1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License, Version 1.0 only 6 * (the "License"). You may not use this file except in compliance 7 * with the License. 8 * 9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 10 * or http://www.opensolaris.org/os/licensing. 11 * See the License for the specific language governing permissions 12 * and limitations under the License. 13 * 14 * When distributing Covered Code, include this CDDL HEADER in each 15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 16 * If applicable, add the following below this CDDL HEADER, with the 17 * fields enclosed by brackets "[]" replaced with your own identifying 18 * information: Portions Copyright [yyyy] [name of copyright owner] 19 * 20 * CDDL HEADER END 21 */ 22 /* 23 * Copyright 2005 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 #include <stdlib.h> 30 #include <strings.h> 31 #include <errno.h> 32 #include <unistd.h> 33 #include <dt_impl.h> 34 #include <assert.h> 35 #include <alloca.h> 36 #include <limits.h> 37 38 #define DTRACE_AHASHSIZE 32779 /* big 'ol prime */ 39 40 /* 41 * Because qsort(3C) does not allow an argument to be passed to a comparison 42 * function, the variables that affect comparison must regrettably be global; 43 * they are protected by a global static lock, dt_qsort_lock. 44 */ 45 static pthread_mutex_t dt_qsort_lock = PTHREAD_MUTEX_INITIALIZER; 46 47 static int dt_revsort; 48 static int dt_keysort; 49 static int dt_keypos; 50 51 #define DT_LESSTHAN (dt_revsort == 0 ? -1 : 1) 52 #define DT_GREATERTHAN (dt_revsort == 0 ? 1 : -1) 53 54 static void 55 dt_aggregate_count(int64_t *existing, int64_t *new, size_t size) 56 { 57 int i; 58 59 for (i = 0; i < size / sizeof (int64_t); i++) 60 existing[i] = existing[i] + new[i]; 61 } 62 63 static int 64 dt_aggregate_countcmp(int64_t *lhs, int64_t *rhs) 65 { 66 int64_t lvar = *lhs; 67 int64_t rvar = *rhs; 68 69 if (lvar < rvar) 70 return (DT_LESSTHAN); 71 72 if (lvar > rvar) 73 return (DT_GREATERTHAN); 74 75 return (0); 76 } 77 78 /*ARGSUSED*/ 79 static void 80 dt_aggregate_min(int64_t *existing, int64_t *new, size_t size) 81 { 82 if (*new < *existing) 83 *existing = *new; 84 } 85 86 /*ARGSUSED*/ 87 static void 88 dt_aggregate_max(int64_t *existing, int64_t *new, size_t size) 89 { 90 if (*new > *existing) 91 *existing = *new; 92 } 93 94 static int 95 dt_aggregate_averagecmp(int64_t *lhs, int64_t *rhs) 96 { 97 int64_t lavg = lhs[0] ? (lhs[1] / lhs[0]) : 0; 98 int64_t ravg = rhs[0] ? (rhs[1] / rhs[0]) : 0; 99 100 if (lavg < ravg) 101 return (DT_LESSTHAN); 102 103 if (lavg > ravg) 104 return (DT_GREATERTHAN); 105 106 return (0); 107 } 108 109 /*ARGSUSED*/ 110 static void 111 dt_aggregate_lquantize(int64_t *existing, int64_t *new, size_t size) 112 { 113 int64_t arg = *existing++; 114 uint16_t levels = DTRACE_LQUANTIZE_LEVELS(arg); 115 int i; 116 117 for (i = 0; i <= levels + 1; i++) 118 existing[i] = existing[i] + new[i + 1]; 119 } 120 121 static long double 122 dt_aggregate_lquantizedsum(int64_t *lquanta) 123 { 124 int64_t arg = *lquanta++; 125 int32_t base = DTRACE_LQUANTIZE_BASE(arg); 126 uint16_t step = DTRACE_LQUANTIZE_STEP(arg); 127 uint16_t levels = DTRACE_LQUANTIZE_LEVELS(arg), i; 128 long double total = (long double)lquanta[0] * (long double)(base - 1); 129 130 for (i = 0; i < levels; base += step, i++) 131 total += (long double)lquanta[i + 1] * (long double)base; 132 133 return (total + (long double)lquanta[levels + 1] * 134 (long double)(base + 1)); 135 } 136 137 static int64_t 138 dt_aggregate_lquantizedzero(int64_t *lquanta) 139 { 140 int64_t arg = *lquanta++; 141 int32_t base = DTRACE_LQUANTIZE_BASE(arg); 142 uint16_t step = DTRACE_LQUANTIZE_STEP(arg); 143 uint16_t levels = DTRACE_LQUANTIZE_LEVELS(arg), i; 144 145 if (base - 1 == 0) 146 return (lquanta[0]); 147 148 for (i = 0; i < levels; base += step, i++) { 149 if (base != 0) 150 continue; 151 152 return (lquanta[i + 1]); 153 } 154 155 if (base + 1 == 0) 156 return (lquanta[levels + 1]); 157 158 return (0); 159 } 160 161 static int 162 dt_aggregate_lquantizedcmp(int64_t *lhs, int64_t *rhs) 163 { 164 long double lsum = dt_aggregate_lquantizedsum(lhs); 165 long double rsum = dt_aggregate_lquantizedsum(rhs); 166 int64_t lzero, rzero; 167 168 if (lsum < rsum) 169 return (DT_LESSTHAN); 170 171 if (lsum > rsum) 172 return (DT_GREATERTHAN); 173 174 /* 175 * If they're both equal, then we will compare based on the weights at 176 * zero. If the weights at zero are equal (or if zero is not within 177 * the range of the linear quantization), then this will be judged a 178 * tie and will be resolved based on the key comparison. 179 */ 180 lzero = dt_aggregate_lquantizedzero(lhs); 181 rzero = dt_aggregate_lquantizedzero(rhs); 182 183 if (lzero < rzero) 184 return (DT_LESSTHAN); 185 186 if (lzero > rzero) 187 return (DT_GREATERTHAN); 188 189 return (0); 190 } 191 192 static int 193 dt_aggregate_quantizedcmp(int64_t *lhs, int64_t *rhs) 194 { 195 int nbuckets = DTRACE_QUANTIZE_NBUCKETS, i; 196 long double ltotal = 0, rtotal = 0; 197 int64_t lzero, rzero; 198 199 for (i = 0; i < nbuckets; i++) { 200 int64_t bucketval = DTRACE_QUANTIZE_BUCKETVAL(i); 201 202 if (bucketval == 0) { 203 lzero = lhs[i]; 204 rzero = rhs[i]; 205 } 206 207 ltotal += (long double)bucketval * (long double)lhs[i]; 208 rtotal += (long double)bucketval * (long double)rhs[i]; 209 } 210 211 if (ltotal < rtotal) 212 return (DT_LESSTHAN); 213 214 if (ltotal > rtotal) 215 return (DT_GREATERTHAN); 216 217 /* 218 * If they're both equal, then we will compare based on the weights at 219 * zero. If the weights at zero are equal, then this will be judged a 220 * tie and will be resolved based on the key comparison. 221 */ 222 if (lzero < rzero) 223 return (DT_LESSTHAN); 224 225 if (lzero > rzero) 226 return (DT_GREATERTHAN); 227 228 return (0); 229 } 230 231 static void 232 dt_aggregate_usym(dtrace_hdl_t *dtp, uint64_t *data) 233 { 234 uint64_t pid = data[0]; 235 uint64_t *pc = &data[1]; 236 struct ps_prochandle *P; 237 GElf_Sym sym; 238 239 if (dtp->dt_vector != NULL) 240 return; 241 242 if ((P = dt_proc_grab(dtp, pid, PGRAB_RDONLY | PGRAB_FORCE, 0)) == NULL) 243 return; 244 245 dt_proc_lock(dtp, P); 246 247 if (Plookup_by_addr(P, *pc, NULL, 0, &sym) == 0) 248 *pc = sym.st_value; 249 250 dt_proc_unlock(dtp, P); 251 dt_proc_release(dtp, P); 252 } 253 254 static void 255 dt_aggregate_umod(dtrace_hdl_t *dtp, uint64_t *data) 256 { 257 uint64_t pid = data[0]; 258 uint64_t *pc = &data[1]; 259 struct ps_prochandle *P; 260 const prmap_t *map; 261 262 if (dtp->dt_vector != NULL) 263 return; 264 265 if ((P = dt_proc_grab(dtp, pid, PGRAB_RDONLY | PGRAB_FORCE, 0)) == NULL) 266 return; 267 268 dt_proc_lock(dtp, P); 269 270 if ((map = Paddr_to_map(P, *pc)) != NULL) 271 *pc = map->pr_vaddr; 272 273 dt_proc_unlock(dtp, P); 274 dt_proc_release(dtp, P); 275 } 276 277 static void 278 dt_aggregate_sym(dtrace_hdl_t *dtp, uint64_t *data) 279 { 280 GElf_Sym sym; 281 uint64_t *pc = data; 282 283 if (dtrace_lookup_by_addr(dtp, *pc, &sym, NULL) == 0) 284 *pc = sym.st_value; 285 } 286 287 static void 288 dt_aggregate_mod(dtrace_hdl_t *dtp, uint64_t *data) 289 { 290 uint64_t *pc = data; 291 dt_module_t *dmp; 292 293 if (dtp->dt_vector != NULL) { 294 /* 295 * We don't have a way of just getting the module for a 296 * vectored open, and it doesn't seem to be worth defining 297 * one. This means that use of mod() won't get true 298 * aggregation in the postmortem case (some modules may 299 * appear more than once in aggregation output). It seems 300 * unlikely that anyone will ever notice or care... 301 */ 302 return; 303 } 304 305 for (dmp = dt_list_next(&dtp->dt_modlist); dmp != NULL; 306 dmp = dt_list_next(dmp)) { 307 if (*pc - dmp->dm_text_va < dmp->dm_text_size) { 308 *pc = dmp->dm_text_va; 309 return; 310 } 311 } 312 } 313 314 static dtrace_aggvarid_t 315 dt_aggregate_aggvarid(dt_ahashent_t *ent) 316 { 317 dtrace_aggdesc_t *agg = ent->dtahe_data.dtada_desc; 318 caddr_t data = ent->dtahe_data.dtada_data; 319 dtrace_recdesc_t *rec = agg->dtagd_rec; 320 321 /* 322 * First, we'll check the variable ID in the aggdesc. If it's valid, 323 * we'll return it. If not, we'll use the compiler-generated ID 324 * present as the first record. 325 */ 326 if (agg->dtagd_varid != DTRACE_AGGVARIDNONE) 327 return (agg->dtagd_varid); 328 329 agg->dtagd_varid = *((dtrace_aggvarid_t *)(uintptr_t)(data + 330 rec->dtrd_offset)); 331 332 return (agg->dtagd_varid); 333 } 334 335 336 static int 337 dt_aggregate_snap_cpu(dtrace_hdl_t *dtp, processorid_t cpu) 338 { 339 dtrace_epid_t id; 340 uint64_t hashval; 341 size_t offs, roffs, size, ndx; 342 int i, j, rval; 343 caddr_t addr, data; 344 dtrace_recdesc_t *rec; 345 dt_aggregate_t *agp = &dtp->dt_aggregate; 346 dtrace_aggdesc_t *agg; 347 dt_ahash_t *hash = &agp->dtat_hash; 348 dt_ahashent_t *h; 349 dtrace_bufdesc_t b = agp->dtat_buf, *buf = &b; 350 dtrace_aggdata_t *aggdata; 351 int flags = agp->dtat_flags; 352 353 buf->dtbd_cpu = cpu; 354 355 if (dt_ioctl(dtp, DTRACEIOC_AGGSNAP, buf) == -1) { 356 if (errno == ENOENT) { 357 /* 358 * If that failed with ENOENT, it may be because the 359 * CPU was unconfigured. This is okay; we'll just 360 * do nothing but return success. 361 */ 362 return (0); 363 } 364 365 return (dt_set_errno(dtp, errno)); 366 } 367 368 if (buf->dtbd_drops != 0) { 369 if (dt_handle_cpudrop(dtp, cpu, 370 DTRACEDROP_AGGREGATION, buf->dtbd_drops) == -1) 371 return (-1); 372 } 373 374 if (buf->dtbd_size == 0) 375 return (0); 376 377 if (hash->dtah_hash == NULL) { 378 size_t size; 379 380 hash->dtah_size = DTRACE_AHASHSIZE; 381 size = hash->dtah_size * sizeof (dt_ahashent_t *); 382 383 if ((hash->dtah_hash = malloc(size)) == NULL) 384 return (dt_set_errno(dtp, EDT_NOMEM)); 385 386 bzero(hash->dtah_hash, size); 387 } 388 389 for (offs = 0; offs < buf->dtbd_size; ) { 390 /* 391 * We're guaranteed to have an ID. 392 */ 393 id = *((dtrace_epid_t *)((uintptr_t)buf->dtbd_data + 394 (uintptr_t)offs)); 395 396 if (id == DTRACE_AGGIDNONE) { 397 /* 398 * This is filler to assure proper alignment of the 399 * next record; we simply ignore it. 400 */ 401 offs += sizeof (id); 402 continue; 403 } 404 405 if ((rval = dt_aggid_lookup(dtp, id, &agg)) != 0) 406 return (rval); 407 408 addr = buf->dtbd_data + offs; 409 size = agg->dtagd_size; 410 hashval = 0; 411 412 for (j = 0; j < agg->dtagd_nrecs - 1; j++) { 413 rec = &agg->dtagd_rec[j]; 414 roffs = rec->dtrd_offset; 415 416 switch (rec->dtrd_action) { 417 case DTRACEACT_USYM: 418 dt_aggregate_usym(dtp, 419 /* LINTED - alignment */ 420 (uint64_t *)&addr[roffs]); 421 break; 422 423 case DTRACEACT_UMOD: 424 dt_aggregate_umod(dtp, 425 /* LINTED - alignment */ 426 (uint64_t *)&addr[roffs]); 427 break; 428 429 case DTRACEACT_SYM: 430 /* LINTED - alignment */ 431 dt_aggregate_sym(dtp, (uint64_t *)&addr[roffs]); 432 break; 433 434 case DTRACEACT_MOD: 435 /* LINTED - alignment */ 436 dt_aggregate_mod(dtp, (uint64_t *)&addr[roffs]); 437 break; 438 439 default: 440 break; 441 } 442 443 for (i = 0; i < rec->dtrd_size; i++) 444 hashval += addr[roffs + i]; 445 } 446 447 ndx = hashval % hash->dtah_size; 448 449 for (h = hash->dtah_hash[ndx]; h != NULL; h = h->dtahe_next) { 450 if (h->dtahe_hashval != hashval) 451 continue; 452 453 if (h->dtahe_size != size) 454 continue; 455 456 aggdata = &h->dtahe_data; 457 data = aggdata->dtada_data; 458 459 for (j = 0; j < agg->dtagd_nrecs - 1; j++) { 460 rec = &agg->dtagd_rec[j]; 461 roffs = rec->dtrd_offset; 462 463 for (i = 0; i < rec->dtrd_size; i++) 464 if (addr[roffs + i] != data[roffs + i]) 465 goto hashnext; 466 } 467 468 /* 469 * We found it. Now we need to apply the aggregating 470 * action on the data here. 471 */ 472 rec = &agg->dtagd_rec[agg->dtagd_nrecs - 1]; 473 roffs = rec->dtrd_offset; 474 /* LINTED - alignment */ 475 h->dtahe_aggregate((int64_t *)&data[roffs], 476 /* LINTED - alignment */ 477 (int64_t *)&addr[roffs], rec->dtrd_size); 478 479 /* 480 * If we're keeping per CPU data, apply the aggregating 481 * action there as well. 482 */ 483 if (aggdata->dtada_percpu != NULL) { 484 data = aggdata->dtada_percpu[cpu]; 485 486 /* LINTED - alignment */ 487 h->dtahe_aggregate((int64_t *)data, 488 /* LINTED - alignment */ 489 (int64_t *)&addr[roffs], rec->dtrd_size); 490 } 491 492 goto bufnext; 493 hashnext: 494 continue; 495 } 496 497 /* 498 * If we're here, we couldn't find an entry for this record. 499 */ 500 if ((h = malloc(sizeof (dt_ahashent_t))) == NULL) 501 return (dt_set_errno(dtp, EDT_NOMEM)); 502 bzero(h, sizeof (dt_ahashent_t)); 503 aggdata = &h->dtahe_data; 504 505 if ((aggdata->dtada_data = malloc(size)) == NULL) { 506 free(h); 507 return (dt_set_errno(dtp, EDT_NOMEM)); 508 } 509 510 bcopy(addr, aggdata->dtada_data, size); 511 aggdata->dtada_size = size; 512 aggdata->dtada_desc = agg; 513 aggdata->dtada_handle = dtp; 514 (void) dt_epid_lookup(dtp, agg->dtagd_epid, 515 &aggdata->dtada_edesc, &aggdata->dtada_pdesc); 516 aggdata->dtada_normal = 1; 517 518 h->dtahe_hashval = hashval; 519 h->dtahe_size = size; 520 (void) dt_aggregate_aggvarid(h); 521 522 rec = &agg->dtagd_rec[agg->dtagd_nrecs - 1]; 523 524 if (flags & DTRACE_A_PERCPU) { 525 int max_cpus = agp->dtat_maxcpu; 526 caddr_t *percpu = malloc(max_cpus * sizeof (caddr_t)); 527 528 if (percpu == NULL) { 529 free(aggdata->dtada_data); 530 free(h); 531 return (dt_set_errno(dtp, EDT_NOMEM)); 532 } 533 534 for (j = 0; j < max_cpus; j++) { 535 percpu[j] = malloc(rec->dtrd_size); 536 537 if (percpu[j] == NULL) { 538 while (--j >= 0) 539 free(percpu[j]); 540 541 free(aggdata->dtada_data); 542 free(h); 543 return (dt_set_errno(dtp, EDT_NOMEM)); 544 } 545 546 if (j == cpu) { 547 bcopy(&addr[rec->dtrd_offset], 548 percpu[j], rec->dtrd_size); 549 } else { 550 bzero(percpu[j], rec->dtrd_size); 551 } 552 } 553 554 aggdata->dtada_percpu = percpu; 555 } 556 557 switch (rec->dtrd_action) { 558 case DTRACEAGG_MIN: 559 h->dtahe_aggregate = dt_aggregate_min; 560 break; 561 562 case DTRACEAGG_MAX: 563 h->dtahe_aggregate = dt_aggregate_max; 564 break; 565 566 case DTRACEAGG_LQUANTIZE: 567 h->dtahe_aggregate = dt_aggregate_lquantize; 568 break; 569 570 case DTRACEAGG_COUNT: 571 case DTRACEAGG_SUM: 572 case DTRACEAGG_AVG: 573 case DTRACEAGG_QUANTIZE: 574 h->dtahe_aggregate = dt_aggregate_count; 575 break; 576 577 default: 578 return (dt_set_errno(dtp, EDT_BADAGG)); 579 } 580 581 if (hash->dtah_hash[ndx] != NULL) 582 hash->dtah_hash[ndx]->dtahe_prev = h; 583 584 h->dtahe_next = hash->dtah_hash[ndx]; 585 hash->dtah_hash[ndx] = h; 586 587 if (hash->dtah_all != NULL) 588 hash->dtah_all->dtahe_prevall = h; 589 590 h->dtahe_nextall = hash->dtah_all; 591 hash->dtah_all = h; 592 bufnext: 593 offs += agg->dtagd_size; 594 } 595 596 return (0); 597 } 598 599 int 600 dtrace_aggregate_snap(dtrace_hdl_t *dtp) 601 { 602 int i, rval; 603 dt_aggregate_t *agp = &dtp->dt_aggregate; 604 hrtime_t now = gethrtime(); 605 dtrace_optval_t interval = dtp->dt_options[DTRACEOPT_AGGRATE]; 606 607 if (dtp->dt_lastagg != 0) { 608 if (now - dtp->dt_lastagg < interval) 609 return (0); 610 611 dtp->dt_lastagg += interval; 612 } else { 613 dtp->dt_lastagg = now; 614 } 615 616 if (!dtp->dt_active) 617 return (dt_set_errno(dtp, EINVAL)); 618 619 if (agp->dtat_buf.dtbd_size == 0) 620 return (0); 621 622 for (i = 0; i < agp->dtat_ncpus; i++) { 623 if (rval = dt_aggregate_snap_cpu(dtp, agp->dtat_cpus[i])) 624 return (rval); 625 } 626 627 return (0); 628 } 629 630 static int 631 dt_aggregate_hashcmp(const void *lhs, const void *rhs) 632 { 633 dt_ahashent_t *lh = *((dt_ahashent_t **)lhs); 634 dt_ahashent_t *rh = *((dt_ahashent_t **)rhs); 635 dtrace_aggdesc_t *lagg = lh->dtahe_data.dtada_desc; 636 dtrace_aggdesc_t *ragg = rh->dtahe_data.dtada_desc; 637 638 if (lagg->dtagd_nrecs < ragg->dtagd_nrecs) 639 return (DT_LESSTHAN); 640 641 if (lagg->dtagd_nrecs > ragg->dtagd_nrecs) 642 return (DT_GREATERTHAN); 643 644 return (0); 645 } 646 647 static int 648 dt_aggregate_varcmp(const void *lhs, const void *rhs) 649 { 650 dt_ahashent_t *lh = *((dt_ahashent_t **)lhs); 651 dt_ahashent_t *rh = *((dt_ahashent_t **)rhs); 652 dtrace_aggvarid_t lid, rid; 653 654 lid = dt_aggregate_aggvarid(lh); 655 rid = dt_aggregate_aggvarid(rh); 656 657 if (lid < rid) 658 return (DT_LESSTHAN); 659 660 if (lid > rid) 661 return (DT_GREATERTHAN); 662 663 return (0); 664 } 665 666 static int 667 dt_aggregate_keycmp(const void *lhs, const void *rhs) 668 { 669 dt_ahashent_t *lh = *((dt_ahashent_t **)lhs); 670 dt_ahashent_t *rh = *((dt_ahashent_t **)rhs); 671 dtrace_aggdesc_t *lagg = lh->dtahe_data.dtada_desc; 672 dtrace_aggdesc_t *ragg = rh->dtahe_data.dtada_desc; 673 dtrace_recdesc_t *lrec, *rrec; 674 char *ldata, *rdata; 675 int rval, i, j, keypos, nrecs; 676 677 if ((rval = dt_aggregate_hashcmp(lhs, rhs)) != 0) 678 return (rval); 679 680 nrecs = lagg->dtagd_nrecs - 1; 681 assert(nrecs == ragg->dtagd_nrecs - 1); 682 683 keypos = dt_keypos + 1 >= nrecs ? 0 : dt_keypos; 684 685 for (i = 1; i < nrecs; i++) { 686 uint64_t lval, rval; 687 int ndx = i + keypos; 688 689 if (ndx >= nrecs) 690 ndx = ndx - nrecs + 1; 691 692 lrec = &lagg->dtagd_rec[ndx]; 693 rrec = &ragg->dtagd_rec[ndx]; 694 695 ldata = lh->dtahe_data.dtada_data + lrec->dtrd_offset; 696 rdata = rh->dtahe_data.dtada_data + rrec->dtrd_offset; 697 698 if (lrec->dtrd_size < rrec->dtrd_size) 699 return (DT_LESSTHAN); 700 701 if (lrec->dtrd_size > rrec->dtrd_size) 702 return (DT_GREATERTHAN); 703 704 switch (lrec->dtrd_size) { 705 case sizeof (uint64_t): 706 /* LINTED - alignment */ 707 lval = *((uint64_t *)ldata); 708 /* LINTED - alignment */ 709 rval = *((uint64_t *)rdata); 710 break; 711 712 case sizeof (uint32_t): 713 /* LINTED - alignment */ 714 lval = *((uint32_t *)ldata); 715 /* LINTED - alignment */ 716 rval = *((uint32_t *)rdata); 717 break; 718 719 case sizeof (uint16_t): 720 /* LINTED - alignment */ 721 lval = *((uint16_t *)ldata); 722 /* LINTED - alignment */ 723 rval = *((uint16_t *)rdata); 724 break; 725 726 case sizeof (uint8_t): 727 lval = *((uint8_t *)ldata); 728 rval = *((uint8_t *)rdata); 729 break; 730 731 default: 732 for (j = 0; j < lrec->dtrd_size; j++) { 733 lval = ((uint8_t *)ldata)[j]; 734 rval = ((uint8_t *)rdata)[j]; 735 736 if (lval < rval) 737 return (DT_LESSTHAN); 738 739 if (lval > rval) 740 return (DT_GREATERTHAN); 741 742 } 743 744 continue; 745 } 746 747 if (lval < rval) 748 return (DT_LESSTHAN); 749 750 if (lval > rval) 751 return (DT_GREATERTHAN); 752 } 753 754 return (0); 755 } 756 757 static int 758 dt_aggregate_valcmp(const void *lhs, const void *rhs) 759 { 760 dt_ahashent_t *lh = *((dt_ahashent_t **)lhs); 761 dt_ahashent_t *rh = *((dt_ahashent_t **)rhs); 762 dtrace_aggdesc_t *lagg = lh->dtahe_data.dtada_desc; 763 dtrace_aggdesc_t *ragg = rh->dtahe_data.dtada_desc; 764 caddr_t ldata = lh->dtahe_data.dtada_data; 765 caddr_t rdata = rh->dtahe_data.dtada_data; 766 dtrace_recdesc_t *lrec, *rrec; 767 int64_t *laddr, *raddr; 768 int rval, i; 769 770 if ((rval = dt_aggregate_hashcmp(lhs, rhs)) != 0) 771 return (rval); 772 773 if (lagg->dtagd_nrecs > ragg->dtagd_nrecs) 774 return (DT_GREATERTHAN); 775 776 if (lagg->dtagd_nrecs < ragg->dtagd_nrecs) 777 return (DT_LESSTHAN); 778 779 for (i = 0; i < lagg->dtagd_nrecs; i++) { 780 lrec = &lagg->dtagd_rec[i]; 781 rrec = &ragg->dtagd_rec[i]; 782 783 if (lrec->dtrd_offset < rrec->dtrd_offset) 784 return (DT_LESSTHAN); 785 786 if (lrec->dtrd_offset > rrec->dtrd_offset) 787 return (DT_GREATERTHAN); 788 789 if (lrec->dtrd_action < rrec->dtrd_action) 790 return (DT_LESSTHAN); 791 792 if (lrec->dtrd_action > rrec->dtrd_action) 793 return (DT_GREATERTHAN); 794 } 795 796 laddr = (int64_t *)(uintptr_t)(ldata + lrec->dtrd_offset); 797 raddr = (int64_t *)(uintptr_t)(rdata + rrec->dtrd_offset); 798 799 switch (lrec->dtrd_action) { 800 case DTRACEAGG_AVG: 801 rval = dt_aggregate_averagecmp(laddr, raddr); 802 break; 803 804 case DTRACEAGG_QUANTIZE: 805 rval = dt_aggregate_quantizedcmp(laddr, raddr); 806 break; 807 808 case DTRACEAGG_LQUANTIZE: 809 rval = dt_aggregate_lquantizedcmp(laddr, raddr); 810 break; 811 812 case DTRACEAGG_COUNT: 813 case DTRACEAGG_SUM: 814 case DTRACEAGG_MIN: 815 case DTRACEAGG_MAX: 816 rval = dt_aggregate_countcmp(laddr, raddr); 817 break; 818 819 default: 820 assert(0); 821 } 822 823 return (rval); 824 } 825 826 static int 827 dt_aggregate_valkeycmp(const void *lhs, const void *rhs) 828 { 829 int rval; 830 831 if ((rval = dt_aggregate_valcmp(lhs, rhs)) != 0) 832 return (rval); 833 834 /* 835 * If we're here, the values for the two aggregation elements are 836 * equal. We already know that the key layout is the same for the two 837 * elements; we must now compare the keys themselves as a tie-breaker. 838 */ 839 return (dt_aggregate_keycmp(lhs, rhs)); 840 } 841 842 static int 843 dt_aggregate_keyvarcmp(const void *lhs, const void *rhs) 844 { 845 int rval; 846 847 if ((rval = dt_aggregate_keycmp(lhs, rhs)) != 0) 848 return (rval); 849 850 return (dt_aggregate_varcmp(lhs, rhs)); 851 } 852 853 static int 854 dt_aggregate_varkeycmp(const void *lhs, const void *rhs) 855 { 856 int rval; 857 858 if ((rval = dt_aggregate_varcmp(lhs, rhs)) != 0) 859 return (rval); 860 861 return (dt_aggregate_keycmp(lhs, rhs)); 862 } 863 864 static int 865 dt_aggregate_valvarcmp(const void *lhs, const void *rhs) 866 { 867 int rval; 868 869 if ((rval = dt_aggregate_valkeycmp(lhs, rhs)) != 0) 870 return (rval); 871 872 return (dt_aggregate_varcmp(lhs, rhs)); 873 } 874 875 static int 876 dt_aggregate_varvalcmp(const void *lhs, const void *rhs) 877 { 878 int rval; 879 880 if ((rval = dt_aggregate_varcmp(lhs, rhs)) != 0) 881 return (rval); 882 883 return (dt_aggregate_valkeycmp(lhs, rhs)); 884 } 885 886 static int 887 dt_aggregate_keyvarrevcmp(const void *lhs, const void *rhs) 888 { 889 return (dt_aggregate_keyvarcmp(rhs, lhs)); 890 } 891 892 static int 893 dt_aggregate_varkeyrevcmp(const void *lhs, const void *rhs) 894 { 895 return (dt_aggregate_varkeycmp(rhs, lhs)); 896 } 897 898 static int 899 dt_aggregate_valvarrevcmp(const void *lhs, const void *rhs) 900 { 901 return (dt_aggregate_valvarcmp(rhs, lhs)); 902 } 903 904 static int 905 dt_aggregate_varvalrevcmp(const void *lhs, const void *rhs) 906 { 907 return (dt_aggregate_varvalcmp(rhs, lhs)); 908 } 909 910 static int 911 dt_aggregate_bundlecmp(const void *lhs, const void *rhs) 912 { 913 dt_ahashent_t **lh = *((dt_ahashent_t ***)lhs); 914 dt_ahashent_t **rh = *((dt_ahashent_t ***)rhs); 915 int i, rval; 916 917 if (dt_keysort) { 918 /* 919 * If we're sorting on keys, we need to scan until we find the 920 * last entry -- that's the representative key. (The order of 921 * the bundle is values followed by key to accommodate the 922 * default behavior of sorting by value.) If the keys are 923 * equal, we'll fall into the value comparison loop, below. 924 */ 925 for (i = 0; lh[i + 1] != NULL; i++) 926 continue; 927 928 assert(i != 0); 929 assert(rh[i + 1] == NULL); 930 931 if ((rval = dt_aggregate_keycmp(&lh[i], &rh[i])) != 0) 932 return (rval); 933 } 934 935 for (i = 0; ; i++) { 936 if (lh[i + 1] == NULL) { 937 /* 938 * All of the values are equal; if we're sorting on 939 * keys, then we're only here because the keys were 940 * found to be equal and these records are therefore 941 * equal. If we're not sorting on keys, we'll use the 942 * key comparison from the representative key as the 943 * tie-breaker. 944 */ 945 if (dt_keysort) 946 return (0); 947 948 assert(i != 0); 949 assert(rh[i + 1] == NULL); 950 return (dt_aggregate_keycmp(&lh[i], &rh[i])); 951 } else { 952 if ((rval = dt_aggregate_valcmp(&lh[i], &rh[i])) != 0) 953 return (rval); 954 } 955 } 956 } 957 958 int 959 dt_aggregate_go(dtrace_hdl_t *dtp) 960 { 961 dt_aggregate_t *agp = &dtp->dt_aggregate; 962 dtrace_optval_t size, cpu; 963 dtrace_bufdesc_t *buf = &agp->dtat_buf; 964 int rval, i; 965 966 assert(agp->dtat_maxcpu == 0); 967 assert(agp->dtat_ncpu == 0); 968 assert(agp->dtat_cpus == NULL); 969 970 agp->dtat_maxcpu = dt_sysconf(dtp, _SC_CPUID_MAX) + 1; 971 agp->dtat_ncpu = dt_sysconf(dtp, _SC_NPROCESSORS_MAX); 972 agp->dtat_cpus = malloc(agp->dtat_ncpu * sizeof (processorid_t)); 973 974 if (agp->dtat_cpus == NULL) 975 return (dt_set_errno(dtp, EDT_NOMEM)); 976 977 /* 978 * Use the aggregation buffer size as reloaded from the kernel. 979 */ 980 size = dtp->dt_options[DTRACEOPT_AGGSIZE]; 981 982 rval = dtrace_getopt(dtp, "aggsize", &size); 983 assert(rval == 0); 984 985 if (size == 0 || size == DTRACEOPT_UNSET) 986 return (0); 987 988 buf = &agp->dtat_buf; 989 buf->dtbd_size = size; 990 991 if ((buf->dtbd_data = malloc(buf->dtbd_size)) == NULL) 992 return (dt_set_errno(dtp, EDT_NOMEM)); 993 994 /* 995 * Now query for the CPUs enabled. 996 */ 997 rval = dtrace_getopt(dtp, "cpu", &cpu); 998 assert(rval == 0 && cpu != DTRACEOPT_UNSET); 999 1000 if (cpu != DTRACE_CPUALL) { 1001 assert(cpu < agp->dtat_ncpu); 1002 agp->dtat_cpus[agp->dtat_ncpus++] = (processorid_t)cpu; 1003 1004 return (0); 1005 } 1006 1007 agp->dtat_ncpus = 0; 1008 for (i = 0; i < agp->dtat_maxcpu; i++) { 1009 if (dt_status(dtp, i) == -1) 1010 continue; 1011 1012 agp->dtat_cpus[agp->dtat_ncpus++] = i; 1013 } 1014 1015 return (0); 1016 } 1017 1018 static int 1019 dt_aggwalk_rval(dtrace_hdl_t *dtp, dt_ahashent_t *h, int rval) 1020 { 1021 dt_aggregate_t *agp = &dtp->dt_aggregate; 1022 dtrace_aggdata_t *data; 1023 dtrace_aggdesc_t *aggdesc; 1024 dtrace_recdesc_t *rec; 1025 int i; 1026 1027 switch (rval) { 1028 case DTRACE_AGGWALK_NEXT: 1029 break; 1030 1031 case DTRACE_AGGWALK_CLEAR: { 1032 uint32_t size, offs = 0; 1033 1034 aggdesc = h->dtahe_data.dtada_desc; 1035 rec = &aggdesc->dtagd_rec[aggdesc->dtagd_nrecs - 1]; 1036 size = rec->dtrd_size; 1037 data = &h->dtahe_data; 1038 1039 if (rec->dtrd_action == DTRACEAGG_LQUANTIZE) { 1040 offs = sizeof (uint64_t); 1041 size -= sizeof (uint64_t); 1042 } 1043 1044 bzero(&data->dtada_data[rec->dtrd_offset] + offs, size); 1045 1046 if (data->dtada_percpu == NULL) 1047 break; 1048 1049 for (i = 0; i < dtp->dt_aggregate.dtat_maxcpu; i++) 1050 bzero(data->dtada_percpu[i] + offs, size); 1051 break; 1052 } 1053 1054 case DTRACE_AGGWALK_ERROR: 1055 /* 1056 * We assume that errno is already set in this case. 1057 */ 1058 return (dt_set_errno(dtp, errno)); 1059 1060 case DTRACE_AGGWALK_ABORT: 1061 return (dt_set_errno(dtp, EDT_DIRABORT)); 1062 1063 case DTRACE_AGGWALK_DENORMALIZE: 1064 h->dtahe_data.dtada_normal = 1; 1065 return (0); 1066 1067 case DTRACE_AGGWALK_NORMALIZE: 1068 if (h->dtahe_data.dtada_normal == 0) { 1069 h->dtahe_data.dtada_normal = 1; 1070 return (dt_set_errno(dtp, EDT_BADRVAL)); 1071 } 1072 1073 return (0); 1074 1075 case DTRACE_AGGWALK_REMOVE: { 1076 dtrace_aggdata_t *aggdata = &h->dtahe_data; 1077 int i, max_cpus = agp->dtat_maxcpu; 1078 1079 /* 1080 * First, remove this hash entry from its hash chain. 1081 */ 1082 if (h->dtahe_prev != NULL) { 1083 h->dtahe_prev->dtahe_next = h->dtahe_next; 1084 } else { 1085 dt_ahash_t *hash = &agp->dtat_hash; 1086 size_t ndx = h->dtahe_hashval % hash->dtah_size; 1087 1088 assert(hash->dtah_hash[ndx] == h); 1089 hash->dtah_hash[ndx] = h->dtahe_next; 1090 } 1091 1092 if (h->dtahe_next != NULL) 1093 h->dtahe_next->dtahe_prev = h->dtahe_prev; 1094 1095 /* 1096 * Now remove it from the list of all hash entries. 1097 */ 1098 if (h->dtahe_prevall != NULL) { 1099 h->dtahe_prevall->dtahe_nextall = h->dtahe_nextall; 1100 } else { 1101 dt_ahash_t *hash = &agp->dtat_hash; 1102 1103 assert(hash->dtah_all == h); 1104 hash->dtah_all = h->dtahe_nextall; 1105 } 1106 1107 if (h->dtahe_nextall != NULL) 1108 h->dtahe_nextall->dtahe_prevall = h->dtahe_prevall; 1109 1110 /* 1111 * We're unlinked. We can safely destroy the data. 1112 */ 1113 if (aggdata->dtada_percpu != NULL) { 1114 for (i = 0; i < max_cpus; i++) 1115 free(aggdata->dtada_percpu[i]); 1116 free(aggdata->dtada_percpu); 1117 } 1118 1119 free(aggdata->dtada_data); 1120 free(h); 1121 1122 return (0); 1123 } 1124 1125 default: 1126 return (dt_set_errno(dtp, EDT_BADRVAL)); 1127 } 1128 1129 return (0); 1130 } 1131 1132 void 1133 dt_aggregate_qsort(dtrace_hdl_t *dtp, void *base, size_t nel, size_t width, 1134 int (*compar)(const void *, const void *)) 1135 { 1136 int rev = dt_revsort, key = dt_keysort, keypos = dt_keypos; 1137 dtrace_optval_t keyposopt = dtp->dt_options[DTRACEOPT_AGGSORTKEYPOS]; 1138 1139 dt_revsort = (dtp->dt_options[DTRACEOPT_AGGSORTREV] != DTRACEOPT_UNSET); 1140 dt_keysort = (dtp->dt_options[DTRACEOPT_AGGSORTKEY] != DTRACEOPT_UNSET); 1141 1142 if (keyposopt != DTRACEOPT_UNSET && keyposopt <= INT_MAX) { 1143 dt_keypos = (int)keyposopt; 1144 } else { 1145 dt_keypos = 0; 1146 } 1147 1148 if (compar == NULL) { 1149 if (!dt_keysort) { 1150 compar = dt_aggregate_varvalcmp; 1151 } else { 1152 compar = dt_aggregate_varkeycmp; 1153 } 1154 } 1155 1156 qsort(base, nel, width, compar); 1157 1158 dt_revsort = rev; 1159 dt_keysort = key; 1160 dt_keypos = keypos; 1161 } 1162 1163 int 1164 dtrace_aggregate_walk(dtrace_hdl_t *dtp, dtrace_aggregate_f *func, void *arg) 1165 { 1166 dt_ahashent_t *h, *next; 1167 dt_ahash_t *hash = &dtp->dt_aggregate.dtat_hash; 1168 1169 for (h = hash->dtah_all; h != NULL; h = next) { 1170 /* 1171 * dt_aggwalk_rval() can potentially remove the current hash 1172 * entry; we need to load the next hash entry before calling 1173 * into it. 1174 */ 1175 next = h->dtahe_nextall; 1176 1177 if (dt_aggwalk_rval(dtp, h, func(&h->dtahe_data, arg)) == -1) 1178 return (-1); 1179 } 1180 1181 return (0); 1182 } 1183 1184 static int 1185 dt_aggregate_walk_sorted(dtrace_hdl_t *dtp, 1186 dtrace_aggregate_f *func, void *arg, 1187 int (*sfunc)(const void *, const void *)) 1188 { 1189 dt_aggregate_t *agp = &dtp->dt_aggregate; 1190 dt_ahashent_t *h, **sorted; 1191 dt_ahash_t *hash = &agp->dtat_hash; 1192 size_t i, nentries = 0; 1193 1194 for (h = hash->dtah_all; h != NULL; h = h->dtahe_nextall) 1195 nentries++; 1196 1197 sorted = dt_alloc(dtp, nentries * sizeof (dt_ahashent_t *)); 1198 1199 if (sorted == NULL) 1200 return (-1); 1201 1202 for (h = hash->dtah_all, i = 0; h != NULL; h = h->dtahe_nextall) 1203 sorted[i++] = h; 1204 1205 (void) pthread_mutex_lock(&dt_qsort_lock); 1206 1207 if (sfunc == NULL) { 1208 dt_aggregate_qsort(dtp, sorted, nentries, 1209 sizeof (dt_ahashent_t *), NULL); 1210 } else { 1211 /* 1212 * If we've been explicitly passed a sorting function, 1213 * we'll use that -- ignoring the values of the "aggsortrev", 1214 * "aggsortkey" and "aggsortkeypos" options. 1215 */ 1216 qsort(sorted, nentries, sizeof (dt_ahashent_t *), sfunc); 1217 } 1218 1219 (void) pthread_mutex_unlock(&dt_qsort_lock); 1220 1221 for (i = 0; i < nentries; i++) { 1222 h = sorted[i]; 1223 1224 if (dt_aggwalk_rval(dtp, h, func(&h->dtahe_data, arg)) == -1) { 1225 dt_free(dtp, sorted); 1226 return (-1); 1227 } 1228 } 1229 1230 dt_free(dtp, sorted); 1231 return (0); 1232 } 1233 1234 int 1235 dtrace_aggregate_walk_sorted(dtrace_hdl_t *dtp, 1236 dtrace_aggregate_f *func, void *arg) 1237 { 1238 return (dt_aggregate_walk_sorted(dtp, func, arg, NULL)); 1239 } 1240 1241 int 1242 dtrace_aggregate_walk_keysorted(dtrace_hdl_t *dtp, 1243 dtrace_aggregate_f *func, void *arg) 1244 { 1245 return (dt_aggregate_walk_sorted(dtp, func, 1246 arg, dt_aggregate_varkeycmp)); 1247 } 1248 1249 int 1250 dtrace_aggregate_walk_valsorted(dtrace_hdl_t *dtp, 1251 dtrace_aggregate_f *func, void *arg) 1252 { 1253 return (dt_aggregate_walk_sorted(dtp, func, 1254 arg, dt_aggregate_varvalcmp)); 1255 } 1256 1257 int 1258 dtrace_aggregate_walk_keyvarsorted(dtrace_hdl_t *dtp, 1259 dtrace_aggregate_f *func, void *arg) 1260 { 1261 return (dt_aggregate_walk_sorted(dtp, func, 1262 arg, dt_aggregate_keyvarcmp)); 1263 } 1264 1265 int 1266 dtrace_aggregate_walk_valvarsorted(dtrace_hdl_t *dtp, 1267 dtrace_aggregate_f *func, void *arg) 1268 { 1269 return (dt_aggregate_walk_sorted(dtp, func, 1270 arg, dt_aggregate_valvarcmp)); 1271 } 1272 1273 int 1274 dtrace_aggregate_walk_keyrevsorted(dtrace_hdl_t *dtp, 1275 dtrace_aggregate_f *func, void *arg) 1276 { 1277 return (dt_aggregate_walk_sorted(dtp, func, 1278 arg, dt_aggregate_varkeyrevcmp)); 1279 } 1280 1281 int 1282 dtrace_aggregate_walk_valrevsorted(dtrace_hdl_t *dtp, 1283 dtrace_aggregate_f *func, void *arg) 1284 { 1285 return (dt_aggregate_walk_sorted(dtp, func, 1286 arg, dt_aggregate_varvalrevcmp)); 1287 } 1288 1289 int 1290 dtrace_aggregate_walk_keyvarrevsorted(dtrace_hdl_t *dtp, 1291 dtrace_aggregate_f *func, void *arg) 1292 { 1293 return (dt_aggregate_walk_sorted(dtp, func, 1294 arg, dt_aggregate_keyvarrevcmp)); 1295 } 1296 1297 int 1298 dtrace_aggregate_walk_valvarrevsorted(dtrace_hdl_t *dtp, 1299 dtrace_aggregate_f *func, void *arg) 1300 { 1301 return (dt_aggregate_walk_sorted(dtp, func, 1302 arg, dt_aggregate_valvarrevcmp)); 1303 } 1304 1305 int 1306 dtrace_aggregate_walk_joined(dtrace_hdl_t *dtp, dtrace_aggvarid_t *aggvars, 1307 int naggvars, dtrace_aggregate_walk_joined_f *func, void *arg) 1308 { 1309 dt_aggregate_t *agp = &dtp->dt_aggregate; 1310 dt_ahashent_t *h, **sorted = NULL, ***bundle, **nbundle; 1311 const dtrace_aggdata_t **data; 1312 dt_ahashent_t *zaggdata = NULL; 1313 dt_ahash_t *hash = &agp->dtat_hash; 1314 size_t nentries = 0, nbundles = 0, start, zsize = 0, bundlesize; 1315 dtrace_aggvarid_t max = 0, aggvar; 1316 int rval = -1, *map, *remap = NULL; 1317 int i, j; 1318 dtrace_optval_t sortpos = dtp->dt_options[DTRACEOPT_AGGSORTPOS]; 1319 1320 /* 1321 * If the sorting position is greater than the number of aggregation 1322 * variable IDs, we silently set it to 0. 1323 */ 1324 if (sortpos == DTRACEOPT_UNSET || sortpos >= naggvars) 1325 sortpos = 0; 1326 1327 /* 1328 * First we need to translate the specified aggregation variable IDs 1329 * into a linear map that will allow us to translate an aggregation 1330 * variable ID into its position in the specified aggvars. 1331 */ 1332 for (i = 0; i < naggvars; i++) { 1333 if (aggvars[i] == DTRACE_AGGVARIDNONE || aggvars[i] < 0) 1334 return (dt_set_errno(dtp, EDT_BADAGGVAR)); 1335 1336 if (aggvars[i] > max) 1337 max = aggvars[i]; 1338 } 1339 1340 if ((map = dt_zalloc(dtp, (max + 1) * sizeof (int))) == NULL) 1341 return (-1); 1342 1343 zaggdata = dt_zalloc(dtp, naggvars * sizeof (dt_ahashent_t)); 1344 1345 if (zaggdata == NULL) 1346 goto out; 1347 1348 for (i = 0; i < naggvars; i++) { 1349 int ndx = i + sortpos; 1350 1351 if (ndx >= naggvars) 1352 ndx -= naggvars; 1353 1354 aggvar = aggvars[ndx]; 1355 assert(aggvar <= max); 1356 1357 if (map[aggvar]) { 1358 /* 1359 * We have an aggregation variable that is present 1360 * more than once in the array of aggregation 1361 * variables. While it's unclear why one might want 1362 * to do this, it's legal. To support this construct, 1363 * we will allocate a remap that will indicate the 1364 * position from which this aggregation variable 1365 * should be pulled. (That is, where the remap will 1366 * map from one position to another.) 1367 */ 1368 if (remap == NULL) { 1369 remap = dt_zalloc(dtp, naggvars * sizeof (int)); 1370 1371 if (remap == NULL) 1372 goto out; 1373 } 1374 1375 /* 1376 * Given that the variable is already present, assert 1377 * that following through the mapping and adjusting 1378 * for the sort position yields the same aggregation 1379 * variable ID. 1380 */ 1381 assert(aggvars[(map[aggvar] - 1 + sortpos) % 1382 naggvars] == aggvars[ndx]); 1383 1384 remap[i] = map[aggvar]; 1385 continue; 1386 } 1387 1388 map[aggvar] = i + 1; 1389 } 1390 1391 /* 1392 * We need to take two passes over the data to size our allocation, so 1393 * we'll use the first pass to also fill in the zero-filled data to be 1394 * used to properly format a zero-valued aggregation. 1395 */ 1396 for (h = hash->dtah_all; h != NULL; h = h->dtahe_nextall) { 1397 dtrace_aggvarid_t id; 1398 int ndx; 1399 1400 if ((id = dt_aggregate_aggvarid(h)) > max || !(ndx = map[id])) 1401 continue; 1402 1403 if (zaggdata[ndx - 1].dtahe_size == 0) { 1404 zaggdata[ndx - 1].dtahe_size = h->dtahe_size; 1405 zaggdata[ndx - 1].dtahe_data = h->dtahe_data; 1406 } 1407 1408 nentries++; 1409 } 1410 1411 if (nentries == 0) { 1412 /* 1413 * We couldn't find any entries; there is nothing else to do. 1414 */ 1415 rval = 0; 1416 goto out; 1417 } 1418 1419 /* 1420 * Before we sort the data, we're going to look for any holes in our 1421 * zero-filled data. This will occur if an aggregation variable that 1422 * we are being asked to print has not yet been assigned the result of 1423 * any aggregating action for _any_ tuple. The issue becomes that we 1424 * would like a zero value to be printed for all columns for this 1425 * aggregation, but without any record description, we don't know the 1426 * aggregating action that corresponds to the aggregation variable. To 1427 * try to find a match, we're simply going to lookup aggregation IDs 1428 * (which are guaranteed to be contiguous and to start from 1), looking 1429 * for the specified aggregation variable ID. If we find a match, 1430 * we'll use that. If we iterate over all aggregation IDs and don't 1431 * find a match, then we must be an anonymous enabling. (Anonymous 1432 * enablings can't currently derive either aggregation variable IDs or 1433 * aggregation variable names given only an aggregation ID.) In this 1434 * obscure case (anonymous enabling, multiple aggregation printa() with 1435 * some aggregations not represented for any tuple), our defined 1436 * behavior is that the zero will be printed in the format of the first 1437 * aggregation variable that contains any non-zero value. 1438 */ 1439 for (i = 0; i < naggvars; i++) { 1440 if (zaggdata[i].dtahe_size == 0) { 1441 dtrace_aggvarid_t aggvar; 1442 1443 aggvar = aggvars[(i - sortpos + naggvars) % naggvars]; 1444 assert(zaggdata[i].dtahe_data.dtada_data == NULL); 1445 1446 for (j = DTRACE_AGGIDNONE + 1; ; j++) { 1447 dtrace_aggdesc_t *agg; 1448 dtrace_aggdata_t *aggdata; 1449 1450 if (dt_aggid_lookup(dtp, j, &agg) != 0) 1451 break; 1452 1453 if (agg->dtagd_varid != aggvar) 1454 continue; 1455 1456 /* 1457 * We have our description -- now we need to 1458 * cons up the zaggdata entry for it. 1459 */ 1460 aggdata = &zaggdata[i].dtahe_data; 1461 aggdata->dtada_size = agg->dtagd_size; 1462 aggdata->dtada_desc = agg; 1463 aggdata->dtada_handle = dtp; 1464 (void) dt_epid_lookup(dtp, agg->dtagd_epid, 1465 &aggdata->dtada_edesc, 1466 &aggdata->dtada_pdesc); 1467 aggdata->dtada_normal = 1; 1468 zaggdata[i].dtahe_hashval = 0; 1469 zaggdata[i].dtahe_size = agg->dtagd_size; 1470 break; 1471 } 1472 1473 if (zaggdata[i].dtahe_size == 0) { 1474 caddr_t data; 1475 1476 /* 1477 * We couldn't find this aggregation, meaning 1478 * that we have never seen it before for any 1479 * tuple _and_ this is an anonymous enabling. 1480 * That is, we're in the obscure case outlined 1481 * above. In this case, our defined behavior 1482 * is to format the data in the format of the 1483 * first non-zero aggregation -- of which, of 1484 * course, we know there to be at least one 1485 * (or nentries would have been zero). 1486 */ 1487 for (j = 0; j < naggvars; j++) { 1488 if (zaggdata[j].dtahe_size != 0) 1489 break; 1490 } 1491 1492 assert(j < naggvars); 1493 zaggdata[i] = zaggdata[j]; 1494 1495 data = zaggdata[i].dtahe_data.dtada_data; 1496 assert(data != NULL); 1497 } 1498 } 1499 } 1500 1501 /* 1502 * Now we need to allocate our zero-filled data for use for 1503 * aggregations that don't have a value corresponding to a given key. 1504 */ 1505 for (i = 0; i < naggvars; i++) { 1506 dtrace_aggdata_t *aggdata = &zaggdata[i].dtahe_data; 1507 dtrace_aggdesc_t *aggdesc = aggdata->dtada_desc; 1508 dtrace_recdesc_t *rec; 1509 uint64_t larg; 1510 caddr_t zdata; 1511 1512 zsize = zaggdata[i].dtahe_size; 1513 assert(zsize != 0); 1514 1515 if ((zdata = dt_zalloc(dtp, zsize)) == NULL) { 1516 /* 1517 * If we failed to allocated some zero-filled data, we 1518 * need to zero out the remaining dtada_data pointers 1519 * to prevent the wrong data from being freed below. 1520 */ 1521 for (j = i; j < naggvars; j++) 1522 zaggdata[j].dtahe_data.dtada_data = NULL; 1523 goto out; 1524 } 1525 1526 aggvar = aggvars[(i - sortpos + naggvars) % naggvars]; 1527 1528 /* 1529 * First, the easy bit. To maintain compatibility with 1530 * consumers that pull the compiler-generated ID out of the 1531 * data, we put that ID at the top of the zero-filled data. 1532 */ 1533 rec = &aggdesc->dtagd_rec[0]; 1534 /* LINTED - alignment */ 1535 *((dtrace_aggvarid_t *)(zdata + rec->dtrd_offset)) = aggvar; 1536 1537 rec = &aggdesc->dtagd_rec[aggdesc->dtagd_nrecs - 1]; 1538 1539 /* 1540 * Now for the more complicated part. If (and only if) this 1541 * is an lquantize() aggregating action, zero-filled data is 1542 * not equivalent to an empty record: we must also get the 1543 * parameters for the lquantize(). 1544 */ 1545 if (rec->dtrd_action == DTRACEAGG_LQUANTIZE) { 1546 if (aggdata->dtada_data != NULL) { 1547 /* 1548 * The easier case here is if we actually have 1549 * some prototype data -- in which case we 1550 * manually dig it out of the aggregation 1551 * record. 1552 */ 1553 /* LINTED - alignment */ 1554 larg = *((uint64_t *)(aggdata->dtada_data + 1555 rec->dtrd_offset)); 1556 } else { 1557 /* 1558 * We don't have any prototype data. As a 1559 * result, we know that we _do_ have the 1560 * compiler-generated information. (If this 1561 * were an anonymous enabling, all of our 1562 * zero-filled data would have prototype data 1563 * -- either directly or indirectly.) So as 1564 * gross as it is, we'll grovel around in the 1565 * compiler-generated information to find the 1566 * lquantize() parameters. 1567 */ 1568 dtrace_stmtdesc_t *sdp; 1569 dt_ident_t *aid; 1570 dt_idsig_t *isp; 1571 1572 sdp = (dtrace_stmtdesc_t *)(uintptr_t) 1573 aggdesc->dtagd_rec[0].dtrd_uarg; 1574 aid = sdp->dtsd_aggdata; 1575 isp = (dt_idsig_t *)aid->di_data; 1576 assert(isp->dis_auxinfo != 0); 1577 larg = isp->dis_auxinfo; 1578 } 1579 1580 /* LINTED - alignment */ 1581 *((uint64_t *)(zdata + rec->dtrd_offset)) = larg; 1582 } 1583 1584 aggdata->dtada_data = zdata; 1585 } 1586 1587 /* 1588 * Now that we've dealt with setting up our zero-filled data, we can 1589 * allocate our sorted array, and take another pass over the data to 1590 * fill it. 1591 */ 1592 sorted = dt_alloc(dtp, nentries * sizeof (dt_ahashent_t *)); 1593 1594 if (sorted == NULL) 1595 goto out; 1596 1597 for (h = hash->dtah_all, i = 0; h != NULL; h = h->dtahe_nextall) { 1598 dtrace_aggvarid_t id; 1599 1600 if ((id = dt_aggregate_aggvarid(h)) > max || !map[id]) 1601 continue; 1602 1603 sorted[i++] = h; 1604 } 1605 1606 assert(i == nentries); 1607 1608 /* 1609 * We've loaded our array; now we need to sort by value to allow us 1610 * to create bundles of like value. We're going to acquire the 1611 * dt_qsort_lock here, and hold it across all of our subsequent 1612 * comparison and sorting. 1613 */ 1614 (void) pthread_mutex_lock(&dt_qsort_lock); 1615 1616 qsort(sorted, nentries, sizeof (dt_ahashent_t *), 1617 dt_aggregate_keyvarcmp); 1618 1619 /* 1620 * Now we need to go through and create bundles. Because the number 1621 * of bundles is bounded by the size of the sorted array, we're going 1622 * to reuse the underlying storage. And note that "bundle" is an 1623 * array of pointers to arrays of pointers to dt_ahashent_t -- making 1624 * its type (regrettably) "dt_ahashent_t ***". (Regrettable because 1625 * '*' -- like '_' and 'X' -- should never appear in triplicate in 1626 * an ideal world.) 1627 */ 1628 bundle = (dt_ahashent_t ***)sorted; 1629 1630 for (i = 1, start = 0; i <= nentries; i++) { 1631 if (i < nentries && 1632 dt_aggregate_keycmp(&sorted[i], &sorted[i - 1]) == 0) 1633 continue; 1634 1635 /* 1636 * We have a bundle boundary. Everything from start to 1637 * (i - 1) belongs in one bundle. 1638 */ 1639 assert(i - start <= naggvars); 1640 bundlesize = (naggvars + 2) * sizeof (dt_ahashent_t *); 1641 1642 if ((nbundle = dt_zalloc(dtp, bundlesize)) == NULL) { 1643 (void) pthread_mutex_unlock(&dt_qsort_lock); 1644 goto out; 1645 } 1646 1647 for (j = start; j < i; j++) { 1648 dtrace_aggvarid_t id = dt_aggregate_aggvarid(sorted[j]); 1649 1650 assert(id <= max); 1651 assert(map[id] != 0); 1652 assert(map[id] - 1 < naggvars); 1653 assert(nbundle[map[id] - 1] == NULL); 1654 nbundle[map[id] - 1] = sorted[j]; 1655 1656 if (nbundle[naggvars] == NULL) 1657 nbundle[naggvars] = sorted[j]; 1658 } 1659 1660 for (j = 0; j < naggvars; j++) { 1661 if (nbundle[j] != NULL) 1662 continue; 1663 1664 /* 1665 * Before we assume that this aggregation variable 1666 * isn't present (and fall back to using the 1667 * zero-filled data allocated earlier), check the 1668 * remap. If we have a remapping, we'll drop it in 1669 * here. Note that we might be remapping an 1670 * aggregation variable that isn't present for this 1671 * key; in this case, the aggregation data that we 1672 * copy will point to the zeroed data. 1673 */ 1674 if (remap != NULL && remap[j]) { 1675 assert(remap[j] - 1 < j); 1676 assert(nbundle[remap[j] - 1] != NULL); 1677 nbundle[j] = nbundle[remap[j] - 1]; 1678 } else { 1679 nbundle[j] = &zaggdata[j]; 1680 } 1681 } 1682 1683 bundle[nbundles++] = nbundle; 1684 start = i; 1685 } 1686 1687 /* 1688 * Now we need to re-sort based on the first value. 1689 */ 1690 dt_aggregate_qsort(dtp, bundle, nbundles, sizeof (dt_ahashent_t **), 1691 dt_aggregate_bundlecmp); 1692 1693 (void) pthread_mutex_unlock(&dt_qsort_lock); 1694 1695 /* 1696 * We're done! Now we just need to go back over the sorted bundles, 1697 * calling the function. 1698 */ 1699 data = alloca((naggvars + 1) * sizeof (dtrace_aggdata_t *)); 1700 1701 for (i = 0; i < nbundles; i++) { 1702 for (j = 0; j < naggvars; j++) 1703 data[j + 1] = NULL; 1704 1705 for (j = 0; j < naggvars; j++) { 1706 int ndx = j - sortpos; 1707 1708 if (ndx < 0) 1709 ndx += naggvars; 1710 1711 assert(bundle[i][ndx] != NULL); 1712 data[j + 1] = &bundle[i][ndx]->dtahe_data; 1713 } 1714 1715 for (j = 0; j < naggvars; j++) 1716 assert(data[j + 1] != NULL); 1717 1718 /* 1719 * The representative key is the last element in the bundle. 1720 * Assert that we have one, and then set it to be the first 1721 * element of data. 1722 */ 1723 assert(bundle[i][j] != NULL); 1724 data[0] = &bundle[i][j]->dtahe_data; 1725 1726 if ((rval = func(data, naggvars + 1, arg)) == -1) 1727 goto out; 1728 } 1729 1730 rval = 0; 1731 out: 1732 for (i = 0; i < nbundles; i++) 1733 dt_free(dtp, bundle[i]); 1734 1735 if (zaggdata != NULL) { 1736 for (i = 0; i < naggvars; i++) 1737 dt_free(dtp, zaggdata[i].dtahe_data.dtada_data); 1738 } 1739 1740 dt_free(dtp, zaggdata); 1741 dt_free(dtp, sorted); 1742 dt_free(dtp, remap); 1743 dt_free(dtp, map); 1744 1745 return (rval); 1746 } 1747 1748 int 1749 dtrace_aggregate_print(dtrace_hdl_t *dtp, FILE *fp, 1750 dtrace_aggregate_walk_f *func) 1751 { 1752 dt_print_aggdata_t pd; 1753 1754 pd.dtpa_dtp = dtp; 1755 pd.dtpa_fp = fp; 1756 pd.dtpa_allunprint = 1; 1757 1758 if (func == NULL) 1759 func = dtrace_aggregate_walk_sorted; 1760 1761 if ((*func)(dtp, dt_print_agg, &pd) == -1) 1762 return (dt_set_errno(dtp, dtp->dt_errno)); 1763 1764 return (0); 1765 } 1766 1767 void 1768 dtrace_aggregate_clear(dtrace_hdl_t *dtp) 1769 { 1770 dt_aggregate_t *agp = &dtp->dt_aggregate; 1771 dt_ahash_t *hash = &agp->dtat_hash; 1772 dt_ahashent_t *h; 1773 dtrace_aggdata_t *data; 1774 dtrace_aggdesc_t *aggdesc; 1775 dtrace_recdesc_t *rec; 1776 int i, max_cpus = agp->dtat_maxcpu; 1777 1778 for (h = hash->dtah_all; h != NULL; h = h->dtahe_nextall) { 1779 aggdesc = h->dtahe_data.dtada_desc; 1780 rec = &aggdesc->dtagd_rec[aggdesc->dtagd_nrecs - 1]; 1781 data = &h->dtahe_data; 1782 1783 bzero(&data->dtada_data[rec->dtrd_offset], rec->dtrd_size); 1784 1785 if (data->dtada_percpu == NULL) 1786 continue; 1787 1788 for (i = 0; i < max_cpus; i++) 1789 bzero(data->dtada_percpu[i], rec->dtrd_size); 1790 } 1791 } 1792 1793 void 1794 dt_aggregate_destroy(dtrace_hdl_t *dtp) 1795 { 1796 dt_aggregate_t *agp = &dtp->dt_aggregate; 1797 dt_ahash_t *hash = &agp->dtat_hash; 1798 dt_ahashent_t *h, *next; 1799 dtrace_aggdata_t *aggdata; 1800 int i, max_cpus = agp->dtat_maxcpu; 1801 1802 if (hash->dtah_hash == NULL) { 1803 assert(hash->dtah_all == NULL); 1804 } else { 1805 free(hash->dtah_hash); 1806 1807 for (h = hash->dtah_all; h != NULL; h = next) { 1808 next = h->dtahe_nextall; 1809 1810 aggdata = &h->dtahe_data; 1811 1812 if (aggdata->dtada_percpu != NULL) { 1813 for (i = 0; i < max_cpus; i++) 1814 free(aggdata->dtada_percpu[i]); 1815 free(aggdata->dtada_percpu); 1816 } 1817 1818 free(aggdata->dtada_data); 1819 free(h); 1820 } 1821 1822 hash->dtah_hash = NULL; 1823 hash->dtah_all = NULL; 1824 hash->dtah_size = 0; 1825 } 1826 1827 free(agp->dtat_buf.dtbd_data); 1828 free(agp->dtat_cpus); 1829 } 1830