1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License, Version 1.0 only 6 * (the "License"). You may not use this file except in compliance 7 * with the License. 8 * 9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 10 * or http://www.opensolaris.org/os/licensing. 11 * See the License for the specific language governing permissions 12 * and limitations under the License. 13 * 14 * When distributing Covered Code, include this CDDL HEADER in each 15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 16 * If applicable, add the following below this CDDL HEADER, with the 17 * fields enclosed by brackets "[]" replaced with your own identifying 18 * information: Portions Copyright [yyyy] [name of copyright owner] 19 * 20 * CDDL HEADER END 21 */ 22 /* 23 * Copyright 2004 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 #include "lint.h" 30 #include "thr_uberdata.h" 31 #include <stddef.h> 32 33 /* 34 * 128 million keys should be enough for anyone. 35 * This allocates half a gigabyte of memory for the keys themselves and 36 * half a gigabyte of memory for each thread that uses the largest key. 37 */ 38 #define MAX_KEYS 0x08000000U 39 40 #pragma weak thr_keycreate = _thr_keycreate 41 #pragma weak pthread_key_create = _thr_keycreate 42 #pragma weak _pthread_key_create = _thr_keycreate 43 int 44 _thr_keycreate(thread_key_t *pkey, void (*destructor)(void *)) 45 { 46 tsd_metadata_t *tsdm = &curthread->ul_uberdata->tsd_metadata; 47 void (**old_data)(void *) = NULL; 48 void (**new_data)(void *); 49 uint_t old_nkeys; 50 uint_t new_nkeys; 51 52 lmutex_lock(&tsdm->tsdm_lock); 53 54 /* 55 * Unfortunately, pthread_getspecific() specifies that a 56 * pthread_getspecific() on an allocated key upon which the 57 * calling thread has not performed a pthread_setspecifc() 58 * must return NULL. Consider the following sequence: 59 * 60 * pthread_key_create(&key); 61 * pthread_setspecific(key, datum); 62 * pthread_key_delete(&key); 63 * pthread_key_create(&key); 64 * val = pthread_getspecific(key); 65 * 66 * According to POSIX, if the deleted key is reused for the new 67 * key returned by the second pthread_key_create(), then the 68 * pthread_getspecific() in the above example must return NULL 69 * (and not the stale datum). The implementation is thus left 70 * with two alternatives: 71 * 72 * (1) Reuse deleted keys. If this is to be implemented optimally, 73 * it requires that pthread_key_create() somehow associate 74 * the value NULL with the new (reused) key for each thread. 75 * Keeping the hot path fast and lock-free induces substantial 76 * complexity on the implementation. 77 * 78 * (2) Never reuse deleted keys. This allows the pthread_getspecific() 79 * implementation to simply perform a check against the number 80 * of keys set by the calling thread, returning NULL if the 81 * specified key is larger than the highest set key. This has 82 * the disadvantage of wasting memory (a program which simply 83 * loops calling pthread_key_create()/pthread_key_delete() 84 * will ultimately run out of memory), but permits an optimal 85 * pthread_getspecific() while allowing for simple key creation 86 * and deletion. 87 * 88 * All Solaris implementations have opted for (2). Given the 89 * ~10 years that this has been in the field, it is safe to assume 90 * that applications don't loop creating and destroying keys; we 91 * stick with (2). 92 */ 93 if (tsdm->tsdm_nused == (old_nkeys = tsdm->tsdm_nkeys)) { 94 /* 95 * We need to allocate or double the number of keys. 96 * tsdm->tsdm_nused must always be a power of two. 97 */ 98 if ((new_nkeys = (old_nkeys << 1)) == 0) 99 new_nkeys = 8; 100 101 if (new_nkeys > MAX_KEYS) { 102 lmutex_unlock(&tsdm->tsdm_lock); 103 return (EAGAIN); 104 } 105 if ((new_data = lmalloc(new_nkeys * sizeof (void *))) == NULL) { 106 lmutex_unlock(&tsdm->tsdm_lock); 107 return (ENOMEM); 108 } 109 if ((old_data = tsdm->tsdm_destro) == NULL) { 110 /* key == 0 is always invalid */ 111 new_data[0] = TSD_UNALLOCATED; 112 tsdm->tsdm_nused = 1; 113 } else { 114 (void) _private_memcpy(new_data, old_data, 115 old_nkeys * sizeof (void *)); 116 } 117 tsdm->tsdm_destro = new_data; 118 tsdm->tsdm_nkeys = new_nkeys; 119 } 120 121 *pkey = tsdm->tsdm_nused; 122 tsdm->tsdm_destro[tsdm->tsdm_nused++] = destructor; 123 lmutex_unlock(&tsdm->tsdm_lock); 124 125 if (old_data != NULL) 126 lfree(old_data, old_nkeys * sizeof (void *)); 127 128 return (0); 129 } 130 131 #pragma weak pthread_key_delete = _thr_key_delete 132 #pragma weak _pthread_key_delete = _thr_key_delete 133 int 134 _thr_key_delete(thread_key_t key) 135 { 136 tsd_metadata_t *tsdm = &curthread->ul_uberdata->tsd_metadata; 137 138 lmutex_lock(&tsdm->tsdm_lock); 139 140 if (key >= tsdm->tsdm_nused || 141 tsdm->tsdm_destro[key] == TSD_UNALLOCATED) { 142 lmutex_unlock(&tsdm->tsdm_lock); 143 return (EINVAL); 144 } 145 146 tsdm->tsdm_destro[key] = TSD_UNALLOCATED; 147 lmutex_unlock(&tsdm->tsdm_lock); 148 149 return (0); 150 } 151 152 /* 153 * Blessedly, the pthread_getspecific() interface is much better than the 154 * thr_getspecific() interface in that it cannot return an error status. 155 * Thus, if the key specified is bogus, pthread_getspecific()'s behavior 156 * is undefined. As an added bonus (and as an artificat of not returning 157 * an error code), the requested datum is returned rather than stored 158 * through a parameter -- thereby avoiding the unnecessary store/load pair 159 * incurred by thr_getspecific(). Every once in a while, the Standards 160 * get it right -- but usually by accident. 161 */ 162 #pragma weak pthread_getspecific = _pthread_getspecific 163 void * 164 _pthread_getspecific(pthread_key_t key) 165 { 166 tsd_t *stsd; 167 168 /* 169 * We are cycle-shaving in this function because some 170 * applications make heavy use of it and one machine cycle 171 * can make a measurable difference in performance. This 172 * is why we waste a little memory and allocate a NULL value 173 * for the invalid key == 0 in curthread->ul_ftsd[0] rather 174 * than adjusting the key by subtracting one. 175 */ 176 if (key < TSD_NFAST) 177 return (curthread->ul_ftsd[key]); 178 179 if ((stsd = curthread->ul_stsd) != NULL && key < stsd->tsd_nalloc) 180 return (stsd->tsd_data[key]); 181 182 return (NULL); 183 } 184 185 #pragma weak thr_getspecific = _thr_getspecific 186 int 187 _thr_getspecific(thread_key_t key, void **valuep) 188 { 189 tsd_t *stsd; 190 191 /* 192 * Amazingly, some application code (and worse, some particularly 193 * fugly Solaris library code) _relies_ on the fact that 0 is always 194 * an invalid key. To preserve this semantic, 0 is never returned 195 * as a key from thr_/pthread_key_create(); we explicitly check 196 * for it here and return EINVAL. 197 */ 198 if (key == 0) 199 return (EINVAL); 200 201 if (key < TSD_NFAST) 202 *valuep = curthread->ul_ftsd[key]; 203 else if ((stsd = curthread->ul_stsd) != NULL && key < stsd->tsd_nalloc) 204 *valuep = stsd->tsd_data[key]; 205 else 206 *valuep = NULL; 207 208 return (0); 209 } 210 211 /* 212 * We call _thr_setspecific_slow() when the key specified 213 * is beyond the current thread's currently allocated range. 214 * This case is in a separate function because we want 215 * the compiler to optimize for the common case. 216 */ 217 static int 218 _thr_setspecific_slow(thread_key_t key, void *value) 219 { 220 ulwp_t *self = curthread; 221 tsd_metadata_t *tsdm = &self->ul_uberdata->tsd_metadata; 222 tsd_t *stsd; 223 tsd_t *ntsd; 224 uint_t nkeys; 225 226 /* 227 * It isn't necessary to grab locks in this path; 228 * tsdm->tsdm_nused can only increase. 229 */ 230 if (key >= tsdm->tsdm_nused) 231 return (EINVAL); 232 233 /* 234 * We would like to test (tsdm->tsdm_destro[key] == TSD_UNALLOCATED) 235 * here but that would require acquiring tsdm->tsdm_lock and we 236 * want to avoid locks in this path. 237 * 238 * We have a key which is (or at least _was_) valid. If this key 239 * is later deleted (or indeed, is deleted before we set the value), 240 * we don't care; such a condition would indicate an application 241 * race for which POSIX thankfully leaves the behavior unspecified. 242 * 243 * First, determine our new size. To avoid allocating more than we 244 * have to, continue doubling our size only until the new key fits. 245 * stsd->tsd_nalloc must always be a power of two. 246 */ 247 nkeys = ((stsd = self->ul_stsd) != NULL)? stsd->tsd_nalloc : 8; 248 for (; key >= nkeys; nkeys <<= 1) 249 continue; 250 251 /* 252 * Allocate the new TSD. 253 */ 254 if ((ntsd = lmalloc(nkeys * sizeof (void *))) == NULL) 255 return (ENOMEM); 256 257 if (stsd != NULL) { 258 /* 259 * Copy the old TSD across to the new. 260 */ 261 (void) _private_memcpy(ntsd, stsd, 262 stsd->tsd_nalloc * sizeof (void *)); 263 lfree(stsd, stsd->tsd_nalloc * sizeof (void *)); 264 } 265 266 ntsd->tsd_nalloc = nkeys; 267 ntsd->tsd_data[key] = value; 268 self->ul_stsd = ntsd; 269 270 return (0); 271 } 272 273 #pragma weak thr_setspecific = _thr_setspecific 274 #pragma weak pthread_setspecific = _thr_setspecific 275 #pragma weak _pthread_setspecific = _thr_setspecific 276 int 277 _thr_setspecific(thread_key_t key, void *value) 278 { 279 tsd_t *stsd; 280 int ret; 281 ulwp_t *self = curthread; 282 283 /* 284 * See the comment in _thr_getspecific(), above. 285 */ 286 if (key == 0) 287 return (EINVAL); 288 289 if (key < TSD_NFAST) { 290 curthread->ul_ftsd[key] = value; 291 return (0); 292 } 293 294 if ((stsd = curthread->ul_stsd) != NULL && key < stsd->tsd_nalloc) { 295 stsd->tsd_data[key] = value; 296 return (0); 297 } 298 299 /* 300 * This is a critical region since we are dealing with memory 301 * allocation and free. Similar protection required in tsd_free(). 302 */ 303 enter_critical(self); 304 ret = _thr_setspecific_slow(key, value); 305 exit_critical(self); 306 return (ret); 307 } 308 309 /* 310 * Contract-private interface for java. See PSARC/2003/159 311 * 312 * If the key falls within the TSD_NFAST range, return a non-negative 313 * offset that can be used by the caller to fetch the TSD data value 314 * directly out of the thread structure using %g7 (sparc) or %gs (x86). 315 * With the advent of TLS, %g7 and %gs are part of the ABI, even though 316 * the definition of the thread structure itself (ulwp_t) is private. 317 * 318 * We guarantee that the offset returned on sparc will fit within 319 * a SIMM13 field (that is, it is less than 2048). 320 * 321 * On failure (key is not in the TSD_NFAST range), return -1. 322 */ 323 ptrdiff_t 324 _thr_slot_offset(thread_key_t key) 325 { 326 if (key != 0 && key < TSD_NFAST) 327 return ((ptrdiff_t)offsetof(ulwp_t, ul_ftsd[key])); 328 return (-1); 329 } 330 331 /* 332 * This is called by _thrp_exit() to apply destructors to the thread's tsd. 333 */ 334 void 335 tsd_exit() 336 { 337 ulwp_t *self = curthread; 338 tsd_metadata_t *tsdm = &self->ul_uberdata->tsd_metadata; 339 thread_key_t key; 340 int recheck; 341 void *val; 342 void (*func)(void *); 343 344 lmutex_lock(&tsdm->tsdm_lock); 345 346 do { 347 recheck = 0; 348 349 for (key = 1; key < TSD_NFAST && 350 key < tsdm->tsdm_nused; key++) { 351 if ((func = tsdm->tsdm_destro[key]) != NULL && 352 func != TSD_UNALLOCATED && 353 (val = self->ul_ftsd[key]) != NULL) { 354 self->ul_ftsd[key] = NULL; 355 lmutex_unlock(&tsdm->tsdm_lock); 356 (*func)(val); 357 lmutex_lock(&tsdm->tsdm_lock); 358 recheck = 1; 359 } 360 } 361 362 if (self->ul_stsd == NULL) 363 continue; 364 365 /* 366 * Any of these destructors could cause us to grow the number 367 * TSD keys in the slow TSD; we cannot cache the slow TSD 368 * pointer through this loop. 369 */ 370 for (; key < self->ul_stsd->tsd_nalloc && 371 key < tsdm->tsdm_nused; key++) { 372 if ((func = tsdm->tsdm_destro[key]) != NULL && 373 func != TSD_UNALLOCATED && 374 (val = self->ul_stsd->tsd_data[key]) != NULL) { 375 self->ul_stsd->tsd_data[key] = NULL; 376 lmutex_unlock(&tsdm->tsdm_lock); 377 (*func)(val); 378 lmutex_lock(&tsdm->tsdm_lock); 379 recheck = 1; 380 } 381 } 382 } while (recheck); 383 384 lmutex_unlock(&tsdm->tsdm_lock); 385 386 /* 387 * We're done; if we have slow TSD, we need to free it. 388 */ 389 tsd_free(self); 390 } 391 392 void 393 tsd_free(ulwp_t *ulwp) 394 { 395 tsd_t *stsd; 396 ulwp_t *self = curthread; 397 398 enter_critical(self); 399 if ((stsd = ulwp->ul_stsd) != NULL) 400 lfree(stsd, stsd->tsd_nalloc * sizeof (void *)); 401 ulwp->ul_stsd = NULL; 402 exit_critical(self); 403 } 404