xref: /titanic_41/usr/src/lib/libdiskmgt/common/libdiskmgt.h (revision 1f09d37cbb915965c40754f238d96e861a30213e)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  * Copyright (c) 2012, Joyent, Inc. All rights reserved.
25  */
26 
27 #ifndef _LIBDISKMGT_H
28 #define	_LIBDISKMGT_H
29 
30 #ifdef __cplusplus
31 extern "C" {
32 #endif
33 
34 #include <libnvpair.h>
35 #include <sys/swap.h>
36 
37 
38 /*
39  * Disk Management Library
40  *
41  * This library provides a common way to gather information about a system's
42  * disks, controllers, and related components.
43  *
44  *
45  * THREADS
46  * -------
47  *
48  * In general all of the functions are thread safe, however there are some
49  * specific considerations for getting events.  The dm_get_event function may
50  * block the calling thread if no event is currently available.  If another
51  * thread calls dm_get_event while a thread is already blocked in this function,
52  * the second thread will also block.  When an event arrives and multiple
53  * threads are waiting for events, it is undefined which thread will be
54  * unblocked and receive the event.  If a callback is used for handling events,
55  * this is equivalent to the dm_get_event function, so mixing callbacks and
56  * dm_get_event is also nondeterministic.
57  *
58  *
59  * ERRORS
60  * ------
61  *
62  * In general all of the functions take an errno pointer.  This is an integer
63  * that will contain 0 if the function succeeded or contains an errno (see
64  * errno.h) if there was an error.  If the function returns some data, that
65  * return data will generally be null if an error occured (see the API comment
66  * for the specific function for details).  Many of the functions take a
67  * descriptor and provide more information for that descriptor.  These functions
68  * may return an error if the object was removed between the call which obtained
69  * the descriptor and the call to get more information about the object (errno
70  * will be ENODEV).  Only a few of the possible errno values will be returned;
71  * typically:
72  *     EPERM       not super-user
73  *     ENOMEM      not enough memory
74  *     ENODEV      no such device
75  *     EINVAL      invalid argument
76  *     ENOENT      no event queue has been created
77  *
78  * Many of the functions require the application to be running as root in order
79  * to get complete information.  EPERM will be returned if the application is
80  * not running as root.  However, not all of the functions have this requirement
81  * (i.e. event handling).
82  *
83  * It is possible for the system to run out of memory while receiving events.
84  * Since event receipt is asyncronous from the dm_get_event call there may not
85  * be a thread waiting when the event occurs and ENOMEM is detected.  In this
86  * case the event will be lost.  The first call to dm_get_event following this
87  * condition will immediately return ENOMEM, even if events are queued.
88  * Subsequent calls can return events.  The dm_get_event call will clear the
89  * pending ENOMEM condition.  There is no way to know how many events were lost
90  * when this situation occurs.  If a thread is waiting when the event arrives
91  * and the ENOMEM condition occurs, the call will also return with ENOMEM.
92  * There is no way to determine if the system ran out of memory before the
93  * dm_get_event call or while the thread was blocked in the dm_get_event call
94  * since both conditions cause dm_get_event to return ENOMEM.
95  *
96  *
97  * MEMORY MANAGEMENT
98  * -----------------
99  *
100  * Most of the functions that return data are returning memory that has been
101  * allocated and must be freed by the application when no longer needed.  The
102  * application should call the proper free function to free the memory.  Most of
103  * the functions return either a nvlist or an array of descriptors.  The normal
104  * nvlist function (nvlist_free; see libnvpair(3LIB)) can be used to free the
105  * simple nvlists.  Other functions are provided to free the more complex data
106  * structures.
107  *
108  * The following list shows the functions that return allocated memory and the
109  * corresponding function to free the memory:
110  *     dm_get_descriptors            dm_free_descriptors
111  *     dm_get_associated_descriptors dm_free_descriptors
112  *     dm_get_descriptor_by_name     dm_free_descriptor
113  *     dm_get_name                   dm_free_name
114  *     dm_get_attributes             nvlist_free
115  *     dm_get_stats	          nvlist_free
116  *     dm_get_event                  nvlist_free
117  *
118  *
119  * EVENTS
120  * ------
121  *
122  * Event information is returned as a nvlist.  It may be possible to return more
123  * information about events over time, especially information about what has
124  * changed.  However, that may not always be the case, so by using an nvlist we
125  * have a very generic event indication.  At a minimum the event will return the
126  * name of the device, the type of device (see dm_desc_type_t) and the type of
127  * event.  The event type is a string which can currently be; add, remove,
128  * change.
129  *
130  * If a drive goes up or down this could be returned as event type "change".
131  * The application could get the drive information to see that the "status"
132  * attribute has changed value (ideally the event would include an attribute
133  * with the name of the changed attribute as the value).  Although the API can
134  * return events for all drive related changes, events will not necessarily be
135  * delivered for all changes unless the system generates those events.
136  *
137  *
138  * Controller/HBAs
139  * ---------------
140  *
141  * In general the API means "the parent node of the drive in the device tree"
142  * where the word "controller" is used.  This can actually be either the HBA or
143  * the drive controller depending on the type of the drive.
144  *
145  * Drives can be connected to their controller(s) in three different ways:
146  *     single controller
147  *     multiple controllers
148  *     multiple controllers with mpxio
149  * These cases will lead to different information being available for the
150  * configuration.  The two interesting cases are multi-path with and without
151  * mpxio.  With mpxio the drive will have a unique name and a single controller
152  * (scsi_vhci).  The physical controllers, the paths to the drive, can be
153  * obtained by calling dm_get_associated_descriptors with a drive descriptor and
154  * a type of DM_PATH.  This will only return these physical paths when MPXIO, or
155  * possibly some future similar feature, is controlling the drive.
156  *
157  * Without mpxio the drive does not have a unique public name (in all cases the
158  * alias(es) of the drive can be determined by calling
159  * dm_get_associated_descriptors to get the DM_ALIAS descriptors.  There will be
160  * more than one controller returned from dm_get_associated_descriptors when
161  * called with a type of DM_CONTROLLER.  The controllers for each of the aliases
162  * will be returned in the same order as the aliases descriptors.  For example,
163  * a drive with two paths has the aliases c5t3d2 and c7t1d0.  There will be two
164  * controllers returned; the first corresponds to c5 and the second corresponds
165  * to c7.
166  *
167  * In the multi-path, non-mpxio case the drive has more than one alias.
168  * Although most of the drive attributes are represented on the drive (see
169  * dm_get_attributes) there can be some different attributes for the different
170  * aliases for the drive.  Use dm_get_associated_descriptors to get the DM_ALIAS
171  * descriptors which can then be used to obtain these attributes.  Use of this
172  * algorithm is not restricted to the multi-path, non-mpxio case.  For example,
173  * it can be used to get the target/lun for a SCSI drive with a single path.
174  */
175 
176 /*
177  * Holds all the data regarding the device.
178  * Private to libdiskmgt. Must use dm_xxx functions to set/get data.
179  */
180 typedef uint64_t  dm_descriptor_t;
181 
182 typedef enum {
183 	DM_WHO_MKFS = 0,
184 	DM_WHO_ZPOOL,
185 	DM_WHO_ZPOOL_FORCE,
186 	DM_WHO_FORMAT,
187 	DM_WHO_SWAP,
188 	DM_WHO_DUMP,
189 	DM_WHO_ZPOOL_SPARE
190 } dm_who_type_t;
191 
192 /*
193  * The API uses a "descriptor" to identify the managed objects such as drives,
194  * controllers, media, slices, partitions, paths and buses.  The descriptors are
195  * opaque and are only returned or used as parameters to the other functions in
196  * the API.  The descriptor definition is a typedef to dm_descriptor_t.
197  *
198  * Applications call either the dm_get_descriptors or
199  * dm_get_associated_descriptors function to obtain a list of descriptors of a
200  * specific type.  The application specifies the desired type from the following
201  * enumeration:
202  */
203 typedef enum {
204     DM_DRIVE = 0,
205     DM_CONTROLLER,
206     DM_MEDIA,
207     DM_SLICE,
208     DM_PARTITION,
209     DM_PATH,
210     DM_ALIAS,
211     DM_BUS
212 } dm_desc_type_t;
213 
214 /*
215  * These descriptors are associated with each other in the following way:
216  *
217  *                      alias                 partition
218  *     _                    \                /   |
219  *    / \                    \              /    |
220  *    \ /                     \            /     |
221  *    bus --- controller --- drive --- media     |
222  *                     |      /            \     |
223  *                     |     /              \    |
224  *                     |    /                \   |
225  *                      path                  slice
226  *
227  * The dm_get_associated_descriptors function can be used get the descriptors
228  * associated with a given descriptor.  The dm_get_associated_types function can
229  * be used to find the types that can be associated with a given type.
230  *
231  * The attributes and values for these objects are described using a list of
232  * name/value pairs (see libnvpair(3LIB) and the specific comments for each
233  * function in the API section of this document).
234  *
235  * Drives and media have a type which are defined as the following enumerations.
236  * There could be additional types added to these enumerations as new drive and
237  * media types are supported by the system.
238  */
239 
240 typedef enum {
241     DM_DT_UNKNOWN = 0,
242     DM_DT_FIXED,
243     DM_DT_ZIP,
244     DM_DT_JAZ,
245     DM_DT_FLOPPY,
246     DM_DT_MO_ERASABLE,
247     DM_DT_MO_WRITEONCE,
248     DM_DT_AS_MO,
249     DM_DT_CDROM,
250     DM_DT_CDR,
251     DM_DT_CDRW,
252     DM_DT_DVDROM,
253     DM_DT_DVDR,
254     DM_DT_DVDRAM,
255     DM_DT_DVDRW,
256     DM_DT_DDCDROM,
257     DM_DT_DDCDR,
258     DM_DT_DDCDRW
259 } dm_drive_type_t;
260 
261 typedef enum {
262     DM_MT_UNKNOWN = 0,
263     DM_MT_FIXED,
264     DM_MT_FLOPPY,
265     DM_MT_CDROM,
266     DM_MT_ZIP,
267     DM_MT_JAZ,
268     DM_MT_CDR,
269     DM_MT_CDRW,
270     DM_MT_DVDROM,
271     DM_MT_DVDR,
272     DM_MT_DVDRAM,
273     DM_MT_MO_ERASABLE,
274     DM_MT_MO_WRITEONCE,
275     DM_MT_AS_MO
276 } dm_media_type_t;
277 
278 #define	DM_FILTER_END	-1
279 
280 /*
281  * The dm_get_stats function takes a stat_type argument for the specific sample
282  * to get for the descriptor.  The following enums specify the drive and slice
283  * stat types.
284  */
285 /* drive stat name */
286 typedef enum {
287     DM_DRV_STAT_PERFORMANCE = 0,
288     DM_DRV_STAT_DIAGNOSTIC,
289     DM_DRV_STAT_TEMPERATURE
290 } dm_drive_stat_t;
291 
292 /* slice stat name */
293 typedef enum {
294     DM_SLICE_STAT_USE = 0
295 } dm_slice_stat_t;
296 
297 /* partition type */
298 typedef enum {
299 	DM_PRIMARY = 0,
300 	DM_EXTENDED,
301 	DM_LOGICAL
302 } dm_partition_type_t;
303 
304 /* attribute definitions */
305 
306 /* drive */
307 #define	DM_DISK_UP		1
308 #define	DM_DISK_DOWN		0
309 
310 #define	DM_CLUSTERED		"clustered"
311 #define	DM_DRVTYPE		"drvtype"
312 #define	DM_FAILING		"failing"
313 #define	DM_LOADED		"loaded"	/* also in media */
314 #define	DM_NDNRERRS		"ndevice_not_ready_errors"
315 #define	DM_NBYTESREAD		"nbytes_read"
316 #define	DM_NBYTESWRITTEN	"nbytes_written"
317 #define	DM_NHARDERRS		"nhard_errors"
318 #define	DM_NILLREQERRS		"nillegal_req_errors"
319 #define	DM_NMEDIAERRS		"nmedia_errors"
320 #define	DM_NNODEVERRS		"nno_dev_errors"
321 #define	DM_NREADOPS		"nread_ops"
322 #define	DM_NRECOVERRS		"nrecoverable_errors"
323 #define	DM_NSOFTERRS		"nsoft_errors"
324 #define	DM_NTRANSERRS		"ntransport_errors"
325 #define	DM_NWRITEOPS		"nwrite_ops"
326 #define	DM_OPATH		"opath"
327 #define	DM_PRODUCT_ID		"product_id"
328 #define	DM_REMOVABLE		"removable"	/* also in media */
329 #define	DM_RPM			"rpm"
330 #define	DM_SOLIDSTATE		"solid_state"
331 #define	DM_STATUS		"status"
332 #define	DM_SYNC_SPEED		"sync_speed"
333 #define	DM_TEMPERATURE		"temperature"
334 #define	DM_VENDOR_ID		"vendor_id"
335 #define	DM_WIDE			"wide"		/* also on controller */
336 #define	DM_WWN			"wwn"
337 
338 /* bus */
339 #define	DM_BTYPE		"btype"
340 #define	DM_CLOCK		"clock"		/* also on controller */
341 #define	DM_PNAME		"pname"
342 
343 /* controller */
344 #define	DM_FAST			"fast"
345 #define	DM_FAST20		"fast20"
346 #define	DM_FAST40		"fast40"
347 #define	DM_FAST80		"fast80"
348 #define	DM_MULTIPLEX		"multiplex"
349 #define	DM_PATH_STATE		"path_state"
350 
351 #define	DM_CTYPE_ATA		"ata"
352 #define	DM_CTYPE_SCSI		"scsi"
353 #define	DM_CTYPE_FIBRE		"fibre channel"
354 #define	DM_CTYPE_USB		"usb"
355 #define	DM_CTYPE_UNKNOWN	"unknown"
356 
357 /* media */
358 #define	DM_BLOCKSIZE		"blocksize"
359 #define	DM_FDISK		"fdisk"
360 #define	DM_MTYPE		"mtype"
361 #define	DM_NACTUALCYLINDERS	"nactual_cylinders"
362 #define	DM_NALTCYLINDERS	"nalt_cylinders"
363 #define	DM_NCYLINDERS		"ncylinders"
364 #define	DM_NHEADS		"nheads"
365 #define	DM_NPHYSCYLINDERS	"nphys_cylinders"
366 #define	DM_NSECTORS		"nsectors"	/* also in partition */
367 #define	DM_SIZE			"size"		/* also in slice */
368 #define	DM_NACCESSIBLE		"naccessible"
369 #define	DM_LABEL		"label"
370 
371 /* partition */
372 #define	DM_BCYL			"bcyl"
373 #define	DM_BHEAD		"bhead"
374 #define	DM_BOOTID		"bootid"
375 #define	DM_BSECT		"bsect"
376 #define	DM_ECYL			"ecyl"
377 #define	DM_EHEAD		"ehead"
378 #define	DM_ESECT		"esect"
379 #define	DM_PTYPE		"ptype" /* this references the partition id */
380 #define	DM_PARTITION_TYPE	"part_type" /* primary, extended, logical */
381 #define	DM_RELSECT		"relsect"
382 
383 /* slice */
384 #define	DM_DEVICEID		"deviceid"
385 #define	DM_DEVT			"devt"
386 #define	DM_INDEX		"index"
387 #define	DM_EFI_NAME		"name"
388 #define	DM_MOUNTPOINT		"mountpoint"
389 #define	DM_LOCALNAME		"localname"
390 #define	DM_START		"start"
391 #define	DM_TAG			"tag"
392 #define	DM_FLAG			"flag"
393 #define	DM_EFI			"efi"	/* also on media */
394 #define	DM_USED_BY		"used_by"
395 #define	DM_USED_NAME		"used_name"
396 #define	DM_USE_MOUNT		"mount"
397 #define	DM_USE_SVM		"svm"
398 #define	DM_USE_LU		"lu"
399 #define	DM_USE_DUMP		"dump"
400 #define	DM_USE_VXVM		"vxvm"
401 #define	DM_USE_FS		"fs"
402 #define	DM_USE_VFSTAB		"vfstab"
403 #define	DM_USE_EXPORTED_ZPOOL	"exported_zpool"
404 #define	DM_USE_ACTIVE_ZPOOL	"active_zpool"
405 #define	DM_USE_SPARE_ZPOOL	"spare_zpool"
406 #define	DM_USE_L2CACHE_ZPOOL	"l2cache_zpool"
407 
408 /* event */
409 #define	DM_EV_NAME		"name"
410 #define	DM_EV_DTYPE		"edtype"
411 #define	DM_EV_TYPE		"evtype"
412 #define	DM_EV_TADD		"add"
413 #define	DM_EV_TREMOVE		"remove"
414 #define	DM_EV_TCHANGE		"change"
415 
416 /* findisks */
417 #define	DM_CTYPE		"ctype"
418 #define	DM_LUN			"lun"
419 #define	DM_TARGET		"target"
420 
421 #define	NOINUSE_SET	getenv("NOINUSE_CHECK") != NULL
422 
423 void			dm_free_descriptors(dm_descriptor_t *desc_list);
424 void			dm_free_descriptor(dm_descriptor_t desc);
425 void			dm_free_name(char *name);
426 void			dm_free_swapentries(swaptbl_t *);
427 
428 dm_descriptor_t		*dm_get_descriptors(dm_desc_type_t type, int filter[],
429 			    int *errp);
430 dm_descriptor_t		*dm_get_associated_descriptors(dm_descriptor_t desc,
431 			    dm_desc_type_t type, int *errp);
432 dm_desc_type_t		*dm_get_associated_types(dm_desc_type_t type);
433 dm_descriptor_t		dm_get_descriptor_by_name(dm_desc_type_t desc_type,
434 			    char *name, int *errp);
435 char			*dm_get_name(dm_descriptor_t desc, int *errp);
436 dm_desc_type_t		dm_get_type(dm_descriptor_t desc);
437 nvlist_t		*dm_get_attributes(dm_descriptor_t desc, int *errp);
438 nvlist_t		*dm_get_stats(dm_descriptor_t desc, int stat_type,
439 			    int *errp);
440 void			dm_init_event_queue(void(*callback)(nvlist_t *, int),
441 			    int *errp);
442 nvlist_t		*dm_get_event(int *errp);
443 void			dm_get_slices(char *drive, dm_descriptor_t **slices,
444 			    int *errp);
445 void			dm_get_slice_stats(char *slice, nvlist_t **dev_stats,
446 			    int *errp);
447 int			dm_get_swapentries(swaptbl_t **, int *);
448 void			dm_get_usage_string(char *who, char *data, char **msg);
449 int			dm_inuse(char *dev_name, char **msg, dm_who_type_t who,
450 			    int *errp);
451 int			dm_inuse_swap(const char *dev_name, int *errp);
452 int			dm_isoverlapping(char *dev_name, char **msg, int *errp);
453 
454 #ifdef __cplusplus
455 }
456 #endif
457 
458 #endif /* _LIBDISKMGT_H */
459