1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License, Version 1.0 only 6 * (the "License"). You may not use this file except in compliance 7 * with the License. 8 * 9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 10 * or http://www.opensolaris.org/os/licensing. 11 * See the License for the specific language governing permissions 12 * and limitations under the License. 13 * 14 * When distributing Covered Code, include this CDDL HEADER in each 15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 16 * If applicable, add the following below this CDDL HEADER, with the 17 * fields enclosed by brackets "[]" replaced with your own identifying 18 * information: Portions Copyright [yyyy] [name of copyright owner] 19 * 20 * CDDL HEADER END 21 */ 22 /* 23 * Copyright 2003 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #include <sys/types.h> 28 #include <sys/stat.h> 29 #include <sys/mman.h> 30 #include <ctf_impl.h> 31 #include <unistd.h> 32 #include <fcntl.h> 33 #include <errno.h> 34 #include <dlfcn.h> 35 #include <gelf.h> 36 37 #ifdef _LP64 38 static const char *_libctf_zlib = "/usr/lib/64/libz.so.1"; 39 #else 40 static const char *_libctf_zlib = "/usr/lib/libz.so.1"; 41 #endif 42 43 static struct { 44 int (*z_uncompress)(uchar_t *, ulong_t *, const uchar_t *, ulong_t); 45 const char *(*z_error)(int); 46 void *z_dlp; 47 } zlib; 48 49 static size_t _PAGESIZE; 50 static size_t _PAGEMASK; 51 52 #pragma init(_libctf_init) 53 void 54 _libctf_init(void) 55 { 56 const char *p = getenv("LIBCTF_DECOMPRESSOR"); 57 58 if (p != NULL) 59 _libctf_zlib = p; /* use alternate decompression library */ 60 61 _libctf_debug = getenv("LIBCTF_DEBUG") != NULL; 62 63 _PAGESIZE = getpagesize(); 64 _PAGEMASK = ~(_PAGESIZE - 1); 65 } 66 67 /* 68 * Attempt to dlopen the decompression library and locate the symbols of 69 * interest that we will need to call. This information in cached so 70 * that multiple calls to ctf_bufopen() do not need to reopen the library. 71 */ 72 void * 73 ctf_zopen(int *errp) 74 { 75 ctf_dprintf("decompressing CTF data using %s\n", _libctf_zlib); 76 77 if (zlib.z_dlp != NULL) 78 return (zlib.z_dlp); /* library is already loaded */ 79 80 if (access(_libctf_zlib, R_OK) == -1) 81 return (ctf_set_open_errno(errp, ECTF_ZMISSING)); 82 83 if ((zlib.z_dlp = dlopen(_libctf_zlib, RTLD_LAZY | RTLD_LOCAL)) == NULL) 84 return (ctf_set_open_errno(errp, ECTF_ZINIT)); 85 86 zlib.z_uncompress = (int (*)()) dlsym(zlib.z_dlp, "uncompress"); 87 zlib.z_error = (const char *(*)()) dlsym(zlib.z_dlp, "zError"); 88 89 if (zlib.z_uncompress == NULL || zlib.z_error == NULL) { 90 (void) dlclose(zlib.z_dlp); 91 bzero(&zlib, sizeof (zlib)); 92 return (ctf_set_open_errno(errp, ECTF_ZINIT)); 93 } 94 95 return (zlib.z_dlp); 96 } 97 98 /* 99 * The ctf_bufopen() routine calls these subroutines, defined by <sys/zmod.h>, 100 * which we then patch through to the functions in the decompression library. 101 */ 102 int 103 z_uncompress(void *dst, size_t *dstlen, const void *src, size_t srclen) 104 { 105 return (zlib.z_uncompress(dst, (ulong_t *)dstlen, src, srclen)); 106 } 107 108 const char * 109 z_strerror(int err) 110 { 111 return (zlib.z_error(err)); 112 } 113 114 /* 115 * Convert a 32-bit ELF file header into GElf. 116 */ 117 static void 118 ehdr_to_gelf(const Elf32_Ehdr *src, GElf_Ehdr *dst) 119 { 120 bcopy(src->e_ident, dst->e_ident, EI_NIDENT); 121 dst->e_type = src->e_type; 122 dst->e_machine = src->e_machine; 123 dst->e_version = src->e_version; 124 dst->e_entry = (Elf64_Addr)src->e_entry; 125 dst->e_phoff = (Elf64_Off)src->e_phoff; 126 dst->e_shoff = (Elf64_Off)src->e_shoff; 127 dst->e_flags = src->e_flags; 128 dst->e_ehsize = src->e_ehsize; 129 dst->e_phentsize = src->e_phentsize; 130 dst->e_phnum = src->e_phnum; 131 dst->e_shentsize = src->e_shentsize; 132 dst->e_shnum = src->e_shnum; 133 dst->e_shstrndx = src->e_shstrndx; 134 } 135 136 /* 137 * Convert a 32-bit ELF section header into GElf. 138 */ 139 static void 140 shdr_to_gelf(const Elf32_Shdr *src, GElf_Shdr *dst) 141 { 142 dst->sh_name = src->sh_name; 143 dst->sh_type = src->sh_type; 144 dst->sh_flags = src->sh_flags; 145 dst->sh_addr = src->sh_addr; 146 dst->sh_offset = src->sh_offset; 147 dst->sh_size = src->sh_size; 148 dst->sh_link = src->sh_link; 149 dst->sh_info = src->sh_info; 150 dst->sh_addralign = src->sh_addralign; 151 dst->sh_entsize = src->sh_entsize; 152 } 153 154 /* 155 * In order to mmap a section from the ELF file, we must round down sh_offset 156 * to the previous page boundary, and mmap the surrounding page. We store 157 * the pointer to the start of the actual section data back into sp->cts_data. 158 */ 159 const void * 160 ctf_sect_mmap(ctf_sect_t *sp, int fd) 161 { 162 size_t pageoff = sp->cts_offset & ~_PAGEMASK; 163 164 caddr_t base = mmap64(NULL, sp->cts_size + pageoff, PROT_READ, 165 MAP_PRIVATE, fd, sp->cts_offset & _PAGEMASK); 166 167 if (base != MAP_FAILED) 168 sp->cts_data = base + pageoff; 169 170 return (base); 171 } 172 173 /* 174 * Since sp->cts_data has the adjusted offset, we have to again round down 175 * to get the actual mmap address and round up to get the size. 176 */ 177 void 178 ctf_sect_munmap(const ctf_sect_t *sp) 179 { 180 uintptr_t addr = (uintptr_t)sp->cts_data; 181 uintptr_t pageoff = addr & ~_PAGEMASK; 182 183 (void) munmap((void *)(addr - pageoff), sp->cts_size + pageoff); 184 } 185 186 /* 187 * Open the specified file descriptor and return a pointer to a CTF container. 188 * The file can be either an ELF file or raw CTF file. The caller is 189 * responsible for closing the file descriptor when it is no longer needed. 190 */ 191 ctf_file_t * 192 ctf_fdopen(int fd, int *errp) 193 { 194 ctf_sect_t ctfsect, symsect, strsect; 195 ctf_file_t *fp = NULL; 196 197 struct stat64 st; 198 ssize_t nbytes; 199 200 union { 201 ctf_preamble_t ctf; 202 Elf32_Ehdr e32; 203 GElf_Ehdr e64; 204 } hdr; 205 206 bzero(&ctfsect, sizeof (ctf_sect_t)); 207 bzero(&symsect, sizeof (ctf_sect_t)); 208 bzero(&strsect, sizeof (ctf_sect_t)); 209 bzero(&hdr.ctf, sizeof (hdr)); 210 211 if (fstat64(fd, &st) == -1) 212 return (ctf_set_open_errno(errp, errno)); 213 214 if ((nbytes = pread64(fd, &hdr.ctf, sizeof (hdr), 0)) <= 0) 215 return (ctf_set_open_errno(errp, nbytes < 0? errno : ECTF_FMT)); 216 217 /* 218 * If we have read enough bytes to form a CTF header and the magic 219 * string matches, attempt to interpret the file as raw CTF. 220 */ 221 if (nbytes >= sizeof (ctf_preamble_t) && 222 hdr.ctf.ctp_magic == CTF_MAGIC) { 223 if (hdr.ctf.ctp_version > CTF_VERSION) 224 return (ctf_set_open_errno(errp, ECTF_CTFVERS)); 225 226 ctfsect.cts_data = mmap64(NULL, st.st_size, PROT_READ, 227 MAP_PRIVATE, fd, 0); 228 229 if (ctfsect.cts_data == MAP_FAILED) 230 return (ctf_set_open_errno(errp, errno)); 231 232 ctfsect.cts_name = _CTF_SECTION; 233 ctfsect.cts_type = SHT_PROGBITS; 234 ctfsect.cts_flags = SHF_ALLOC; 235 ctfsect.cts_size = (size_t)st.st_size; 236 ctfsect.cts_entsize = 1; 237 ctfsect.cts_offset = 0; 238 239 if ((fp = ctf_bufopen(&ctfsect, NULL, NULL, errp)) == NULL) 240 ctf_sect_munmap(&ctfsect); 241 242 return (fp); 243 } 244 245 /* 246 * If we have read enough bytes to form an ELF header and the magic 247 * string matches, attempt to interpret the file as an ELF file. We 248 * do our own largefile ELF processing, and convert everything to 249 * GElf structures so that clients can operate on any data model. 250 */ 251 if (nbytes >= sizeof (Elf32_Ehdr) && 252 bcmp(&hdr.e32.e_ident[EI_MAG0], ELFMAG, SELFMAG) == 0) { 253 #ifdef _BIG_ENDIAN 254 uchar_t order = ELFDATA2MSB; 255 #else 256 uchar_t order = ELFDATA2LSB; 257 #endif 258 GElf_Half i, n; 259 GElf_Shdr *sp; 260 261 void *strs_map; 262 size_t strs_mapsz; 263 const char *strs; 264 265 if (hdr.e32.e_ident[EI_DATA] != order) 266 return (ctf_set_open_errno(errp, ECTF_ENDIAN)); 267 if (hdr.e32.e_version != EV_CURRENT) 268 return (ctf_set_open_errno(errp, ECTF_ELFVERS)); 269 270 if (hdr.e32.e_ident[EI_CLASS] == ELFCLASS64) { 271 if (nbytes < sizeof (GElf_Ehdr)) 272 return (ctf_set_open_errno(errp, ECTF_FMT)); 273 } else { 274 Elf32_Ehdr e32 = hdr.e32; 275 ehdr_to_gelf(&e32, &hdr.e64); 276 } 277 278 if (hdr.e64.e_shstrndx >= hdr.e64.e_shnum) 279 return (ctf_set_open_errno(errp, ECTF_CORRUPT)); 280 281 n = hdr.e64.e_shnum; 282 nbytes = sizeof (GElf_Shdr) * n; 283 284 if ((sp = malloc(nbytes)) == NULL) 285 return (ctf_set_open_errno(errp, errno)); 286 287 /* 288 * Read in and convert to GElf the array of Shdr structures 289 * from e_shoff so we can locate sections of interest. 290 */ 291 if (hdr.e32.e_ident[EI_CLASS] == ELFCLASS32) { 292 Elf32_Shdr *sp32; 293 294 nbytes = sizeof (Elf32_Shdr) * n; 295 296 if ((sp32 = malloc(nbytes)) == NULL || pread64(fd, 297 sp32, nbytes, hdr.e64.e_shoff) != nbytes) { 298 free(sp); 299 return (ctf_set_open_errno(errp, errno)); 300 } 301 302 for (i = 0; i < n; i++) 303 shdr_to_gelf(&sp32[i], &sp[i]); 304 305 free(sp32); 306 307 } else if (pread64(fd, sp, nbytes, hdr.e64.e_shoff) != nbytes) { 308 free(sp); 309 return (ctf_set_open_errno(errp, errno)); 310 } 311 312 /* 313 * Now mmap the section header strings section so that we can 314 * perform string comparison on the section names. 315 */ 316 strs_mapsz = sp[hdr.e64.e_shstrndx].sh_size + 317 (sp[hdr.e64.e_shstrndx].sh_offset & ~_PAGEMASK); 318 319 strs_map = mmap64(NULL, strs_mapsz, PROT_READ, MAP_PRIVATE, 320 fd, sp[hdr.e64.e_shstrndx].sh_offset & _PAGEMASK); 321 322 strs = (const char *)strs_map + 323 (sp[hdr.e64.e_shstrndx].sh_offset & ~_PAGEMASK); 324 325 if (strs_map == MAP_FAILED) { 326 free(sp); 327 return (ctf_set_open_errno(errp, ECTF_MMAP)); 328 } 329 330 /* 331 * Iterate over the section header array looking for the CTF 332 * section and symbol table. The strtab is linked to symtab. 333 */ 334 for (i = 0; i < n; i++) { 335 const GElf_Shdr *shp = &sp[i]; 336 const GElf_Shdr *lhp = &sp[shp->sh_link]; 337 338 if (shp->sh_link >= hdr.e64.e_shnum) 339 continue; /* corrupt sh_link field */ 340 341 if (shp->sh_name >= sp[hdr.e64.e_shstrndx].sh_size || 342 lhp->sh_name >= sp[hdr.e64.e_shstrndx].sh_size) 343 continue; /* corrupt sh_name field */ 344 345 if (shp->sh_type == SHT_PROGBITS && 346 strcmp(strs + shp->sh_name, _CTF_SECTION) == 0) { 347 ctfsect.cts_name = strs + shp->sh_name; 348 ctfsect.cts_type = shp->sh_type; 349 ctfsect.cts_flags = shp->sh_flags; 350 ctfsect.cts_size = shp->sh_size; 351 ctfsect.cts_entsize = shp->sh_entsize; 352 ctfsect.cts_offset = (off64_t)shp->sh_offset; 353 354 } else if (shp->sh_type == SHT_SYMTAB) { 355 symsect.cts_name = strs + shp->sh_name; 356 symsect.cts_type = shp->sh_type; 357 symsect.cts_flags = shp->sh_flags; 358 symsect.cts_size = shp->sh_size; 359 symsect.cts_entsize = shp->sh_entsize; 360 symsect.cts_offset = (off64_t)shp->sh_offset; 361 362 strsect.cts_name = strs + lhp->sh_name; 363 strsect.cts_type = lhp->sh_type; 364 strsect.cts_flags = lhp->sh_flags; 365 strsect.cts_size = lhp->sh_size; 366 strsect.cts_entsize = lhp->sh_entsize; 367 strsect.cts_offset = (off64_t)lhp->sh_offset; 368 } 369 } 370 371 free(sp); /* free section header array */ 372 373 if (ctfsect.cts_type == SHT_NULL) { 374 (void) munmap(strs_map, strs_mapsz); 375 return (ctf_set_open_errno(errp, ECTF_NOCTFDATA)); 376 } 377 378 /* 379 * Now mmap the CTF data, symtab, and strtab sections and 380 * call ctf_bufopen() to do the rest of the work. 381 */ 382 if (ctf_sect_mmap(&ctfsect, fd) == MAP_FAILED) { 383 (void) munmap(strs_map, strs_mapsz); 384 return (ctf_set_open_errno(errp, ECTF_MMAP)); 385 } 386 387 if (symsect.cts_type != SHT_NULL && 388 strsect.cts_type != SHT_NULL) { 389 if (ctf_sect_mmap(&symsect, fd) == MAP_FAILED || 390 ctf_sect_mmap(&strsect, fd) == MAP_FAILED) { 391 (void) ctf_set_open_errno(errp, ECTF_MMAP); 392 goto bad; /* unmap all and abort */ 393 } 394 fp = ctf_bufopen(&ctfsect, &symsect, &strsect, errp); 395 } else 396 fp = ctf_bufopen(&ctfsect, NULL, NULL, errp); 397 bad: 398 if (fp == NULL) { 399 ctf_sect_munmap(&ctfsect); 400 ctf_sect_munmap(&symsect); 401 ctf_sect_munmap(&strsect); 402 } else 403 fp->ctf_flags |= LCTF_MMAP; 404 405 (void) munmap(strs_map, strs_mapsz); 406 return (fp); 407 } 408 409 return (ctf_set_open_errno(errp, ECTF_FMT)); 410 } 411 412 /* 413 * Open the specified file and return a pointer to a CTF container. The file 414 * can be either an ELF file or raw CTF file. This is just a convenient 415 * wrapper around ctf_fdopen() for callers. 416 */ 417 ctf_file_t * 418 ctf_open(const char *filename, int *errp) 419 { 420 ctf_file_t *fp; 421 int fd; 422 423 if ((fd = open64(filename, O_RDONLY)) == -1) { 424 if (errp != NULL) 425 *errp = errno; 426 return (NULL); 427 } 428 429 fp = ctf_fdopen(fd, errp); 430 (void) close(fd); 431 return (fp); 432 } 433 434 /* 435 * Write the uncompressed CTF data stream to the specified file descriptor. 436 * This is useful for saving the results of dynamic CTF containers. 437 */ 438 int 439 ctf_write(ctf_file_t *fp, int fd) 440 { 441 const uchar_t *buf = fp->ctf_base; 442 ssize_t resid = fp->ctf_size; 443 ssize_t len; 444 445 while (resid != 0) { 446 if ((len = write(fd, buf, resid)) <= 0) 447 return (ctf_set_errno(fp, errno)); 448 resid -= len; 449 buf += len; 450 } 451 452 return (0); 453 } 454 455 /* 456 * Set the CTF library client version to the specified version. If version is 457 * zero, we just return the default library version number. 458 */ 459 int 460 ctf_version(int version) 461 { 462 if (version < 0) { 463 errno = EINVAL; 464 return (-1); 465 } 466 467 if (version > 0) { 468 if (version > CTF_VERSION) { 469 errno = ENOTSUP; 470 return (-1); 471 } 472 ctf_dprintf("ctf_version: client using version %d\n", version); 473 _libctf_version = version; 474 } 475 476 return (_libctf_version); 477 } 478