (dtrace_lookup_by_addr(dtp, pc, &sym, &dts) == 0) { 1240 (void) snprintf(c, sizeof (c), "%s`%s", 1241 dts.dts_object, dts.dts_name); 1242 } else { 1243 /* 1244 * We'll repeat the lookup, but this time we'll specify a 1245 * NULL GElf_Sym -- indicating that we're only interested in 1246 * the containing module. 1247 */ 1248 if (dtrace_lookup_by_addr(dtp, pc, NULL, &dts) == 0) { 1249 (void) snprintf(c, sizeof (c), "%s`0x%llx", 1250 dts.dts_object, (u_longlong_t)pc); 1251 } else { 1252 (void) snprintf(c, sizeof (c), "0x%llx", 1253 (u_longlong_t)pc); 1254 } 1255 } 1256 1257 if (dt_printf(dtp, fp, format, c) < 0) 1258 return (-1); 1259 1260 return (0); 1261 } 1262 1263 int 1264 dt_print_mod(dtrace_hdl_t *dtp, FILE *fp, const char *format, caddr_t addr) 1265 { 1266 /* LINTED - alignment */ 1267 uint64_t pc = *((uint64_t *)addr); 1268 dtrace_syminfo_t dts; 1269 char c[PATH_MAX * 2]; 1270 1271 if (format == NULL) 1272 format = " %-50s"; 1273 1274 if (dtrace_lookup_by_addr(dtp, pc, NULL, &dts) == 0) { 1275 (void) snprintf(c, sizeof (c), "%s", dts.dts_object); 1276 } else { 1277 (void) snprintf(c, sizeof (c), "0x%llx", (u_longlong_t)pc); 1278 } 1279 1280 if (dt_printf(dtp, fp, format, c) < 0) 1281 return (-1); 1282 1283 return (0); 1284 } 1285 1286 typedef struct dt_normal { 1287 dtrace_aggvarid_t dtnd_id; 1288 uint64_t dtnd_normal; 1289 } dt_normal_t; 1290 1291 static int 1292 dt_normalize_agg(const dtrace_aggdata_t *aggdata, void *arg) 1293 { 1294 dt_normal_t *normal = arg; 1295 dtrace_aggdesc_t *agg = aggdata->dtada_desc; 1296 dtrace_aggvarid_t id = normal->dtnd_id; 1297 1298 if (agg->dtagd_nrecs == 0) 1299 return (DTRACE_AGGWALK_NEXT); 1300 1301 if (agg->dtagd_varid != id) 1302 return (DTRACE_AGGWALK_NEXT); 1303 1304 ((dtrace_aggdata_t *)aggdata)->dtada_normal = normal->dtnd_normal; 1305 return (DTRACE_AGGWALK_NORMALIZE); 1306 } 1307 1308 static int 1309 dt_normalize(dtrace_hdl_t *dtp, caddr_t base, dtrace_recdesc_t *rec) 1310 { 1311 dt_normal_t normal; 1312 caddr_t addr; 1313 1314 /* 1315 * We (should) have two records: the aggregation ID followed by the 1316 * normalization value. 1317 */ 1318 addr = base + rec->dtrd_offset; 1319 1320 if (rec->dtrd_size != sizeof (dtrace_aggvarid_t)) 1321 return (dt_set_errno(dtp, EDT_BADNORMAL)); 1322 1323 /* LINTED - alignment */ 1324 normal.dtnd_id = *((dtrace_aggvarid_t *)addr); 1325 rec++; 1326 1327 if (rec->dtrd_action != DTRACEACT_LIBACT) 1328 return (dt_set_errno(dtp, EDT_BADNORMAL)); 1329 1330 if (rec->dtrd_arg != DT_ACT_NORMALIZE) 1331 return (dt_set_errno(dtp, EDT_BADNORMAL)); 1332 1333 addr = base + rec->dtrd_offset; 1334 1335 switch (rec->dtrd_size) { 1336 case sizeof (uint64_t): 1337 /* LINTED - alignment */ 1338 normal.dtnd_normal = *((uint64_t *)addr); 1339 break; 1340 case sizeof (uint32_t): 1341 /* LINTED - alignment */ 1342 normal.dtnd_normal = *((uint32_t *)addr); 1343 break; 1344 case sizeof (uint16_t): 1345 /* LINTED - alignment */ 1346 normal.dtnd_normal = *((uint16_t *)addr); 1347 break; 1348 case sizeof (uint8_t): 1349 normal.dtnd_normal = *((uint8_t *)addr); 1350 break; 1351 default: 1352 return (dt_set_errno(dtp, EDT_BADNORMAL)); 1353 } 1354 1355 (void) dtrace_aggregate_walk(dtp, dt_normalize_agg, &normal); 1356 1357 return (0); 1358 } 1359 1360 static int 1361 dt_denormalize_agg(const dtrace_aggdata_t *aggdata, void *arg) 1362 { 1363 dtrace_aggdesc_t *agg = aggdata->dtada_desc; 1364 dtrace_aggvarid_t id = *((dtrace_aggvarid_t *)arg); 1365 1366 if (agg->dtagd_nrecs == 0) 1367 return (DTRACE_AGGWALK_NEXT); 1368 1369 if (agg->dtagd_varid != id) 1370 return (DTRACE_AGGWALK_NEXT); 1371 1372 return (DTRACE_AGGWALK_DENORMALIZE); 1373 } 1374 1375 static int 1376 dt_clear_agg(const dtrace_aggdata_t *aggdata, void *arg) 1377 { 1378 dtrace_aggdesc_t *agg = aggdata->dtada_desc; 1379 dtrace_aggvarid_t id = *((dtrace_aggvarid_t *)arg); 1380 1381 if (agg->dtagd_nrecs == 0) 1382 return (DTRACE_AGGWALK_NEXT); 1383 1384 if (agg->dtagd_varid != id) 1385 return (DTRACE_AGGWALK_NEXT); 1386 1387 return (DTRACE_AGGWALK_CLEAR); 1388 } 1389 1390 typedef struct dt_trunc { 1391 dtrace_aggvarid_t dttd_id; 1392 uint64_t dttd_remaining; 1393 } dt_trunc_t; 1394 1395 static int 1396 dt_trunc_agg(const dtrace_aggdata_t *aggdata, void *arg) 1397 { 1398 dt_trunc_t *trunc = arg; 1399 dtrace_aggdesc_t *agg = aggdata->dtada_desc; 1400 dtrace_aggvarid_t id = trunc->dttd_id; 1401 1402 if (agg->dtagd_nrecs == 0) 1403 return (DTRACE_AGGWALK_NEXT); 1404 1405 if (agg->dtagd_varid != id) 1406 return (DTRACE_AGGWALK_NEXT); 1407 1408 if (trunc->dttd_remaining == 0) 1409 return (DTRACE_AGGWALK_REMOVE); 1410 1411 trunc->dttd_remaining--; 1412 return (DTRACE_AGGWALK_NEXT); 1413 } 1414 1415 static int 1416 dt_trunc(dtrace_hdl_t *dtp, caddr_t base, dtrace_recdesc_t *rec) 1417 { 1418 dt_trunc_t trunc; 1419 caddr_t addr; 1420 int64_t remaining; 1421 int (*func)(dtrace_hdl_t *, dtrace_aggregate_f *, void *); 1422 1423 /* 1424 * We (should) have two records: the aggregation ID followed by the 1425 * number of aggregation entries after which the aggregation is to be 1426 * truncated. 1427 */ 1428 addr = base + rec->dtrd_offset; 1429 1430 if (rec->dtrd_size != sizeof (dtrace_aggvarid_t)) 1431 return (dt_set_errno(dtp, EDT_BADTRUNC)); 1432 1433 /* LINTED - alignment */ 1434 trunc.dttd_id = *((dtrace_aggvarid_t *)addr); 1435 rec++; 1436 1437 if (rec->dtrd_action != DTRACEACT_LIBACT) 1438 return (dt_set_errno(dtp, EDT_BADTRUNC)); 1439 1440 if (rec->dtrd_arg != DT_ACT_TRUNC) 1441 return (dt_set_errno(dtp, EDT_BADTRUNC)); 1442 1443 addr = base + rec->dtrd_offset; 1444 1445 switch (rec->dtrd_size) { 1446 case sizeof (uint64_t): 1447 /* LINTED - alignment */ 1448 remaining = *((int64_t *)addr); 1449 break; 1450 case sizeof (uint32_t): 1451 /* LINTED - alignment */ 1452 remaining = *((int32_t *)addr); 1453 break; 1454 case sizeof (uint16_t): 1455 /* LINTED - alignment */ 1456 remaining = *((int16_t *)addr); 1457 break; 1458 case sizeof (uint8_t): 1459 remaining = *((int8_t *)addr); 1460 break; 1461 default: 1462 return (dt_set_errno(dtp, EDT_BADNORMAL)); 1463 } 1464 1465 if (remaining < 0) { 1466 func = dtrace_aggregate_walk_valsorted; 1467 remaining = -remaining; 1468 } else { 1469 func = dtrace_aggregate_walk_valrevsorted; 1470 } 1471 1472 assert(remaining >= 0); 1473 trunc.dttd_remaining = remaining; 1474 1475 (void) func(dtp, dt_trunc_agg, &trunc); 1476 1477 return (0); 1478 } 1479 1480 static int 1481 dt_print_datum(dtrace_hdl_t *dtp, FILE *fp, dtrace_recdesc_t *rec, 1482 caddr_t addr, size_t size, uint64_t normal) 1483 { 1484 int err; 1485 dtrace_actkind_t act = rec->dtrd_action; 1486 1487 switch (act) { 1488 case DTRACEACT_STACK: 1489 return (dt_print_stack(dtp, fp, NULL, addr, 1490 rec->dtrd_arg, rec->dtrd_size / rec->dtrd_arg)); 1491 1492 case DTRACEACT_USTACK: 1493 case DTRACEACT_JSTACK: 1494 return (dt_print_ustack(dtp, fp, NULL, addr, rec->dtrd_arg)); 1495 1496 case DTRACEACT_USYM: 1497 case DTRACEACT_UADDR: 1498 return (dt_print_usym(dtp, fp, addr, act)); 1499 1500 case DTRACEACT_UMOD: 1501 return (dt_print_umod(dtp, fp, NULL, addr)); 1502 1503 case DTRACEACT_SYM: 1504 return (dt_print_sym(dtp, fp, NULL, addr)); 1505 1506 case DTRACEACT_MOD: 1507 return (dt_print_mod(dtp, fp, NULL, addr)); 1508 1509 case DTRACEAGG_QUANTIZE: 1510 return (dt_print_quantize(dtp, fp, addr, size, normal)); 1511 1512 case DTRACEAGG_LQUANTIZE: 1513 return (dt_print_lquantize(dtp, fp, addr, size, normal)); 1514 1515 case DTRACEAGG_LLQUANTIZE: 1516 return (dt_print_llquantize(dtp, fp, addr, size, normal)); 1517 1518 case DTRACEAGG_AVG: 1519 return (dt_print_average(dtp, fp, addr, size, normal)); 1520 1521 case DTRACEAGG_STDDEV: 1522 return (dt_print_stddev(dtp, fp, addr, size, normal)); 1523 1524 default: 1525 break; 1526 } 1527 1528 switch (size) { 1529 case sizeof (uint64_t): 1530 err = dt_printf(dtp, fp, " %16lld", 1531 /* LINTED - alignment */ 1532 (long long)*((uint64_t *)addr) / normal); 1533 break; 1534 case sizeof (uint32_t): 1535 /* LINTED - alignment */ 1536 err = dt_printf(dtp, fp, " %8d", *((uint32_t *)addr) / 1537 (uint32_t)normal); 1538 break; 1539 case sizeof (uint16_t): 1540 /* LINTED - alignment */ 1541 err = dt_printf(dtp, fp, " %5d", *((uint16_t *)addr) / 1542 (uint32_t)normal); 1543 break; 1544 case sizeof (uint8_t): 1545 err = dt_printf(dtp, fp, " %3d", *((uint8_t *)addr) / 1546 (uint32_t)normal); 1547 break; 1548 default: 1549 err = dt_print_bytes(dtp, fp, addr, size, 50, 0, 0); 1550 break; 1551 } 1552 1553 return (err); 1554 } 1555 1556 int 1557 dt_print_aggs(const dtrace_aggdata_t **aggsdata, int naggvars, void *arg) 1558 { 1559 int i, aggact = 0; 1560 dt_print_aggdata_t *pd = arg; 1561 const dtrace_aggdata_t *aggdata = aggsdata[0]; 1562 dtrace_aggdesc_t *agg = aggdata->dtada_desc; 1563 FILE *fp = pd->dtpa_fp; 1564 dtrace_hdl_t *dtp = pd->dtpa_dtp; 1565 dtrace_recdesc_t *rec; 1566 dtrace_actkind_t act; 1567 caddr_t addr; 1568 size_t size; 1569 1570 /* 1571 * Iterate over each record description in the key, printing the traced 1572 * data, skipping the first datum (the tuple member created by the 1573 * compiler). 1574 */ 1575 for (i = 1; i < agg->dtagd_nrecs; i++) { 1576 rec = &agg->dtagd_rec[i]; 1577 act = rec->dtrd_action; 1578 addr = aggdata->dtada_data + rec->dtrd_offset; 1579 size = rec->dtrd_size; 1580 1581 if (DTRACEACT_ISAGG(act)) { 1582 aggact = i; 1583 break; 1584 } 1585 1586 if (dt_print_datum(dtp, fp, rec, addr, size, 1) < 0) 1587 return (-1); 1588 1589 if (dt_buffered_flush(dtp, NULL, rec, aggdata, 1590 DTRACE_BUFDATA_AGGKEY) < 0) 1591 return (-1); 1592 } 1593 1594 assert(aggact != 0); 1595 1596 for (i = (naggvars == 1 ? 0 : 1); i < naggvars; i++) { 1597 uint64_t normal; 1598 1599 aggdata = aggsdata[i]; 1600 agg = aggdata->dtada_desc; 1601 rec = &agg->dtagd_rec[aggact]; 1602 act = rec->dtrd_action; 1603 addr = aggdata->dtada_data + rec->dtrd_offset; 1604 size = rec->dtrd_size; 1605 1606 assert(DTRACEACT_ISAGG(act)); 1607 normal = aggdata->dtada_normal; 1608 1609 if (dt_print_datum(dtp, fp, rec, addr, size, normal) < 0) 1610 return (-1); 1611 1612 if (dt_buffered_flush(dtp, NULL, rec, aggdata, 1613 DTRACE_BUFDATA_AGGVAL) < 0) 1614 return (-1); 1615 1616 if (!pd->dtpa_allunprint) 1617 agg->dtagd_flags |= DTRACE_AGD_PRINTED; 1618 } 1619 1620 if (dt_printf(dtp, fp, "\n") < 0) 1621 return (-1); 1622 1623 if (dt_buffered_flush(dtp, NULL, NULL, aggdata, 1624 DTRACE_BUFDATA_AGGFORMAT | DTRACE_BUFDATA_AGGLAST) < 0) 1625 return (-1); 1626 1627 return (0); 1628 } 1629 1630 int 1631 dt_print_agg(const dtrace_aggdata_t *aggdata, void *arg) 1632 { 1633 dt_print_aggdata_t *pd = arg; 1634 dtrace_aggdesc_t *agg = aggdata->dtada_desc; 1635 dtrace_aggvarid_t aggvarid = pd->dtpa_id; 1636 1637 if (pd->dtpa_allunprint) { 1638 if (agg->dtagd_flags & DTRACE_AGD_PRINTED) 1639 return (0); 1640 } else { 1641 /* 1642 * If we're not printing all unprinted aggregations, then the 1643 * aggregation variable ID denotes a specific aggregation 1644 * variable that we should print -- skip any other aggregations 1645 * that we encounter. 1646 */ 1647 if (agg->dtagd_nrecs == 0) 1648 return (0); 1649 1650 if (aggvarid != agg->dtagd_varid) 1651 return (0); 1652 } 1653 1654 return (dt_print_aggs(&aggdata, 1, arg)); 1655 } 1656 1657 int 1658 dt_setopt(dtrace_hdl_t *dtp, const dtrace_probedata_t *data, 1659 const char *option, const char *value) 1660 { 1661 int len, rval; 1662 char *msg; 1663 const char *errstr; 1664 dtrace_setoptdata_t optdata; 1665 1666 bzero(&optdata, sizeof (optdata)); 1667 (void) dtrace_getopt(dtp, option, &optdata.dtsda_oldval); 1668 1669 if (dtrace_setopt(dtp, option, value) == 0) { 1670 (void) dtrace_getopt(dtp, option, &optdata.dtsda_newval); 1671 optdata.dtsda_probe = data; 1672 optdata.dtsda_option = option; 1673 optdata.dtsda_handle = dtp; 1674 1675 if ((rval = dt_handle_setopt(dtp, &optdata)) != 0) 1676 return (rval); 1677 1678 return (0); 1679 } 1680 1681 errstr = dtrace_errmsg(dtp, dtrace_errno(dtp)); 1682 len = strlen(option) + strlen(value) + strlen(errstr) + 80; 1683 msg = alloca(len); 1684 1685 (void) snprintf(msg, len, "couldn't set option \"%s\" to \"%s\": %s\n", 1686 option, value, errstr); 1687 1688 if ((rval = dt_handle_liberr(dtp, data, msg)) == 0) 1689 return (0); 1690 1691 return (rval); 1692 } 1693 1694 static int 1695 dt_consume_cpu(dtrace_hdl_t *dtp, FILE *fp, int cpu, 1696 dtrace_bufdesc_t *buf, boolean_t just_one, 1697 dtrace_consume_probe_f *efunc, dtrace_consume_rec_f *rfunc, void *arg) 1698 { 1699 dtrace_epid_t id; 1700 size_t offs; 1701 int flow = (dtp->dt_options[DTRACEOPT_FLOWINDENT] != DTRACEOPT_UNSET); 1702 int quiet = (dtp->dt_options[DTRACEOPT_QUIET] != DTRACEOPT_UNSET); 1703 int rval, i, n; 1704 uint64_t tracememsize = 0; 1705 dtrace_probedata_t data; 1706 uint64_t drops; 1707 1708 bzero(&data, sizeof (data)); 1709 data.dtpda_handle = dtp; 1710 data.dtpda_cpu = cpu; 1711 data.dtpda_flow = dtp->dt_flow; 1712 data.dtpda_indent = dtp->dt_indent; 1713 data.dtpda_prefix = dtp->dt_prefix; 1714 1715 for (offs = buf->dtbd_oldest; offs < buf->dtbd_size; ) { 1716 dtrace_eprobedesc_t *epd; 1717 1718 /* 1719 * We're guaranteed to have an ID. 1720 */ 1721 id = *(uint32_t *)((uintptr_t)buf->dtbd_data + offs); 1722 1723 if (id == DTRACE_EPIDNONE) { 1724 /* 1725 * This is filler to assure proper alignment of the 1726 * next record; we simply ignore it. 1727 */ 1728 offs += sizeof (id); 1729 continue; 1730 } 1731 1732 if ((rval = dt_epid_lookup(dtp, id, &data.dtpda_edesc, 1733 &data.dtpda_pdesc)) != 0) 1734 return (rval); 1735 1736 epd = data.dtpda_edesc; 1737 data.dtpda_data = buf->dtbd_data + offs; 1738 1739 if (data.dtpda_edesc->dtepd_uarg != DT_ECB_DEFAULT) { 1740 rval = dt_handle(dtp, &data); 1741 1742 if (rval == DTRACE_CONSUME_NEXT) 1743 goto nextepid; 1744 1745 if (rval == DTRACE_CONSUME_ERROR) 1746 return (-1); 1747 } 1748 1749 if (flow) 1750 (void) dt_flowindent(dtp, &data, dtp->dt_last_epid, 1751 buf, offs); 1752 1753 rval = (*efunc)(&data, arg); 1754 1755 if (flow) { 1756 if (data.dtpda_flow == DTRACEFLOW_ENTRY) 1757 data.dtpda_indent += 2; 1758 } 1759 1760 if (rval == DTRACE_CONSUME_NEXT) 1761 goto nextepid; 1762 1763 if (rval == DTRACE_CONSUME_ABORT) 1764 return (dt_set_errno(dtp, EDT_DIRABORT)); 1765 1766 if (rval != DTRACE_CONSUME_THIS) 1767 return (dt_set_errno(dtp, EDT_BADRVAL)); 1768 1769 for (i = 0; i < epd->dtepd_nrecs; i++) { 1770 caddr_t addr; 1771 dtrace_recdesc_t *rec = &epd->dtepd_rec[i]; 1772 dtrace_actkind_t act = rec->dtrd_action; 1773 1774 data.dtpda_data = buf->dtbd_data + offs + 1775 rec->dtrd_offset; 1776 addr = data.dtpda_data; 1777 1778 if (act == DTRACEACT_LIBACT) { 1779 uint64_t arg = rec->dtrd_arg; 1780 dtrace_aggvarid_t id; 1781 1782 switch (arg) { 1783 case DT_ACT_CLEAR: 1784 /* LINTED - alignment */ 1785 id = *((dtrace_aggvarid_t *)addr); 1786 (void) dtrace_aggregate_walk(dtp, 1787 dt_clear_agg, &id); 1788 continue; 1789 1790 case DT_ACT_DENORMALIZE: 1791 /* LINTED - alignment */ 1792 id = *((dtrace_aggvarid_t *)addr); 1793 (void) dtrace_aggregate_walk(dtp, 1794 dt_denormalize_agg, &id); 1795 continue; 1796 1797 case DT_ACT_FTRUNCATE: 1798 if (fp == NULL) 1799 continue; 1800 1801 (void) fflush(fp); 1802 (void) ftruncate(fileno(fp), 0); 1803 (void) fseeko(fp, 0, SEEK_SET); 1804 continue; 1805 1806 case DT_ACT_NORMALIZE: 1807 if (i == epd->dtepd_nrecs - 1) 1808 return (dt_set_errno(dtp, 1809 EDT_BADNORMAL)); 1810 1811 if (dt_normalize(dtp, 1812 buf->dtbd_data + offs, rec) != 0) 1813 return (-1); 1814 1815 i++; 1816 continue; 1817 1818 case DT_ACT_SETOPT: { 1819 uint64_t *opts = dtp->dt_options; 1820 dtrace_recdesc_t *valrec; 1821 uint32_t valsize; 1822 caddr_t val; 1823 int rv; 1824 1825 if (i == epd->dtepd_nrecs - 1) { 1826 return (dt_set_errno(dtp, 1827 EDT_BADSETOPT)); 1828 } 1829 1830 valrec = &epd->dtepd_rec[++i]; 1831 valsize = valrec->dtrd_size; 1832 1833 if (valrec->dtrd_action != act || 1834 valrec->dtrd_arg != arg) { 1835 return (dt_set_errno(dtp, 1836 EDT_BADSETOPT)); 1837 } 1838 1839 if (valsize > sizeof (uint64_t)) { 1840 val = buf->dtbd_data + offs + 1841 valrec->dtrd_offset; 1842 } else { 1843 val = "1"; 1844 } 1845 1846 rv = dt_setopt(dtp, &data, addr, val); 1847 1848 if (rv != 0) 1849 return (-1); 1850 1851 flow = (opts[DTRACEOPT_FLOWINDENT] != 1852 DTRACEOPT_UNSET); 1853 quiet = (opts[DTRACEOPT_QUIET] != 1854 DTRACEOPT_UNSET); 1855 1856 continue; 1857 } 1858 1859 case DT_ACT_TRUNC: 1860 if (i == epd->dtepd_nrecs - 1) 1861 return (dt_set_errno(dtp, 1862 EDT_BADTRUNC)); 1863 1864 if (dt_trunc(dtp, 1865 buf->dtbd_data + offs, rec) != 0) 1866 return (-1); 1867 1868 i++; 1869 continue; 1870 1871 default: 1872 continue; 1873 } 1874 } 1875 1876 if (act == DTRACEACT_TRACEMEM_DYNSIZE && 1877 rec->dtrd_size == sizeof (uint64_t)) { 1878 /* LINTED - alignment */ 1879 tracememsize = *((unsigned long long *)addr); 1880 continue; 1881 } 1882 1883 rval = (*rfunc)(&data, rec, arg); 1884 1885 if (rval == DTRACE_CONSUME_NEXT) 1886 continue; 1887 1888 if (rval == DTRACE_CONSUME_ABORT) 1889 return (dt_set_errno(dtp, EDT_DIRABORT)); 1890 1891 if (rval != DTRACE_CONSUME_THIS) 1892 return (dt_set_errno(dtp, EDT_BADRVAL)); 1893 1894 if (act == DTRACEACT_STACK) { 1895 int depth = rec->dtrd_arg; 1896 1897 if (dt_print_stack(dtp, fp, NULL, addr, depth, 1898 rec->dtrd_size / depth) < 0) 1899 return (-1); 1900 goto nextrec; 1901 } 1902 1903 if (act == DTRACEACT_USTACK || 1904 act == DTRACEACT_JSTACK) { 1905 if (dt_print_ustack(dtp, fp, NULL, 1906 addr, rec->dtrd_arg) < 0) 1907 return (-1); 1908 goto nextrec; 1909 } 1910 1911 if (act == DTRACEACT_SYM) { 1912 if (dt_print_sym(dtp, fp, NULL, addr) < 0) 1913 return (-1); 1914 goto nextrec; 1915 } 1916 1917 if (act == DTRACEACT_MOD) { 1918 if (dt_print_mod(dtp, fp, NULL, addr) < 0) 1919 return (-1); 1920 goto nextrec; 1921 } 1922 1923 if (act == DTRACEACT_USYM || act == DTRACEACT_UADDR) { 1924 if (dt_print_usym(dtp, fp, addr, act) < 0) 1925 return (-1); 1926 goto nextrec; 1927 } 1928 1929 if (act == DTRACEACT_UMOD) { 1930 if (dt_print_umod(dtp, fp, NULL, addr) < 0) 1931 return (-1); 1932 goto nextrec; 1933 } 1934 1935 if (DTRACEACT_ISPRINTFLIKE(act)) { 1936 void *fmtdata; 1937 int (*func)(dtrace_hdl_t *, FILE *, void *, 1938 const dtrace_probedata_t *, 1939 const dtrace_recdesc_t *, uint_t, 1940 const void *buf, size_t); 1941 1942 if ((fmtdata = dt_format_lookup(dtp, 1943 rec->dtrd_format)) == NULL) 1944 goto nofmt; 1945 1946 switch (act) { 1947 case DTRACEACT_PRINTF: 1948 func = dtrace_fprintf; 1949 break; 1950 case DTRACEACT_PRINTA: 1951 func = dtrace_fprinta; 1952 break; 1953 case DTRACEACT_SYSTEM: 1954 func = dtrace_system; 1955 break; 1956 case DTRACEACT_FREOPEN: 1957 func = dtrace_freopen; 1958 break; 1959 } 1960 1961 n = (*func)(dtp, fp, fmtdata, &data, 1962 rec, epd->dtepd_nrecs - i, 1963 (uchar_t *)buf->dtbd_data + offs, 1964 buf->dtbd_size - offs); 1965 1966 if (n < 0) 1967 return (-1); /* errno is set for us */ 1968 1969 if (n > 0) 1970 i += n - 1; 1971 goto nextrec; 1972 } 1973 1974 /* 1975 * If this is a DIF expression, and the record has a 1976 * format set, this indicates we have a CTF type name 1977 * associated with the data and we should try to print 1978 * it out by type. 1979 */ 1980 if (act == DTRACEACT_DIFEXPR) { 1981 const char *strdata = dt_strdata_lookup(dtp, 1982 rec->dtrd_format); 1983 if (strdata != NULL) { 1984 n = dtrace_print(dtp, fp, strdata, 1985 addr, rec->dtrd_size); 1986 1987 /* 1988 * dtrace_print() will return -1 on 1989 * error, or return the number of bytes 1990 * consumed. It will return 0 if the 1991 * type couldn't be determined, and we 1992 * should fall through to the normal 1993 * trace method. 1994 */ 1995 if (n < 0) 1996 return (-1); 1997 1998 if (n > 0) 1999 goto nextrec; 2000 } 2001 } 2002 2003 nofmt: 2004 if (act == DTRACEACT_PRINTA) { 2005 dt_print_aggdata_t pd; 2006 dtrace_aggvarid_t *aggvars; 2007 int j, naggvars = 0; 2008 size_t size = ((epd->dtepd_nrecs - i) * 2009 sizeof (dtrace_aggvarid_t)); 2010 2011 if ((aggvars = dt_alloc(dtp, size)) == NULL) 2012 return (-1); 2013 2014 /* 2015 * This might be a printa() with multiple 2016 * aggregation variables. We need to scan 2017 * forward through the records until we find 2018 * a record from a different statement. 2019 */ 2020 for (j = i; j < epd->dtepd_nrecs; j++) { 2021 dtrace_recdesc_t *nrec; 2022 caddr_t naddr; 2023 2024 nrec = &epd->dtepd_rec[j]; 2025 2026 if (nrec->dtrd_uarg != rec->dtrd_uarg) 2027 break; 2028 2029 if (nrec->dtrd_action != act) { 2030 return (dt_set_errno(dtp, 2031 EDT_BADAGG)); 2032 } 2033 2034 naddr = buf->dtbd_data + offs + 2035 nrec->dtrd_offset; 2036 2037 aggvars[naggvars++] = 2038 /* LINTED - alignment */ 2039 *((dtrace_aggvarid_t *)naddr); 2040 } 2041 2042 i = j - 1; 2043 bzero(&pd, sizeof (pd)); 2044 pd.dtpa_dtp = dtp; 2045 pd.dtpa_fp = fp; 2046 2047 assert(naggvars >= 1); 2048 2049 if (naggvars == 1) { 2050 pd.dtpa_id = aggvars[0]; 2051 dt_free(dtp, aggvars); 2052 2053 if (dt_printf(dtp, fp, "\n") < 0 || 2054 dtrace_aggregate_walk_sorted(dtp, 2055 dt_print_agg, &pd) < 0) 2056 return (-1); 2057 goto nextrec; 2058 } 2059 2060 if (dt_printf(dtp, fp, "\n") < 0 || 2061 dtrace_aggregate_walk_joined(dtp, aggvars, 2062 naggvars, dt_print_aggs, &pd) < 0) { 2063 dt_free(dtp, aggvars); 2064 return (-1); 2065 } 2066 2067 dt_free(dtp, aggvars); 2068 goto nextrec; 2069 } 2070 2071 if (act == DTRACEACT_TRACEMEM) { 2072 if (tracememsize == 0 || 2073 tracememsize > rec->dtrd_size) { 2074 tracememsize = rec->dtrd_size; 2075 } 2076 2077 n = dt_print_bytes(dtp, fp, addr, 2078 tracememsize, 33, quiet, 1); 2079 2080 tracememsize = 0; 2081 2082 if (n < 0) 2083 return (-1); 2084 2085 goto nextrec; 2086 } 2087 2088 switch (rec->dtrd_size) { 2089 case sizeof (uint64_t): 2090 n = dt_printf(dtp, fp, 2091 quiet ? "%lld" : " %16lld", 2092 /* LINTED - alignment */ 2093 *((unsigned long long *)addr)); 2094 break; 2095 case sizeof (uint32_t): 2096 n = dt_printf(dtp, fp, quiet ? "%d" : " %8d", 2097 /* LINTED - alignment */ 2098 *((uint32_t *)addr)); 2099 break; 2100 case sizeof (uint16_t): 2101 n = dt_printf(dtp, fp, quiet ? "%d" : " %5d", 2102 /* LINTED - alignment */ 2103 *((uint16_t *)addr)); 2104 break; 2105 case sizeof (uint8_t): 2106 n = dt_printf(dtp, fp, quiet ? "%d" : " %3d", 2107 *((uint8_t *)addr)); 2108 break; 2109 default: 2110 n = dt_print_bytes(dtp, fp, addr, 2111 rec->dtrd_size, 33, quiet, 0); 2112 break; 2113 } 2114 2115 if (n < 0) 2116 return (-1); /* errno is set for us */ 2117 2118 nextrec: 2119 if (dt_buffered_flush(dtp, &data, rec, NULL, 0) < 0) 2120 return (-1); /* errno is set for us */ 2121 } 2122 2123 /* 2124 * Call the record callback with a NULL record to indicate 2125 * that we're done processing this EPID. 2126 */ 2127 rval = (*rfunc)(&data, NULL, arg); 2128 nextepid: 2129 offs += epd->dtepd_size; 2130 dtp->dt_last_epid = id; 2131 if (just_one) { 2132 buf->dtbd_oldest = offs; 2133 break; 2134 } 2135 } 2136 2137 dtp->dt_flow = data.dtpda_flow; 2138 dtp->dt_indent = data.dtpda_indent; 2139 dtp->dt_prefix = data.dtpda_prefix; 2140 2141 if ((drops = buf->dtbd_drops) == 0) 2142 return (0); 2143 2144 /* 2145 * Explicitly zero the drops to prevent us from processing them again. 2146 */ 2147 buf->dtbd_drops = 0; 2148 2149 return (dt_handle_cpudrop(dtp, cpu, DTRACEDROP_PRINCIPAL, drops)); 2150 } 2151 2152 /* 2153 * Reduce memory usage by shrinking the buffer if it's no more than half full. 2154 * Note, we need to preserve the alignment of the data at dtbd_oldest, which is 2155 * only 4-byte aligned. 2156 */ 2157 static void 2158 dt_realloc_buf(dtrace_hdl_t *dtp, dtrace_bufdesc_t *buf, int cursize) 2159 { 2160 uint64_t used = buf->dtbd_size - buf->dtbd_oldest; 2161 if (used < cursize / 2) { 2162 int misalign = buf->dtbd_oldest & (sizeof (uint64_t) - 1); 2163 char *newdata = dt_alloc(dtp, used + misalign); 2164 if (newdata == NULL) 2165 return; 2166 bzero(newdata, misalign); 2167 bcopy(buf->dtbd_data + buf->dtbd_oldest, 2168 newdata + misalign, used); 2169 dt_free(dtp, buf->dtbd_data); 2170 buf->dtbd_oldest = misalign; 2171 buf->dtbd_size = used + misalign; 2172 buf->dtbd_data = newdata; 2173 } 2174 } 2175 2176 /* 2177 * If the ring buffer has wrapped, the data is not in order. Rearrange it 2178 * so that it is. Note, we need to preserve the alignment of the data at 2179 * dtbd_oldest, which is only 4-byte aligned. 2180 */ 2181 static int 2182 dt_unring_buf(dtrace_hdl_t *dtp, dtrace_bufdesc_t *buf) 2183 { 2184 int misalign; 2185 char *newdata, *ndp; 2186 2187 if (buf->dtbd_oldest == 0) 2188 return (0); 2189 2190 misalign = buf->dtbd_oldest & (sizeof (uint64_t) - 1); 2191 newdata = ndp = dt_alloc(dtp, buf->dtbd_size + misalign); 2192 2193 if (newdata == NULL) 2194 return (-1); 2195 2196 assert(0 == (buf->dtbd_size & (sizeof (uint64_t) - 1))); 2197 2198 bzero(ndp, misalign); 2199 ndp += misalign; 2200 2201 bcopy(buf->dtbd_data + buf->dtbd_oldest, ndp, 2202 buf->dtbd_size - buf->dtbd_oldest); 2203 ndp += buf->dtbd_size - buf->dtbd_oldest; 2204 2205 bcopy(buf->dtbd_data, ndp, buf->dtbd_oldest); 2206 2207 dt_free(dtp, buf->dtbd_data); 2208 buf->dtbd_oldest = 0; 2209 buf->dtbd_data = newdata; 2210 buf->dtbd_size += misalign; 2211 2212 return (0); 2213 } 2214 2215 static void 2216 dt_put_buf(dtrace_hdl_t *dtp, dtrace_bufdesc_t *buf) 2217 { 2218 dt_free(dtp, buf->dtbd_data); 2219 dt_free(dtp, buf); 2220 } 2221 2222 /* 2223 * Returns 0 on success, in which case *cbp will be filled in if we retrieved 2224 * data, or NULL if there is no data for this CPU. 2225 * Returns -1 on failure and sets dt_errno. 2226 */ 2227 static int 2228 dt_get_buf(dtrace_hdl_t *dtp, int cpu, dtrace_bufdesc_t **bufp) 2229 { 2230 dtrace_optval_t size; 2231 dtrace_bufdesc_t *buf = dt_zalloc(dtp, sizeof (*buf)); 2232 int error; 2233 2234 if (buf == NULL) 2235 return (-1); 2236 2237 (void) dtrace_getopt(dtp, "bufsize", &size); 2238 buf->dtbd_data = dt_alloc(dtp, size); 2239 if (buf->dtbd_data == NULL) { 2240 dt_free(dtp, buf); 2241 return (-1); 2242 } 2243 buf->dtbd_size = size; 2244 buf->dtbd_cpu = cpu; 2245 2246 if (dt_ioctl(dtp, DTRACEIOC_BUFSNAP, buf) == -1) { 2247 dt_put_buf(dtp, buf); 2248 /* 2249 * If we failed with ENOENT, it may be because the 2250 * CPU was unconfigured -- this is okay. Any other 2251 * error, however, is unexpected. 2252 */ 2253 if (errno == ENOENT) { 2254 *bufp = NULL; 2255 return (0); 2256 } 2257 2258 return (dt_set_errno(dtp, errno)); 2259 } 2260 2261 error = dt_unring_buf(dtp, buf); 2262 if (error != 0) { 2263 dt_put_buf(dtp, buf); 2264 return (error); 2265 } 2266 dt_realloc_buf(dtp, buf, size); 2267 2268 *bufp = buf; 2269 return (0); 2270 } 2271 2272 typedef struct dt_begin { 2273 dtrace_consume_probe_f *dtbgn_probefunc; 2274 dtrace_consume_rec_f *dtbgn_recfunc; 2275 void *dtbgn_arg; 2276 dtrace_handle_err_f *dtbgn_errhdlr; 2277 void *dtbgn_errarg; 2278 int dtbgn_beginonly; 2279 } dt_begin_t; 2280 2281 static int 2282 dt_consume_begin_probe(const dtrace_probedata_t *data, void *arg) 2283 { 2284 dt_begin_t *begin = arg; 2285 dtrace_probedesc_t *pd = data->dtpda_pdesc; 2286 2287 int r1 = (strcmp(pd->dtpd_provider, "dtrace") == 0); 2288 int r2 = (strcmp(pd->dtpd_name, "BEGIN") == 0); 2289 2290 if (begin->dtbgn_beginonly) { 2291 if (!(r1 && r2)) 2292 return (DTRACE_CONSUME_NEXT); 2293 } else { 2294 if (r1 && r2) 2295 return (DTRACE_CONSUME_NEXT); 2296 } 2297 2298 /* 2299 * We have a record that we're interested in. Now call the underlying 2300 * probe function... 2301 */ 2302 return (begin->dtbgn_probefunc(data, begin->dtbgn_arg)); 2303 } 2304 2305 static int 2306 dt_consume_begin_record(const dtrace_probedata_t *data, 2307 const dtrace_recdesc_t *rec, void *arg) 2308 { 2309 dt_begin_t *begin = arg; 2310 2311 return (begin->dtbgn_recfunc(data, rec, begin->dtbgn_arg)); 2312 } 2313 2314 static int 2315 dt_consume_begin_error(const dtrace_errdata_t *data, void *arg) 2316 { 2317 dt_begin_t *begin = (dt_begin_t *)arg; 2318 dtrace_probedesc_t *pd = data->dteda_pdesc; 2319 2320 int r1 = (strcmp(pd->dtpd_provider, "dtrace") == 0); 2321 int r2 = (strcmp(pd->dtpd_name, "BEGIN") == 0); 2322 2323 if (begin->dtbgn_beginonly) { 2324 if (!(r1 && r2)) 2325 return (DTRACE_HANDLE_OK); 2326 } else { 2327 if (r1 && r2) 2328 return (DTRACE_HANDLE_OK); 2329 } 2330 2331 return (begin->dtbgn_errhdlr(data, begin->dtbgn_errarg)); 2332 } 2333 2334 static int 2335 dt_consume_begin(dtrace_hdl_t *dtp, FILE *fp, 2336 dtrace_consume_probe_f *pf, dtrace_consume_rec_f *rf, void *arg) 2337 { 2338 /* 2339 * There's this idea that the BEGIN probe should be processed before 2340 * everything else, and that the END probe should be processed after 2341 * anything else. In the common case, this is pretty easy to deal 2342 * with. However, a situation may arise where the BEGIN enabling and 2343 * END enabling are on the same CPU, and some enabling in the middle 2344 * occurred on a different CPU. To deal with this (blech!) we need to 2345 * consume the BEGIN buffer up until the end of the BEGIN probe, and 2346 * then set it aside. We will then process every other CPU, and then 2347 * we'll return to the BEGIN CPU and process the rest of the data 2348 * (which will inevitably include the END probe, if any). Making this 2349 * even more complicated (!) is the library's ERROR enabling. Because 2350 * this enabling is processed before we even get into the consume call 2351 * back, any ERROR firing would result in the library's ERROR enabling 2352 * being processed twice -- once in our first pass (for BEGIN probes), 2353 * and again in our second pass (for everything but BEGIN probes). To 2354 * deal with this, we interpose on the ERROR handler to assure that we 2355 * only process ERROR enablings induced by BEGIN enablings in the 2356 * first pass, and that we only process ERROR enablings _not_ induced 2357 * by BEGIN enablings in the second pass. 2358 */ 2359 2360 dt_begin_t begin; 2361 processorid_t cpu = dtp->dt_beganon; 2362 int rval, i; 2363 static int max_ncpus; 2364 dtrace_bufdesc_t *buf; 2365 2366 dtp->dt_beganon = -1; 2367 2368 if (dt_get_buf(dtp, cpu, &buf) != 0) 2369 return (-1); 2370 if (buf == NULL) 2371 return (0); 2372 2373 if (!dtp->dt_stopped || buf->dtbd_cpu != dtp->dt_endedon) { 2374 /* 2375 * This is the simple case. We're either not stopped, or if 2376 * we are, we actually processed any END probes on another 2377 * CPU. We can simply consume this buffer and return. 2378 */ 2379 rval = dt_consume_cpu(dtp, fp, cpu, buf, B_FALSE, 2380 pf, rf, arg); 2381 dt_put_buf(dtp, buf); 2382 return (rval); 2383 } 2384 2385 begin.dtbgn_probefunc = pf; 2386 begin.dtbgn_recfunc = rf; 2387 begin.dtbgn_arg = arg; 2388 begin.dtbgn_beginonly = 1; 2389 2390 /* 2391 * We need to interpose on the ERROR handler to be sure that we 2392 * only process ERRORs induced by BEGIN. 2393 */ 2394 begin.dtbgn_errhdlr = dtp->dt_errhdlr; 2395 begin.dtbgn_errarg = dtp->dt_errarg; 2396 dtp->dt_errhdlr = dt_consume_begin_error; 2397 dtp->dt_errarg = &begin; 2398 2399 rval = dt_consume_cpu(dtp, fp, cpu, buf, B_FALSE, 2400 dt_consume_begin_probe, dt_consume_begin_record, &begin); 2401 2402 dtp->dt_errhdlr = begin.dtbgn_errhdlr; 2403 dtp->dt_errarg = begin.dtbgn_errarg; 2404 2405 if (rval != 0) { 2406 dt_put_buf(dtp, buf); 2407 return (rval); 2408 } 2409 2410 if (max_ncpus == 0) 2411 max_ncpus = dt_sysconf(dtp, _SC_CPUID_MAX) + 1; 2412 2413 for (i = 0; i < max_ncpus; i++) { 2414 dtrace_bufdesc_t *nbuf; 2415 if (i == cpu) 2416 continue; 2417 2418 if (dt_get_buf(dtp, i, &nbuf) != 0) { 2419 dt_put_buf(dtp, buf); 2420 return (-1); 2421 } 2422 if (nbuf == NULL) 2423 continue; 2424 2425 rval = dt_consume_cpu(dtp, fp, i, nbuf, B_FALSE, 2426 pf, rf, arg); 2427 dt_put_buf(dtp, nbuf); 2428 if (rval != 0) { 2429 dt_put_buf(dtp, buf); 2430 return (rval); 2431 } 2432 } 2433 2434 /* 2435 * Okay -- we're done with the other buffers. Now we want to 2436 * reconsume the first buffer -- but this time we're looking for 2437 * everything _but_ BEGIN. And of course, in order to only consume 2438 * those ERRORs _not_ associated with BEGIN, we need to reinstall our 2439 * ERROR interposition function... 2440 */ 2441 begin.dtbgn_beginonly = 0; 2442 2443 assert(begin.dtbgn_errhdlr == dtp->dt_errhdlr); 2444 assert(begin.dtbgn_errarg == dtp->dt_errarg); 2445 dtp->dt_errhdlr = dt_consume_begin_error; 2446 dtp->dt_errarg = &begin; 2447 2448 rval = dt_consume_cpu(dtp, fp, cpu, buf, B_FALSE, 2449 dt_consume_begin_probe, dt_consume_begin_record, &begin); 2450 2451 dtp->dt_errhdlr = begin.dtbgn_errhdlr; 2452 dtp->dt_errarg = begin.dtbgn_errarg; 2453 2454 return (rval); 2455 } 2456 2457 /* ARGSUSED */ 2458 static uint64_t 2459 dt_buf_oldest(void *elem, void *arg) 2460 { 2461 dtrace_bufdesc_t *buf = elem; 2462 size_t offs = buf->dtbd_oldest; 2463 2464 while (offs < buf->dtbd_size) { 2465 dtrace_rechdr_t *dtrh = 2466 /* LINTED - alignment */ 2467 (dtrace_rechdr_t *)(buf->dtbd_data + offs); 2468 if (dtrh->dtrh_epid == DTRACE_EPIDNONE) { 2469 offs += sizeof (dtrace_epid_t); 2470 } else { 2471 return (DTRACE_RECORD_LOAD_TIMESTAMP(dtrh)); 2472 } 2473 } 2474 2475 /* There are no records left; use the time the buffer was retrieved. */ 2476 return (buf->dtbd_timestamp); 2477 } 2478 2479 int 2480 dtrace_consume(dtrace_hdl_t *dtp, FILE *fp, 2481 dtrace_consume_probe_f *pf, dtrace_consume_rec_f *rf, void *arg) 2482 { 2483 dtrace_optval_t size; 2484 static int max_ncpus; 2485 int i, rval; 2486 dtrace_optval_t interval = dtp->dt_options[DTRACEOPT_SWITCHRATE]; 2487 hrtime_t now = gethrtime(); 2488 2489 if (dtp->dt_lastswitch != 0) { 2490 if (now - dtp->dt_lastswitch < interval) 2491 return (0); 2492 2493 dtp->dt_lastswitch += interval; 2494 } else { 2495 dtp->dt_lastswitch = now; 2496 } 2497 2498 if (!dtp->dt_active) 2499 return (dt_set_errno(dtp, EINVAL)); 2500 2501 if (max_ncpus == 0) 2502 max_ncpus = dt_sysconf(dtp, _SC_CPUID_MAX) + 1; 2503 2504 if (pf == NULL) 2505 pf = (dtrace_consume_probe_f *)dt_nullprobe; 2506 2507 if (rf == NULL) 2508 rf = (dtrace_consume_rec_f *)dt_nullrec; 2509 2510 if (dtp->dt_options[DTRACEOPT_TEMPORAL] == DTRACEOPT_UNSET) { 2511 /* 2512 * The output will not be in the order it was traced. Rather, 2513 * we will consume all of the data from each CPU's buffer in 2514 * turn. We apply special handling for the records from BEGIN 2515 * and END probes so that they are consumed first and last, 2516 * respectively. 2517 * 2518 * If we have just begun, we want to first process the CPU that 2519 * executed the BEGIN probe (if any). 2520 */ 2521 if (dtp->dt_active && dtp->dt_beganon != -1 && 2522 (rval = dt_consume_begin(dtp, fp, pf, rf, arg)) != 0) 2523 return (rval); 2524 2525 for (i = 0; i < max_ncpus; i++) { 2526 dtrace_bufdesc_t *buf; 2527 2528 /* 2529 * If we have stopped, we want to process the CPU on 2530 * which the END probe was processed only _after_ we 2531 * have processed everything else. 2532 */ 2533 if (dtp->dt_stopped && (i == dtp->dt_endedon)) 2534 continue; 2535 2536 if (dt_get_buf(dtp, i, &buf) != 0) 2537 return (-1); 2538 if (buf == NULL) 2539 continue; 2540 2541 dtp->dt_flow = 0; 2542 dtp->dt_indent = 0; 2543 dtp->dt_prefix = NULL; 2544 rval = dt_consume_cpu(dtp, fp, i, 2545 buf, B_FALSE, pf, rf, arg); 2546 dt_put_buf(dtp, buf); 2547 if (rval != 0) 2548 return (rval); 2549 } 2550 if (dtp->dt_stopped) { 2551 dtrace_bufdesc_t *buf; 2552 2553 if (dt_get_buf(dtp, dtp->dt_endedon, &buf) != 0) 2554 return (-1); 2555 if (buf == NULL) 2556 return (0); 2557 2558 rval = dt_consume_cpu(dtp, fp, dtp->dt_endedon, 2559 buf, B_FALSE, pf, rf, arg); 2560 dt_put_buf(dtp, buf); 2561 return (rval); 2562 } 2563 } else { 2564 /* 2565 * The output will be in the order it was traced (or for 2566 * speculations, when it was committed). We retrieve a buffer 2567 * from each CPU and put it into a priority queue, which sorts 2568 * based on the first entry in the buffer. This is sufficient 2569 * because entries within a buffer are already sorted. 2570 * 2571 * We then consume records one at a time, always consuming the 2572 * oldest record, as determined by the priority queue. When 2573 * we reach the end of the time covered by these buffers, 2574 * we need to stop and retrieve more records on the next pass. 2575 * The kernel tells us the time covered by each buffer, in 2576 * dtbd_timestamp. The first buffer's timestamp tells us the 2577 * time covered by all buffers, as subsequently retrieved 2578 * buffers will cover to a more recent time. 2579 */ 2580 2581 uint64_t *drops = alloca(max_ncpus * sizeof (uint64_t)); 2582 uint64_t first_timestamp = 0; 2583 uint_t cookie = 0; 2584 dtrace_bufdesc_t *buf; 2585 2586 bzero(drops, max_ncpus * sizeof (uint64_t)); 2587 2588 if (dtp->dt_bufq == NULL) { 2589 dtp->dt_bufq = dt_pq_init(dtp, max_ncpus * 2, 2590 dt_buf_oldest, NULL); 2591 if (dtp->dt_bufq == NULL) /* ENOMEM */ 2592 return (-1); 2593 } 2594 2595 /* Retrieve data from each CPU. */ 2596 (void) dtrace_getopt(dtp, "bufsize", &size); 2597 for (i = 0; i < max_ncpus; i++) { 2598 dtrace_bufdesc_t *buf; 2599 2600 if (dt_get_buf(dtp, i, &buf) != 0) 2601 return (-1); 2602 if (buf != NULL) { 2603 if (first_timestamp == 0) 2604 first_timestamp = buf->dtbd_timestamp; 2605 assert(buf->dtbd_timestamp >= first_timestamp); 2606 2607 dt_pq_insert(dtp->dt_bufq, buf); 2608 drops[i] = buf->dtbd_drops; 2609 buf->dtbd_drops = 0; 2610 } 2611 } 2612 2613 /* Consume records. */ 2614 for (;;) { 2615 dtrace_bufdesc_t *buf = dt_pq_pop(dtp->dt_bufq); 2616 uint64_t timestamp; 2617 2618 if (buf == NULL) 2619 break; 2620 2621 timestamp = dt_buf_oldest(buf, dtp); 2622 assert(timestamp >= dtp->dt_last_timestamp); 2623 dtp->dt_last_timestamp = timestamp; 2624 2625 if (timestamp == buf->dtbd_timestamp) { 2626 /* 2627 * We've reached the end of the time covered 2628 * by this buffer. If this is the oldest 2629 * buffer, we must do another pass 2630 * to retrieve more data. 2631 */ 2632 dt_put_buf(dtp, buf); 2633 if (timestamp == first_timestamp && 2634 !dtp->dt_stopped) 2635 break; 2636 continue; 2637 } 2638 2639 if ((rval = dt_consume_cpu(dtp, fp, 2640 buf->dtbd_cpu, buf, B_TRUE, pf, rf, arg)) != 0) 2641 return (rval); 2642 dt_pq_insert(dtp->dt_bufq, buf); 2643 } 2644 2645 /* Consume drops. */ 2646 for (i = 0; i < max_ncpus; i++) { 2647 if (drops[i] != 0) { 2648 int error = dt_handle_cpudrop(dtp, i, 2649 DTRACEDROP_PRINCIPAL, drops[i]); 2650 if (error != 0) 2651 return (error); 2652 } 2653 } 2654 2655 /* 2656 * Reduce memory usage by re-allocating smaller buffers 2657 * for the "remnants". 2658 */ 2659 while (buf = dt_pq_walk(dtp->dt_bufq, &cookie)) 2660 dt_realloc_buf(dtp, buf, buf->dtbd_size); 2661 } 2662 2663 return (0); 2664 } 2665