1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #include <stdio.h> 28 #include <stdlib.h> 29 #include <stddef.h> 30 #include <unistd.h> 31 #include <thr_uberdata.h> 32 #include <thread_db.h> 33 #include <libc_int.h> 34 35 /* 36 * Private structures. 37 */ 38 39 typedef union { 40 mutex_t lock; 41 rwlock_t rwlock; 42 sema_t semaphore; 43 cond_t condition; 44 } td_so_un_t; 45 46 struct td_thragent { 47 rwlock_t rwlock; 48 struct ps_prochandle *ph_p; 49 int initialized; 50 int sync_tracking; 51 int model; 52 int primary_map; 53 psaddr_t bootstrap_addr; 54 psaddr_t uberdata_addr; 55 psaddr_t tdb_eventmask_addr; 56 psaddr_t tdb_register_sync_addr; 57 psaddr_t tdb_events[TD_MAX_EVENT_NUM - TD_MIN_EVENT_NUM + 1]; 58 psaddr_t hash_table_addr; 59 int hash_size; 60 lwpid_t single_lwpid; 61 psaddr_t single_ulwp_addr; 62 }; 63 64 /* 65 * This is the name of the variable in libc that contains 66 * the uberdata address that we will need. 67 */ 68 #define TD_BOOTSTRAP_NAME "_tdb_bootstrap" 69 /* 70 * This is the actual name of uberdata, used in the event 71 * that tdb_bootstrap has not yet been initialized. 72 */ 73 #define TD_UBERDATA_NAME "_uberdata" 74 /* 75 * The library name should end with ".so.1", but older versions of 76 * dbx expect the unadorned name and malfunction if ".1" is specified. 77 * Unfortunately, if ".1" is not specified, mdb malfunctions when it 78 * is applied to another instance of itself (due to the presence of 79 * /usr/lib/mdb/proc/libc.so). So we try it both ways. 80 */ 81 #define TD_LIBRARY_NAME "libc.so" 82 #define TD_LIBRARY_NAME_1 "libc.so.1" 83 84 td_err_e __td_thr_get_info(td_thrhandle_t *th_p, td_thrinfo_t *ti_p); 85 86 td_err_e __td_ta_thr_iter(td_thragent_t *ta_p, td_thr_iter_f *cb, 87 void *cbdata_p, td_thr_state_e state, int ti_pri, 88 sigset_t *ti_sigmask_p, unsigned ti_user_flags); 89 90 /* 91 * Initialize threads debugging interface. 92 */ 93 #pragma weak td_init = __td_init 94 td_err_e 95 __td_init() 96 { 97 return (TD_OK); 98 } 99 100 /* 101 * This function does nothing, and never did. 102 * But the symbol is in the ABI, so we can't delete it. 103 */ 104 #pragma weak td_log = __td_log 105 void 106 __td_log() 107 { 108 } 109 110 /* 111 * Short-cut to read just the hash table size from the process, 112 * to avoid repeatedly reading the full uberdata structure when 113 * dealing with a single-threaded process. 114 */ 115 static uint_t 116 td_read_hash_size(td_thragent_t *ta_p) 117 { 118 psaddr_t addr; 119 uint_t hash_size; 120 121 switch (ta_p->initialized) { 122 default: /* uninitialized */ 123 return (0); 124 case 1: /* partially initialized */ 125 break; 126 case 2: /* fully initialized */ 127 return (ta_p->hash_size); 128 } 129 130 if (ta_p->model == PR_MODEL_NATIVE) { 131 addr = ta_p->uberdata_addr + offsetof(uberdata_t, hash_size); 132 } else { 133 #if defined(_LP64) && defined(_SYSCALL32) 134 addr = ta_p->uberdata_addr + offsetof(uberdata32_t, hash_size); 135 #else 136 addr = 0; 137 #endif 138 } 139 if (ps_pdread(ta_p->ph_p, addr, &hash_size, sizeof (hash_size)) 140 != PS_OK) 141 return (0); 142 return (hash_size); 143 } 144 145 static td_err_e 146 td_read_uberdata(td_thragent_t *ta_p) 147 { 148 struct ps_prochandle *ph_p = ta_p->ph_p; 149 150 if (ta_p->model == PR_MODEL_NATIVE) { 151 uberdata_t uberdata; 152 153 if (ps_pdread(ph_p, ta_p->uberdata_addr, 154 &uberdata, sizeof (uberdata)) != PS_OK) 155 return (TD_DBERR); 156 ta_p->primary_map = uberdata.primary_map; 157 ta_p->tdb_eventmask_addr = ta_p->uberdata_addr + 158 offsetof(uberdata_t, tdb.tdb_ev_global_mask); 159 ta_p->tdb_register_sync_addr = ta_p->uberdata_addr + 160 offsetof(uberdata_t, uberflags.uf_tdb_register_sync); 161 ta_p->hash_table_addr = (psaddr_t)uberdata.thr_hash_table; 162 ta_p->hash_size = uberdata.hash_size; 163 if (ps_pdread(ph_p, (psaddr_t)uberdata.tdb.tdb_events, 164 ta_p->tdb_events, sizeof (ta_p->tdb_events)) != PS_OK) 165 return (TD_DBERR); 166 167 } else { 168 #if defined(_LP64) && defined(_SYSCALL32) 169 uberdata32_t uberdata; 170 caddr32_t tdb_events[TD_MAX_EVENT_NUM - TD_MIN_EVENT_NUM + 1]; 171 int i; 172 173 if (ps_pdread(ph_p, ta_p->uberdata_addr, 174 &uberdata, sizeof (uberdata)) != PS_OK) 175 return (TD_DBERR); 176 ta_p->primary_map = uberdata.primary_map; 177 ta_p->tdb_eventmask_addr = ta_p->uberdata_addr + 178 offsetof(uberdata32_t, tdb.tdb_ev_global_mask); 179 ta_p->tdb_register_sync_addr = ta_p->uberdata_addr + 180 offsetof(uberdata32_t, uberflags.uf_tdb_register_sync); 181 ta_p->hash_table_addr = (psaddr_t)uberdata.thr_hash_table; 182 ta_p->hash_size = uberdata.hash_size; 183 if (ps_pdread(ph_p, (psaddr_t)uberdata.tdb.tdb_events, 184 tdb_events, sizeof (tdb_events)) != PS_OK) 185 return (TD_DBERR); 186 for (i = 0; i < TD_MAX_EVENT_NUM - TD_MIN_EVENT_NUM + 1; i++) 187 ta_p->tdb_events[i] = tdb_events[i]; 188 #else 189 return (TD_DBERR); 190 #endif 191 } 192 if (ta_p->hash_size != 1) { /* multi-threaded */ 193 ta_p->initialized = 2; 194 ta_p->single_lwpid = 0; 195 ta_p->single_ulwp_addr = NULL; 196 } else { /* single-threaded */ 197 ta_p->initialized = 1; 198 /* 199 * Get the address and lwpid of the single thread/LWP. 200 * It may not be ulwp_one if this is a child of fork1(). 201 */ 202 if (ta_p->model == PR_MODEL_NATIVE) { 203 thr_hash_table_t head; 204 lwpid_t lwpid = 0; 205 206 if (ps_pdread(ph_p, ta_p->hash_table_addr, 207 &head, sizeof (head)) != PS_OK) 208 return (TD_DBERR); 209 if ((psaddr_t)head.hash_bucket == NULL) 210 ta_p->initialized = 0; 211 else if (ps_pdread(ph_p, (psaddr_t)head.hash_bucket + 212 offsetof(ulwp_t, ul_lwpid), 213 &lwpid, sizeof (lwpid)) != PS_OK) 214 return (TD_DBERR); 215 ta_p->single_lwpid = lwpid; 216 ta_p->single_ulwp_addr = (psaddr_t)head.hash_bucket; 217 } else { 218 #if defined(_LP64) && defined(_SYSCALL32) 219 thr_hash_table32_t head; 220 lwpid_t lwpid = 0; 221 222 if (ps_pdread(ph_p, ta_p->hash_table_addr, 223 &head, sizeof (head)) != PS_OK) 224 return (TD_DBERR); 225 if ((psaddr_t)head.hash_bucket == NULL) 226 ta_p->initialized = 0; 227 else if (ps_pdread(ph_p, (psaddr_t)head.hash_bucket + 228 offsetof(ulwp32_t, ul_lwpid), 229 &lwpid, sizeof (lwpid)) != PS_OK) 230 return (TD_DBERR); 231 ta_p->single_lwpid = lwpid; 232 ta_p->single_ulwp_addr = (psaddr_t)head.hash_bucket; 233 #else 234 return (TD_DBERR); 235 #endif 236 } 237 } 238 if (!ta_p->primary_map) 239 ta_p->initialized = 0; 240 return (TD_OK); 241 } 242 243 static td_err_e 244 td_read_bootstrap_data(td_thragent_t *ta_p) 245 { 246 struct ps_prochandle *ph_p = ta_p->ph_p; 247 psaddr_t bootstrap_addr; 248 psaddr_t uberdata_addr; 249 ps_err_e db_return; 250 td_err_e return_val; 251 int do_1; 252 253 switch (ta_p->initialized) { 254 case 2: /* fully initialized */ 255 return (TD_OK); 256 case 1: /* partially initialized */ 257 if (td_read_hash_size(ta_p) == 1) 258 return (TD_OK); 259 return (td_read_uberdata(ta_p)); 260 } 261 262 /* 263 * Uninitialized -- do the startup work. 264 * We set ta_p->initialized to -1 to cut off recursive calls 265 * into libc_db by code in the provider of ps_pglobal_lookup(). 266 */ 267 do_1 = 0; 268 ta_p->initialized = -1; 269 db_return = ps_pglobal_lookup(ph_p, TD_LIBRARY_NAME, 270 TD_BOOTSTRAP_NAME, &bootstrap_addr); 271 if (db_return == PS_NOSYM) { 272 do_1 = 1; 273 db_return = ps_pglobal_lookup(ph_p, TD_LIBRARY_NAME_1, 274 TD_BOOTSTRAP_NAME, &bootstrap_addr); 275 } 276 if (db_return == PS_NOSYM) /* libc is not linked yet */ 277 return (TD_NOLIBTHREAD); 278 if (db_return != PS_OK) 279 return (TD_ERR); 280 db_return = ps_pglobal_lookup(ph_p, 281 do_1? TD_LIBRARY_NAME_1 : TD_LIBRARY_NAME, 282 TD_UBERDATA_NAME, &uberdata_addr); 283 if (db_return == PS_NOSYM) /* libc is not linked yet */ 284 return (TD_NOLIBTHREAD); 285 if (db_return != PS_OK) 286 return (TD_ERR); 287 288 /* 289 * Read the uberdata address into the thread agent structure. 290 */ 291 if (ta_p->model == PR_MODEL_NATIVE) { 292 psaddr_t psaddr; 293 if (ps_pdread(ph_p, bootstrap_addr, 294 &psaddr, sizeof (psaddr)) != PS_OK) 295 return (TD_DBERR); 296 if ((ta_p->bootstrap_addr = psaddr) == NULL) 297 psaddr = uberdata_addr; 298 else if (ps_pdread(ph_p, psaddr, 299 &psaddr, sizeof (psaddr)) != PS_OK) 300 return (TD_DBERR); 301 if (psaddr == NULL) { 302 /* primary linkmap in the tgt is not initialized */ 303 ta_p->bootstrap_addr = NULL; 304 psaddr = uberdata_addr; 305 } 306 ta_p->uberdata_addr = psaddr; 307 } else { 308 #if defined(_LP64) && defined(_SYSCALL32) 309 caddr32_t psaddr; 310 if (ps_pdread(ph_p, bootstrap_addr, 311 &psaddr, sizeof (psaddr)) != PS_OK) 312 return (TD_DBERR); 313 if ((ta_p->bootstrap_addr = (psaddr_t)psaddr) == NULL) 314 psaddr = (caddr32_t)uberdata_addr; 315 else if (ps_pdread(ph_p, (psaddr_t)psaddr, 316 &psaddr, sizeof (psaddr)) != PS_OK) 317 return (TD_DBERR); 318 if (psaddr == NULL) { 319 /* primary linkmap in the tgt is not initialized */ 320 ta_p->bootstrap_addr = NULL; 321 psaddr = (caddr32_t)uberdata_addr; 322 } 323 ta_p->uberdata_addr = (psaddr_t)psaddr; 324 #else 325 return (TD_DBERR); 326 #endif /* _SYSCALL32 */ 327 } 328 329 if ((return_val = td_read_uberdata(ta_p)) != TD_OK) 330 return (return_val); 331 if (ta_p->bootstrap_addr == NULL) 332 ta_p->initialized = 0; 333 return (TD_OK); 334 } 335 336 #pragma weak ps_kill 337 #pragma weak ps_lrolltoaddr 338 339 /* 340 * Allocate a new agent process handle ("thread agent"). 341 */ 342 #pragma weak td_ta_new = __td_ta_new 343 td_err_e 344 __td_ta_new(struct ps_prochandle *ph_p, td_thragent_t **ta_pp) 345 { 346 td_thragent_t *ta_p; 347 int model; 348 td_err_e return_val = TD_OK; 349 350 if (ph_p == NULL) 351 return (TD_BADPH); 352 if (ta_pp == NULL) 353 return (TD_ERR); 354 *ta_pp = NULL; 355 if (ps_pstop(ph_p) != PS_OK) 356 return (TD_DBERR); 357 /* 358 * ps_pdmodel might not be defined if this is an older client. 359 * Make it a weak symbol and test if it exists before calling. 360 */ 361 #pragma weak ps_pdmodel 362 if (ps_pdmodel == NULL) { 363 model = PR_MODEL_NATIVE; 364 } else if (ps_pdmodel(ph_p, &model) != PS_OK) { 365 (void) ps_pcontinue(ph_p); 366 return (TD_ERR); 367 } 368 if ((ta_p = malloc(sizeof (*ta_p))) == NULL) { 369 (void) ps_pcontinue(ph_p); 370 return (TD_MALLOC); 371 } 372 373 /* 374 * Initialize the agent process handle. 375 * Pick up the symbol value we need from the target process. 376 */ 377 (void) memset(ta_p, 0, sizeof (*ta_p)); 378 ta_p->ph_p = ph_p; 379 (void) rwlock_init(&ta_p->rwlock, USYNC_THREAD, NULL); 380 ta_p->model = model; 381 return_val = td_read_bootstrap_data(ta_p); 382 383 /* 384 * Because the old libthread_db enabled lock tracking by default, 385 * we must also do it. However, we do it only if the application 386 * provides the ps_kill() and ps_lrolltoaddr() interfaces. 387 * (dbx provides the ps_kill() and ps_lrolltoaddr() interfaces.) 388 */ 389 if (return_val == TD_OK && ps_kill != NULL && ps_lrolltoaddr != NULL) { 390 register_sync_t oldenable; 391 register_sync_t enable = REGISTER_SYNC_ENABLE; 392 psaddr_t psaddr = ta_p->tdb_register_sync_addr; 393 394 if (ps_pdread(ph_p, psaddr, 395 &oldenable, sizeof (oldenable)) != PS_OK) 396 return_val = TD_DBERR; 397 else if (oldenable != REGISTER_SYNC_OFF || 398 ps_pdwrite(ph_p, psaddr, 399 &enable, sizeof (enable)) != PS_OK) { 400 /* 401 * Lock tracking was already enabled or we 402 * failed to enable it, probably because we 403 * are examining a core file. In either case 404 * set the sync_tracking flag non-zero to 405 * indicate that we should not attempt to 406 * disable lock tracking when we delete the 407 * agent process handle in td_ta_delete(). 408 */ 409 ta_p->sync_tracking = 1; 410 } 411 } 412 413 if (return_val == TD_OK) 414 *ta_pp = ta_p; 415 else 416 free(ta_p); 417 418 (void) ps_pcontinue(ph_p); 419 return (return_val); 420 } 421 422 /* 423 * Utility function to grab the readers lock and return the prochandle, 424 * given an agent process handle. Performs standard error checking. 425 * Returns non-NULL with the lock held, or NULL with the lock not held. 426 */ 427 static struct ps_prochandle * 428 ph_lock_ta(td_thragent_t *ta_p, td_err_e *err) 429 { 430 struct ps_prochandle *ph_p = NULL; 431 td_err_e error; 432 433 if (ta_p == NULL || ta_p->initialized == -1) { 434 *err = TD_BADTA; 435 } else if (rw_rdlock(&ta_p->rwlock) != 0) { /* can't happen? */ 436 *err = TD_BADTA; 437 } else if ((ph_p = ta_p->ph_p) == NULL) { 438 (void) rw_unlock(&ta_p->rwlock); 439 *err = TD_BADPH; 440 } else if (ta_p->initialized != 2 && 441 (error = td_read_bootstrap_data(ta_p)) != TD_OK) { 442 (void) rw_unlock(&ta_p->rwlock); 443 ph_p = NULL; 444 *err = error; 445 } else { 446 *err = TD_OK; 447 } 448 449 return (ph_p); 450 } 451 452 /* 453 * Utility function to grab the readers lock and return the prochandle, 454 * given an agent thread handle. Performs standard error checking. 455 * Returns non-NULL with the lock held, or NULL with the lock not held. 456 */ 457 static struct ps_prochandle * 458 ph_lock_th(const td_thrhandle_t *th_p, td_err_e *err) 459 { 460 if (th_p == NULL || th_p->th_unique == NULL) { 461 *err = TD_BADTH; 462 return (NULL); 463 } 464 return (ph_lock_ta(th_p->th_ta_p, err)); 465 } 466 467 /* 468 * Utility function to grab the readers lock and return the prochandle, 469 * given a synchronization object handle. Performs standard error checking. 470 * Returns non-NULL with the lock held, or NULL with the lock not held. 471 */ 472 static struct ps_prochandle * 473 ph_lock_sh(const td_synchandle_t *sh_p, td_err_e *err) 474 { 475 if (sh_p == NULL || sh_p->sh_unique == NULL) { 476 *err = TD_BADSH; 477 return (NULL); 478 } 479 return (ph_lock_ta(sh_p->sh_ta_p, err)); 480 } 481 482 /* 483 * Unlock the agent process handle obtained from ph_lock_*(). 484 */ 485 static void 486 ph_unlock(td_thragent_t *ta_p) 487 { 488 (void) rw_unlock(&ta_p->rwlock); 489 } 490 491 /* 492 * De-allocate an agent process handle, 493 * releasing all related resources. 494 * 495 * XXX -- This is hopelessly broken --- 496 * Storage for thread agent is not deallocated. The prochandle 497 * in the thread agent is set to NULL so that future uses of 498 * the thread agent can be detected and an error value returned. 499 * All functions in the external user interface that make 500 * use of the thread agent are expected 501 * to check for a NULL prochandle in the thread agent. 502 * All such functions are also expected to obtain a 503 * reader lock on the thread agent while it is using it. 504 */ 505 #pragma weak td_ta_delete = __td_ta_delete 506 td_err_e 507 __td_ta_delete(td_thragent_t *ta_p) 508 { 509 struct ps_prochandle *ph_p; 510 511 /* 512 * This is the only place we grab the writer lock. 513 * We are going to NULL out the prochandle. 514 */ 515 if (ta_p == NULL || rw_wrlock(&ta_p->rwlock) != 0) 516 return (TD_BADTA); 517 if ((ph_p = ta_p->ph_p) == NULL) { 518 (void) rw_unlock(&ta_p->rwlock); 519 return (TD_BADPH); 520 } 521 /* 522 * If synch. tracking was disabled when td_ta_new() was called and 523 * if td_ta_sync_tracking_enable() was never called, then disable 524 * synch. tracking (it was enabled by default in td_ta_new()). 525 */ 526 if (ta_p->sync_tracking == 0 && 527 ps_kill != NULL && ps_lrolltoaddr != NULL) { 528 register_sync_t enable = REGISTER_SYNC_DISABLE; 529 530 (void) ps_pdwrite(ph_p, ta_p->tdb_register_sync_addr, 531 &enable, sizeof (enable)); 532 } 533 ta_p->ph_p = NULL; 534 (void) rw_unlock(&ta_p->rwlock); 535 return (TD_OK); 536 } 537 538 /* 539 * Map an agent process handle to a client prochandle. 540 * Currently unused by dbx. 541 */ 542 #pragma weak td_ta_get_ph = __td_ta_get_ph 543 td_err_e 544 __td_ta_get_ph(td_thragent_t *ta_p, struct ps_prochandle **ph_pp) 545 { 546 td_err_e return_val; 547 548 if (ph_pp != NULL) /* protect stupid callers */ 549 *ph_pp = NULL; 550 if (ph_pp == NULL) 551 return (TD_ERR); 552 if ((*ph_pp = ph_lock_ta(ta_p, &return_val)) == NULL) 553 return (return_val); 554 ph_unlock(ta_p); 555 return (TD_OK); 556 } 557 558 /* 559 * Set the process's suggested concurrency level. 560 * This is a no-op in a one-level model. 561 * Currently unused by dbx. 562 */ 563 #pragma weak td_ta_setconcurrency = __td_ta_setconcurrency 564 /* ARGSUSED1 */ 565 td_err_e 566 __td_ta_setconcurrency(const td_thragent_t *ta_p, int level) 567 { 568 if (ta_p == NULL) 569 return (TD_BADTA); 570 if (ta_p->ph_p == NULL) 571 return (TD_BADPH); 572 return (TD_OK); 573 } 574 575 /* 576 * Get the number of threads in the process. 577 */ 578 #pragma weak td_ta_get_nthreads = __td_ta_get_nthreads 579 td_err_e 580 __td_ta_get_nthreads(td_thragent_t *ta_p, int *nthread_p) 581 { 582 struct ps_prochandle *ph_p; 583 td_err_e return_val; 584 int nthreads; 585 int nzombies; 586 psaddr_t nthreads_addr; 587 psaddr_t nzombies_addr; 588 589 if (ta_p->model == PR_MODEL_NATIVE) { 590 nthreads_addr = ta_p->uberdata_addr + 591 offsetof(uberdata_t, nthreads); 592 nzombies_addr = ta_p->uberdata_addr + 593 offsetof(uberdata_t, nzombies); 594 } else { 595 #if defined(_LP64) && defined(_SYSCALL32) 596 nthreads_addr = ta_p->uberdata_addr + 597 offsetof(uberdata32_t, nthreads); 598 nzombies_addr = ta_p->uberdata_addr + 599 offsetof(uberdata32_t, nzombies); 600 #else 601 nthreads_addr = 0; 602 nzombies_addr = 0; 603 #endif /* _SYSCALL32 */ 604 } 605 606 if (nthread_p == NULL) 607 return (TD_ERR); 608 if ((ph_p = ph_lock_ta(ta_p, &return_val)) == NULL) 609 return (return_val); 610 if (ps_pdread(ph_p, nthreads_addr, &nthreads, sizeof (int)) != PS_OK) 611 return_val = TD_DBERR; 612 if (ps_pdread(ph_p, nzombies_addr, &nzombies, sizeof (int)) != PS_OK) 613 return_val = TD_DBERR; 614 ph_unlock(ta_p); 615 if (return_val == TD_OK) 616 *nthread_p = nthreads + nzombies; 617 return (return_val); 618 } 619 620 typedef struct { 621 thread_t tid; 622 int found; 623 td_thrhandle_t th; 624 } td_mapper_param_t; 625 626 /* 627 * Check the value in data against the thread id. 628 * If it matches, return 1 to terminate iterations. 629 * This function is used by td_ta_map_id2thr() to map a tid to a thread handle. 630 */ 631 static int 632 td_mapper_id2thr(td_thrhandle_t *th_p, td_mapper_param_t *data) 633 { 634 td_thrinfo_t ti; 635 636 if (__td_thr_get_info(th_p, &ti) == TD_OK && 637 data->tid == ti.ti_tid) { 638 data->found = 1; 639 data->th = *th_p; 640 return (1); 641 } 642 return (0); 643 } 644 645 /* 646 * Given a thread identifier, return the corresponding thread handle. 647 */ 648 #pragma weak td_ta_map_id2thr = __td_ta_map_id2thr 649 td_err_e 650 __td_ta_map_id2thr(td_thragent_t *ta_p, thread_t tid, 651 td_thrhandle_t *th_p) 652 { 653 td_err_e return_val; 654 td_mapper_param_t data; 655 656 if (th_p != NULL && /* optimize for a single thread */ 657 ta_p != NULL && 658 ta_p->initialized == 1 && 659 (td_read_hash_size(ta_p) == 1 || 660 td_read_uberdata(ta_p) == TD_OK) && 661 ta_p->initialized == 1 && 662 ta_p->single_lwpid == tid) { 663 th_p->th_ta_p = ta_p; 664 if ((th_p->th_unique = ta_p->single_ulwp_addr) == 0) 665 return (TD_NOTHR); 666 return (TD_OK); 667 } 668 669 /* 670 * LOCKING EXCEPTION - Locking is not required here because 671 * the locking and checking will be done in __td_ta_thr_iter. 672 */ 673 674 if (ta_p == NULL) 675 return (TD_BADTA); 676 if (th_p == NULL) 677 return (TD_BADTH); 678 if (tid == 0) 679 return (TD_NOTHR); 680 681 data.tid = tid; 682 data.found = 0; 683 return_val = __td_ta_thr_iter(ta_p, 684 (td_thr_iter_f *)td_mapper_id2thr, (void *)&data, 685 TD_THR_ANY_STATE, TD_THR_LOWEST_PRIORITY, 686 TD_SIGNO_MASK, TD_THR_ANY_USER_FLAGS); 687 if (return_val == TD_OK) { 688 if (data.found == 0) 689 return_val = TD_NOTHR; 690 else 691 *th_p = data.th; 692 } 693 694 return (return_val); 695 } 696 697 /* 698 * Map the address of a synchronization object to a sync. object handle. 699 */ 700 #pragma weak td_ta_map_addr2sync = __td_ta_map_addr2sync 701 td_err_e 702 __td_ta_map_addr2sync(td_thragent_t *ta_p, psaddr_t addr, td_synchandle_t *sh_p) 703 { 704 struct ps_prochandle *ph_p; 705 td_err_e return_val; 706 uint16_t sync_magic; 707 708 if (sh_p == NULL) 709 return (TD_BADSH); 710 if (addr == NULL) 711 return (TD_ERR); 712 if ((ph_p = ph_lock_ta(ta_p, &return_val)) == NULL) 713 return (return_val); 714 /* 715 * Check the magic number of the sync. object to make sure it's valid. 716 * The magic number is at the same offset for all sync. objects. 717 */ 718 if (ps_pdread(ph_p, (psaddr_t)&((mutex_t *)addr)->mutex_magic, 719 &sync_magic, sizeof (sync_magic)) != PS_OK) { 720 ph_unlock(ta_p); 721 return (TD_BADSH); 722 } 723 ph_unlock(ta_p); 724 if (sync_magic != MUTEX_MAGIC && sync_magic != COND_MAGIC && 725 sync_magic != SEMA_MAGIC && sync_magic != RWL_MAGIC) 726 return (TD_BADSH); 727 /* 728 * Just fill in the appropriate fields of the sync. handle. 729 */ 730 sh_p->sh_ta_p = (td_thragent_t *)ta_p; 731 sh_p->sh_unique = addr; 732 return (TD_OK); 733 } 734 735 /* 736 * Iterate over the set of global TSD keys. 737 * The call back function is called with three arguments, 738 * a key, a pointer to the destructor function, and the cbdata pointer. 739 * Currently unused by dbx. 740 */ 741 #pragma weak td_ta_tsd_iter = __td_ta_tsd_iter 742 td_err_e 743 __td_ta_tsd_iter(td_thragent_t *ta_p, td_key_iter_f *cb, void *cbdata_p) 744 { 745 struct ps_prochandle *ph_p; 746 td_err_e return_val; 747 int key; 748 int numkeys; 749 psaddr_t dest_addr; 750 psaddr_t *destructors = NULL; 751 PFrV destructor; 752 753 if (cb == NULL) 754 return (TD_ERR); 755 if ((ph_p = ph_lock_ta(ta_p, &return_val)) == NULL) 756 return (return_val); 757 if (ps_pstop(ph_p) != PS_OK) { 758 ph_unlock(ta_p); 759 return (TD_DBERR); 760 } 761 762 if (ta_p->model == PR_MODEL_NATIVE) { 763 tsd_metadata_t tsdm; 764 765 if (ps_pdread(ph_p, 766 ta_p->uberdata_addr + offsetof(uberdata_t, tsd_metadata), 767 &tsdm, sizeof (tsdm)) != PS_OK) 768 return_val = TD_DBERR; 769 else { 770 numkeys = tsdm.tsdm_nused; 771 dest_addr = (psaddr_t)tsdm.tsdm_destro; 772 if (numkeys > 0) 773 destructors = 774 malloc(numkeys * sizeof (psaddr_t)); 775 } 776 } else { 777 #if defined(_LP64) && defined(_SYSCALL32) 778 tsd_metadata32_t tsdm; 779 780 if (ps_pdread(ph_p, 781 ta_p->uberdata_addr + offsetof(uberdata32_t, tsd_metadata), 782 &tsdm, sizeof (tsdm)) != PS_OK) 783 return_val = TD_DBERR; 784 else { 785 numkeys = tsdm.tsdm_nused; 786 dest_addr = (psaddr_t)tsdm.tsdm_destro; 787 if (numkeys > 0) 788 destructors = 789 malloc(numkeys * sizeof (caddr32_t)); 790 } 791 #else 792 return_val = TD_DBERR; 793 #endif /* _SYSCALL32 */ 794 } 795 796 if (return_val != TD_OK || numkeys <= 0) { 797 (void) ps_pcontinue(ph_p); 798 ph_unlock(ta_p); 799 return (return_val); 800 } 801 802 if (destructors == NULL) 803 return_val = TD_MALLOC; 804 else if (ta_p->model == PR_MODEL_NATIVE) { 805 if (ps_pdread(ph_p, dest_addr, 806 destructors, numkeys * sizeof (psaddr_t)) != PS_OK) 807 return_val = TD_DBERR; 808 else { 809 for (key = 1; key < numkeys; key++) { 810 destructor = (PFrV)destructors[key]; 811 if (destructor != TSD_UNALLOCATED && 812 (*cb)(key, destructor, cbdata_p)) 813 break; 814 } 815 } 816 #if defined(_LP64) && defined(_SYSCALL32) 817 } else { 818 caddr32_t *destructors32 = (caddr32_t *)destructors; 819 caddr32_t destruct32; 820 821 if (ps_pdread(ph_p, dest_addr, 822 destructors32, numkeys * sizeof (caddr32_t)) != PS_OK) 823 return_val = TD_DBERR; 824 else { 825 for (key = 1; key < numkeys; key++) { 826 destruct32 = destructors32[key]; 827 if (destruct32 != (caddr32_t)TSD_UNALLOCATED && 828 (*cb)(key, (PFrV)(uintptr_t)destruct32, 829 cbdata_p)) 830 break; 831 } 832 } 833 #endif /* _SYSCALL32 */ 834 } 835 836 if (destructors) 837 free(destructors); 838 (void) ps_pcontinue(ph_p); 839 ph_unlock(ta_p); 840 return (return_val); 841 } 842 843 int 844 sigequalset(const sigset_t *s1, const sigset_t *s2) 845 { 846 return ( 847 s1->__sigbits[0] == s2->__sigbits[0] && 848 s1->__sigbits[1] == s2->__sigbits[1] && 849 s1->__sigbits[2] == s2->__sigbits[2] && 850 s1->__sigbits[3] == s2->__sigbits[3]); 851 } 852 853 /* 854 * Description: 855 * Iterate over all threads. For each thread call 856 * the function pointed to by "cb" with a pointer 857 * to a thread handle, and a pointer to data which 858 * can be NULL. Only call td_thr_iter_f() on threads 859 * which match the properties of state, ti_pri, 860 * ti_sigmask_p, and ti_user_flags. If cb returns 861 * a non-zero value, terminate iterations. 862 * 863 * Input: 864 * *ta_p - thread agent 865 * *cb - call back function defined by user. 866 * td_thr_iter_f() takes a thread handle and 867 * cbdata_p as a parameter. 868 * cbdata_p - parameter for td_thr_iter_f(). 869 * 870 * state - state of threads of interest. A value of 871 * TD_THR_ANY_STATE from enum td_thr_state_e 872 * does not restrict iterations by state. 873 * ti_pri - lower bound of priorities of threads of 874 * interest. A value of TD_THR_LOWEST_PRIORITY 875 * defined in thread_db.h does not restrict 876 * iterations by priority. A thread with priority 877 * less than ti_pri will NOT be passed to the callback 878 * function. 879 * ti_sigmask_p - signal mask of threads of interest. 880 * A value of TD_SIGNO_MASK defined in thread_db.h 881 * does not restrict iterations by signal mask. 882 * ti_user_flags - user flags of threads of interest. A 883 * value of TD_THR_ANY_USER_FLAGS defined in thread_db.h 884 * does not restrict iterations by user flags. 885 */ 886 #pragma weak td_ta_thr_iter = __td_ta_thr_iter 887 td_err_e 888 __td_ta_thr_iter(td_thragent_t *ta_p, td_thr_iter_f *cb, 889 void *cbdata_p, td_thr_state_e state, int ti_pri, 890 sigset_t *ti_sigmask_p, unsigned ti_user_flags) 891 { 892 struct ps_prochandle *ph_p; 893 psaddr_t first_lwp_addr; 894 psaddr_t first_zombie_addr; 895 psaddr_t curr_lwp_addr; 896 psaddr_t next_lwp_addr; 897 td_thrhandle_t th; 898 ps_err_e db_return; 899 ps_err_e db_return2; 900 td_err_e return_val; 901 902 if (cb == NULL) 903 return (TD_ERR); 904 /* 905 * If state is not within bound, short circuit. 906 */ 907 if (state < TD_THR_ANY_STATE || state > TD_THR_STOPPED_ASLEEP) 908 return (TD_OK); 909 910 if ((ph_p = ph_lock_ta(ta_p, &return_val)) == NULL) 911 return (return_val); 912 if (ps_pstop(ph_p) != PS_OK) { 913 ph_unlock(ta_p); 914 return (TD_DBERR); 915 } 916 917 /* 918 * For each ulwp_t in the circular linked lists pointed 919 * to by "all_lwps" and "all_zombies": 920 * (1) Filter each thread. 921 * (2) Create the thread_object for each thread that passes. 922 * (3) Call the call back function on each thread. 923 */ 924 925 if (ta_p->model == PR_MODEL_NATIVE) { 926 db_return = ps_pdread(ph_p, 927 ta_p->uberdata_addr + offsetof(uberdata_t, all_lwps), 928 &first_lwp_addr, sizeof (first_lwp_addr)); 929 db_return2 = ps_pdread(ph_p, 930 ta_p->uberdata_addr + offsetof(uberdata_t, all_zombies), 931 &first_zombie_addr, sizeof (first_zombie_addr)); 932 } else { 933 #if defined(_LP64) && defined(_SYSCALL32) 934 caddr32_t addr32; 935 936 db_return = ps_pdread(ph_p, 937 ta_p->uberdata_addr + offsetof(uberdata32_t, all_lwps), 938 &addr32, sizeof (addr32)); 939 first_lwp_addr = addr32; 940 db_return2 = ps_pdread(ph_p, 941 ta_p->uberdata_addr + offsetof(uberdata32_t, all_zombies), 942 &addr32, sizeof (addr32)); 943 first_zombie_addr = addr32; 944 #else /* _SYSCALL32 */ 945 db_return = PS_ERR; 946 db_return2 = PS_ERR; 947 #endif /* _SYSCALL32 */ 948 } 949 if (db_return == PS_OK) 950 db_return = db_return2; 951 952 /* 953 * If first_lwp_addr and first_zombie_addr are both NULL, 954 * libc must not yet be initialized or all threads have 955 * exited. Return TD_NOTHR and all will be well. 956 */ 957 if (db_return == PS_OK && 958 first_lwp_addr == NULL && first_zombie_addr == NULL) { 959 (void) ps_pcontinue(ph_p); 960 ph_unlock(ta_p); 961 return (TD_NOTHR); 962 } 963 if (db_return != PS_OK) { 964 (void) ps_pcontinue(ph_p); 965 ph_unlock(ta_p); 966 return (TD_DBERR); 967 } 968 969 /* 970 * Run down the lists of all living and dead lwps. 971 */ 972 if (first_lwp_addr == NULL) 973 first_lwp_addr = first_zombie_addr; 974 curr_lwp_addr = first_lwp_addr; 975 for (;;) { 976 td_thr_state_e ts_state; 977 int userpri; 978 unsigned userflags; 979 sigset_t mask; 980 981 /* 982 * Read the ulwp struct. 983 */ 984 if (ta_p->model == PR_MODEL_NATIVE) { 985 ulwp_t ulwp; 986 987 if (ps_pdread(ph_p, curr_lwp_addr, 988 &ulwp, sizeof (ulwp)) != PS_OK && 989 ((void) memset(&ulwp, 0, sizeof (ulwp)), 990 ps_pdread(ph_p, curr_lwp_addr, 991 &ulwp, REPLACEMENT_SIZE)) != PS_OK) { 992 return_val = TD_DBERR; 993 break; 994 } 995 next_lwp_addr = (psaddr_t)ulwp.ul_forw; 996 997 ts_state = ulwp.ul_dead? TD_THR_ZOMBIE : 998 ulwp.ul_stop? TD_THR_STOPPED : 999 ulwp.ul_wchan? TD_THR_SLEEP : 1000 TD_THR_ACTIVE; 1001 userpri = ulwp.ul_pri; 1002 userflags = ulwp.ul_usropts; 1003 if (ulwp.ul_dead) 1004 (void) sigemptyset(&mask); 1005 else 1006 mask = *(sigset_t *)&ulwp.ul_sigmask; 1007 } else { 1008 #if defined(_LP64) && defined(_SYSCALL32) 1009 ulwp32_t ulwp; 1010 1011 if (ps_pdread(ph_p, curr_lwp_addr, 1012 &ulwp, sizeof (ulwp)) != PS_OK && 1013 ((void) memset(&ulwp, 0, sizeof (ulwp)), 1014 ps_pdread(ph_p, curr_lwp_addr, 1015 &ulwp, REPLACEMENT_SIZE32)) != PS_OK) { 1016 return_val = TD_DBERR; 1017 break; 1018 } 1019 next_lwp_addr = (psaddr_t)ulwp.ul_forw; 1020 1021 ts_state = ulwp.ul_dead? TD_THR_ZOMBIE : 1022 ulwp.ul_stop? TD_THR_STOPPED : 1023 ulwp.ul_wchan? TD_THR_SLEEP : 1024 TD_THR_ACTIVE; 1025 userpri = ulwp.ul_pri; 1026 userflags = ulwp.ul_usropts; 1027 if (ulwp.ul_dead) 1028 (void) sigemptyset(&mask); 1029 else 1030 mask = *(sigset_t *)&ulwp.ul_sigmask; 1031 #else /* _SYSCALL32 */ 1032 return_val = TD_ERR; 1033 break; 1034 #endif /* _SYSCALL32 */ 1035 } 1036 1037 /* 1038 * Filter on state, priority, sigmask, and user flags. 1039 */ 1040 1041 if ((state != ts_state) && 1042 (state != TD_THR_ANY_STATE)) 1043 goto advance; 1044 1045 if (ti_pri > userpri) 1046 goto advance; 1047 1048 if (ti_sigmask_p != TD_SIGNO_MASK && 1049 !sigequalset(ti_sigmask_p, &mask)) 1050 goto advance; 1051 1052 if (ti_user_flags != userflags && 1053 ti_user_flags != (unsigned)TD_THR_ANY_USER_FLAGS) 1054 goto advance; 1055 1056 /* 1057 * Call back - break if the return 1058 * from the call back is non-zero. 1059 */ 1060 th.th_ta_p = (td_thragent_t *)ta_p; 1061 th.th_unique = curr_lwp_addr; 1062 if ((*cb)(&th, cbdata_p)) 1063 break; 1064 1065 advance: 1066 if ((curr_lwp_addr = next_lwp_addr) == first_lwp_addr) { 1067 /* 1068 * Switch to the zombie list, unless it is NULL 1069 * or we have already been doing the zombie list, 1070 * in which case terminate the loop. 1071 */ 1072 if (first_zombie_addr == NULL || 1073 first_lwp_addr == first_zombie_addr) 1074 break; 1075 curr_lwp_addr = first_lwp_addr = first_zombie_addr; 1076 } 1077 } 1078 1079 (void) ps_pcontinue(ph_p); 1080 ph_unlock(ta_p); 1081 return (return_val); 1082 } 1083 1084 /* 1085 * Enable or disable process synchronization object tracking. 1086 * Currently unused by dbx. 1087 */ 1088 #pragma weak td_ta_sync_tracking_enable = __td_ta_sync_tracking_enable 1089 td_err_e 1090 __td_ta_sync_tracking_enable(td_thragent_t *ta_p, int onoff) 1091 { 1092 struct ps_prochandle *ph_p; 1093 td_err_e return_val; 1094 register_sync_t enable; 1095 1096 if ((ph_p = ph_lock_ta(ta_p, &return_val)) == NULL) 1097 return (return_val); 1098 /* 1099 * Values of tdb_register_sync in the victim process: 1100 * REGISTER_SYNC_ENABLE enables registration of synch objects 1101 * REGISTER_SYNC_DISABLE disables registration of synch objects 1102 * These cause the table to be cleared and tdb_register_sync set to: 1103 * REGISTER_SYNC_ON registration in effect 1104 * REGISTER_SYNC_OFF registration not in effect 1105 */ 1106 enable = onoff? REGISTER_SYNC_ENABLE : REGISTER_SYNC_DISABLE; 1107 if (ps_pdwrite(ph_p, ta_p->tdb_register_sync_addr, 1108 &enable, sizeof (enable)) != PS_OK) 1109 return_val = TD_DBERR; 1110 /* 1111 * Remember that this interface was called (see td_ta_delete()). 1112 */ 1113 ta_p->sync_tracking = 1; 1114 ph_unlock(ta_p); 1115 return (return_val); 1116 } 1117 1118 /* 1119 * Iterate over all known synchronization variables. 1120 * It is very possible that the list generated is incomplete, 1121 * because the iterator can only find synchronization variables 1122 * that have been registered by the process since synchronization 1123 * object registration was enabled. 1124 * The call back function cb is called for each synchronization 1125 * variable with two arguments: a pointer to the synchronization 1126 * handle and the passed-in argument cbdata. 1127 * If cb returns a non-zero value, iterations are terminated. 1128 */ 1129 #pragma weak td_ta_sync_iter = __td_ta_sync_iter 1130 td_err_e 1131 __td_ta_sync_iter(td_thragent_t *ta_p, td_sync_iter_f *cb, void *cbdata) 1132 { 1133 struct ps_prochandle *ph_p; 1134 td_err_e return_val; 1135 int i; 1136 register_sync_t enable; 1137 psaddr_t next_desc; 1138 tdb_sync_stats_t sync_stats; 1139 td_synchandle_t synchandle; 1140 psaddr_t psaddr; 1141 void *vaddr; 1142 uint64_t *sync_addr_hash = NULL; 1143 1144 if (cb == NULL) 1145 return (TD_ERR); 1146 if ((ph_p = ph_lock_ta(ta_p, &return_val)) == NULL) 1147 return (return_val); 1148 if (ps_pstop(ph_p) != PS_OK) { 1149 ph_unlock(ta_p); 1150 return (TD_DBERR); 1151 } 1152 if (ps_pdread(ph_p, ta_p->tdb_register_sync_addr, 1153 &enable, sizeof (enable)) != PS_OK) { 1154 return_val = TD_DBERR; 1155 goto out; 1156 } 1157 if (enable != REGISTER_SYNC_ON) 1158 goto out; 1159 1160 /* 1161 * First read the hash table. 1162 * The hash table is large; allocate with mmap(). 1163 */ 1164 if ((vaddr = mmap(NULL, TDB_HASH_SIZE * sizeof (uint64_t), 1165 PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANON, -1, (off_t)0)) 1166 == MAP_FAILED) { 1167 return_val = TD_MALLOC; 1168 goto out; 1169 } 1170 sync_addr_hash = vaddr; 1171 1172 if (ta_p->model == PR_MODEL_NATIVE) { 1173 if (ps_pdread(ph_p, ta_p->uberdata_addr + 1174 offsetof(uberdata_t, tdb.tdb_sync_addr_hash), 1175 &psaddr, sizeof (&psaddr)) != PS_OK) { 1176 return_val = TD_DBERR; 1177 goto out; 1178 } 1179 } else { 1180 #ifdef _SYSCALL32 1181 caddr32_t addr; 1182 1183 if (ps_pdread(ph_p, ta_p->uberdata_addr + 1184 offsetof(uberdata32_t, tdb.tdb_sync_addr_hash), 1185 &addr, sizeof (addr)) != PS_OK) { 1186 return_val = TD_DBERR; 1187 goto out; 1188 } 1189 psaddr = addr; 1190 #else 1191 return_val = TD_ERR; 1192 goto out; 1193 #endif /* _SYSCALL32 */ 1194 } 1195 1196 if (psaddr == NULL) 1197 goto out; 1198 if (ps_pdread(ph_p, psaddr, sync_addr_hash, 1199 TDB_HASH_SIZE * sizeof (uint64_t)) != PS_OK) { 1200 return_val = TD_DBERR; 1201 goto out; 1202 } 1203 1204 /* 1205 * Now scan the hash table. 1206 */ 1207 for (i = 0; i < TDB_HASH_SIZE; i++) { 1208 for (next_desc = (psaddr_t)sync_addr_hash[i]; 1209 next_desc != NULL; 1210 next_desc = (psaddr_t)sync_stats.next) { 1211 if (ps_pdread(ph_p, next_desc, 1212 &sync_stats, sizeof (sync_stats)) != PS_OK) { 1213 return_val = TD_DBERR; 1214 goto out; 1215 } 1216 if (sync_stats.un.type == TDB_NONE) { 1217 /* not registered since registration enabled */ 1218 continue; 1219 } 1220 synchandle.sh_ta_p = ta_p; 1221 synchandle.sh_unique = (psaddr_t)sync_stats.sync_addr; 1222 if ((*cb)(&synchandle, cbdata) != 0) 1223 goto out; 1224 } 1225 } 1226 1227 out: 1228 if (sync_addr_hash != NULL) 1229 (void) munmap((void *)sync_addr_hash, 1230 TDB_HASH_SIZE * sizeof (uint64_t)); 1231 (void) ps_pcontinue(ph_p); 1232 ph_unlock(ta_p); 1233 return (return_val); 1234 } 1235 1236 /* 1237 * Enable process statistics collection. 1238 */ 1239 #pragma weak td_ta_enable_stats = __td_ta_enable_stats 1240 /* ARGSUSED */ 1241 td_err_e 1242 __td_ta_enable_stats(const td_thragent_t *ta_p, int onoff) 1243 { 1244 return (TD_NOCAPAB); 1245 } 1246 1247 /* 1248 * Reset process statistics. 1249 */ 1250 #pragma weak td_ta_reset_stats = __td_ta_reset_stats 1251 /* ARGSUSED */ 1252 td_err_e 1253 __td_ta_reset_stats(const td_thragent_t *ta_p) 1254 { 1255 return (TD_NOCAPAB); 1256 } 1257 1258 /* 1259 * Read process statistics. 1260 */ 1261 #pragma weak td_ta_get_stats = __td_ta_get_stats 1262 /* ARGSUSED */ 1263 td_err_e 1264 __td_ta_get_stats(const td_thragent_t *ta_p, td_ta_stats_t *tstats) 1265 { 1266 return (TD_NOCAPAB); 1267 } 1268 1269 /* 1270 * Transfer information from lwp struct to thread information struct. 1271 * XXX -- lots of this needs cleaning up. 1272 */ 1273 static void 1274 td_thr2to(td_thragent_t *ta_p, psaddr_t ts_addr, 1275 ulwp_t *ulwp, td_thrinfo_t *ti_p) 1276 { 1277 lwpid_t lwpid; 1278 1279 if ((lwpid = ulwp->ul_lwpid) == 0) 1280 lwpid = 1; 1281 (void) memset(ti_p, 0, sizeof (*ti_p)); 1282 ti_p->ti_ta_p = ta_p; 1283 ti_p->ti_user_flags = ulwp->ul_usropts; 1284 ti_p->ti_tid = lwpid; 1285 ti_p->ti_exitval = ulwp->ul_rval; 1286 ti_p->ti_startfunc = (psaddr_t)ulwp->ul_startpc; 1287 if (!ulwp->ul_dead) { 1288 /* 1289 * The bloody fools got this backwards! 1290 */ 1291 ti_p->ti_stkbase = (psaddr_t)ulwp->ul_stktop; 1292 ti_p->ti_stksize = ulwp->ul_stksiz; 1293 } 1294 ti_p->ti_ro_area = ts_addr; 1295 ti_p->ti_ro_size = ulwp->ul_replace? 1296 REPLACEMENT_SIZE : sizeof (ulwp_t); 1297 ti_p->ti_state = ulwp->ul_dead? TD_THR_ZOMBIE : 1298 ulwp->ul_stop? TD_THR_STOPPED : 1299 ulwp->ul_wchan? TD_THR_SLEEP : 1300 TD_THR_ACTIVE; 1301 ti_p->ti_db_suspended = 0; 1302 ti_p->ti_type = TD_THR_USER; 1303 ti_p->ti_sp = ulwp->ul_sp; 1304 ti_p->ti_flags = 0; 1305 ti_p->ti_pri = ulwp->ul_pri; 1306 ti_p->ti_lid = lwpid; 1307 if (!ulwp->ul_dead) 1308 ti_p->ti_sigmask = ulwp->ul_sigmask; 1309 ti_p->ti_traceme = 0; 1310 ti_p->ti_preemptflag = 0; 1311 ti_p->ti_pirecflag = 0; 1312 (void) sigemptyset(&ti_p->ti_pending); 1313 ti_p->ti_events = ulwp->ul_td_evbuf.eventmask; 1314 } 1315 1316 #if defined(_LP64) && defined(_SYSCALL32) 1317 static void 1318 td_thr2to32(td_thragent_t *ta_p, psaddr_t ts_addr, 1319 ulwp32_t *ulwp, td_thrinfo_t *ti_p) 1320 { 1321 lwpid_t lwpid; 1322 1323 if ((lwpid = ulwp->ul_lwpid) == 0) 1324 lwpid = 1; 1325 (void) memset(ti_p, 0, sizeof (*ti_p)); 1326 ti_p->ti_ta_p = ta_p; 1327 ti_p->ti_user_flags = ulwp->ul_usropts; 1328 ti_p->ti_tid = lwpid; 1329 ti_p->ti_exitval = (void *)(uintptr_t)ulwp->ul_rval; 1330 ti_p->ti_startfunc = (psaddr_t)ulwp->ul_startpc; 1331 if (!ulwp->ul_dead) { 1332 /* 1333 * The bloody fools got this backwards! 1334 */ 1335 ti_p->ti_stkbase = (psaddr_t)ulwp->ul_stktop; 1336 ti_p->ti_stksize = ulwp->ul_stksiz; 1337 } 1338 ti_p->ti_ro_area = ts_addr; 1339 ti_p->ti_ro_size = ulwp->ul_replace? 1340 REPLACEMENT_SIZE32 : sizeof (ulwp32_t); 1341 ti_p->ti_state = ulwp->ul_dead? TD_THR_ZOMBIE : 1342 ulwp->ul_stop? TD_THR_STOPPED : 1343 ulwp->ul_wchan? TD_THR_SLEEP : 1344 TD_THR_ACTIVE; 1345 ti_p->ti_db_suspended = 0; 1346 ti_p->ti_type = TD_THR_USER; 1347 ti_p->ti_sp = (uint32_t)ulwp->ul_sp; 1348 ti_p->ti_flags = 0; 1349 ti_p->ti_pri = ulwp->ul_pri; 1350 ti_p->ti_lid = lwpid; 1351 if (!ulwp->ul_dead) 1352 ti_p->ti_sigmask = *(sigset_t *)&ulwp->ul_sigmask; 1353 ti_p->ti_traceme = 0; 1354 ti_p->ti_preemptflag = 0; 1355 ti_p->ti_pirecflag = 0; 1356 (void) sigemptyset(&ti_p->ti_pending); 1357 ti_p->ti_events = ulwp->ul_td_evbuf.eventmask; 1358 } 1359 #endif /* _SYSCALL32 */ 1360 1361 /* 1362 * Get thread information. 1363 */ 1364 #pragma weak td_thr_get_info = __td_thr_get_info 1365 td_err_e 1366 __td_thr_get_info(td_thrhandle_t *th_p, td_thrinfo_t *ti_p) 1367 { 1368 struct ps_prochandle *ph_p; 1369 td_thragent_t *ta_p; 1370 td_err_e return_val; 1371 psaddr_t psaddr; 1372 1373 if (ti_p == NULL) 1374 return (TD_ERR); 1375 (void) memset(ti_p, NULL, sizeof (*ti_p)); 1376 1377 if ((ph_p = ph_lock_th(th_p, &return_val)) == NULL) 1378 return (return_val); 1379 ta_p = th_p->th_ta_p; 1380 if (ps_pstop(ph_p) != PS_OK) { 1381 ph_unlock(ta_p); 1382 return (TD_DBERR); 1383 } 1384 1385 /* 1386 * Read the ulwp struct from the process. 1387 * Transfer the ulwp struct to the thread information struct. 1388 */ 1389 psaddr = th_p->th_unique; 1390 if (ta_p->model == PR_MODEL_NATIVE) { 1391 ulwp_t ulwp; 1392 1393 if (ps_pdread(ph_p, psaddr, &ulwp, sizeof (ulwp)) != PS_OK && 1394 ((void) memset(&ulwp, 0, sizeof (ulwp)), 1395 ps_pdread(ph_p, psaddr, &ulwp, REPLACEMENT_SIZE)) != PS_OK) 1396 return_val = TD_DBERR; 1397 else 1398 td_thr2to(ta_p, psaddr, &ulwp, ti_p); 1399 } else { 1400 #if defined(_LP64) && defined(_SYSCALL32) 1401 ulwp32_t ulwp; 1402 1403 if (ps_pdread(ph_p, psaddr, &ulwp, sizeof (ulwp)) != PS_OK && 1404 ((void) memset(&ulwp, 0, sizeof (ulwp)), 1405 ps_pdread(ph_p, psaddr, &ulwp, REPLACEMENT_SIZE32)) != 1406 PS_OK) 1407 return_val = TD_DBERR; 1408 else 1409 td_thr2to32(ta_p, psaddr, &ulwp, ti_p); 1410 #else 1411 return_val = TD_ERR; 1412 #endif /* _SYSCALL32 */ 1413 } 1414 1415 (void) ps_pcontinue(ph_p); 1416 ph_unlock(ta_p); 1417 return (return_val); 1418 } 1419 1420 /* 1421 * Given a process and an event number, return information about 1422 * an address in the process or at which a breakpoint can be set 1423 * to monitor the event. 1424 */ 1425 #pragma weak td_ta_event_addr = __td_ta_event_addr 1426 td_err_e 1427 __td_ta_event_addr(td_thragent_t *ta_p, td_event_e event, td_notify_t *notify_p) 1428 { 1429 if (ta_p == NULL) 1430 return (TD_BADTA); 1431 if (event < TD_MIN_EVENT_NUM || event > TD_MAX_EVENT_NUM) 1432 return (TD_NOEVENT); 1433 if (notify_p == NULL) 1434 return (TD_ERR); 1435 1436 notify_p->type = NOTIFY_BPT; 1437 notify_p->u.bptaddr = ta_p->tdb_events[event - TD_MIN_EVENT_NUM]; 1438 1439 return (TD_OK); 1440 } 1441 1442 /* 1443 * Add the events in eventset 2 to eventset 1. 1444 */ 1445 static void 1446 eventsetaddset(td_thr_events_t *event1_p, td_thr_events_t *event2_p) 1447 { 1448 int i; 1449 1450 for (i = 0; i < TD_EVENTSIZE; i++) 1451 event1_p->event_bits[i] |= event2_p->event_bits[i]; 1452 } 1453 1454 /* 1455 * Delete the events in eventset 2 from eventset 1. 1456 */ 1457 static void 1458 eventsetdelset(td_thr_events_t *event1_p, td_thr_events_t *event2_p) 1459 { 1460 int i; 1461 1462 for (i = 0; i < TD_EVENTSIZE; i++) 1463 event1_p->event_bits[i] &= ~event2_p->event_bits[i]; 1464 } 1465 1466 /* 1467 * Either add or delete the given event set from a thread's event mask. 1468 */ 1469 static td_err_e 1470 mod_eventset(td_thrhandle_t *th_p, td_thr_events_t *events, int onoff) 1471 { 1472 struct ps_prochandle *ph_p; 1473 td_err_e return_val = TD_OK; 1474 char enable; 1475 td_thr_events_t evset; 1476 psaddr_t psaddr_evset; 1477 psaddr_t psaddr_enab; 1478 1479 if ((ph_p = ph_lock_th(th_p, &return_val)) == NULL) 1480 return (return_val); 1481 if (th_p->th_ta_p->model == PR_MODEL_NATIVE) { 1482 ulwp_t *ulwp = (ulwp_t *)th_p->th_unique; 1483 psaddr_evset = (psaddr_t)&ulwp->ul_td_evbuf.eventmask; 1484 psaddr_enab = (psaddr_t)&ulwp->ul_td_events_enable; 1485 } else { 1486 #if defined(_LP64) && defined(_SYSCALL32) 1487 ulwp32_t *ulwp = (ulwp32_t *)th_p->th_unique; 1488 psaddr_evset = (psaddr_t)&ulwp->ul_td_evbuf.eventmask; 1489 psaddr_enab = (psaddr_t)&ulwp->ul_td_events_enable; 1490 #else 1491 ph_unlock(th_p->th_ta_p); 1492 return (TD_ERR); 1493 #endif /* _SYSCALL32 */ 1494 } 1495 if (ps_pstop(ph_p) != PS_OK) { 1496 ph_unlock(th_p->th_ta_p); 1497 return (TD_DBERR); 1498 } 1499 1500 if (ps_pdread(ph_p, psaddr_evset, &evset, sizeof (evset)) != PS_OK) 1501 return_val = TD_DBERR; 1502 else { 1503 if (onoff) 1504 eventsetaddset(&evset, events); 1505 else 1506 eventsetdelset(&evset, events); 1507 if (ps_pdwrite(ph_p, psaddr_evset, &evset, sizeof (evset)) 1508 != PS_OK) 1509 return_val = TD_DBERR; 1510 else { 1511 enable = 0; 1512 if (td_eventismember(&evset, TD_EVENTS_ENABLE)) 1513 enable = 1; 1514 if (ps_pdwrite(ph_p, psaddr_enab, 1515 &enable, sizeof (enable)) != PS_OK) 1516 return_val = TD_DBERR; 1517 } 1518 } 1519 1520 (void) ps_pcontinue(ph_p); 1521 ph_unlock(th_p->th_ta_p); 1522 return (return_val); 1523 } 1524 1525 /* 1526 * Enable or disable tracing for a given thread. Tracing 1527 * is filtered based on the event mask of each thread. Tracing 1528 * can be turned on/off for the thread without changing thread 1529 * event mask. 1530 * Currently unused by dbx. 1531 */ 1532 #pragma weak td_thr_event_enable = __td_thr_event_enable 1533 td_err_e 1534 __td_thr_event_enable(td_thrhandle_t *th_p, int onoff) 1535 { 1536 td_thr_events_t evset; 1537 1538 td_event_emptyset(&evset); 1539 td_event_addset(&evset, TD_EVENTS_ENABLE); 1540 return (mod_eventset(th_p, &evset, onoff)); 1541 } 1542 1543 /* 1544 * Set event mask to enable event. event is turned on in 1545 * event mask for thread. If a thread encounters an event 1546 * for which its event mask is on, notification will be sent 1547 * to the debugger. 1548 * Addresses for each event are provided to the 1549 * debugger. It is assumed that a breakpoint of some type will 1550 * be placed at that address. If the event mask for the thread 1551 * is on, the instruction at the address will be executed. 1552 * Otherwise, the instruction will be skipped. 1553 */ 1554 #pragma weak td_thr_set_event = __td_thr_set_event 1555 td_err_e 1556 __td_thr_set_event(td_thrhandle_t *th_p, td_thr_events_t *events) 1557 { 1558 return (mod_eventset(th_p, events, 1)); 1559 } 1560 1561 /* 1562 * Enable or disable a set of events in the process-global event mask, 1563 * depending on the value of onoff. 1564 */ 1565 static td_err_e 1566 td_ta_mod_event(td_thragent_t *ta_p, td_thr_events_t *events, int onoff) 1567 { 1568 struct ps_prochandle *ph_p; 1569 td_thr_events_t targ_eventset; 1570 td_err_e return_val; 1571 1572 if ((ph_p = ph_lock_ta(ta_p, &return_val)) == NULL) 1573 return (return_val); 1574 if (ps_pstop(ph_p) != PS_OK) { 1575 ph_unlock(ta_p); 1576 return (TD_DBERR); 1577 } 1578 if (ps_pdread(ph_p, ta_p->tdb_eventmask_addr, 1579 &targ_eventset, sizeof (targ_eventset)) != PS_OK) 1580 return_val = TD_DBERR; 1581 else { 1582 if (onoff) 1583 eventsetaddset(&targ_eventset, events); 1584 else 1585 eventsetdelset(&targ_eventset, events); 1586 if (ps_pdwrite(ph_p, ta_p->tdb_eventmask_addr, 1587 &targ_eventset, sizeof (targ_eventset)) != PS_OK) 1588 return_val = TD_DBERR; 1589 } 1590 (void) ps_pcontinue(ph_p); 1591 ph_unlock(ta_p); 1592 return (return_val); 1593 } 1594 1595 /* 1596 * Enable a set of events in the process-global event mask. 1597 */ 1598 #pragma weak td_ta_set_event = __td_ta_set_event 1599 td_err_e 1600 __td_ta_set_event(td_thragent_t *ta_p, td_thr_events_t *events) 1601 { 1602 return (td_ta_mod_event(ta_p, events, 1)); 1603 } 1604 1605 /* 1606 * Set event mask to disable the given event set; these events are cleared 1607 * from the event mask of the thread. Events that occur for a thread 1608 * with the event masked off will not cause notification to be 1609 * sent to the debugger (see td_thr_set_event for fuller description). 1610 */ 1611 #pragma weak td_thr_clear_event = __td_thr_clear_event 1612 td_err_e 1613 __td_thr_clear_event(td_thrhandle_t *th_p, td_thr_events_t *events) 1614 { 1615 return (mod_eventset(th_p, events, 0)); 1616 } 1617 1618 /* 1619 * Disable a set of events in the process-global event mask. 1620 */ 1621 #pragma weak td_ta_clear_event = __td_ta_clear_event 1622 td_err_e 1623 __td_ta_clear_event(td_thragent_t *ta_p, td_thr_events_t *events) 1624 { 1625 return (td_ta_mod_event(ta_p, events, 0)); 1626 } 1627 1628 /* 1629 * This function returns the most recent event message, if any, 1630 * associated with a thread. Given a thread handle, return the message 1631 * corresponding to the event encountered by the thread. Only one 1632 * message per thread is saved. Messages from earlier events are lost 1633 * when later events occur. 1634 */ 1635 #pragma weak td_thr_event_getmsg = __td_thr_event_getmsg 1636 td_err_e 1637 __td_thr_event_getmsg(td_thrhandle_t *th_p, td_event_msg_t *msg) 1638 { 1639 struct ps_prochandle *ph_p; 1640 td_err_e return_val = TD_OK; 1641 psaddr_t psaddr; 1642 1643 if ((ph_p = ph_lock_th(th_p, &return_val)) == NULL) 1644 return (return_val); 1645 if (ps_pstop(ph_p) != PS_OK) { 1646 ph_unlock(th_p->th_ta_p); 1647 return (TD_BADTA); 1648 } 1649 if (th_p->th_ta_p->model == PR_MODEL_NATIVE) { 1650 ulwp_t *ulwp = (ulwp_t *)th_p->th_unique; 1651 td_evbuf_t evbuf; 1652 1653 psaddr = (psaddr_t)&ulwp->ul_td_evbuf; 1654 if (ps_pdread(ph_p, psaddr, &evbuf, sizeof (evbuf)) != PS_OK) { 1655 return_val = TD_DBERR; 1656 } else if (evbuf.eventnum == TD_EVENT_NONE) { 1657 return_val = TD_NOEVENT; 1658 } else { 1659 msg->event = evbuf.eventnum; 1660 msg->th_p = (td_thrhandle_t *)th_p; 1661 msg->msg.data = (uintptr_t)evbuf.eventdata; 1662 /* "Consume" the message */ 1663 evbuf.eventnum = TD_EVENT_NONE; 1664 evbuf.eventdata = NULL; 1665 if (ps_pdwrite(ph_p, psaddr, &evbuf, sizeof (evbuf)) 1666 != PS_OK) 1667 return_val = TD_DBERR; 1668 } 1669 } else { 1670 #if defined(_LP64) && defined(_SYSCALL32) 1671 ulwp32_t *ulwp = (ulwp32_t *)th_p->th_unique; 1672 td_evbuf32_t evbuf; 1673 1674 psaddr = (psaddr_t)&ulwp->ul_td_evbuf; 1675 if (ps_pdread(ph_p, psaddr, &evbuf, sizeof (evbuf)) != PS_OK) { 1676 return_val = TD_DBERR; 1677 } else if (evbuf.eventnum == TD_EVENT_NONE) { 1678 return_val = TD_NOEVENT; 1679 } else { 1680 msg->event = evbuf.eventnum; 1681 msg->th_p = (td_thrhandle_t *)th_p; 1682 msg->msg.data = (uintptr_t)evbuf.eventdata; 1683 /* "Consume" the message */ 1684 evbuf.eventnum = TD_EVENT_NONE; 1685 evbuf.eventdata = NULL; 1686 if (ps_pdwrite(ph_p, psaddr, &evbuf, sizeof (evbuf)) 1687 != PS_OK) 1688 return_val = TD_DBERR; 1689 } 1690 #else 1691 return_val = TD_ERR; 1692 #endif /* _SYSCALL32 */ 1693 } 1694 1695 (void) ps_pcontinue(ph_p); 1696 ph_unlock(th_p->th_ta_p); 1697 return (return_val); 1698 } 1699 1700 /* 1701 * The callback function td_ta_event_getmsg uses when looking for 1702 * a thread with an event. A thin wrapper around td_thr_event_getmsg. 1703 */ 1704 static int 1705 event_msg_cb(const td_thrhandle_t *th_p, void *arg) 1706 { 1707 static td_thrhandle_t th; 1708 td_event_msg_t *msg = arg; 1709 1710 if (__td_thr_event_getmsg((td_thrhandle_t *)th_p, msg) == TD_OK) { 1711 /* 1712 * Got an event, stop iterating. 1713 * 1714 * Because of past mistakes in interface definition, 1715 * we are forced to pass back a static local variable 1716 * for the thread handle because th_p is a pointer 1717 * to a local variable in __td_ta_thr_iter(). 1718 * Grr... 1719 */ 1720 th = *th_p; 1721 msg->th_p = &th; 1722 return (1); 1723 } 1724 return (0); 1725 } 1726 1727 /* 1728 * This function is just like td_thr_event_getmsg, except that it is 1729 * passed a process handle rather than a thread handle, and returns 1730 * an event message for some thread in the process that has an event 1731 * message pending. If no thread has an event message pending, this 1732 * routine returns TD_NOEVENT. Thus, all pending event messages may 1733 * be collected from a process by repeatedly calling this routine 1734 * until it returns TD_NOEVENT. 1735 */ 1736 #pragma weak td_ta_event_getmsg = __td_ta_event_getmsg 1737 td_err_e 1738 __td_ta_event_getmsg(td_thragent_t *ta_p, td_event_msg_t *msg) 1739 { 1740 td_err_e return_val; 1741 1742 if (ta_p == NULL) 1743 return (TD_BADTA); 1744 if (ta_p->ph_p == NULL) 1745 return (TD_BADPH); 1746 if (msg == NULL) 1747 return (TD_ERR); 1748 msg->event = TD_EVENT_NONE; 1749 if ((return_val = __td_ta_thr_iter(ta_p, event_msg_cb, msg, 1750 TD_THR_ANY_STATE, TD_THR_LOWEST_PRIORITY, TD_SIGNO_MASK, 1751 TD_THR_ANY_USER_FLAGS)) != TD_OK) 1752 return (return_val); 1753 if (msg->event == TD_EVENT_NONE) 1754 return (TD_NOEVENT); 1755 return (TD_OK); 1756 } 1757 1758 static lwpid_t 1759 thr_to_lwpid(const td_thrhandle_t *th_p) 1760 { 1761 struct ps_prochandle *ph_p = th_p->th_ta_p->ph_p; 1762 lwpid_t lwpid; 1763 1764 /* 1765 * The caller holds the prochandle lock 1766 * and has already verfied everything. 1767 */ 1768 if (th_p->th_ta_p->model == PR_MODEL_NATIVE) { 1769 ulwp_t *ulwp = (ulwp_t *)th_p->th_unique; 1770 1771 if (ps_pdread(ph_p, (psaddr_t)&ulwp->ul_lwpid, 1772 &lwpid, sizeof (lwpid)) != PS_OK) 1773 lwpid = 0; 1774 else if (lwpid == 0) 1775 lwpid = 1; 1776 } else { 1777 #if defined(_LP64) && defined(_SYSCALL32) 1778 ulwp32_t *ulwp = (ulwp32_t *)th_p->th_unique; 1779 1780 if (ps_pdread(ph_p, (psaddr_t)&ulwp->ul_lwpid, 1781 &lwpid, sizeof (lwpid)) != PS_OK) 1782 lwpid = 0; 1783 else if (lwpid == 0) 1784 lwpid = 1; 1785 #else 1786 lwpid = 0; 1787 #endif /* _SYSCALL32 */ 1788 } 1789 1790 return (lwpid); 1791 } 1792 1793 /* 1794 * Suspend a thread. 1795 * XXX: What does this mean in a one-level model? 1796 */ 1797 #pragma weak td_thr_dbsuspend = __td_thr_dbsuspend 1798 td_err_e 1799 __td_thr_dbsuspend(const td_thrhandle_t *th_p) 1800 { 1801 struct ps_prochandle *ph_p; 1802 td_err_e return_val; 1803 1804 if ((ph_p = ph_lock_th(th_p, &return_val)) == NULL) 1805 return (return_val); 1806 if (ps_lstop(ph_p, thr_to_lwpid(th_p)) != PS_OK) 1807 return_val = TD_DBERR; 1808 ph_unlock(th_p->th_ta_p); 1809 return (return_val); 1810 } 1811 1812 /* 1813 * Resume a suspended thread. 1814 * XXX: What does this mean in a one-level model? 1815 */ 1816 #pragma weak td_thr_dbresume = __td_thr_dbresume 1817 td_err_e 1818 __td_thr_dbresume(const td_thrhandle_t *th_p) 1819 { 1820 struct ps_prochandle *ph_p; 1821 td_err_e return_val; 1822 1823 if ((ph_p = ph_lock_th(th_p, &return_val)) == NULL) 1824 return (return_val); 1825 if (ps_lcontinue(ph_p, thr_to_lwpid(th_p)) != PS_OK) 1826 return_val = TD_DBERR; 1827 ph_unlock(th_p->th_ta_p); 1828 return (return_val); 1829 } 1830 1831 /* 1832 * Set a thread's signal mask. 1833 * Currently unused by dbx. 1834 */ 1835 #pragma weak td_thr_sigsetmask = __td_thr_sigsetmask 1836 /* ARGSUSED */ 1837 td_err_e 1838 __td_thr_sigsetmask(const td_thrhandle_t *th_p, const sigset_t ti_sigmask) 1839 { 1840 return (TD_NOCAPAB); 1841 } 1842 1843 /* 1844 * Set a thread's "signals-pending" set. 1845 * Currently unused by dbx. 1846 */ 1847 #pragma weak td_thr_setsigpending = __td_thr_setsigpending 1848 /* ARGSUSED */ 1849 td_err_e 1850 __td_thr_setsigpending(const td_thrhandle_t *th_p, 1851 uchar_t ti_pending_flag, const sigset_t ti_pending) 1852 { 1853 return (TD_NOCAPAB); 1854 } 1855 1856 /* 1857 * Get a thread's general register set. 1858 */ 1859 #pragma weak td_thr_getgregs = __td_thr_getgregs 1860 td_err_e 1861 __td_thr_getgregs(td_thrhandle_t *th_p, prgregset_t regset) 1862 { 1863 struct ps_prochandle *ph_p; 1864 td_err_e return_val; 1865 1866 if ((ph_p = ph_lock_th(th_p, &return_val)) == NULL) 1867 return (return_val); 1868 if (ps_pstop(ph_p) != PS_OK) { 1869 ph_unlock(th_p->th_ta_p); 1870 return (TD_DBERR); 1871 } 1872 1873 if (ps_lgetregs(ph_p, thr_to_lwpid(th_p), regset) != PS_OK) 1874 return_val = TD_DBERR; 1875 1876 (void) ps_pcontinue(ph_p); 1877 ph_unlock(th_p->th_ta_p); 1878 return (return_val); 1879 } 1880 1881 /* 1882 * Set a thread's general register set. 1883 */ 1884 #pragma weak td_thr_setgregs = __td_thr_setgregs 1885 td_err_e 1886 __td_thr_setgregs(td_thrhandle_t *th_p, const prgregset_t regset) 1887 { 1888 struct ps_prochandle *ph_p; 1889 td_err_e return_val; 1890 1891 if ((ph_p = ph_lock_th(th_p, &return_val)) == NULL) 1892 return (return_val); 1893 if (ps_pstop(ph_p) != PS_OK) { 1894 ph_unlock(th_p->th_ta_p); 1895 return (TD_DBERR); 1896 } 1897 1898 if (ps_lsetregs(ph_p, thr_to_lwpid(th_p), regset) != PS_OK) 1899 return_val = TD_DBERR; 1900 1901 (void) ps_pcontinue(ph_p); 1902 ph_unlock(th_p->th_ta_p); 1903 return (return_val); 1904 } 1905 1906 /* 1907 * Get a thread's floating-point register set. 1908 */ 1909 #pragma weak td_thr_getfpregs = __td_thr_getfpregs 1910 td_err_e 1911 __td_thr_getfpregs(td_thrhandle_t *th_p, prfpregset_t *fpregset) 1912 { 1913 struct ps_prochandle *ph_p; 1914 td_err_e return_val; 1915 1916 if ((ph_p = ph_lock_th(th_p, &return_val)) == NULL) 1917 return (return_val); 1918 if (ps_pstop(ph_p) != PS_OK) { 1919 ph_unlock(th_p->th_ta_p); 1920 return (TD_DBERR); 1921 } 1922 1923 if (ps_lgetfpregs(ph_p, thr_to_lwpid(th_p), fpregset) != PS_OK) 1924 return_val = TD_DBERR; 1925 1926 (void) ps_pcontinue(ph_p); 1927 ph_unlock(th_p->th_ta_p); 1928 return (return_val); 1929 } 1930 1931 /* 1932 * Set a thread's floating-point register set. 1933 */ 1934 #pragma weak td_thr_setfpregs = __td_thr_setfpregs 1935 td_err_e 1936 __td_thr_setfpregs(td_thrhandle_t *th_p, const prfpregset_t *fpregset) 1937 { 1938 struct ps_prochandle *ph_p; 1939 td_err_e return_val; 1940 1941 if ((ph_p = ph_lock_th(th_p, &return_val)) == NULL) 1942 return (return_val); 1943 if (ps_pstop(ph_p) != PS_OK) { 1944 ph_unlock(th_p->th_ta_p); 1945 return (TD_DBERR); 1946 } 1947 1948 if (ps_lsetfpregs(ph_p, thr_to_lwpid(th_p), fpregset) != PS_OK) 1949 return_val = TD_DBERR; 1950 1951 (void) ps_pcontinue(ph_p); 1952 ph_unlock(th_p->th_ta_p); 1953 return (return_val); 1954 } 1955 1956 /* 1957 * Get the size of the extra state register set for this architecture. 1958 * Currently unused by dbx. 1959 */ 1960 #pragma weak td_thr_getxregsize = __td_thr_getxregsize 1961 /* ARGSUSED */ 1962 td_err_e 1963 __td_thr_getxregsize(td_thrhandle_t *th_p, int *xregsize) 1964 { 1965 #if defined(__sparc) 1966 struct ps_prochandle *ph_p; 1967 td_err_e return_val; 1968 1969 if ((ph_p = ph_lock_th(th_p, &return_val)) == NULL) 1970 return (return_val); 1971 if (ps_pstop(ph_p) != PS_OK) { 1972 ph_unlock(th_p->th_ta_p); 1973 return (TD_DBERR); 1974 } 1975 1976 if (ps_lgetxregsize(ph_p, thr_to_lwpid(th_p), xregsize) != PS_OK) 1977 return_val = TD_DBERR; 1978 1979 (void) ps_pcontinue(ph_p); 1980 ph_unlock(th_p->th_ta_p); 1981 return (return_val); 1982 #else /* __sparc */ 1983 return (TD_NOXREGS); 1984 #endif /* __sparc */ 1985 } 1986 1987 /* 1988 * Get a thread's extra state register set. 1989 */ 1990 #pragma weak td_thr_getxregs = __td_thr_getxregs 1991 /* ARGSUSED */ 1992 td_err_e 1993 __td_thr_getxregs(td_thrhandle_t *th_p, void *xregset) 1994 { 1995 #if defined(__sparc) 1996 struct ps_prochandle *ph_p; 1997 td_err_e return_val; 1998 1999 if ((ph_p = ph_lock_th(th_p, &return_val)) == NULL) 2000 return (return_val); 2001 if (ps_pstop(ph_p) != PS_OK) { 2002 ph_unlock(th_p->th_ta_p); 2003 return (TD_DBERR); 2004 } 2005 2006 if (ps_lgetxregs(ph_p, thr_to_lwpid(th_p), (caddr_t)xregset) != PS_OK) 2007 return_val = TD_DBERR; 2008 2009 (void) ps_pcontinue(ph_p); 2010 ph_unlock(th_p->th_ta_p); 2011 return (return_val); 2012 #else /* __sparc */ 2013 return (TD_NOXREGS); 2014 #endif /* __sparc */ 2015 } 2016 2017 /* 2018 * Set a thread's extra state register set. 2019 */ 2020 #pragma weak td_thr_setxregs = __td_thr_setxregs 2021 /* ARGSUSED */ 2022 td_err_e 2023 __td_thr_setxregs(td_thrhandle_t *th_p, const void *xregset) 2024 { 2025 #if defined(__sparc) 2026 struct ps_prochandle *ph_p; 2027 td_err_e return_val; 2028 2029 if ((ph_p = ph_lock_th(th_p, &return_val)) == NULL) 2030 return (return_val); 2031 if (ps_pstop(ph_p) != PS_OK) { 2032 ph_unlock(th_p->th_ta_p); 2033 return (TD_DBERR); 2034 } 2035 2036 if (ps_lsetxregs(ph_p, thr_to_lwpid(th_p), (caddr_t)xregset) != PS_OK) 2037 return_val = TD_DBERR; 2038 2039 (void) ps_pcontinue(ph_p); 2040 ph_unlock(th_p->th_ta_p); 2041 return (return_val); 2042 #else /* __sparc */ 2043 return (TD_NOXREGS); 2044 #endif /* __sparc */ 2045 } 2046 2047 struct searcher { 2048 psaddr_t addr; 2049 int status; 2050 }; 2051 2052 /* 2053 * Check the struct thread address in *th_p again first 2054 * value in "data". If value in data is found, set second value 2055 * in "data" to 1 and return 1 to terminate iterations. 2056 * This function is used by td_thr_validate() to verify that 2057 * a thread handle is valid. 2058 */ 2059 static int 2060 td_searcher(const td_thrhandle_t *th_p, void *data) 2061 { 2062 struct searcher *searcher_data = (struct searcher *)data; 2063 2064 if (searcher_data->addr == th_p->th_unique) { 2065 searcher_data->status = 1; 2066 return (1); 2067 } 2068 return (0); 2069 } 2070 2071 /* 2072 * Validate the thread handle. Check that 2073 * a thread exists in the thread agent/process that 2074 * corresponds to thread with handle *th_p. 2075 * Currently unused by dbx. 2076 */ 2077 #pragma weak td_thr_validate = __td_thr_validate 2078 td_err_e 2079 __td_thr_validate(const td_thrhandle_t *th_p) 2080 { 2081 td_err_e return_val; 2082 struct searcher searcher_data = {0, 0}; 2083 2084 if (th_p == NULL) 2085 return (TD_BADTH); 2086 if (th_p->th_unique == NULL || th_p->th_ta_p == NULL) 2087 return (TD_BADTH); 2088 2089 /* 2090 * LOCKING EXCEPTION - Locking is not required 2091 * here because no use of the thread agent is made (other 2092 * than the sanity check) and checking of the thread 2093 * agent will be done in __td_ta_thr_iter. 2094 */ 2095 2096 searcher_data.addr = th_p->th_unique; 2097 return_val = __td_ta_thr_iter(th_p->th_ta_p, 2098 td_searcher, &searcher_data, 2099 TD_THR_ANY_STATE, TD_THR_LOWEST_PRIORITY, 2100 TD_SIGNO_MASK, TD_THR_ANY_USER_FLAGS); 2101 2102 if (return_val == TD_OK && searcher_data.status == 0) 2103 return_val = TD_NOTHR; 2104 2105 return (return_val); 2106 } 2107 2108 /* 2109 * Get a thread's private binding to a given thread specific 2110 * data(TSD) key(see thr_getspecific(3T). If the thread doesn't 2111 * have a binding for a particular key, then NULL is returned. 2112 */ 2113 #pragma weak td_thr_tsd = __td_thr_tsd 2114 td_err_e 2115 __td_thr_tsd(td_thrhandle_t *th_p, thread_key_t key, void **data_pp) 2116 { 2117 struct ps_prochandle *ph_p; 2118 td_thragent_t *ta_p; 2119 td_err_e return_val; 2120 int maxkey; 2121 int nkey; 2122 psaddr_t tsd_paddr; 2123 2124 if (data_pp == NULL) 2125 return (TD_ERR); 2126 *data_pp = NULL; 2127 if ((ph_p = ph_lock_th(th_p, &return_val)) == NULL) 2128 return (return_val); 2129 ta_p = th_p->th_ta_p; 2130 if (ps_pstop(ph_p) != PS_OK) { 2131 ph_unlock(ta_p); 2132 return (TD_DBERR); 2133 } 2134 2135 if (ta_p->model == PR_MODEL_NATIVE) { 2136 ulwp_t *ulwp = (ulwp_t *)th_p->th_unique; 2137 tsd_metadata_t tsdm; 2138 tsd_t stsd; 2139 2140 if (ps_pdread(ph_p, 2141 ta_p->uberdata_addr + offsetof(uberdata_t, tsd_metadata), 2142 &tsdm, sizeof (tsdm)) != PS_OK) 2143 return_val = TD_DBERR; 2144 else if (ps_pdread(ph_p, (psaddr_t)&ulwp->ul_stsd, 2145 &tsd_paddr, sizeof (tsd_paddr)) != PS_OK) 2146 return_val = TD_DBERR; 2147 else if (tsd_paddr != NULL && 2148 ps_pdread(ph_p, tsd_paddr, &stsd, sizeof (stsd)) != PS_OK) 2149 return_val = TD_DBERR; 2150 else { 2151 maxkey = tsdm.tsdm_nused; 2152 nkey = tsd_paddr == NULL ? TSD_NFAST : stsd.tsd_nalloc; 2153 2154 if (key < TSD_NFAST) 2155 tsd_paddr = (psaddr_t)&ulwp->ul_ftsd[0]; 2156 } 2157 } else { 2158 #if defined(_LP64) && defined(_SYSCALL32) 2159 ulwp32_t *ulwp = (ulwp32_t *)th_p->th_unique; 2160 tsd_metadata32_t tsdm; 2161 tsd32_t stsd; 2162 caddr32_t addr; 2163 2164 if (ps_pdread(ph_p, 2165 ta_p->uberdata_addr + offsetof(uberdata32_t, tsd_metadata), 2166 &tsdm, sizeof (tsdm)) != PS_OK) 2167 return_val = TD_DBERR; 2168 else if (ps_pdread(ph_p, (psaddr_t)&ulwp->ul_stsd, 2169 &addr, sizeof (addr)) != PS_OK) 2170 return_val = TD_DBERR; 2171 else if (addr != NULL && 2172 ps_pdread(ph_p, addr, &stsd, sizeof (stsd)) != PS_OK) 2173 return_val = TD_DBERR; 2174 else { 2175 maxkey = tsdm.tsdm_nused; 2176 nkey = addr == NULL ? TSD_NFAST : stsd.tsd_nalloc; 2177 2178 if (key < TSD_NFAST) { 2179 tsd_paddr = (psaddr_t)&ulwp->ul_ftsd[0]; 2180 } else { 2181 tsd_paddr = addr; 2182 } 2183 } 2184 #else 2185 return_val = TD_ERR; 2186 #endif /* _SYSCALL32 */ 2187 } 2188 2189 if (return_val == TD_OK && (key < 1 || key >= maxkey)) 2190 return_val = TD_NOTSD; 2191 if (return_val != TD_OK || key >= nkey) { 2192 /* NULL has already been stored in data_pp */ 2193 (void) ps_pcontinue(ph_p); 2194 ph_unlock(ta_p); 2195 return (return_val); 2196 } 2197 2198 /* 2199 * Read the value from the thread's tsd array. 2200 */ 2201 if (ta_p->model == PR_MODEL_NATIVE) { 2202 void *value; 2203 2204 if (ps_pdread(ph_p, tsd_paddr + key * sizeof (void *), 2205 &value, sizeof (value)) != PS_OK) 2206 return_val = TD_DBERR; 2207 else 2208 *data_pp = value; 2209 #if defined(_LP64) && defined(_SYSCALL32) 2210 } else { 2211 caddr32_t value32; 2212 2213 if (ps_pdread(ph_p, tsd_paddr + key * sizeof (caddr32_t), 2214 &value32, sizeof (value32)) != PS_OK) 2215 return_val = TD_DBERR; 2216 else 2217 *data_pp = (void *)(uintptr_t)value32; 2218 #endif /* _SYSCALL32 */ 2219 } 2220 2221 (void) ps_pcontinue(ph_p); 2222 ph_unlock(ta_p); 2223 return (return_val); 2224 } 2225 2226 /* 2227 * Get the base address of a thread's thread local storage (TLS) block 2228 * for the module (executable or shared object) identified by 'moduleid'. 2229 */ 2230 #pragma weak td_thr_tlsbase = __td_thr_tlsbase 2231 td_err_e 2232 __td_thr_tlsbase(td_thrhandle_t *th_p, ulong_t moduleid, psaddr_t *base) 2233 { 2234 struct ps_prochandle *ph_p; 2235 td_thragent_t *ta_p; 2236 td_err_e return_val; 2237 2238 if (base == NULL) 2239 return (TD_ERR); 2240 *base = NULL; 2241 if ((ph_p = ph_lock_th(th_p, &return_val)) == NULL) 2242 return (return_val); 2243 ta_p = th_p->th_ta_p; 2244 if (ps_pstop(ph_p) != PS_OK) { 2245 ph_unlock(ta_p); 2246 return (TD_DBERR); 2247 } 2248 2249 if (ta_p->model == PR_MODEL_NATIVE) { 2250 ulwp_t *ulwp = (ulwp_t *)th_p->th_unique; 2251 tls_metadata_t tls_metadata; 2252 TLS_modinfo tlsmod; 2253 tls_t tls; 2254 2255 if (ps_pdread(ph_p, 2256 ta_p->uberdata_addr + offsetof(uberdata_t, tls_metadata), 2257 &tls_metadata, sizeof (tls_metadata)) != PS_OK) 2258 return_val = TD_DBERR; 2259 else if (moduleid >= tls_metadata.tls_modinfo.tls_size) 2260 return_val = TD_NOTLS; 2261 else if (ps_pdread(ph_p, 2262 (psaddr_t)((TLS_modinfo *) 2263 tls_metadata.tls_modinfo.tls_data + moduleid), 2264 &tlsmod, sizeof (tlsmod)) != PS_OK) 2265 return_val = TD_DBERR; 2266 else if (tlsmod.tm_memsz == 0) 2267 return_val = TD_NOTLS; 2268 else if (tlsmod.tm_flags & TM_FLG_STATICTLS) 2269 *base = (psaddr_t)ulwp - tlsmod.tm_stattlsoffset; 2270 else if (ps_pdread(ph_p, (psaddr_t)&ulwp->ul_tls, 2271 &tls, sizeof (tls)) != PS_OK) 2272 return_val = TD_DBERR; 2273 else if (moduleid >= tls.tls_size) 2274 return_val = TD_TLSDEFER; 2275 else if (ps_pdread(ph_p, 2276 (psaddr_t)((tls_t *)tls.tls_data + moduleid), 2277 &tls, sizeof (tls)) != PS_OK) 2278 return_val = TD_DBERR; 2279 else if (tls.tls_size == 0) 2280 return_val = TD_TLSDEFER; 2281 else 2282 *base = (psaddr_t)tls.tls_data; 2283 } else { 2284 #if defined(_LP64) && defined(_SYSCALL32) 2285 ulwp32_t *ulwp = (ulwp32_t *)th_p->th_unique; 2286 tls_metadata32_t tls_metadata; 2287 TLS_modinfo32 tlsmod; 2288 tls32_t tls; 2289 2290 if (ps_pdread(ph_p, 2291 ta_p->uberdata_addr + offsetof(uberdata32_t, tls_metadata), 2292 &tls_metadata, sizeof (tls_metadata)) != PS_OK) 2293 return_val = TD_DBERR; 2294 else if (moduleid >= tls_metadata.tls_modinfo.tls_size) 2295 return_val = TD_NOTLS; 2296 else if (ps_pdread(ph_p, 2297 (psaddr_t)((TLS_modinfo32 *) 2298 (uintptr_t)tls_metadata.tls_modinfo.tls_data + moduleid), 2299 &tlsmod, sizeof (tlsmod)) != PS_OK) 2300 return_val = TD_DBERR; 2301 else if (tlsmod.tm_memsz == 0) 2302 return_val = TD_NOTLS; 2303 else if (tlsmod.tm_flags & TM_FLG_STATICTLS) 2304 *base = (psaddr_t)ulwp - tlsmod.tm_stattlsoffset; 2305 else if (ps_pdread(ph_p, (psaddr_t)&ulwp->ul_tls, 2306 &tls, sizeof (tls)) != PS_OK) 2307 return_val = TD_DBERR; 2308 else if (moduleid >= tls.tls_size) 2309 return_val = TD_TLSDEFER; 2310 else if (ps_pdread(ph_p, 2311 (psaddr_t)((tls32_t *)(uintptr_t)tls.tls_data + moduleid), 2312 &tls, sizeof (tls)) != PS_OK) 2313 return_val = TD_DBERR; 2314 else if (tls.tls_size == 0) 2315 return_val = TD_TLSDEFER; 2316 else 2317 *base = (psaddr_t)tls.tls_data; 2318 #else 2319 return_val = TD_ERR; 2320 #endif /* _SYSCALL32 */ 2321 } 2322 2323 (void) ps_pcontinue(ph_p); 2324 ph_unlock(ta_p); 2325 return (return_val); 2326 } 2327 2328 /* 2329 * Change a thread's priority to the value specified by ti_pri. 2330 * Currently unused by dbx. 2331 */ 2332 #pragma weak td_thr_setprio = __td_thr_setprio 2333 /* ARGSUSED */ 2334 td_err_e 2335 __td_thr_setprio(td_thrhandle_t *th_p, int ti_pri) 2336 { 2337 return (TD_NOCAPAB); 2338 } 2339 2340 /* 2341 * This structure links td_thr_lockowner and the lowner_cb callback function. 2342 */ 2343 typedef struct { 2344 td_sync_iter_f *owner_cb; 2345 void *owner_cb_arg; 2346 td_thrhandle_t *th_p; 2347 } lowner_cb_ctl_t; 2348 2349 static int 2350 lowner_cb(const td_synchandle_t *sh_p, void *arg) 2351 { 2352 lowner_cb_ctl_t *ocb = arg; 2353 int trunc = 0; 2354 union { 2355 rwlock_t rwl; 2356 mutex_t mx; 2357 } rw_m; 2358 2359 if (ps_pdread(sh_p->sh_ta_p->ph_p, sh_p->sh_unique, 2360 &rw_m, sizeof (rw_m)) != PS_OK) { 2361 trunc = 1; 2362 if (ps_pdread(sh_p->sh_ta_p->ph_p, sh_p->sh_unique, 2363 &rw_m.mx, sizeof (rw_m.mx)) != PS_OK) 2364 return (0); 2365 } 2366 if (rw_m.mx.mutex_magic == MUTEX_MAGIC && 2367 rw_m.mx.mutex_owner == ocb->th_p->th_unique) 2368 return ((ocb->owner_cb)(sh_p, ocb->owner_cb_arg)); 2369 if (!trunc && rw_m.rwl.magic == RWL_MAGIC) { 2370 mutex_t *rwlock = &rw_m.rwl.mutex; 2371 if (rwlock->mutex_owner == ocb->th_p->th_unique) 2372 return ((ocb->owner_cb)(sh_p, ocb->owner_cb_arg)); 2373 } 2374 return (0); 2375 } 2376 2377 /* 2378 * Iterate over the set of locks owned by a specified thread. 2379 * If cb returns a non-zero value, terminate iterations. 2380 */ 2381 #pragma weak td_thr_lockowner = __td_thr_lockowner 2382 td_err_e 2383 __td_thr_lockowner(const td_thrhandle_t *th_p, td_sync_iter_f *cb, 2384 void *cb_data) 2385 { 2386 td_thragent_t *ta_p; 2387 td_err_e return_val; 2388 lowner_cb_ctl_t lcb; 2389 2390 /* 2391 * Just sanity checks. 2392 */ 2393 if (ph_lock_th((td_thrhandle_t *)th_p, &return_val) == NULL) 2394 return (return_val); 2395 ta_p = th_p->th_ta_p; 2396 ph_unlock(ta_p); 2397 2398 lcb.owner_cb = cb; 2399 lcb.owner_cb_arg = cb_data; 2400 lcb.th_p = (td_thrhandle_t *)th_p; 2401 return (__td_ta_sync_iter(ta_p, lowner_cb, &lcb)); 2402 } 2403 2404 /* 2405 * If a thread is asleep on a synchronization variable, 2406 * then get the synchronization handle. 2407 */ 2408 #pragma weak td_thr_sleepinfo = __td_thr_sleepinfo 2409 td_err_e 2410 __td_thr_sleepinfo(const td_thrhandle_t *th_p, td_synchandle_t *sh_p) 2411 { 2412 struct ps_prochandle *ph_p; 2413 td_err_e return_val = TD_OK; 2414 uintptr_t wchan; 2415 2416 if (sh_p == NULL) 2417 return (TD_ERR); 2418 if ((ph_p = ph_lock_th((td_thrhandle_t *)th_p, &return_val)) == NULL) 2419 return (return_val); 2420 2421 /* 2422 * No need to stop the process for a simple read. 2423 */ 2424 if (th_p->th_ta_p->model == PR_MODEL_NATIVE) { 2425 ulwp_t *ulwp = (ulwp_t *)th_p->th_unique; 2426 2427 if (ps_pdread(ph_p, (psaddr_t)&ulwp->ul_wchan, 2428 &wchan, sizeof (wchan)) != PS_OK) 2429 return_val = TD_DBERR; 2430 } else { 2431 #if defined(_LP64) && defined(_SYSCALL32) 2432 ulwp32_t *ulwp = (ulwp32_t *)th_p->th_unique; 2433 caddr32_t wchan32; 2434 2435 if (ps_pdread(ph_p, (psaddr_t)&ulwp->ul_wchan, 2436 &wchan32, sizeof (wchan32)) != PS_OK) 2437 return_val = TD_DBERR; 2438 wchan = wchan32; 2439 #else 2440 return_val = TD_ERR; 2441 #endif /* _SYSCALL32 */ 2442 } 2443 2444 if (return_val != TD_OK || wchan == NULL) { 2445 sh_p->sh_ta_p = NULL; 2446 sh_p->sh_unique = NULL; 2447 if (return_val == TD_OK) 2448 return_val = TD_ERR; 2449 } else { 2450 sh_p->sh_ta_p = th_p->th_ta_p; 2451 sh_p->sh_unique = (psaddr_t)wchan; 2452 } 2453 2454 ph_unlock(th_p->th_ta_p); 2455 return (return_val); 2456 } 2457 2458 /* 2459 * Which thread is running on an lwp? 2460 */ 2461 #pragma weak td_ta_map_lwp2thr = __td_ta_map_lwp2thr 2462 td_err_e 2463 __td_ta_map_lwp2thr(td_thragent_t *ta_p, lwpid_t lwpid, 2464 td_thrhandle_t *th_p) 2465 { 2466 return (__td_ta_map_id2thr(ta_p, lwpid, th_p)); 2467 } 2468 2469 /* 2470 * Common code for td_sync_get_info() and td_sync_get_stats() 2471 */ 2472 static td_err_e 2473 sync_get_info_common(const td_synchandle_t *sh_p, struct ps_prochandle *ph_p, 2474 td_syncinfo_t *si_p) 2475 { 2476 int trunc = 0; 2477 td_so_un_t generic_so; 2478 2479 /* 2480 * Determine the sync. object type; a little type fudgery here. 2481 * First attempt to read the whole union. If that fails, attempt 2482 * to read just the condvar. A condvar is the smallest sync. object. 2483 */ 2484 if (ps_pdread(ph_p, sh_p->sh_unique, 2485 &generic_so, sizeof (generic_so)) != PS_OK) { 2486 trunc = 1; 2487 if (ps_pdread(ph_p, sh_p->sh_unique, &generic_so.condition, 2488 sizeof (generic_so.condition)) != PS_OK) 2489 return (TD_DBERR); 2490 } 2491 2492 switch (generic_so.condition.cond_magic) { 2493 case MUTEX_MAGIC: 2494 if (trunc && ps_pdread(ph_p, sh_p->sh_unique, 2495 &generic_so.lock, sizeof (generic_so.lock)) != PS_OK) 2496 return (TD_DBERR); 2497 si_p->si_type = TD_SYNC_MUTEX; 2498 si_p->si_shared_type = 2499 (generic_so.lock.mutex_type & USYNC_PROCESS); 2500 (void) memcpy(si_p->si_flags, &generic_so.lock.mutex_flag, 2501 sizeof (generic_so.lock.mutex_flag)); 2502 si_p->si_state.mutex_locked = 2503 (generic_so.lock.mutex_lockw != 0); 2504 si_p->si_size = sizeof (generic_so.lock); 2505 si_p->si_has_waiters = generic_so.lock.mutex_waiters; 2506 si_p->si_rcount = generic_so.lock.mutex_rcount; 2507 si_p->si_prioceiling = generic_so.lock.mutex_ceiling; 2508 if (si_p->si_state.mutex_locked) { 2509 if (si_p->si_shared_type & USYNC_PROCESS) 2510 si_p->si_ownerpid = 2511 generic_so.lock.mutex_ownerpid; 2512 si_p->si_owner.th_ta_p = sh_p->sh_ta_p; 2513 si_p->si_owner.th_unique = generic_so.lock.mutex_owner; 2514 } 2515 break; 2516 case COND_MAGIC: 2517 si_p->si_type = TD_SYNC_COND; 2518 si_p->si_shared_type = 2519 (generic_so.condition.cond_type & USYNC_PROCESS); 2520 (void) memcpy(si_p->si_flags, generic_so.condition.flags.flag, 2521 sizeof (generic_so.condition.flags.flag)); 2522 si_p->si_size = sizeof (generic_so.condition); 2523 si_p->si_has_waiters = 2524 (generic_so.condition.cond_waiters_user | 2525 generic_so.condition.cond_waiters_kernel)? 1 : 0; 2526 break; 2527 case SEMA_MAGIC: 2528 if (trunc && ps_pdread(ph_p, sh_p->sh_unique, 2529 &generic_so.semaphore, sizeof (generic_so.semaphore)) 2530 != PS_OK) 2531 return (TD_DBERR); 2532 si_p->si_type = TD_SYNC_SEMA; 2533 si_p->si_shared_type = 2534 (generic_so.semaphore.type & USYNC_PROCESS); 2535 si_p->si_state.sem_count = generic_so.semaphore.count; 2536 si_p->si_size = sizeof (generic_so.semaphore); 2537 si_p->si_has_waiters = 2538 ((lwp_sema_t *)&generic_so.semaphore)->flags[7]; 2539 /* this is useless but the old interface provided it */ 2540 si_p->si_data = (psaddr_t)generic_so.semaphore.count; 2541 break; 2542 case RWL_MAGIC: 2543 { 2544 uint32_t rwstate; 2545 2546 if (trunc && ps_pdread(ph_p, sh_p->sh_unique, 2547 &generic_so.rwlock, sizeof (generic_so.rwlock)) != PS_OK) 2548 return (TD_DBERR); 2549 si_p->si_type = TD_SYNC_RWLOCK; 2550 si_p->si_shared_type = 2551 (generic_so.rwlock.rwlock_type & USYNC_PROCESS); 2552 si_p->si_size = sizeof (generic_so.rwlock); 2553 2554 rwstate = (uint32_t)generic_so.rwlock.rwlock_readers; 2555 if (rwstate & URW_WRITE_LOCKED) { 2556 si_p->si_state.nreaders = -1; 2557 si_p->si_is_wlock = 1; 2558 si_p->si_owner.th_ta_p = sh_p->sh_ta_p; 2559 si_p->si_owner.th_unique = 2560 generic_so.rwlock.rwlock_owner; 2561 if (si_p->si_shared_type & USYNC_PROCESS) 2562 si_p->si_ownerpid = 2563 generic_so.rwlock.rwlock_ownerpid; 2564 } else { 2565 si_p->si_state.nreaders = (rwstate & URW_READERS_MASK); 2566 } 2567 si_p->si_has_waiters = ((rwstate & URW_HAS_WAITERS) != 0); 2568 2569 /* this is useless but the old interface provided it */ 2570 si_p->si_data = (psaddr_t)generic_so.rwlock.readers; 2571 break; 2572 } 2573 default: 2574 return (TD_BADSH); 2575 } 2576 2577 si_p->si_ta_p = sh_p->sh_ta_p; 2578 si_p->si_sv_addr = sh_p->sh_unique; 2579 return (TD_OK); 2580 } 2581 2582 /* 2583 * Given a synchronization handle, fill in the 2584 * information for the synchronization variable into *si_p. 2585 */ 2586 #pragma weak td_sync_get_info = __td_sync_get_info 2587 td_err_e 2588 __td_sync_get_info(const td_synchandle_t *sh_p, td_syncinfo_t *si_p) 2589 { 2590 struct ps_prochandle *ph_p; 2591 td_err_e return_val; 2592 2593 if (si_p == NULL) 2594 return (TD_ERR); 2595 (void) memset(si_p, 0, sizeof (*si_p)); 2596 if ((ph_p = ph_lock_sh(sh_p, &return_val)) == NULL) 2597 return (return_val); 2598 if (ps_pstop(ph_p) != PS_OK) { 2599 ph_unlock(sh_p->sh_ta_p); 2600 return (TD_DBERR); 2601 } 2602 2603 return_val = sync_get_info_common(sh_p, ph_p, si_p); 2604 2605 (void) ps_pcontinue(ph_p); 2606 ph_unlock(sh_p->sh_ta_p); 2607 return (return_val); 2608 } 2609 2610 static uint_t 2611 tdb_addr_hash64(uint64_t addr) 2612 { 2613 uint64_t value60 = (addr >> 4); 2614 uint32_t value30 = (value60 >> 30) ^ (value60 & 0x3fffffff); 2615 return ((value30 >> 15) ^ (value30 & 0x7fff)); 2616 } 2617 2618 static uint_t 2619 tdb_addr_hash32(uint64_t addr) 2620 { 2621 uint32_t value30 = (addr >> 2); /* 30 bits */ 2622 return ((value30 >> 15) ^ (value30 & 0x7fff)); 2623 } 2624 2625 static td_err_e 2626 read_sync_stats(td_thragent_t *ta_p, psaddr_t hash_table, 2627 psaddr_t sync_obj_addr, tdb_sync_stats_t *sync_stats) 2628 { 2629 psaddr_t next_desc; 2630 uint64_t first; 2631 uint_t ix; 2632 2633 /* 2634 * Compute the hash table index from the synch object's address. 2635 */ 2636 if (ta_p->model == PR_MODEL_LP64) 2637 ix = tdb_addr_hash64(sync_obj_addr); 2638 else 2639 ix = tdb_addr_hash32(sync_obj_addr); 2640 2641 /* 2642 * Get the address of the first element in the linked list. 2643 */ 2644 if (ps_pdread(ta_p->ph_p, hash_table + ix * sizeof (uint64_t), 2645 &first, sizeof (first)) != PS_OK) 2646 return (TD_DBERR); 2647 2648 /* 2649 * Search the linked list for an entry for the synch object.. 2650 */ 2651 for (next_desc = (psaddr_t)first; next_desc != NULL; 2652 next_desc = (psaddr_t)sync_stats->next) { 2653 if (ps_pdread(ta_p->ph_p, next_desc, 2654 sync_stats, sizeof (*sync_stats)) != PS_OK) 2655 return (TD_DBERR); 2656 if (sync_stats->sync_addr == sync_obj_addr) 2657 return (TD_OK); 2658 } 2659 2660 (void) memset(sync_stats, 0, sizeof (*sync_stats)); 2661 return (TD_OK); 2662 } 2663 2664 /* 2665 * Given a synchronization handle, fill in the 2666 * statistics for the synchronization variable into *ss_p. 2667 */ 2668 #pragma weak td_sync_get_stats = __td_sync_get_stats 2669 td_err_e 2670 __td_sync_get_stats(const td_synchandle_t *sh_p, td_syncstats_t *ss_p) 2671 { 2672 struct ps_prochandle *ph_p; 2673 td_thragent_t *ta_p; 2674 td_err_e return_val; 2675 register_sync_t enable; 2676 psaddr_t hashaddr; 2677 tdb_sync_stats_t sync_stats; 2678 size_t ix; 2679 2680 if (ss_p == NULL) 2681 return (TD_ERR); 2682 (void) memset(ss_p, 0, sizeof (*ss_p)); 2683 if ((ph_p = ph_lock_sh(sh_p, &return_val)) == NULL) 2684 return (return_val); 2685 ta_p = sh_p->sh_ta_p; 2686 if (ps_pstop(ph_p) != PS_OK) { 2687 ph_unlock(ta_p); 2688 return (TD_DBERR); 2689 } 2690 2691 if ((return_val = sync_get_info_common(sh_p, ph_p, &ss_p->ss_info)) 2692 != TD_OK) { 2693 if (return_val != TD_BADSH) 2694 goto out; 2695 /* we can correct TD_BADSH */ 2696 (void) memset(&ss_p->ss_info, 0, sizeof (ss_p->ss_info)); 2697 ss_p->ss_info.si_ta_p = sh_p->sh_ta_p; 2698 ss_p->ss_info.si_sv_addr = sh_p->sh_unique; 2699 /* we correct si_type and si_size below */ 2700 return_val = TD_OK; 2701 } 2702 if (ps_pdread(ph_p, ta_p->tdb_register_sync_addr, 2703 &enable, sizeof (enable)) != PS_OK) { 2704 return_val = TD_DBERR; 2705 goto out; 2706 } 2707 if (enable != REGISTER_SYNC_ON) 2708 goto out; 2709 2710 /* 2711 * Get the address of the hash table in the target process. 2712 */ 2713 if (ta_p->model == PR_MODEL_NATIVE) { 2714 if (ps_pdread(ph_p, ta_p->uberdata_addr + 2715 offsetof(uberdata_t, tdb.tdb_sync_addr_hash), 2716 &hashaddr, sizeof (&hashaddr)) != PS_OK) { 2717 return_val = TD_DBERR; 2718 goto out; 2719 } 2720 } else { 2721 #if defined(_LP64) && defined(_SYSCALL32) 2722 caddr32_t addr; 2723 2724 if (ps_pdread(ph_p, ta_p->uberdata_addr + 2725 offsetof(uberdata32_t, tdb.tdb_sync_addr_hash), 2726 &addr, sizeof (addr)) != PS_OK) { 2727 return_val = TD_DBERR; 2728 goto out; 2729 } 2730 hashaddr = addr; 2731 #else 2732 return_val = TD_ERR; 2733 goto out; 2734 #endif /* _SYSCALL32 */ 2735 } 2736 2737 if (hashaddr == 0) 2738 return_val = TD_BADSH; 2739 else 2740 return_val = read_sync_stats(ta_p, hashaddr, 2741 sh_p->sh_unique, &sync_stats); 2742 if (return_val != TD_OK) 2743 goto out; 2744 2745 /* 2746 * We have the hash table entry. Transfer the data to 2747 * the td_syncstats_t structure provided by the caller. 2748 */ 2749 switch (sync_stats.un.type) { 2750 case TDB_MUTEX: 2751 { 2752 td_mutex_stats_t *msp = &ss_p->ss_un.mutex; 2753 2754 ss_p->ss_info.si_type = TD_SYNC_MUTEX; 2755 ss_p->ss_info.si_size = sizeof (mutex_t); 2756 msp->mutex_lock = 2757 sync_stats.un.mutex.mutex_lock; 2758 msp->mutex_sleep = 2759 sync_stats.un.mutex.mutex_sleep; 2760 msp->mutex_sleep_time = 2761 sync_stats.un.mutex.mutex_sleep_time; 2762 msp->mutex_hold_time = 2763 sync_stats.un.mutex.mutex_hold_time; 2764 msp->mutex_try = 2765 sync_stats.un.mutex.mutex_try; 2766 msp->mutex_try_fail = 2767 sync_stats.un.mutex.mutex_try_fail; 2768 if (sync_stats.sync_addr >= ta_p->hash_table_addr && 2769 (ix = sync_stats.sync_addr - ta_p->hash_table_addr) 2770 < ta_p->hash_size * sizeof (thr_hash_table_t)) 2771 msp->mutex_internal = 2772 ix / sizeof (thr_hash_table_t) + 1; 2773 break; 2774 } 2775 case TDB_COND: 2776 { 2777 td_cond_stats_t *csp = &ss_p->ss_un.cond; 2778 2779 ss_p->ss_info.si_type = TD_SYNC_COND; 2780 ss_p->ss_info.si_size = sizeof (cond_t); 2781 csp->cond_wait = 2782 sync_stats.un.cond.cond_wait; 2783 csp->cond_timedwait = 2784 sync_stats.un.cond.cond_timedwait; 2785 csp->cond_wait_sleep_time = 2786 sync_stats.un.cond.cond_wait_sleep_time; 2787 csp->cond_timedwait_sleep_time = 2788 sync_stats.un.cond.cond_timedwait_sleep_time; 2789 csp->cond_timedwait_timeout = 2790 sync_stats.un.cond.cond_timedwait_timeout; 2791 csp->cond_signal = 2792 sync_stats.un.cond.cond_signal; 2793 csp->cond_broadcast = 2794 sync_stats.un.cond.cond_broadcast; 2795 if (sync_stats.sync_addr >= ta_p->hash_table_addr && 2796 (ix = sync_stats.sync_addr - ta_p->hash_table_addr) 2797 < ta_p->hash_size * sizeof (thr_hash_table_t)) 2798 csp->cond_internal = 2799 ix / sizeof (thr_hash_table_t) + 1; 2800 break; 2801 } 2802 case TDB_RWLOCK: 2803 { 2804 td_rwlock_stats_t *rwsp = &ss_p->ss_un.rwlock; 2805 2806 ss_p->ss_info.si_type = TD_SYNC_RWLOCK; 2807 ss_p->ss_info.si_size = sizeof (rwlock_t); 2808 rwsp->rw_rdlock = 2809 sync_stats.un.rwlock.rw_rdlock; 2810 rwsp->rw_rdlock_try = 2811 sync_stats.un.rwlock.rw_rdlock_try; 2812 rwsp->rw_rdlock_try_fail = 2813 sync_stats.un.rwlock.rw_rdlock_try_fail; 2814 rwsp->rw_wrlock = 2815 sync_stats.un.rwlock.rw_wrlock; 2816 rwsp->rw_wrlock_hold_time = 2817 sync_stats.un.rwlock.rw_wrlock_hold_time; 2818 rwsp->rw_wrlock_try = 2819 sync_stats.un.rwlock.rw_wrlock_try; 2820 rwsp->rw_wrlock_try_fail = 2821 sync_stats.un.rwlock.rw_wrlock_try_fail; 2822 break; 2823 } 2824 case TDB_SEMA: 2825 { 2826 td_sema_stats_t *ssp = &ss_p->ss_un.sema; 2827 2828 ss_p->ss_info.si_type = TD_SYNC_SEMA; 2829 ss_p->ss_info.si_size = sizeof (sema_t); 2830 ssp->sema_wait = 2831 sync_stats.un.sema.sema_wait; 2832 ssp->sema_wait_sleep = 2833 sync_stats.un.sema.sema_wait_sleep; 2834 ssp->sema_wait_sleep_time = 2835 sync_stats.un.sema.sema_wait_sleep_time; 2836 ssp->sema_trywait = 2837 sync_stats.un.sema.sema_trywait; 2838 ssp->sema_trywait_fail = 2839 sync_stats.un.sema.sema_trywait_fail; 2840 ssp->sema_post = 2841 sync_stats.un.sema.sema_post; 2842 ssp->sema_max_count = 2843 sync_stats.un.sema.sema_max_count; 2844 ssp->sema_min_count = 2845 sync_stats.un.sema.sema_min_count; 2846 break; 2847 } 2848 default: 2849 return_val = TD_BADSH; 2850 break; 2851 } 2852 2853 out: 2854 (void) ps_pcontinue(ph_p); 2855 ph_unlock(ta_p); 2856 return (return_val); 2857 } 2858 2859 /* 2860 * Change the state of a synchronization variable. 2861 * 1) mutex lock state set to value 2862 * 2) semaphore's count set to value 2863 * 3) writer's lock set by value < 0 2864 * 4) reader's lock number of readers set to value >= 0 2865 * Currently unused by dbx. 2866 */ 2867 #pragma weak td_sync_setstate = __td_sync_setstate 2868 td_err_e 2869 __td_sync_setstate(const td_synchandle_t *sh_p, long lvalue) 2870 { 2871 struct ps_prochandle *ph_p; 2872 int trunc = 0; 2873 td_err_e return_val; 2874 td_so_un_t generic_so; 2875 uint32_t *rwstate; 2876 int value = (int)lvalue; 2877 2878 if ((ph_p = ph_lock_sh(sh_p, &return_val)) == NULL) 2879 return (return_val); 2880 if (ps_pstop(ph_p) != PS_OK) { 2881 ph_unlock(sh_p->sh_ta_p); 2882 return (TD_DBERR); 2883 } 2884 2885 /* 2886 * Read the synch. variable information. 2887 * First attempt to read the whole union and if that fails 2888 * fall back to reading only the smallest member, the condvar. 2889 */ 2890 if (ps_pdread(ph_p, sh_p->sh_unique, &generic_so, 2891 sizeof (generic_so)) != PS_OK) { 2892 trunc = 1; 2893 if (ps_pdread(ph_p, sh_p->sh_unique, &generic_so.condition, 2894 sizeof (generic_so.condition)) != PS_OK) { 2895 (void) ps_pcontinue(ph_p); 2896 ph_unlock(sh_p->sh_ta_p); 2897 return (TD_DBERR); 2898 } 2899 } 2900 2901 /* 2902 * Set the new value in the sync. variable, read the synch. variable 2903 * information. from the process, reset its value and write it back. 2904 */ 2905 switch (generic_so.condition.mutex_magic) { 2906 case MUTEX_MAGIC: 2907 if (trunc && ps_pdread(ph_p, sh_p->sh_unique, 2908 &generic_so.lock, sizeof (generic_so.lock)) != PS_OK) { 2909 return_val = TD_DBERR; 2910 break; 2911 } 2912 generic_so.lock.mutex_lockw = (uint8_t)value; 2913 if (ps_pdwrite(ph_p, sh_p->sh_unique, &generic_so.lock, 2914 sizeof (generic_so.lock)) != PS_OK) 2915 return_val = TD_DBERR; 2916 break; 2917 case SEMA_MAGIC: 2918 if (trunc && ps_pdread(ph_p, sh_p->sh_unique, 2919 &generic_so.semaphore, sizeof (generic_so.semaphore)) 2920 != PS_OK) { 2921 return_val = TD_DBERR; 2922 break; 2923 } 2924 generic_so.semaphore.count = value; 2925 if (ps_pdwrite(ph_p, sh_p->sh_unique, &generic_so.semaphore, 2926 sizeof (generic_so.semaphore)) != PS_OK) 2927 return_val = TD_DBERR; 2928 break; 2929 case COND_MAGIC: 2930 /* Operation not supported on a condition variable */ 2931 return_val = TD_ERR; 2932 break; 2933 case RWL_MAGIC: 2934 if (trunc && ps_pdread(ph_p, sh_p->sh_unique, 2935 &generic_so.rwlock, sizeof (generic_so.rwlock)) != PS_OK) { 2936 return_val = TD_DBERR; 2937 break; 2938 } 2939 rwstate = (uint32_t *)&generic_so.rwlock.readers; 2940 *rwstate &= URW_HAS_WAITERS; 2941 if (value < 0) 2942 *rwstate |= URW_WRITE_LOCKED; 2943 else 2944 *rwstate |= (value & URW_READERS_MASK); 2945 if (ps_pdwrite(ph_p, sh_p->sh_unique, &generic_so.rwlock, 2946 sizeof (generic_so.rwlock)) != PS_OK) 2947 return_val = TD_DBERR; 2948 break; 2949 default: 2950 /* Bad sync. object type */ 2951 return_val = TD_BADSH; 2952 break; 2953 } 2954 2955 (void) ps_pcontinue(ph_p); 2956 ph_unlock(sh_p->sh_ta_p); 2957 return (return_val); 2958 } 2959 2960 typedef struct { 2961 td_thr_iter_f *waiter_cb; 2962 psaddr_t sync_obj_addr; 2963 uint16_t sync_magic; 2964 void *waiter_cb_arg; 2965 td_err_e errcode; 2966 } waiter_cb_ctl_t; 2967 2968 static int 2969 waiters_cb(const td_thrhandle_t *th_p, void *arg) 2970 { 2971 td_thragent_t *ta_p = th_p->th_ta_p; 2972 struct ps_prochandle *ph_p = ta_p->ph_p; 2973 waiter_cb_ctl_t *wcb = arg; 2974 caddr_t wchan; 2975 2976 if (ta_p->model == PR_MODEL_NATIVE) { 2977 ulwp_t *ulwp = (ulwp_t *)th_p->th_unique; 2978 2979 if (ps_pdread(ph_p, (psaddr_t)&ulwp->ul_wchan, 2980 &wchan, sizeof (wchan)) != PS_OK) { 2981 wcb->errcode = TD_DBERR; 2982 return (1); 2983 } 2984 } else { 2985 #if defined(_LP64) && defined(_SYSCALL32) 2986 ulwp32_t *ulwp = (ulwp32_t *)th_p->th_unique; 2987 caddr32_t wchan32; 2988 2989 if (ps_pdread(ph_p, (psaddr_t)&ulwp->ul_wchan, 2990 &wchan32, sizeof (wchan32)) != PS_OK) { 2991 wcb->errcode = TD_DBERR; 2992 return (1); 2993 } 2994 wchan = (caddr_t)(uintptr_t)wchan32; 2995 #else 2996 wcb->errcode = TD_ERR; 2997 return (1); 2998 #endif /* _SYSCALL32 */ 2999 } 3000 3001 if (wchan == NULL) 3002 return (0); 3003 3004 if (wchan == (caddr_t)wcb->sync_obj_addr) 3005 return ((*wcb->waiter_cb)(th_p, wcb->waiter_cb_arg)); 3006 3007 return (0); 3008 } 3009 3010 /* 3011 * For a given synchronization variable, iterate over the 3012 * set of waiting threads. The call back function is passed 3013 * two parameters, a pointer to a thread handle and a pointer 3014 * to extra call back data. 3015 */ 3016 #pragma weak td_sync_waiters = __td_sync_waiters 3017 td_err_e 3018 __td_sync_waiters(const td_synchandle_t *sh_p, td_thr_iter_f *cb, void *cb_data) 3019 { 3020 struct ps_prochandle *ph_p; 3021 waiter_cb_ctl_t wcb; 3022 td_err_e return_val; 3023 3024 if ((ph_p = ph_lock_sh(sh_p, &return_val)) == NULL) 3025 return (return_val); 3026 if (ps_pdread(ph_p, 3027 (psaddr_t)&((mutex_t *)sh_p->sh_unique)->mutex_magic, 3028 (caddr_t)&wcb.sync_magic, sizeof (wcb.sync_magic)) != PS_OK) { 3029 ph_unlock(sh_p->sh_ta_p); 3030 return (TD_DBERR); 3031 } 3032 ph_unlock(sh_p->sh_ta_p); 3033 3034 switch (wcb.sync_magic) { 3035 case MUTEX_MAGIC: 3036 case COND_MAGIC: 3037 case SEMA_MAGIC: 3038 case RWL_MAGIC: 3039 break; 3040 default: 3041 return (TD_BADSH); 3042 } 3043 3044 wcb.waiter_cb = cb; 3045 wcb.sync_obj_addr = sh_p->sh_unique; 3046 wcb.waiter_cb_arg = cb_data; 3047 wcb.errcode = TD_OK; 3048 return_val = __td_ta_thr_iter(sh_p->sh_ta_p, waiters_cb, &wcb, 3049 TD_THR_SLEEP, TD_THR_LOWEST_PRIORITY, 3050 TD_SIGNO_MASK, TD_THR_ANY_USER_FLAGS); 3051 3052 if (return_val != TD_OK) 3053 return (return_val); 3054 3055 return (wcb.errcode); 3056 } 3057