1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #include "lint.h" 28 #include "thr_uberdata.h" 29 #include <sys/rtpriocntl.h> 30 #include <sys/sdt.h> 31 #include <atomic.h> 32 33 #if defined(THREAD_DEBUG) 34 #define INCR32(x) (((x) != UINT32_MAX)? (x)++ : 0) 35 #define INCR(x) ((x)++) 36 #define DECR(x) ((x)--) 37 #define MAXINCR(m, x) ((m < ++x)? (m = x) : 0) 38 #else 39 #define INCR32(x) 40 #define INCR(x) 41 #define DECR(x) 42 #define MAXINCR(m, x) 43 #endif 44 45 /* 46 * This mutex is initialized to be held by lwp#1. 47 * It is used to block a thread that has returned from a mutex_lock() 48 * of a LOCK_PRIO_INHERIT mutex with an unrecoverable error. 49 */ 50 mutex_t stall_mutex = DEFAULTMUTEX; 51 52 static int shared_mutex_held(mutex_t *); 53 static int mutex_queuelock_adaptive(mutex_t *); 54 static void mutex_wakeup_all(mutex_t *); 55 56 /* 57 * Lock statistics support functions. 58 */ 59 void 60 record_begin_hold(tdb_mutex_stats_t *msp) 61 { 62 tdb_incr(msp->mutex_lock); 63 msp->mutex_begin_hold = gethrtime(); 64 } 65 66 hrtime_t 67 record_hold_time(tdb_mutex_stats_t *msp) 68 { 69 hrtime_t now = gethrtime(); 70 71 if (msp->mutex_begin_hold) 72 msp->mutex_hold_time += now - msp->mutex_begin_hold; 73 msp->mutex_begin_hold = 0; 74 return (now); 75 } 76 77 /* 78 * Called once at library initialization. 79 */ 80 void 81 mutex_setup(void) 82 { 83 if (set_lock_byte(&stall_mutex.mutex_lockw)) 84 thr_panic("mutex_setup() cannot acquire stall_mutex"); 85 stall_mutex.mutex_owner = (uintptr_t)curthread; 86 } 87 88 /* 89 * The default spin count of 1000 is experimentally determined. 90 * On sun4u machines with any number of processors it could be raised 91 * to 10,000 but that (experimentally) makes almost no difference. 92 * The environment variable: 93 * _THREAD_ADAPTIVE_SPIN=count 94 * can be used to override and set the count in the range [0 .. 1,000,000]. 95 */ 96 int thread_adaptive_spin = 1000; 97 uint_t thread_max_spinners = 100; 98 int thread_queue_verify = 0; 99 static int ncpus; 100 101 /* 102 * Distinguish spinning for queue locks from spinning for regular locks. 103 * We try harder to acquire queue locks by spinning. 104 * The environment variable: 105 * _THREAD_QUEUE_SPIN=count 106 * can be used to override and set the count in the range [0 .. 1,000,000]. 107 */ 108 int thread_queue_spin = 10000; 109 110 #define ALL_ATTRIBUTES \ 111 (LOCK_RECURSIVE | LOCK_ERRORCHECK | \ 112 LOCK_PRIO_INHERIT | LOCK_PRIO_PROTECT | \ 113 LOCK_ROBUST) 114 115 /* 116 * 'type' can be one of USYNC_THREAD, USYNC_PROCESS, or USYNC_PROCESS_ROBUST, 117 * augmented by zero or more the flags: 118 * LOCK_RECURSIVE 119 * LOCK_ERRORCHECK 120 * LOCK_PRIO_INHERIT 121 * LOCK_PRIO_PROTECT 122 * LOCK_ROBUST 123 */ 124 #pragma weak _mutex_init = mutex_init 125 /* ARGSUSED2 */ 126 int 127 mutex_init(mutex_t *mp, int type, void *arg) 128 { 129 int basetype = (type & ~ALL_ATTRIBUTES); 130 const pcclass_t *pccp; 131 int error = 0; 132 int ceil; 133 134 if (basetype == USYNC_PROCESS_ROBUST) { 135 /* 136 * USYNC_PROCESS_ROBUST is a deprecated historical type. 137 * We change it into (USYNC_PROCESS | LOCK_ROBUST) but 138 * retain the USYNC_PROCESS_ROBUST flag so we can return 139 * ELOCKUNMAPPED when necessary (only USYNC_PROCESS_ROBUST 140 * mutexes will ever draw ELOCKUNMAPPED). 141 */ 142 type |= (USYNC_PROCESS | LOCK_ROBUST); 143 basetype = USYNC_PROCESS; 144 } 145 146 if (type & LOCK_PRIO_PROTECT) 147 pccp = get_info_by_policy(SCHED_FIFO); 148 if ((basetype != USYNC_THREAD && basetype != USYNC_PROCESS) || 149 (type & (LOCK_PRIO_INHERIT | LOCK_PRIO_PROTECT)) 150 == (LOCK_PRIO_INHERIT | LOCK_PRIO_PROTECT) || 151 ((type & LOCK_PRIO_PROTECT) && 152 ((ceil = *(int *)arg) < pccp->pcc_primin || 153 ceil > pccp->pcc_primax))) { 154 error = EINVAL; 155 } else if (type & LOCK_ROBUST) { 156 /* 157 * Callers of mutex_init() with the LOCK_ROBUST attribute 158 * are required to pass an initially all-zero mutex. 159 * Multiple calls to mutex_init() are allowed; all but 160 * the first return EBUSY. A call to mutex_init() is 161 * allowed to make an inconsistent robust lock consistent 162 * (for historical usage, even though the proper interface 163 * for this is mutex_consistent()). Note that we use 164 * atomic_or_16() to set the LOCK_INITED flag so as 165 * not to disturb surrounding bits (LOCK_OWNERDEAD, etc). 166 */ 167 if (!(mp->mutex_flag & LOCK_INITED)) { 168 mp->mutex_type = (uint8_t)type; 169 atomic_or_16(&mp->mutex_flag, LOCK_INITED); 170 mp->mutex_magic = MUTEX_MAGIC; 171 } else if (type != mp->mutex_type || 172 ((type & LOCK_PRIO_PROTECT) && mp->mutex_ceiling != ceil)) { 173 error = EINVAL; 174 } else if (mutex_consistent(mp) != 0) { 175 error = EBUSY; 176 } 177 /* register a process robust mutex with the kernel */ 178 if (basetype == USYNC_PROCESS) 179 register_lock(mp); 180 } else { 181 (void) memset(mp, 0, sizeof (*mp)); 182 mp->mutex_type = (uint8_t)type; 183 mp->mutex_flag = LOCK_INITED; 184 mp->mutex_magic = MUTEX_MAGIC; 185 } 186 187 if (error == 0 && (type & LOCK_PRIO_PROTECT)) { 188 mp->mutex_ceiling = ceil; 189 } 190 191 /* 192 * This should be at the beginning of the function, 193 * but for the sake of old broken applications that 194 * do not have proper alignment for their mutexes 195 * (and don't check the return code from mutex_init), 196 * we put it here, after initializing the mutex regardless. 197 */ 198 if (error == 0 && 199 ((uintptr_t)mp & (_LONG_LONG_ALIGNMENT - 1)) && 200 curthread->ul_misaligned == 0) 201 error = EINVAL; 202 203 return (error); 204 } 205 206 /* 207 * Delete mp from list of ceiling mutexes owned by curthread. 208 * Return 1 if the head of the chain was updated. 209 */ 210 int 211 _ceil_mylist_del(mutex_t *mp) 212 { 213 ulwp_t *self = curthread; 214 mxchain_t **mcpp; 215 mxchain_t *mcp; 216 217 for (mcpp = &self->ul_mxchain; 218 (mcp = *mcpp) != NULL; 219 mcpp = &mcp->mxchain_next) { 220 if (mcp->mxchain_mx == mp) { 221 *mcpp = mcp->mxchain_next; 222 lfree(mcp, sizeof (*mcp)); 223 return (mcpp == &self->ul_mxchain); 224 } 225 } 226 return (0); 227 } 228 229 /* 230 * Add mp to the list of ceiling mutexes owned by curthread. 231 * Return ENOMEM if no memory could be allocated. 232 */ 233 int 234 _ceil_mylist_add(mutex_t *mp) 235 { 236 ulwp_t *self = curthread; 237 mxchain_t *mcp; 238 239 if ((mcp = lmalloc(sizeof (*mcp))) == NULL) 240 return (ENOMEM); 241 mcp->mxchain_mx = mp; 242 mcp->mxchain_next = self->ul_mxchain; 243 self->ul_mxchain = mcp; 244 return (0); 245 } 246 247 /* 248 * Helper function for _ceil_prio_inherit() and _ceil_prio_waive(), below. 249 */ 250 static void 251 set_rt_priority(ulwp_t *self, int prio) 252 { 253 pcparms_t pcparm; 254 255 pcparm.pc_cid = self->ul_rtclassid; 256 ((rtparms_t *)pcparm.pc_clparms)->rt_tqnsecs = RT_NOCHANGE; 257 ((rtparms_t *)pcparm.pc_clparms)->rt_pri = prio; 258 (void) priocntl(P_LWPID, self->ul_lwpid, PC_SETPARMS, &pcparm); 259 } 260 261 /* 262 * Inherit priority from ceiling. 263 * This changes the effective priority, not the assigned priority. 264 */ 265 void 266 _ceil_prio_inherit(int prio) 267 { 268 ulwp_t *self = curthread; 269 270 self->ul_epri = prio; 271 set_rt_priority(self, prio); 272 } 273 274 /* 275 * Waive inherited ceiling priority. Inherit from head of owned ceiling locks 276 * if holding at least one ceiling lock. If no ceiling locks are held at this 277 * point, disinherit completely, reverting back to assigned priority. 278 */ 279 void 280 _ceil_prio_waive(void) 281 { 282 ulwp_t *self = curthread; 283 mxchain_t *mcp = self->ul_mxchain; 284 int prio; 285 286 if (mcp == NULL) { 287 prio = self->ul_pri; 288 self->ul_epri = 0; 289 } else { 290 prio = mcp->mxchain_mx->mutex_ceiling; 291 self->ul_epri = prio; 292 } 293 set_rt_priority(self, prio); 294 } 295 296 /* 297 * Clear the lock byte. Retain the waiters byte and the spinners byte. 298 * Return the old value of the lock word. 299 */ 300 static uint32_t 301 clear_lockbyte(volatile uint32_t *lockword) 302 { 303 uint32_t old; 304 uint32_t new; 305 306 do { 307 old = *lockword; 308 new = old & ~LOCKMASK; 309 } while (atomic_cas_32(lockword, old, new) != old); 310 311 return (old); 312 } 313 314 /* 315 * Same as clear_lockbyte(), but operates on mutex_lockword64. 316 * The mutex_ownerpid field is cleared along with the lock byte. 317 */ 318 static uint64_t 319 clear_lockbyte64(volatile uint64_t *lockword64) 320 { 321 uint64_t old; 322 uint64_t new; 323 324 do { 325 old = *lockword64; 326 new = old & ~LOCKMASK64; 327 } while (atomic_cas_64(lockword64, old, new) != old); 328 329 return (old); 330 } 331 332 /* 333 * Similar to set_lock_byte(), which only tries to set the lock byte. 334 * Here, we attempt to set the lock byte AND the mutex_ownerpid, keeping 335 * the remaining bytes constant. This atomic operation is required for the 336 * correctness of process-shared robust locks, otherwise there would be 337 * a window or vulnerability in which the lock byte had been set but the 338 * mutex_ownerpid had not yet been set. If the process were to die in 339 * this window of vulnerability (due to some other thread calling exit() 340 * or the process receiving a fatal signal), the mutex would be left locked 341 * but without a process-ID to determine which process was holding the lock. 342 * The kernel would then be unable to mark the robust mutex as LOCK_OWNERDEAD 343 * when the process died. For all other cases of process-shared locks, this 344 * operation is just a convenience, for the sake of common code. 345 * 346 * This operation requires process-shared robust locks to be properly 347 * aligned on an 8-byte boundary, at least on sparc machines, lest the 348 * operation incur an alignment fault. This is automatic when locks 349 * are declared properly using the mutex_t or pthread_mutex_t data types 350 * and the application does not allocate dynamic memory on less than an 351 * 8-byte boundary. See the 'horrible hack' comments below for cases 352 * dealing with such broken applications. 353 */ 354 static int 355 set_lock_byte64(volatile uint64_t *lockword64, pid_t ownerpid) 356 { 357 uint64_t old; 358 uint64_t new; 359 360 old = *lockword64 & ~LOCKMASK64; 361 new = old | ((uint64_t)(uint_t)ownerpid << PIDSHIFT) | LOCKBYTE64; 362 if (atomic_cas_64(lockword64, old, new) == old) 363 return (LOCKCLEAR); 364 365 return (LOCKSET); 366 } 367 368 /* 369 * Increment the spinners count in the mutex lock word. 370 * Return 0 on success. Return -1 if the count would overflow. 371 */ 372 static int 373 spinners_incr(volatile uint32_t *lockword, uint8_t max_spinners) 374 { 375 uint32_t old; 376 uint32_t new; 377 378 do { 379 old = *lockword; 380 if (((old & SPINNERMASK) >> SPINNERSHIFT) >= max_spinners) 381 return (-1); 382 new = old + (1 << SPINNERSHIFT); 383 } while (atomic_cas_32(lockword, old, new) != old); 384 385 return (0); 386 } 387 388 /* 389 * Decrement the spinners count in the mutex lock word. 390 * Return the new value of the lock word. 391 */ 392 static uint32_t 393 spinners_decr(volatile uint32_t *lockword) 394 { 395 uint32_t old; 396 uint32_t new; 397 398 do { 399 new = old = *lockword; 400 if (new & SPINNERMASK) 401 new -= (1 << SPINNERSHIFT); 402 } while (atomic_cas_32(lockword, old, new) != old); 403 404 return (new); 405 } 406 407 /* 408 * Non-preemptive spin locks. Used by queue_lock(). 409 * No lock statistics are gathered for these locks. 410 * No DTrace probes are provided for these locks. 411 */ 412 void 413 spin_lock_set(mutex_t *mp) 414 { 415 ulwp_t *self = curthread; 416 417 no_preempt(self); 418 if (set_lock_byte(&mp->mutex_lockw) == 0) { 419 mp->mutex_owner = (uintptr_t)self; 420 return; 421 } 422 /* 423 * Spin for a while, attempting to acquire the lock. 424 */ 425 INCR32(self->ul_spin_lock_spin); 426 if (mutex_queuelock_adaptive(mp) == 0 || 427 set_lock_byte(&mp->mutex_lockw) == 0) { 428 mp->mutex_owner = (uintptr_t)self; 429 return; 430 } 431 /* 432 * Try harder if we were previously at a no premption level. 433 */ 434 if (self->ul_preempt > 1) { 435 INCR32(self->ul_spin_lock_spin2); 436 if (mutex_queuelock_adaptive(mp) == 0 || 437 set_lock_byte(&mp->mutex_lockw) == 0) { 438 mp->mutex_owner = (uintptr_t)self; 439 return; 440 } 441 } 442 /* 443 * Give up and block in the kernel for the mutex. 444 */ 445 INCR32(self->ul_spin_lock_sleep); 446 (void) ___lwp_mutex_timedlock(mp, NULL); 447 mp->mutex_owner = (uintptr_t)self; 448 } 449 450 void 451 spin_lock_clear(mutex_t *mp) 452 { 453 ulwp_t *self = curthread; 454 455 mp->mutex_owner = 0; 456 if (atomic_swap_32(&mp->mutex_lockword, 0) & WAITERMASK) { 457 (void) ___lwp_mutex_wakeup(mp, 0); 458 INCR32(self->ul_spin_lock_wakeup); 459 } 460 preempt(self); 461 } 462 463 /* 464 * Allocate the sleep queue hash table. 465 */ 466 void 467 queue_alloc(void) 468 { 469 ulwp_t *self = curthread; 470 uberdata_t *udp = self->ul_uberdata; 471 queue_head_t *qp; 472 void *data; 473 int i; 474 475 /* 476 * No locks are needed; we call here only when single-threaded. 477 */ 478 ASSERT(self == udp->ulwp_one); 479 ASSERT(!udp->uberflags.uf_mt); 480 if ((data = mmap(NULL, 2 * QHASHSIZE * sizeof (queue_head_t), 481 PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANON, -1, (off_t)0)) 482 == MAP_FAILED) 483 thr_panic("cannot allocate thread queue_head table"); 484 udp->queue_head = qp = (queue_head_t *)data; 485 for (i = 0; i < 2 * QHASHSIZE; qp++, i++) { 486 qp->qh_type = (i < QHASHSIZE)? MX : CV; 487 qp->qh_lock.mutex_flag = LOCK_INITED; 488 qp->qh_lock.mutex_magic = MUTEX_MAGIC; 489 qp->qh_hlist = &qp->qh_def_root; 490 #if defined(THREAD_DEBUG) 491 qp->qh_hlen = 1; 492 qp->qh_hmax = 1; 493 #endif 494 } 495 } 496 497 #if defined(THREAD_DEBUG) 498 499 /* 500 * Debugging: verify correctness of a sleep queue. 501 */ 502 void 503 QVERIFY(queue_head_t *qp) 504 { 505 ulwp_t *self = curthread; 506 uberdata_t *udp = self->ul_uberdata; 507 queue_root_t *qrp; 508 ulwp_t *ulwp; 509 ulwp_t *prev; 510 uint_t index; 511 uint32_t cnt; 512 char qtype; 513 void *wchan; 514 515 ASSERT(qp >= udp->queue_head && (qp - udp->queue_head) < 2 * QHASHSIZE); 516 ASSERT(MUTEX_OWNED(&qp->qh_lock, self)); 517 for (cnt = 0, qrp = qp->qh_hlist; qrp != NULL; qrp = qrp->qr_next) { 518 cnt++; 519 ASSERT((qrp->qr_head != NULL && qrp->qr_tail != NULL) || 520 (qrp->qr_head == NULL && qrp->qr_tail == NULL)); 521 } 522 ASSERT(qp->qh_hlen == cnt && qp->qh_hmax >= cnt); 523 qtype = ((qp - udp->queue_head) < QHASHSIZE)? MX : CV; 524 ASSERT(qp->qh_type == qtype); 525 if (!thread_queue_verify) 526 return; 527 /* real expensive stuff, only for _THREAD_QUEUE_VERIFY */ 528 for (cnt = 0, qrp = qp->qh_hlist; qrp != NULL; qrp = qrp->qr_next) { 529 for (prev = NULL, ulwp = qrp->qr_head; ulwp != NULL; 530 prev = ulwp, ulwp = ulwp->ul_link) { 531 cnt++; 532 if (ulwp->ul_writer) 533 ASSERT(prev == NULL || prev->ul_writer); 534 ASSERT(ulwp->ul_qtype == qtype); 535 ASSERT(ulwp->ul_wchan != NULL); 536 ASSERT(ulwp->ul_sleepq == qp); 537 wchan = ulwp->ul_wchan; 538 ASSERT(qrp->qr_wchan == wchan); 539 index = QUEUE_HASH(wchan, qtype); 540 ASSERT(&udp->queue_head[index] == qp); 541 } 542 ASSERT(qrp->qr_tail == prev); 543 } 544 ASSERT(qp->qh_qlen == cnt); 545 } 546 547 #else /* THREAD_DEBUG */ 548 549 #define QVERIFY(qp) 550 551 #endif /* THREAD_DEBUG */ 552 553 /* 554 * Acquire a queue head. 555 */ 556 queue_head_t * 557 queue_lock(void *wchan, int qtype) 558 { 559 uberdata_t *udp = curthread->ul_uberdata; 560 queue_head_t *qp; 561 queue_root_t *qrp; 562 563 ASSERT(qtype == MX || qtype == CV); 564 565 /* 566 * It is possible that we could be called while still single-threaded. 567 * If so, we call queue_alloc() to allocate the queue_head[] array. 568 */ 569 if ((qp = udp->queue_head) == NULL) { 570 queue_alloc(); 571 qp = udp->queue_head; 572 } 573 qp += QUEUE_HASH(wchan, qtype); 574 spin_lock_set(&qp->qh_lock); 575 for (qrp = qp->qh_hlist; qrp != NULL; qrp = qrp->qr_next) 576 if (qrp->qr_wchan == wchan) 577 break; 578 if (qrp == NULL && qp->qh_def_root.qr_head == NULL) { 579 /* the default queue root is available; use it */ 580 qrp = &qp->qh_def_root; 581 qrp->qr_wchan = wchan; 582 ASSERT(qrp->qr_next == NULL); 583 ASSERT(qrp->qr_tail == NULL && 584 qrp->qr_rtcount == 0 && qrp->qr_qlen == 0); 585 } 586 qp->qh_wchan = wchan; /* valid until queue_unlock() is called */ 587 qp->qh_root = qrp; /* valid until queue_unlock() is called */ 588 INCR32(qp->qh_lockcount); 589 QVERIFY(qp); 590 return (qp); 591 } 592 593 /* 594 * Release a queue head. 595 */ 596 void 597 queue_unlock(queue_head_t *qp) 598 { 599 QVERIFY(qp); 600 spin_lock_clear(&qp->qh_lock); 601 } 602 603 /* 604 * For rwlock queueing, we must queue writers ahead of readers of the 605 * same priority. We do this by making writers appear to have a half 606 * point higher priority for purposes of priority comparisons below. 607 */ 608 #define CMP_PRIO(ulwp) ((real_priority(ulwp) << 1) + (ulwp)->ul_writer) 609 610 void 611 enqueue(queue_head_t *qp, ulwp_t *ulwp, int force_fifo) 612 { 613 queue_root_t *qrp; 614 ulwp_t **ulwpp; 615 ulwp_t *next; 616 int pri = CMP_PRIO(ulwp); 617 618 ASSERT(MUTEX_OWNED(&qp->qh_lock, curthread)); 619 ASSERT(ulwp->ul_sleepq != qp); 620 621 if ((qrp = qp->qh_root) == NULL) { 622 /* use the thread's queue root for the linkage */ 623 qrp = &ulwp->ul_queue_root; 624 qrp->qr_next = qp->qh_hlist; 625 qrp->qr_prev = NULL; 626 qrp->qr_head = NULL; 627 qrp->qr_tail = NULL; 628 qrp->qr_wchan = qp->qh_wchan; 629 qrp->qr_rtcount = 0; 630 qrp->qr_qlen = 0; 631 qrp->qr_qmax = 0; 632 qp->qh_hlist->qr_prev = qrp; 633 qp->qh_hlist = qrp; 634 qp->qh_root = qrp; 635 MAXINCR(qp->qh_hmax, qp->qh_hlen); 636 } 637 638 /* 639 * LIFO queue ordering is unfair and can lead to starvation, 640 * but it gives better performance for heavily contended locks. 641 * We use thread_queue_fifo (range is 0..8) to determine 642 * the frequency of FIFO vs LIFO queuing: 643 * 0 : every 256th time (almost always LIFO) 644 * 1 : every 128th time 645 * 2 : every 64th time 646 * 3 : every 32nd time 647 * 4 : every 16th time (the default value, mostly LIFO) 648 * 5 : every 8th time 649 * 6 : every 4th time 650 * 7 : every 2nd time 651 * 8 : every time (never LIFO, always FIFO) 652 * Note that there is always some degree of FIFO ordering. 653 * This breaks live lock conditions that occur in applications 654 * that are written assuming (incorrectly) that threads acquire 655 * locks fairly, that is, in roughly round-robin order. 656 * In any event, the queue is maintained in kernel priority order. 657 * 658 * If force_fifo is non-zero, fifo queueing is forced. 659 * SUSV3 requires this for semaphores. 660 */ 661 if (qrp->qr_head == NULL) { 662 /* 663 * The queue is empty. LIFO/FIFO doesn't matter. 664 */ 665 ASSERT(qrp->qr_tail == NULL); 666 ulwpp = &qrp->qr_head; 667 } else if (force_fifo | 668 (((++qp->qh_qcnt << curthread->ul_queue_fifo) & 0xff) == 0)) { 669 /* 670 * Enqueue after the last thread whose priority is greater 671 * than or equal to the priority of the thread being queued. 672 * Attempt first to go directly onto the tail of the queue. 673 */ 674 if (pri <= CMP_PRIO(qrp->qr_tail)) 675 ulwpp = &qrp->qr_tail->ul_link; 676 else { 677 for (ulwpp = &qrp->qr_head; (next = *ulwpp) != NULL; 678 ulwpp = &next->ul_link) 679 if (pri > CMP_PRIO(next)) 680 break; 681 } 682 } else { 683 /* 684 * Enqueue before the first thread whose priority is less 685 * than or equal to the priority of the thread being queued. 686 * Hopefully we can go directly onto the head of the queue. 687 */ 688 for (ulwpp = &qrp->qr_head; (next = *ulwpp) != NULL; 689 ulwpp = &next->ul_link) 690 if (pri >= CMP_PRIO(next)) 691 break; 692 } 693 if ((ulwp->ul_link = *ulwpp) == NULL) 694 qrp->qr_tail = ulwp; 695 *ulwpp = ulwp; 696 697 ulwp->ul_sleepq = qp; 698 ulwp->ul_wchan = qp->qh_wchan; 699 ulwp->ul_qtype = qp->qh_type; 700 if ((ulwp->ul_schedctl != NULL && 701 ulwp->ul_schedctl->sc_cid == ulwp->ul_rtclassid) | 702 ulwp->ul_pilocks) { 703 ulwp->ul_rtqueued = 1; 704 qrp->qr_rtcount++; 705 } 706 MAXINCR(qrp->qr_qmax, qrp->qr_qlen); 707 MAXINCR(qp->qh_qmax, qp->qh_qlen); 708 } 709 710 /* 711 * Helper function for queue_slot() and queue_slot_rt(). 712 * Try to find a non-suspended thread on the queue. 713 */ 714 static ulwp_t ** 715 queue_slot_runnable(ulwp_t **ulwpp, ulwp_t **prevp, int rt) 716 { 717 ulwp_t *ulwp; 718 ulwp_t **foundpp = NULL; 719 int priority = -1; 720 ulwp_t *prev; 721 int tpri; 722 723 for (prev = NULL; 724 (ulwp = *ulwpp) != NULL; 725 prev = ulwp, ulwpp = &ulwp->ul_link) { 726 if (ulwp->ul_stop) /* skip suspended threads */ 727 continue; 728 tpri = rt? CMP_PRIO(ulwp) : 0; 729 if (tpri > priority) { 730 foundpp = ulwpp; 731 *prevp = prev; 732 priority = tpri; 733 if (!rt) 734 break; 735 } 736 } 737 return (foundpp); 738 } 739 740 /* 741 * For real-time, we search the entire queue because the dispatch 742 * (kernel) priorities may have changed since enqueueing. 743 */ 744 static ulwp_t ** 745 queue_slot_rt(ulwp_t **ulwpp_org, ulwp_t **prevp) 746 { 747 ulwp_t **ulwpp = ulwpp_org; 748 ulwp_t *ulwp = *ulwpp; 749 ulwp_t **foundpp = ulwpp; 750 int priority = CMP_PRIO(ulwp); 751 ulwp_t *prev; 752 int tpri; 753 754 for (prev = ulwp, ulwpp = &ulwp->ul_link; 755 (ulwp = *ulwpp) != NULL; 756 prev = ulwp, ulwpp = &ulwp->ul_link) { 757 tpri = CMP_PRIO(ulwp); 758 if (tpri > priority) { 759 foundpp = ulwpp; 760 *prevp = prev; 761 priority = tpri; 762 } 763 } 764 ulwp = *foundpp; 765 766 /* 767 * Try not to return a suspended thread. 768 * This mimics the old libthread's behavior. 769 */ 770 if (ulwp->ul_stop && 771 (ulwpp = queue_slot_runnable(ulwpp_org, prevp, 1)) != NULL) { 772 foundpp = ulwpp; 773 ulwp = *foundpp; 774 } 775 ulwp->ul_rt = 1; 776 return (foundpp); 777 } 778 779 ulwp_t ** 780 queue_slot(queue_head_t *qp, ulwp_t **prevp, int *more) 781 { 782 queue_root_t *qrp; 783 ulwp_t **ulwpp; 784 ulwp_t *ulwp; 785 int rt; 786 787 ASSERT(MUTEX_OWNED(&qp->qh_lock, curthread)); 788 789 if ((qrp = qp->qh_root) == NULL || (ulwp = qrp->qr_head) == NULL) { 790 *more = 0; 791 return (NULL); /* no lwps on the queue */ 792 } 793 rt = (qrp->qr_rtcount != 0); 794 *prevp = NULL; 795 if (ulwp->ul_link == NULL) { /* only one lwp on the queue */ 796 *more = 0; 797 ulwp->ul_rt = rt; 798 return (&qrp->qr_head); 799 } 800 *more = 1; 801 802 if (rt) /* real-time queue */ 803 return (queue_slot_rt(&qrp->qr_head, prevp)); 804 /* 805 * Try not to return a suspended thread. 806 * This mimics the old libthread's behavior. 807 */ 808 if (ulwp->ul_stop && 809 (ulwpp = queue_slot_runnable(&qrp->qr_head, prevp, 0)) != NULL) { 810 ulwp = *ulwpp; 811 ulwp->ul_rt = 0; 812 return (ulwpp); 813 } 814 /* 815 * The common case; just pick the first thread on the queue. 816 */ 817 ulwp->ul_rt = 0; 818 return (&qrp->qr_head); 819 } 820 821 /* 822 * Common code for unlinking an lwp from a user-level sleep queue. 823 */ 824 void 825 queue_unlink(queue_head_t *qp, ulwp_t **ulwpp, ulwp_t *prev) 826 { 827 queue_root_t *qrp = qp->qh_root; 828 queue_root_t *nqrp; 829 ulwp_t *ulwp = *ulwpp; 830 ulwp_t *next; 831 832 ASSERT(MUTEX_OWNED(&qp->qh_lock, curthread)); 833 ASSERT(qp->qh_wchan != NULL && ulwp->ul_wchan == qp->qh_wchan); 834 835 DECR(qp->qh_qlen); 836 DECR(qrp->qr_qlen); 837 if (ulwp->ul_rtqueued) { 838 ulwp->ul_rtqueued = 0; 839 qrp->qr_rtcount--; 840 } 841 next = ulwp->ul_link; 842 *ulwpp = next; 843 ulwp->ul_link = NULL; 844 if (qrp->qr_tail == ulwp) 845 qrp->qr_tail = prev; 846 if (qrp == &ulwp->ul_queue_root) { 847 /* 848 * We can't continue to use the unlinked thread's 849 * queue root for the linkage. 850 */ 851 queue_root_t *qr_next = qrp->qr_next; 852 queue_root_t *qr_prev = qrp->qr_prev; 853 854 if (qrp->qr_tail) { 855 /* switch to using the last thread's queue root */ 856 ASSERT(qrp->qr_qlen != 0); 857 nqrp = &qrp->qr_tail->ul_queue_root; 858 *nqrp = *qrp; 859 if (qr_next) 860 qr_next->qr_prev = nqrp; 861 if (qr_prev) 862 qr_prev->qr_next = nqrp; 863 else 864 qp->qh_hlist = nqrp; 865 qp->qh_root = nqrp; 866 } else { 867 /* empty queue root; just delete from the hash list */ 868 ASSERT(qrp->qr_qlen == 0); 869 if (qr_next) 870 qr_next->qr_prev = qr_prev; 871 if (qr_prev) 872 qr_prev->qr_next = qr_next; 873 else 874 qp->qh_hlist = qr_next; 875 qp->qh_root = NULL; 876 DECR(qp->qh_hlen); 877 } 878 } 879 } 880 881 ulwp_t * 882 dequeue(queue_head_t *qp, int *more) 883 { 884 ulwp_t **ulwpp; 885 ulwp_t *ulwp; 886 ulwp_t *prev; 887 888 if ((ulwpp = queue_slot(qp, &prev, more)) == NULL) 889 return (NULL); 890 ulwp = *ulwpp; 891 queue_unlink(qp, ulwpp, prev); 892 ulwp->ul_sleepq = NULL; 893 ulwp->ul_wchan = NULL; 894 return (ulwp); 895 } 896 897 /* 898 * Return a pointer to the highest priority thread sleeping on wchan. 899 */ 900 ulwp_t * 901 queue_waiter(queue_head_t *qp) 902 { 903 ulwp_t **ulwpp; 904 ulwp_t *prev; 905 int more; 906 907 if ((ulwpp = queue_slot(qp, &prev, &more)) == NULL) 908 return (NULL); 909 return (*ulwpp); 910 } 911 912 int 913 dequeue_self(queue_head_t *qp) 914 { 915 ulwp_t *self = curthread; 916 queue_root_t *qrp; 917 ulwp_t **ulwpp; 918 ulwp_t *ulwp; 919 ulwp_t *prev; 920 int found = 0; 921 922 ASSERT(MUTEX_OWNED(&qp->qh_lock, self)); 923 924 /* find self on the sleep queue */ 925 if ((qrp = qp->qh_root) != NULL) { 926 for (prev = NULL, ulwpp = &qrp->qr_head; 927 (ulwp = *ulwpp) != NULL; 928 prev = ulwp, ulwpp = &ulwp->ul_link) { 929 if (ulwp == self) { 930 queue_unlink(qp, ulwpp, prev); 931 self->ul_cvmutex = NULL; 932 self->ul_sleepq = NULL; 933 self->ul_wchan = NULL; 934 found = 1; 935 break; 936 } 937 } 938 } 939 940 if (!found) 941 thr_panic("dequeue_self(): curthread not found on queue"); 942 943 return ((qrp = qp->qh_root) != NULL && qrp->qr_head != NULL); 944 } 945 946 /* 947 * Called from call_user_handler() and _thrp_suspend() to take 948 * ourself off of our sleep queue so we can grab locks. 949 */ 950 void 951 unsleep_self(void) 952 { 953 ulwp_t *self = curthread; 954 queue_head_t *qp; 955 956 /* 957 * Calling enter_critical()/exit_critical() here would lead 958 * to recursion. Just manipulate self->ul_critical directly. 959 */ 960 self->ul_critical++; 961 while (self->ul_sleepq != NULL) { 962 qp = queue_lock(self->ul_wchan, self->ul_qtype); 963 /* 964 * We may have been moved from a CV queue to a 965 * mutex queue while we were attempting queue_lock(). 966 * If so, just loop around and try again. 967 * dequeue_self() clears self->ul_sleepq. 968 */ 969 if (qp == self->ul_sleepq) 970 (void) dequeue_self(qp); 971 queue_unlock(qp); 972 } 973 self->ul_writer = 0; 974 self->ul_critical--; 975 } 976 977 /* 978 * Common code for calling the the ___lwp_mutex_timedlock() system call. 979 * Returns with mutex_owner and mutex_ownerpid set correctly. 980 */ 981 static int 982 mutex_lock_kernel(mutex_t *mp, timespec_t *tsp, tdb_mutex_stats_t *msp) 983 { 984 ulwp_t *self = curthread; 985 uberdata_t *udp = self->ul_uberdata; 986 int mtype = mp->mutex_type; 987 hrtime_t begin_sleep; 988 int acquired; 989 int error; 990 991 self->ul_sp = stkptr(); 992 self->ul_wchan = mp; 993 if (__td_event_report(self, TD_SLEEP, udp)) { 994 self->ul_td_evbuf.eventnum = TD_SLEEP; 995 self->ul_td_evbuf.eventdata = mp; 996 tdb_event(TD_SLEEP, udp); 997 } 998 if (msp) { 999 tdb_incr(msp->mutex_sleep); 1000 begin_sleep = gethrtime(); 1001 } 1002 1003 DTRACE_PROBE1(plockstat, mutex__block, mp); 1004 1005 /* defer signals until the assignment of mp->mutex_owner */ 1006 sigoff(self); 1007 for (;;) { 1008 /* 1009 * A return value of EOWNERDEAD or ELOCKUNMAPPED 1010 * means we successfully acquired the lock. 1011 */ 1012 if ((error = ___lwp_mutex_timedlock(mp, tsp)) != 0 && 1013 error != EOWNERDEAD && error != ELOCKUNMAPPED) { 1014 acquired = 0; 1015 break; 1016 } 1017 1018 if (mtype & USYNC_PROCESS) { 1019 /* 1020 * Defend against forkall(). We may be the child, 1021 * in which case we don't actually own the mutex. 1022 */ 1023 enter_critical(self); 1024 if (mp->mutex_ownerpid == udp->pid) { 1025 mp->mutex_owner = (uintptr_t)self; 1026 exit_critical(self); 1027 acquired = 1; 1028 break; 1029 } 1030 exit_critical(self); 1031 } else { 1032 mp->mutex_owner = (uintptr_t)self; 1033 acquired = 1; 1034 break; 1035 } 1036 } 1037 sigon(self); 1038 1039 if (msp) 1040 msp->mutex_sleep_time += gethrtime() - begin_sleep; 1041 self->ul_wchan = NULL; 1042 self->ul_sp = 0; 1043 1044 if (acquired) { 1045 DTRACE_PROBE2(plockstat, mutex__blocked, mp, 1); 1046 DTRACE_PROBE3(plockstat, mutex__acquire, mp, 0, 0); 1047 } else { 1048 DTRACE_PROBE2(plockstat, mutex__blocked, mp, 0); 1049 DTRACE_PROBE2(plockstat, mutex__error, mp, error); 1050 } 1051 1052 return (error); 1053 } 1054 1055 /* 1056 * Common code for calling the ___lwp_mutex_trylock() system call. 1057 * Returns with mutex_owner and mutex_ownerpid set correctly. 1058 */ 1059 int 1060 mutex_trylock_kernel(mutex_t *mp) 1061 { 1062 ulwp_t *self = curthread; 1063 uberdata_t *udp = self->ul_uberdata; 1064 int mtype = mp->mutex_type; 1065 int error; 1066 int acquired; 1067 1068 sigoff(self); 1069 for (;;) { 1070 /* 1071 * A return value of EOWNERDEAD or ELOCKUNMAPPED 1072 * means we successfully acquired the lock. 1073 */ 1074 if ((error = ___lwp_mutex_trylock(mp)) != 0 && 1075 error != EOWNERDEAD && error != ELOCKUNMAPPED) { 1076 acquired = 0; 1077 break; 1078 } 1079 1080 if (mtype & USYNC_PROCESS) { 1081 /* 1082 * Defend against forkall(). We may be the child, 1083 * in which case we don't actually own the mutex. 1084 */ 1085 enter_critical(self); 1086 if (mp->mutex_ownerpid == udp->pid) { 1087 mp->mutex_owner = (uintptr_t)self; 1088 exit_critical(self); 1089 acquired = 1; 1090 break; 1091 } 1092 exit_critical(self); 1093 } else { 1094 mp->mutex_owner = (uintptr_t)self; 1095 acquired = 1; 1096 break; 1097 } 1098 } 1099 sigon(self); 1100 1101 if (acquired) { 1102 DTRACE_PROBE3(plockstat, mutex__acquire, mp, 0, 0); 1103 } else if (error != EBUSY) { 1104 DTRACE_PROBE2(plockstat, mutex__error, mp, error); 1105 } 1106 1107 return (error); 1108 } 1109 1110 volatile sc_shared_t * 1111 setup_schedctl(void) 1112 { 1113 ulwp_t *self = curthread; 1114 volatile sc_shared_t *scp; 1115 sc_shared_t *tmp; 1116 1117 if ((scp = self->ul_schedctl) == NULL && /* no shared state yet */ 1118 !self->ul_vfork && /* not a child of vfork() */ 1119 !self->ul_schedctl_called) { /* haven't been called before */ 1120 enter_critical(self); 1121 self->ul_schedctl_called = &self->ul_uberdata->uberflags; 1122 if ((tmp = __schedctl()) != (sc_shared_t *)(-1)) 1123 self->ul_schedctl = scp = tmp; 1124 exit_critical(self); 1125 } 1126 /* 1127 * Unless the call to setup_schedctl() is surrounded 1128 * by enter_critical()/exit_critical(), the address 1129 * we are returning could be invalid due to a forkall() 1130 * having occurred in another thread. 1131 */ 1132 return (scp); 1133 } 1134 1135 /* 1136 * Interfaces from libsched, incorporated into libc. 1137 * libsched.so.1 is now a filter library onto libc. 1138 */ 1139 #pragma weak schedctl_lookup = schedctl_init 1140 schedctl_t * 1141 schedctl_init(void) 1142 { 1143 volatile sc_shared_t *scp = setup_schedctl(); 1144 return ((scp == NULL)? NULL : (schedctl_t *)&scp->sc_preemptctl); 1145 } 1146 1147 void 1148 schedctl_exit(void) 1149 { 1150 } 1151 1152 /* 1153 * Contract private interface for java. 1154 * Set up the schedctl data if it doesn't exist yet. 1155 * Return a pointer to the pointer to the schedctl data. 1156 */ 1157 volatile sc_shared_t *volatile * 1158 _thr_schedctl(void) 1159 { 1160 ulwp_t *self = curthread; 1161 volatile sc_shared_t *volatile *ptr; 1162 1163 if (self->ul_vfork) 1164 return (NULL); 1165 if (*(ptr = &self->ul_schedctl) == NULL) 1166 (void) setup_schedctl(); 1167 return (ptr); 1168 } 1169 1170 /* 1171 * Block signals and attempt to block preemption. 1172 * no_preempt()/preempt() must be used in pairs but can be nested. 1173 */ 1174 void 1175 no_preempt(ulwp_t *self) 1176 { 1177 volatile sc_shared_t *scp; 1178 1179 if (self->ul_preempt++ == 0) { 1180 enter_critical(self); 1181 if ((scp = self->ul_schedctl) != NULL || 1182 (scp = setup_schedctl()) != NULL) { 1183 /* 1184 * Save the pre-existing preempt value. 1185 */ 1186 self->ul_savpreempt = scp->sc_preemptctl.sc_nopreempt; 1187 scp->sc_preemptctl.sc_nopreempt = 1; 1188 } 1189 } 1190 } 1191 1192 /* 1193 * Undo the effects of no_preempt(). 1194 */ 1195 void 1196 preempt(ulwp_t *self) 1197 { 1198 volatile sc_shared_t *scp; 1199 1200 ASSERT(self->ul_preempt > 0); 1201 if (--self->ul_preempt == 0) { 1202 if ((scp = self->ul_schedctl) != NULL) { 1203 /* 1204 * Restore the pre-existing preempt value. 1205 */ 1206 scp->sc_preemptctl.sc_nopreempt = self->ul_savpreempt; 1207 if (scp->sc_preemptctl.sc_yield && 1208 scp->sc_preemptctl.sc_nopreempt == 0) { 1209 yield(); 1210 if (scp->sc_preemptctl.sc_yield) { 1211 /* 1212 * Shouldn't happen. This is either 1213 * a race condition or the thread 1214 * just entered the real-time class. 1215 */ 1216 yield(); 1217 scp->sc_preemptctl.sc_yield = 0; 1218 } 1219 } 1220 } 1221 exit_critical(self); 1222 } 1223 } 1224 1225 /* 1226 * If a call to preempt() would cause the current thread to yield or to 1227 * take deferred actions in exit_critical(), then unpark the specified 1228 * lwp so it can run while we delay. Return the original lwpid if the 1229 * unpark was not performed, else return zero. The tests are a repeat 1230 * of some of the tests in preempt(), above. This is a statistical 1231 * optimization solely for cond_sleep_queue(), below. 1232 */ 1233 static lwpid_t 1234 preempt_unpark(ulwp_t *self, lwpid_t lwpid) 1235 { 1236 volatile sc_shared_t *scp = self->ul_schedctl; 1237 1238 ASSERT(self->ul_preempt == 1 && self->ul_critical > 0); 1239 if ((scp != NULL && scp->sc_preemptctl.sc_yield) || 1240 (self->ul_curplease && self->ul_critical == 1)) { 1241 (void) __lwp_unpark(lwpid); 1242 lwpid = 0; 1243 } 1244 return (lwpid); 1245 } 1246 1247 /* 1248 * Spin for a while (if 'tryhard' is true), trying to grab the lock. 1249 * If this fails, return EBUSY and let the caller deal with it. 1250 * If this succeeds, return 0 with mutex_owner set to curthread. 1251 */ 1252 static int 1253 mutex_trylock_adaptive(mutex_t *mp, int tryhard) 1254 { 1255 ulwp_t *self = curthread; 1256 int error = EBUSY; 1257 ulwp_t *ulwp; 1258 volatile sc_shared_t *scp; 1259 volatile uint8_t *lockp = (volatile uint8_t *)&mp->mutex_lockw; 1260 volatile uint64_t *ownerp = (volatile uint64_t *)&mp->mutex_owner; 1261 uint32_t new_lockword; 1262 int count = 0; 1263 int max_count; 1264 uint8_t max_spinners; 1265 1266 ASSERT(!(mp->mutex_type & USYNC_PROCESS)); 1267 1268 if (MUTEX_OWNED(mp, self)) 1269 return (EBUSY); 1270 1271 enter_critical(self); 1272 1273 /* short-cut, not definitive (see below) */ 1274 if (mp->mutex_flag & LOCK_NOTRECOVERABLE) { 1275 ASSERT(mp->mutex_type & LOCK_ROBUST); 1276 error = ENOTRECOVERABLE; 1277 goto done; 1278 } 1279 1280 /* 1281 * Make one attempt to acquire the lock before 1282 * incurring the overhead of the spin loop. 1283 */ 1284 if (set_lock_byte(lockp) == 0) { 1285 *ownerp = (uintptr_t)self; 1286 error = 0; 1287 goto done; 1288 } 1289 if (!tryhard) 1290 goto done; 1291 if (ncpus == 0) 1292 ncpus = (int)_sysconf(_SC_NPROCESSORS_ONLN); 1293 if ((max_spinners = self->ul_max_spinners) >= ncpus) 1294 max_spinners = ncpus - 1; 1295 max_count = (max_spinners != 0)? self->ul_adaptive_spin : 0; 1296 if (max_count == 0) 1297 goto done; 1298 1299 /* 1300 * This spin loop is unfair to lwps that have already dropped into 1301 * the kernel to sleep. They will starve on a highly-contended mutex. 1302 * This is just too bad. The adaptive spin algorithm is intended 1303 * to allow programs with highly-contended locks (that is, broken 1304 * programs) to execute with reasonable speed despite their contention. 1305 * Being fair would reduce the speed of such programs and well-written 1306 * programs will not suffer in any case. 1307 */ 1308 if (spinners_incr(&mp->mutex_lockword, max_spinners) == -1) 1309 goto done; 1310 DTRACE_PROBE1(plockstat, mutex__spin, mp); 1311 for (count = 1; ; count++) { 1312 if (*lockp == 0 && set_lock_byte(lockp) == 0) { 1313 *ownerp = (uintptr_t)self; 1314 error = 0; 1315 break; 1316 } 1317 if (count == max_count) 1318 break; 1319 SMT_PAUSE(); 1320 /* 1321 * Stop spinning if the mutex owner is not running on 1322 * a processor; it will not drop the lock any time soon 1323 * and we would just be wasting time to keep spinning. 1324 * 1325 * Note that we are looking at another thread (ulwp_t) 1326 * without ensuring that the other thread does not exit. 1327 * The scheme relies on ulwp_t structures never being 1328 * deallocated by the library (the library employs a free 1329 * list of ulwp_t structs that are reused when new threads 1330 * are created) and on schedctl shared memory never being 1331 * deallocated once created via __schedctl(). 1332 * 1333 * Thus, the worst that can happen when the spinning thread 1334 * looks at the owner's schedctl data is that it is looking 1335 * at some other thread's schedctl data. This almost never 1336 * happens and is benign when it does. 1337 */ 1338 if ((ulwp = (ulwp_t *)(uintptr_t)*ownerp) != NULL && 1339 ((scp = ulwp->ul_schedctl) == NULL || 1340 scp->sc_state != SC_ONPROC)) 1341 break; 1342 } 1343 new_lockword = spinners_decr(&mp->mutex_lockword); 1344 if (error && (new_lockword & (LOCKMASK | SPINNERMASK)) == 0) { 1345 /* 1346 * We haven't yet acquired the lock, the lock 1347 * is free, and there are no other spinners. 1348 * Make one final attempt to acquire the lock. 1349 * 1350 * This isn't strictly necessary since mutex_lock_queue() 1351 * (the next action this thread will take if it doesn't 1352 * acquire the lock here) makes one attempt to acquire 1353 * the lock before putting the thread to sleep. 1354 * 1355 * If the next action for this thread (on failure here) 1356 * were not to call mutex_lock_queue(), this would be 1357 * necessary for correctness, to avoid ending up with an 1358 * unheld mutex with waiters but no one to wake them up. 1359 */ 1360 if (set_lock_byte(lockp) == 0) { 1361 *ownerp = (uintptr_t)self; 1362 error = 0; 1363 } 1364 count++; 1365 } 1366 1367 done: 1368 if (error == 0 && (mp->mutex_flag & LOCK_NOTRECOVERABLE)) { 1369 ASSERT(mp->mutex_type & LOCK_ROBUST); 1370 /* 1371 * We shouldn't own the mutex. 1372 * Just clear the lock; everyone has already been waked up. 1373 */ 1374 *ownerp = 0; 1375 (void) clear_lockbyte(&mp->mutex_lockword); 1376 error = ENOTRECOVERABLE; 1377 } 1378 1379 exit_critical(self); 1380 1381 if (error) { 1382 if (count) { 1383 DTRACE_PROBE2(plockstat, mutex__spun, 0, count); 1384 } 1385 if (error != EBUSY) { 1386 DTRACE_PROBE2(plockstat, mutex__error, mp, error); 1387 } 1388 } else { 1389 if (count) { 1390 DTRACE_PROBE2(plockstat, mutex__spun, 1, count); 1391 } 1392 DTRACE_PROBE3(plockstat, mutex__acquire, mp, 0, count); 1393 if (mp->mutex_flag & LOCK_OWNERDEAD) { 1394 ASSERT(mp->mutex_type & LOCK_ROBUST); 1395 error = EOWNERDEAD; 1396 } 1397 } 1398 1399 return (error); 1400 } 1401 1402 /* 1403 * Same as mutex_trylock_adaptive(), except specifically for queue locks. 1404 * The owner field is not set here; the caller (spin_lock_set()) sets it. 1405 */ 1406 static int 1407 mutex_queuelock_adaptive(mutex_t *mp) 1408 { 1409 ulwp_t *ulwp; 1410 volatile sc_shared_t *scp; 1411 volatile uint8_t *lockp; 1412 volatile uint64_t *ownerp; 1413 int count = curthread->ul_queue_spin; 1414 1415 ASSERT(mp->mutex_type == USYNC_THREAD); 1416 1417 if (count == 0) 1418 return (EBUSY); 1419 1420 lockp = (volatile uint8_t *)&mp->mutex_lockw; 1421 ownerp = (volatile uint64_t *)&mp->mutex_owner; 1422 while (--count >= 0) { 1423 if (*lockp == 0 && set_lock_byte(lockp) == 0) 1424 return (0); 1425 SMT_PAUSE(); 1426 if ((ulwp = (ulwp_t *)(uintptr_t)*ownerp) != NULL && 1427 ((scp = ulwp->ul_schedctl) == NULL || 1428 scp->sc_state != SC_ONPROC)) 1429 break; 1430 } 1431 1432 return (EBUSY); 1433 } 1434 1435 /* 1436 * Like mutex_trylock_adaptive(), but for process-shared mutexes. 1437 * Spin for a while (if 'tryhard' is true), trying to grab the lock. 1438 * If this fails, return EBUSY and let the caller deal with it. 1439 * If this succeeds, return 0 with mutex_owner set to curthread 1440 * and mutex_ownerpid set to the current pid. 1441 */ 1442 static int 1443 mutex_trylock_process(mutex_t *mp, int tryhard) 1444 { 1445 ulwp_t *self = curthread; 1446 uberdata_t *udp = self->ul_uberdata; 1447 int error = EBUSY; 1448 volatile uint64_t *lockp = (volatile uint64_t *)&mp->mutex_lockword64; 1449 uint32_t new_lockword; 1450 int count = 0; 1451 int max_count; 1452 uint8_t max_spinners; 1453 1454 #if defined(__sparc) && !defined(_LP64) 1455 /* horrible hack, necessary only on 32-bit sparc */ 1456 int fix_alignment_problem = 1457 (((uintptr_t)mp & (_LONG_LONG_ALIGNMENT - 1)) && 1458 self->ul_misaligned && !(mp->mutex_type & LOCK_ROBUST)); 1459 #endif 1460 1461 ASSERT(mp->mutex_type & USYNC_PROCESS); 1462 1463 if (shared_mutex_held(mp)) 1464 return (EBUSY); 1465 1466 enter_critical(self); 1467 1468 /* short-cut, not definitive (see below) */ 1469 if (mp->mutex_flag & LOCK_NOTRECOVERABLE) { 1470 ASSERT(mp->mutex_type & LOCK_ROBUST); 1471 error = ENOTRECOVERABLE; 1472 goto done; 1473 } 1474 1475 /* 1476 * Make one attempt to acquire the lock before 1477 * incurring the overhead of the spin loop. 1478 */ 1479 #if defined(__sparc) && !defined(_LP64) 1480 /* horrible hack, necessary only on 32-bit sparc */ 1481 if (fix_alignment_problem) { 1482 if (set_lock_byte(&mp->mutex_lockw) == 0) { 1483 mp->mutex_ownerpid = udp->pid; 1484 mp->mutex_owner = (uintptr_t)self; 1485 error = 0; 1486 goto done; 1487 } 1488 } else 1489 #endif 1490 if (set_lock_byte64(lockp, udp->pid) == 0) { 1491 mp->mutex_owner = (uintptr_t)self; 1492 /* mp->mutex_ownerpid was set by set_lock_byte64() */ 1493 error = 0; 1494 goto done; 1495 } 1496 if (!tryhard) 1497 goto done; 1498 if (ncpus == 0) 1499 ncpus = (int)_sysconf(_SC_NPROCESSORS_ONLN); 1500 if ((max_spinners = self->ul_max_spinners) >= ncpus) 1501 max_spinners = ncpus - 1; 1502 max_count = (max_spinners != 0)? self->ul_adaptive_spin : 0; 1503 if (max_count == 0) 1504 goto done; 1505 1506 /* 1507 * This is a process-shared mutex. 1508 * We cannot know if the owner is running on a processor. 1509 * We just spin and hope that it is on a processor. 1510 */ 1511 if (spinners_incr(&mp->mutex_lockword, max_spinners) == -1) 1512 goto done; 1513 DTRACE_PROBE1(plockstat, mutex__spin, mp); 1514 for (count = 1; ; count++) { 1515 #if defined(__sparc) && !defined(_LP64) 1516 /* horrible hack, necessary only on 32-bit sparc */ 1517 if (fix_alignment_problem) { 1518 if ((*lockp & LOCKMASK64) == 0 && 1519 set_lock_byte(&mp->mutex_lockw) == 0) { 1520 mp->mutex_ownerpid = udp->pid; 1521 mp->mutex_owner = (uintptr_t)self; 1522 error = 0; 1523 break; 1524 } 1525 } else 1526 #endif 1527 if ((*lockp & LOCKMASK64) == 0 && 1528 set_lock_byte64(lockp, udp->pid) == 0) { 1529 mp->mutex_owner = (uintptr_t)self; 1530 /* mp->mutex_ownerpid was set by set_lock_byte64() */ 1531 error = 0; 1532 break; 1533 } 1534 if (count == max_count) 1535 break; 1536 SMT_PAUSE(); 1537 } 1538 new_lockword = spinners_decr(&mp->mutex_lockword); 1539 if (error && (new_lockword & (LOCKMASK | SPINNERMASK)) == 0) { 1540 /* 1541 * We haven't yet acquired the lock, the lock 1542 * is free, and there are no other spinners. 1543 * Make one final attempt to acquire the lock. 1544 * 1545 * This isn't strictly necessary since mutex_lock_kernel() 1546 * (the next action this thread will take if it doesn't 1547 * acquire the lock here) makes one attempt to acquire 1548 * the lock before putting the thread to sleep. 1549 * 1550 * If the next action for this thread (on failure here) 1551 * were not to call mutex_lock_kernel(), this would be 1552 * necessary for correctness, to avoid ending up with an 1553 * unheld mutex with waiters but no one to wake them up. 1554 */ 1555 #if defined(__sparc) && !defined(_LP64) 1556 /* horrible hack, necessary only on 32-bit sparc */ 1557 if (fix_alignment_problem) { 1558 if (set_lock_byte(&mp->mutex_lockw) == 0) { 1559 mp->mutex_ownerpid = udp->pid; 1560 mp->mutex_owner = (uintptr_t)self; 1561 error = 0; 1562 } 1563 } else 1564 #endif 1565 if (set_lock_byte64(lockp, udp->pid) == 0) { 1566 mp->mutex_owner = (uintptr_t)self; 1567 /* mp->mutex_ownerpid was set by set_lock_byte64() */ 1568 error = 0; 1569 } 1570 count++; 1571 } 1572 1573 done: 1574 if (error == 0 && (mp->mutex_flag & LOCK_NOTRECOVERABLE)) { 1575 ASSERT(mp->mutex_type & LOCK_ROBUST); 1576 /* 1577 * We shouldn't own the mutex. 1578 * Just clear the lock; everyone has already been waked up. 1579 */ 1580 mp->mutex_owner = 0; 1581 /* mp->mutex_ownerpid is cleared by clear_lockbyte64() */ 1582 (void) clear_lockbyte64(&mp->mutex_lockword64); 1583 error = ENOTRECOVERABLE; 1584 } 1585 1586 exit_critical(self); 1587 1588 if (error) { 1589 if (count) { 1590 DTRACE_PROBE2(plockstat, mutex__spun, 0, count); 1591 } 1592 if (error != EBUSY) { 1593 DTRACE_PROBE2(plockstat, mutex__error, mp, error); 1594 } 1595 } else { 1596 if (count) { 1597 DTRACE_PROBE2(plockstat, mutex__spun, 1, count); 1598 } 1599 DTRACE_PROBE3(plockstat, mutex__acquire, mp, 0, count); 1600 if (mp->mutex_flag & (LOCK_OWNERDEAD | LOCK_UNMAPPED)) { 1601 ASSERT(mp->mutex_type & LOCK_ROBUST); 1602 if (mp->mutex_flag & LOCK_OWNERDEAD) 1603 error = EOWNERDEAD; 1604 else if (mp->mutex_type & USYNC_PROCESS_ROBUST) 1605 error = ELOCKUNMAPPED; 1606 else 1607 error = EOWNERDEAD; 1608 } 1609 } 1610 1611 return (error); 1612 } 1613 1614 /* 1615 * Mutex wakeup code for releasing a USYNC_THREAD mutex. 1616 * Returns the lwpid of the thread that was dequeued, if any. 1617 * The caller of mutex_wakeup() must call __lwp_unpark(lwpid) 1618 * to wake up the specified lwp. 1619 */ 1620 static lwpid_t 1621 mutex_wakeup(mutex_t *mp) 1622 { 1623 lwpid_t lwpid = 0; 1624 int more; 1625 queue_head_t *qp; 1626 ulwp_t *ulwp; 1627 1628 /* 1629 * Dequeue a waiter from the sleep queue. Don't touch the mutex 1630 * waiters bit if no one was found on the queue because the mutex 1631 * might have been deallocated or reallocated for another purpose. 1632 */ 1633 qp = queue_lock(mp, MX); 1634 if ((ulwp = dequeue(qp, &more)) != NULL) { 1635 lwpid = ulwp->ul_lwpid; 1636 mp->mutex_waiters = more; 1637 } 1638 queue_unlock(qp); 1639 return (lwpid); 1640 } 1641 1642 /* 1643 * Mutex wakeup code for releasing all waiters on a USYNC_THREAD mutex. 1644 */ 1645 static void 1646 mutex_wakeup_all(mutex_t *mp) 1647 { 1648 queue_head_t *qp; 1649 queue_root_t *qrp; 1650 int nlwpid = 0; 1651 int maxlwps = MAXLWPS; 1652 ulwp_t *ulwp; 1653 lwpid_t buffer[MAXLWPS]; 1654 lwpid_t *lwpid = buffer; 1655 1656 /* 1657 * Walk the list of waiters and prepare to wake up all of them. 1658 * The waiters flag has already been cleared from the mutex. 1659 * 1660 * We keep track of lwpids that are to be unparked in lwpid[]. 1661 * __lwp_unpark_all() is called to unpark all of them after 1662 * they have been removed from the sleep queue and the sleep 1663 * queue lock has been dropped. If we run out of space in our 1664 * on-stack buffer, we need to allocate more but we can't call 1665 * lmalloc() because we are holding a queue lock when the overflow 1666 * occurs and lmalloc() acquires a lock. We can't use alloca() 1667 * either because the application may have allocated a small 1668 * stack and we don't want to overrun the stack. So we call 1669 * alloc_lwpids() to allocate a bigger buffer using the mmap() 1670 * system call directly since that path acquires no locks. 1671 */ 1672 qp = queue_lock(mp, MX); 1673 for (;;) { 1674 if ((qrp = qp->qh_root) == NULL || 1675 (ulwp = qrp->qr_head) == NULL) 1676 break; 1677 ASSERT(ulwp->ul_wchan == mp); 1678 queue_unlink(qp, &qrp->qr_head, NULL); 1679 ulwp->ul_sleepq = NULL; 1680 ulwp->ul_wchan = NULL; 1681 if (nlwpid == maxlwps) 1682 lwpid = alloc_lwpids(lwpid, &nlwpid, &maxlwps); 1683 lwpid[nlwpid++] = ulwp->ul_lwpid; 1684 } 1685 1686 if (nlwpid == 0) { 1687 queue_unlock(qp); 1688 } else { 1689 mp->mutex_waiters = 0; 1690 no_preempt(curthread); 1691 queue_unlock(qp); 1692 if (nlwpid == 1) 1693 (void) __lwp_unpark(lwpid[0]); 1694 else 1695 (void) __lwp_unpark_all(lwpid, nlwpid); 1696 preempt(curthread); 1697 } 1698 1699 if (lwpid != buffer) 1700 (void) munmap((caddr_t)lwpid, maxlwps * sizeof (lwpid_t)); 1701 } 1702 1703 /* 1704 * Release a process-private mutex. 1705 * As an optimization, if there are waiters but there are also spinners 1706 * attempting to acquire the mutex, then don't bother waking up a waiter; 1707 * one of the spinners will acquire the mutex soon and it would be a waste 1708 * of resources to wake up some thread just to have it spin for a while 1709 * and then possibly go back to sleep. See mutex_trylock_adaptive(). 1710 */ 1711 static lwpid_t 1712 mutex_unlock_queue(mutex_t *mp, int release_all) 1713 { 1714 ulwp_t *self = curthread; 1715 lwpid_t lwpid = 0; 1716 uint32_t old_lockword; 1717 1718 DTRACE_PROBE2(plockstat, mutex__release, mp, 0); 1719 sigoff(self); 1720 mp->mutex_owner = 0; 1721 old_lockword = clear_lockbyte(&mp->mutex_lockword); 1722 if ((old_lockword & WAITERMASK) && 1723 (release_all || (old_lockword & SPINNERMASK) == 0)) { 1724 no_preempt(self); /* ensure a prompt wakeup */ 1725 if (release_all) 1726 mutex_wakeup_all(mp); 1727 else 1728 lwpid = mutex_wakeup(mp); 1729 if (lwpid == 0) 1730 preempt(self); 1731 } 1732 sigon(self); 1733 return (lwpid); 1734 } 1735 1736 /* 1737 * Like mutex_unlock_queue(), but for process-shared mutexes. 1738 */ 1739 static void 1740 mutex_unlock_process(mutex_t *mp, int release_all) 1741 { 1742 ulwp_t *self = curthread; 1743 uint64_t old_lockword64; 1744 1745 DTRACE_PROBE2(plockstat, mutex__release, mp, 0); 1746 sigoff(self); 1747 mp->mutex_owner = 0; 1748 #if defined(__sparc) && !defined(_LP64) 1749 /* horrible hack, necessary only on 32-bit sparc */ 1750 if (((uintptr_t)mp & (_LONG_LONG_ALIGNMENT - 1)) && 1751 self->ul_misaligned && !(mp->mutex_type & LOCK_ROBUST)) { 1752 uint32_t old_lockword; 1753 mp->mutex_ownerpid = 0; 1754 old_lockword = clear_lockbyte(&mp->mutex_lockword); 1755 if ((old_lockword & WAITERMASK) && 1756 (release_all || (old_lockword & SPINNERMASK) == 0)) { 1757 no_preempt(self); /* ensure a prompt wakeup */ 1758 (void) ___lwp_mutex_wakeup(mp, release_all); 1759 preempt(self); 1760 } 1761 sigon(self); 1762 return; 1763 } 1764 #endif 1765 /* mp->mutex_ownerpid is cleared by clear_lockbyte64() */ 1766 old_lockword64 = clear_lockbyte64(&mp->mutex_lockword64); 1767 if ((old_lockword64 & WAITERMASK64) && 1768 (release_all || (old_lockword64 & SPINNERMASK64) == 0)) { 1769 no_preempt(self); /* ensure a prompt wakeup */ 1770 (void) ___lwp_mutex_wakeup(mp, release_all); 1771 preempt(self); 1772 } 1773 sigon(self); 1774 } 1775 1776 void 1777 stall(void) 1778 { 1779 for (;;) 1780 (void) mutex_lock_kernel(&stall_mutex, NULL, NULL); 1781 } 1782 1783 /* 1784 * Acquire a USYNC_THREAD mutex via user-level sleep queues. 1785 * We failed set_lock_byte(&mp->mutex_lockw) before coming here. 1786 * If successful, returns with mutex_owner set correctly. 1787 */ 1788 int 1789 mutex_lock_queue(ulwp_t *self, tdb_mutex_stats_t *msp, mutex_t *mp, 1790 timespec_t *tsp) 1791 { 1792 uberdata_t *udp = curthread->ul_uberdata; 1793 queue_head_t *qp; 1794 hrtime_t begin_sleep; 1795 int error = 0; 1796 1797 self->ul_sp = stkptr(); 1798 if (__td_event_report(self, TD_SLEEP, udp)) { 1799 self->ul_wchan = mp; 1800 self->ul_td_evbuf.eventnum = TD_SLEEP; 1801 self->ul_td_evbuf.eventdata = mp; 1802 tdb_event(TD_SLEEP, udp); 1803 } 1804 if (msp) { 1805 tdb_incr(msp->mutex_sleep); 1806 begin_sleep = gethrtime(); 1807 } 1808 1809 DTRACE_PROBE1(plockstat, mutex__block, mp); 1810 1811 /* 1812 * Put ourself on the sleep queue, and while we are 1813 * unable to grab the lock, go park in the kernel. 1814 * Take ourself off the sleep queue after we acquire the lock. 1815 * The waiter bit can be set/cleared only while holding the queue lock. 1816 */ 1817 qp = queue_lock(mp, MX); 1818 enqueue(qp, self, 0); 1819 mp->mutex_waiters = 1; 1820 for (;;) { 1821 if (set_lock_byte(&mp->mutex_lockw) == 0) { 1822 mp->mutex_owner = (uintptr_t)self; 1823 mp->mutex_waiters = dequeue_self(qp); 1824 break; 1825 } 1826 set_parking_flag(self, 1); 1827 queue_unlock(qp); 1828 /* 1829 * __lwp_park() will return the residual time in tsp 1830 * if we are unparked before the timeout expires. 1831 */ 1832 error = __lwp_park(tsp, 0); 1833 set_parking_flag(self, 0); 1834 /* 1835 * We could have taken a signal or suspended ourself. 1836 * If we did, then we removed ourself from the queue. 1837 * Someone else may have removed us from the queue 1838 * as a consequence of mutex_unlock(). We may have 1839 * gotten a timeout from __lwp_park(). Or we may still 1840 * be on the queue and this is just a spurious wakeup. 1841 */ 1842 qp = queue_lock(mp, MX); 1843 if (self->ul_sleepq == NULL) { 1844 if (error) { 1845 mp->mutex_waiters = queue_waiter(qp)? 1 : 0; 1846 if (error != EINTR) 1847 break; 1848 error = 0; 1849 } 1850 if (set_lock_byte(&mp->mutex_lockw) == 0) { 1851 mp->mutex_owner = (uintptr_t)self; 1852 break; 1853 } 1854 enqueue(qp, self, 0); 1855 mp->mutex_waiters = 1; 1856 } 1857 ASSERT(self->ul_sleepq == qp && 1858 self->ul_qtype == MX && 1859 self->ul_wchan == mp); 1860 if (error) { 1861 if (error != EINTR) { 1862 mp->mutex_waiters = dequeue_self(qp); 1863 break; 1864 } 1865 error = 0; 1866 } 1867 } 1868 ASSERT(self->ul_sleepq == NULL && self->ul_link == NULL && 1869 self->ul_wchan == NULL); 1870 self->ul_sp = 0; 1871 1872 ASSERT(error == 0 || error == EINVAL || error == ETIME); 1873 1874 if (error == 0 && (mp->mutex_flag & LOCK_NOTRECOVERABLE)) { 1875 ASSERT(mp->mutex_type & LOCK_ROBUST); 1876 /* 1877 * We shouldn't own the mutex. 1878 * Just clear the lock; everyone has already been waked up. 1879 */ 1880 mp->mutex_owner = 0; 1881 (void) clear_lockbyte(&mp->mutex_lockword); 1882 error = ENOTRECOVERABLE; 1883 } 1884 1885 queue_unlock(qp); 1886 1887 if (msp) 1888 msp->mutex_sleep_time += gethrtime() - begin_sleep; 1889 1890 if (error) { 1891 DTRACE_PROBE2(plockstat, mutex__blocked, mp, 0); 1892 DTRACE_PROBE2(plockstat, mutex__error, mp, error); 1893 } else { 1894 DTRACE_PROBE2(plockstat, mutex__blocked, mp, 1); 1895 DTRACE_PROBE3(plockstat, mutex__acquire, mp, 0, 0); 1896 if (mp->mutex_flag & LOCK_OWNERDEAD) { 1897 ASSERT(mp->mutex_type & LOCK_ROBUST); 1898 error = EOWNERDEAD; 1899 } 1900 } 1901 1902 return (error); 1903 } 1904 1905 static int 1906 mutex_recursion(mutex_t *mp, int mtype, int try) 1907 { 1908 ASSERT(mutex_held(mp)); 1909 ASSERT(mtype & (LOCK_RECURSIVE|LOCK_ERRORCHECK)); 1910 ASSERT(try == MUTEX_TRY || try == MUTEX_LOCK); 1911 1912 if (mtype & LOCK_RECURSIVE) { 1913 if (mp->mutex_rcount == RECURSION_MAX) { 1914 DTRACE_PROBE2(plockstat, mutex__error, mp, EAGAIN); 1915 return (EAGAIN); 1916 } 1917 mp->mutex_rcount++; 1918 DTRACE_PROBE3(plockstat, mutex__acquire, mp, 1, 0); 1919 return (0); 1920 } 1921 if (try == MUTEX_LOCK) { 1922 DTRACE_PROBE2(plockstat, mutex__error, mp, EDEADLK); 1923 return (EDEADLK); 1924 } 1925 return (EBUSY); 1926 } 1927 1928 /* 1929 * Register this USYNC_PROCESS|LOCK_ROBUST mutex with the kernel so 1930 * it can apply LOCK_OWNERDEAD|LOCK_UNMAPPED if it becomes necessary. 1931 * We use tdb_hash_lock here and in the synch object tracking code in 1932 * the tdb_agent.c file. There is no conflict between these two usages. 1933 */ 1934 void 1935 register_lock(mutex_t *mp) 1936 { 1937 uberdata_t *udp = curthread->ul_uberdata; 1938 uint_t hash = LOCK_HASH(mp); 1939 robust_t *rlp; 1940 robust_t **rlpp; 1941 robust_t **table; 1942 1943 if ((table = udp->robustlocks) == NULL) { 1944 lmutex_lock(&udp->tdb_hash_lock); 1945 if ((table = udp->robustlocks) == NULL) { 1946 table = lmalloc(LOCKHASHSZ * sizeof (robust_t *)); 1947 membar_producer(); 1948 udp->robustlocks = table; 1949 } 1950 lmutex_unlock(&udp->tdb_hash_lock); 1951 } 1952 membar_consumer(); 1953 1954 /* 1955 * First search the registered table with no locks held. 1956 * This is safe because the table never shrinks 1957 * and we can only get a false negative. 1958 */ 1959 for (rlp = table[hash]; rlp != NULL; rlp = rlp->robust_next) { 1960 if (rlp->robust_lock == mp) /* already registered */ 1961 return; 1962 } 1963 1964 /* 1965 * The lock was not found. 1966 * Repeat the operation with tdb_hash_lock held. 1967 */ 1968 lmutex_lock(&udp->tdb_hash_lock); 1969 1970 for (rlpp = &table[hash]; 1971 (rlp = *rlpp) != NULL; 1972 rlpp = &rlp->robust_next) { 1973 if (rlp->robust_lock == mp) { /* already registered */ 1974 lmutex_unlock(&udp->tdb_hash_lock); 1975 return; 1976 } 1977 } 1978 1979 /* 1980 * The lock has never been registered. 1981 * Register it now and add it to the table. 1982 */ 1983 (void) ___lwp_mutex_register(mp); 1984 rlp = lmalloc(sizeof (*rlp)); 1985 rlp->robust_lock = mp; 1986 membar_producer(); 1987 *rlpp = rlp; 1988 1989 lmutex_unlock(&udp->tdb_hash_lock); 1990 } 1991 1992 /* 1993 * This is called in the child of fork()/forkall() to start over 1994 * with a clean slate. (Each process must register its own locks.) 1995 * No locks are needed because all other threads are suspended or gone. 1996 */ 1997 void 1998 unregister_locks(void) 1999 { 2000 uberdata_t *udp = curthread->ul_uberdata; 2001 uint_t hash; 2002 robust_t **table; 2003 robust_t *rlp; 2004 robust_t *next; 2005 2006 if ((table = udp->robustlocks) != NULL) { 2007 for (hash = 0; hash < LOCKHASHSZ; hash++) { 2008 rlp = table[hash]; 2009 while (rlp != NULL) { 2010 next = rlp->robust_next; 2011 lfree(rlp, sizeof (*rlp)); 2012 rlp = next; 2013 } 2014 } 2015 lfree(table, LOCKHASHSZ * sizeof (robust_t *)); 2016 udp->robustlocks = NULL; 2017 } 2018 } 2019 2020 /* 2021 * Returns with mutex_owner set correctly. 2022 */ 2023 int 2024 mutex_lock_internal(mutex_t *mp, timespec_t *tsp, int try) 2025 { 2026 ulwp_t *self = curthread; 2027 uberdata_t *udp = self->ul_uberdata; 2028 int mtype = mp->mutex_type; 2029 tdb_mutex_stats_t *msp = MUTEX_STATS(mp, udp); 2030 int error = 0; 2031 int noceil = try & MUTEX_NOCEIL; 2032 uint8_t ceil; 2033 int myprio; 2034 2035 try &= ~MUTEX_NOCEIL; 2036 ASSERT(try == MUTEX_TRY || try == MUTEX_LOCK); 2037 2038 if (!self->ul_schedctl_called) 2039 (void) setup_schedctl(); 2040 2041 if (msp && try == MUTEX_TRY) 2042 tdb_incr(msp->mutex_try); 2043 2044 if ((mtype & (LOCK_RECURSIVE|LOCK_ERRORCHECK)) && mutex_held(mp)) 2045 return (mutex_recursion(mp, mtype, try)); 2046 2047 if (self->ul_error_detection && try == MUTEX_LOCK && 2048 tsp == NULL && mutex_held(mp)) 2049 lock_error(mp, "mutex_lock", NULL, NULL); 2050 2051 if ((mtype & LOCK_PRIO_PROTECT) && noceil == 0) { 2052 update_sched(self); 2053 if (self->ul_cid != self->ul_rtclassid) { 2054 DTRACE_PROBE2(plockstat, mutex__error, mp, EPERM); 2055 return (EPERM); 2056 } 2057 ceil = mp->mutex_ceiling; 2058 myprio = self->ul_epri? self->ul_epri : self->ul_pri; 2059 if (myprio > ceil) { 2060 DTRACE_PROBE2(plockstat, mutex__error, mp, EINVAL); 2061 return (EINVAL); 2062 } 2063 if ((error = _ceil_mylist_add(mp)) != 0) { 2064 DTRACE_PROBE2(plockstat, mutex__error, mp, error); 2065 return (error); 2066 } 2067 if (myprio < ceil) 2068 _ceil_prio_inherit(ceil); 2069 } 2070 2071 if ((mtype & (USYNC_PROCESS | LOCK_ROBUST)) 2072 == (USYNC_PROCESS | LOCK_ROBUST)) 2073 register_lock(mp); 2074 2075 if (mtype & LOCK_PRIO_INHERIT) { 2076 /* go straight to the kernel */ 2077 if (try == MUTEX_TRY) 2078 error = mutex_trylock_kernel(mp); 2079 else /* MUTEX_LOCK */ 2080 error = mutex_lock_kernel(mp, tsp, msp); 2081 /* 2082 * The kernel never sets or clears the lock byte 2083 * for LOCK_PRIO_INHERIT mutexes. 2084 * Set it here for consistency. 2085 */ 2086 switch (error) { 2087 case 0: 2088 self->ul_pilocks++; 2089 mp->mutex_lockw = LOCKSET; 2090 break; 2091 case EOWNERDEAD: 2092 case ELOCKUNMAPPED: 2093 self->ul_pilocks++; 2094 mp->mutex_lockw = LOCKSET; 2095 /* FALLTHROUGH */ 2096 case ENOTRECOVERABLE: 2097 ASSERT(mtype & LOCK_ROBUST); 2098 break; 2099 case EDEADLK: 2100 if (try == MUTEX_TRY) { 2101 error = EBUSY; 2102 } else if (tsp != NULL) { /* simulate a timeout */ 2103 /* 2104 * Note: mutex_timedlock() never returns EINTR. 2105 */ 2106 timespec_t ts = *tsp; 2107 timespec_t rts; 2108 2109 while (__nanosleep(&ts, &rts) == EINTR) 2110 ts = rts; 2111 error = ETIME; 2112 } else { /* simulate a deadlock */ 2113 stall(); 2114 } 2115 break; 2116 } 2117 } else if (mtype & USYNC_PROCESS) { 2118 error = mutex_trylock_process(mp, try == MUTEX_LOCK); 2119 if (error == EBUSY && try == MUTEX_LOCK) 2120 error = mutex_lock_kernel(mp, tsp, msp); 2121 } else { /* USYNC_THREAD */ 2122 error = mutex_trylock_adaptive(mp, try == MUTEX_LOCK); 2123 if (error == EBUSY && try == MUTEX_LOCK) 2124 error = mutex_lock_queue(self, msp, mp, tsp); 2125 } 2126 2127 switch (error) { 2128 case 0: 2129 case EOWNERDEAD: 2130 case ELOCKUNMAPPED: 2131 if (mtype & LOCK_ROBUST) 2132 remember_lock(mp); 2133 if (msp) 2134 record_begin_hold(msp); 2135 break; 2136 default: 2137 if ((mtype & LOCK_PRIO_PROTECT) && noceil == 0) { 2138 (void) _ceil_mylist_del(mp); 2139 if (myprio < ceil) 2140 _ceil_prio_waive(); 2141 } 2142 if (try == MUTEX_TRY) { 2143 if (msp) 2144 tdb_incr(msp->mutex_try_fail); 2145 if (__td_event_report(self, TD_LOCK_TRY, udp)) { 2146 self->ul_td_evbuf.eventnum = TD_LOCK_TRY; 2147 tdb_event(TD_LOCK_TRY, udp); 2148 } 2149 } 2150 break; 2151 } 2152 2153 return (error); 2154 } 2155 2156 int 2157 fast_process_lock(mutex_t *mp, timespec_t *tsp, int mtype, int try) 2158 { 2159 ulwp_t *self = curthread; 2160 uberdata_t *udp = self->ul_uberdata; 2161 2162 /* 2163 * We know that USYNC_PROCESS is set in mtype and that 2164 * zero, one, or both of the flags LOCK_RECURSIVE and 2165 * LOCK_ERRORCHECK are set, and that no other flags are set. 2166 */ 2167 ASSERT((mtype & ~(USYNC_PROCESS|LOCK_RECURSIVE|LOCK_ERRORCHECK)) == 0); 2168 enter_critical(self); 2169 #if defined(__sparc) && !defined(_LP64) 2170 /* horrible hack, necessary only on 32-bit sparc */ 2171 if (((uintptr_t)mp & (_LONG_LONG_ALIGNMENT - 1)) && 2172 self->ul_misaligned) { 2173 if (set_lock_byte(&mp->mutex_lockw) == 0) { 2174 mp->mutex_ownerpid = udp->pid; 2175 mp->mutex_owner = (uintptr_t)self; 2176 exit_critical(self); 2177 DTRACE_PROBE3(plockstat, mutex__acquire, mp, 0, 0); 2178 return (0); 2179 } 2180 } else 2181 #endif 2182 if (set_lock_byte64(&mp->mutex_lockword64, udp->pid) == 0) { 2183 mp->mutex_owner = (uintptr_t)self; 2184 /* mp->mutex_ownerpid was set by set_lock_byte64() */ 2185 exit_critical(self); 2186 DTRACE_PROBE3(plockstat, mutex__acquire, mp, 0, 0); 2187 return (0); 2188 } 2189 exit_critical(self); 2190 2191 if ((mtype & (LOCK_RECURSIVE|LOCK_ERRORCHECK)) && shared_mutex_held(mp)) 2192 return (mutex_recursion(mp, mtype, try)); 2193 2194 if (try == MUTEX_LOCK) { 2195 if (mutex_trylock_process(mp, 1) == 0) 2196 return (0); 2197 return (mutex_lock_kernel(mp, tsp, NULL)); 2198 } 2199 2200 if (__td_event_report(self, TD_LOCK_TRY, udp)) { 2201 self->ul_td_evbuf.eventnum = TD_LOCK_TRY; 2202 tdb_event(TD_LOCK_TRY, udp); 2203 } 2204 return (EBUSY); 2205 } 2206 2207 static int 2208 mutex_lock_impl(mutex_t *mp, timespec_t *tsp) 2209 { 2210 ulwp_t *self = curthread; 2211 int mtype = mp->mutex_type; 2212 uberflags_t *gflags; 2213 2214 if (((uintptr_t)mp & (_LONG_LONG_ALIGNMENT - 1)) && 2215 self->ul_error_detection && self->ul_misaligned == 0) 2216 lock_error(mp, "mutex_lock", NULL, "mutex is misaligned"); 2217 2218 /* 2219 * Optimize the case of USYNC_THREAD, including 2220 * the LOCK_RECURSIVE and LOCK_ERRORCHECK cases, 2221 * no error detection, no lock statistics, 2222 * and the process has only a single thread. 2223 * (Most likely a traditional single-threaded application.) 2224 */ 2225 if (((mtype & ~(LOCK_RECURSIVE|LOCK_ERRORCHECK)) | 2226 self->ul_uberdata->uberflags.uf_all) == 0) { 2227 /* 2228 * Only one thread exists so we don't need an atomic operation. 2229 * We do, however, need to protect against signals. 2230 */ 2231 if (mp->mutex_lockw == 0) { 2232 sigoff(self); 2233 mp->mutex_lockw = LOCKSET; 2234 mp->mutex_owner = (uintptr_t)self; 2235 sigon(self); 2236 DTRACE_PROBE3(plockstat, mutex__acquire, mp, 0, 0); 2237 return (0); 2238 } 2239 if (mtype && MUTEX_OWNER(mp) == self) 2240 return (mutex_recursion(mp, mtype, MUTEX_LOCK)); 2241 /* 2242 * We have reached a deadlock, probably because the 2243 * process is executing non-async-signal-safe code in 2244 * a signal handler and is attempting to acquire a lock 2245 * that it already owns. This is not surprising, given 2246 * bad programming practices over the years that has 2247 * resulted in applications calling printf() and such 2248 * in their signal handlers. Unless the user has told 2249 * us that the signal handlers are safe by setting: 2250 * export _THREAD_ASYNC_SAFE=1 2251 * we return EDEADLK rather than actually deadlocking. 2252 */ 2253 if (tsp == NULL && 2254 MUTEX_OWNER(mp) == self && !self->ul_async_safe) { 2255 DTRACE_PROBE2(plockstat, mutex__error, mp, EDEADLK); 2256 return (EDEADLK); 2257 } 2258 } 2259 2260 /* 2261 * Optimize the common cases of USYNC_THREAD or USYNC_PROCESS, 2262 * no error detection, and no lock statistics. 2263 * Include LOCK_RECURSIVE and LOCK_ERRORCHECK cases. 2264 */ 2265 if ((gflags = self->ul_schedctl_called) != NULL && 2266 (gflags->uf_trs_ted | 2267 (mtype & ~(USYNC_PROCESS|LOCK_RECURSIVE|LOCK_ERRORCHECK))) == 0) { 2268 if (mtype & USYNC_PROCESS) 2269 return (fast_process_lock(mp, tsp, mtype, MUTEX_LOCK)); 2270 sigoff(self); 2271 if (set_lock_byte(&mp->mutex_lockw) == 0) { 2272 mp->mutex_owner = (uintptr_t)self; 2273 sigon(self); 2274 DTRACE_PROBE3(plockstat, mutex__acquire, mp, 0, 0); 2275 return (0); 2276 } 2277 sigon(self); 2278 if (mtype && MUTEX_OWNER(mp) == self) 2279 return (mutex_recursion(mp, mtype, MUTEX_LOCK)); 2280 if (mutex_trylock_adaptive(mp, 1) != 0) 2281 return (mutex_lock_queue(self, NULL, mp, tsp)); 2282 return (0); 2283 } 2284 2285 /* else do it the long way */ 2286 return (mutex_lock_internal(mp, tsp, MUTEX_LOCK)); 2287 } 2288 2289 #pragma weak pthread_mutex_lock = mutex_lock 2290 #pragma weak _mutex_lock = mutex_lock 2291 int 2292 mutex_lock(mutex_t *mp) 2293 { 2294 ASSERT(!curthread->ul_critical || curthread->ul_bindflags); 2295 return (mutex_lock_impl(mp, NULL)); 2296 } 2297 2298 int 2299 pthread_mutex_timedlock(pthread_mutex_t *_RESTRICT_KYWD mp, 2300 const struct timespec *_RESTRICT_KYWD abstime) 2301 { 2302 timespec_t tslocal; 2303 int error; 2304 2305 ASSERT(!curthread->ul_critical || curthread->ul_bindflags); 2306 abstime_to_reltime(CLOCK_REALTIME, abstime, &tslocal); 2307 error = mutex_lock_impl((mutex_t *)mp, &tslocal); 2308 if (error == ETIME) 2309 error = ETIMEDOUT; 2310 return (error); 2311 } 2312 2313 int 2314 pthread_mutex_reltimedlock_np(pthread_mutex_t *_RESTRICT_KYWD mp, 2315 const struct timespec *_RESTRICT_KYWD reltime) 2316 { 2317 timespec_t tslocal; 2318 int error; 2319 2320 ASSERT(!curthread->ul_critical || curthread->ul_bindflags); 2321 tslocal = *reltime; 2322 error = mutex_lock_impl((mutex_t *)mp, &tslocal); 2323 if (error == ETIME) 2324 error = ETIMEDOUT; 2325 return (error); 2326 } 2327 2328 #pragma weak pthread_mutex_trylock = mutex_trylock 2329 int 2330 mutex_trylock(mutex_t *mp) 2331 { 2332 ulwp_t *self = curthread; 2333 uberdata_t *udp = self->ul_uberdata; 2334 int mtype = mp->mutex_type; 2335 uberflags_t *gflags; 2336 2337 ASSERT(!curthread->ul_critical || curthread->ul_bindflags); 2338 2339 /* 2340 * Optimize the case of USYNC_THREAD, including 2341 * the LOCK_RECURSIVE and LOCK_ERRORCHECK cases, 2342 * no error detection, no lock statistics, 2343 * and the process has only a single thread. 2344 * (Most likely a traditional single-threaded application.) 2345 */ 2346 if (((mtype & ~(LOCK_RECURSIVE|LOCK_ERRORCHECK)) | 2347 udp->uberflags.uf_all) == 0) { 2348 /* 2349 * Only one thread exists so we don't need an atomic operation. 2350 * We do, however, need to protect against signals. 2351 */ 2352 if (mp->mutex_lockw == 0) { 2353 sigoff(self); 2354 mp->mutex_lockw = LOCKSET; 2355 mp->mutex_owner = (uintptr_t)self; 2356 sigon(self); 2357 DTRACE_PROBE3(plockstat, mutex__acquire, mp, 0, 0); 2358 return (0); 2359 } 2360 if (mtype && MUTEX_OWNER(mp) == self) 2361 return (mutex_recursion(mp, mtype, MUTEX_TRY)); 2362 return (EBUSY); 2363 } 2364 2365 /* 2366 * Optimize the common cases of USYNC_THREAD or USYNC_PROCESS, 2367 * no error detection, and no lock statistics. 2368 * Include LOCK_RECURSIVE and LOCK_ERRORCHECK cases. 2369 */ 2370 if ((gflags = self->ul_schedctl_called) != NULL && 2371 (gflags->uf_trs_ted | 2372 (mtype & ~(USYNC_PROCESS|LOCK_RECURSIVE|LOCK_ERRORCHECK))) == 0) { 2373 if (mtype & USYNC_PROCESS) 2374 return (fast_process_lock(mp, NULL, mtype, MUTEX_TRY)); 2375 sigoff(self); 2376 if (set_lock_byte(&mp->mutex_lockw) == 0) { 2377 mp->mutex_owner = (uintptr_t)self; 2378 sigon(self); 2379 DTRACE_PROBE3(plockstat, mutex__acquire, mp, 0, 0); 2380 return (0); 2381 } 2382 sigon(self); 2383 if (mtype && MUTEX_OWNER(mp) == self) 2384 return (mutex_recursion(mp, mtype, MUTEX_TRY)); 2385 if (__td_event_report(self, TD_LOCK_TRY, udp)) { 2386 self->ul_td_evbuf.eventnum = TD_LOCK_TRY; 2387 tdb_event(TD_LOCK_TRY, udp); 2388 } 2389 return (EBUSY); 2390 } 2391 2392 /* else do it the long way */ 2393 return (mutex_lock_internal(mp, NULL, MUTEX_TRY)); 2394 } 2395 2396 int 2397 mutex_unlock_internal(mutex_t *mp, int retain_robust_flags) 2398 { 2399 ulwp_t *self = curthread; 2400 uberdata_t *udp = self->ul_uberdata; 2401 int mtype = mp->mutex_type; 2402 tdb_mutex_stats_t *msp; 2403 int error = 0; 2404 int release_all; 2405 lwpid_t lwpid; 2406 2407 if ((mtype & (LOCK_ERRORCHECK | LOCK_ROBUST)) && 2408 !mutex_held(mp)) 2409 return (EPERM); 2410 2411 if (self->ul_error_detection && !mutex_held(mp)) 2412 lock_error(mp, "mutex_unlock", NULL, NULL); 2413 2414 if ((mtype & LOCK_RECURSIVE) && mp->mutex_rcount != 0) { 2415 mp->mutex_rcount--; 2416 DTRACE_PROBE2(plockstat, mutex__release, mp, 1); 2417 return (0); 2418 } 2419 2420 if ((msp = MUTEX_STATS(mp, udp)) != NULL) 2421 (void) record_hold_time(msp); 2422 2423 if (!retain_robust_flags && !(mtype & LOCK_PRIO_INHERIT) && 2424 (mp->mutex_flag & (LOCK_OWNERDEAD | LOCK_UNMAPPED))) { 2425 ASSERT(mtype & LOCK_ROBUST); 2426 mp->mutex_flag &= ~(LOCK_OWNERDEAD | LOCK_UNMAPPED); 2427 mp->mutex_flag |= LOCK_NOTRECOVERABLE; 2428 } 2429 release_all = ((mp->mutex_flag & LOCK_NOTRECOVERABLE) != 0); 2430 2431 if (mtype & LOCK_PRIO_INHERIT) { 2432 no_preempt(self); 2433 mp->mutex_owner = 0; 2434 /* mp->mutex_ownerpid is cleared by ___lwp_mutex_unlock() */ 2435 DTRACE_PROBE2(plockstat, mutex__release, mp, 0); 2436 mp->mutex_lockw = LOCKCLEAR; 2437 self->ul_pilocks--; 2438 error = ___lwp_mutex_unlock(mp); 2439 preempt(self); 2440 } else if (mtype & USYNC_PROCESS) { 2441 mutex_unlock_process(mp, release_all); 2442 } else { /* USYNC_THREAD */ 2443 if ((lwpid = mutex_unlock_queue(mp, release_all)) != 0) { 2444 (void) __lwp_unpark(lwpid); 2445 preempt(self); 2446 } 2447 } 2448 2449 if (mtype & LOCK_ROBUST) 2450 forget_lock(mp); 2451 2452 if ((mtype & LOCK_PRIO_PROTECT) && _ceil_mylist_del(mp)) 2453 _ceil_prio_waive(); 2454 2455 return (error); 2456 } 2457 2458 #pragma weak pthread_mutex_unlock = mutex_unlock 2459 #pragma weak _mutex_unlock = mutex_unlock 2460 int 2461 mutex_unlock(mutex_t *mp) 2462 { 2463 ulwp_t *self = curthread; 2464 int mtype = mp->mutex_type; 2465 uberflags_t *gflags; 2466 lwpid_t lwpid; 2467 short el; 2468 2469 /* 2470 * Optimize the case of USYNC_THREAD, including 2471 * the LOCK_RECURSIVE and LOCK_ERRORCHECK cases, 2472 * no error detection, no lock statistics, 2473 * and the process has only a single thread. 2474 * (Most likely a traditional single-threaded application.) 2475 */ 2476 if (((mtype & ~(LOCK_RECURSIVE|LOCK_ERRORCHECK)) | 2477 self->ul_uberdata->uberflags.uf_all) == 0) { 2478 if (mtype) { 2479 /* 2480 * At this point we know that one or both of the 2481 * flags LOCK_RECURSIVE or LOCK_ERRORCHECK is set. 2482 */ 2483 if ((mtype & LOCK_ERRORCHECK) && !MUTEX_OWNED(mp, self)) 2484 return (EPERM); 2485 if ((mtype & LOCK_RECURSIVE) && mp->mutex_rcount != 0) { 2486 mp->mutex_rcount--; 2487 DTRACE_PROBE2(plockstat, mutex__release, mp, 1); 2488 return (0); 2489 } 2490 } 2491 /* 2492 * Only one thread exists so we don't need an atomic operation. 2493 * Also, there can be no waiters. 2494 */ 2495 sigoff(self); 2496 mp->mutex_owner = 0; 2497 mp->mutex_lockword = 0; 2498 sigon(self); 2499 DTRACE_PROBE2(plockstat, mutex__release, mp, 0); 2500 return (0); 2501 } 2502 2503 /* 2504 * Optimize the common cases of USYNC_THREAD or USYNC_PROCESS, 2505 * no error detection, and no lock statistics. 2506 * Include LOCK_RECURSIVE and LOCK_ERRORCHECK cases. 2507 */ 2508 if ((gflags = self->ul_schedctl_called) != NULL) { 2509 if (((el = gflags->uf_trs_ted) | mtype) == 0) { 2510 fast_unlock: 2511 if ((lwpid = mutex_unlock_queue(mp, 0)) != 0) { 2512 (void) __lwp_unpark(lwpid); 2513 preempt(self); 2514 } 2515 return (0); 2516 } 2517 if (el) /* error detection or lock statistics */ 2518 goto slow_unlock; 2519 if ((mtype & ~(LOCK_RECURSIVE|LOCK_ERRORCHECK)) == 0) { 2520 /* 2521 * At this point we know that one or both of the 2522 * flags LOCK_RECURSIVE or LOCK_ERRORCHECK is set. 2523 */ 2524 if ((mtype & LOCK_ERRORCHECK) && !MUTEX_OWNED(mp, self)) 2525 return (EPERM); 2526 if ((mtype & LOCK_RECURSIVE) && mp->mutex_rcount != 0) { 2527 mp->mutex_rcount--; 2528 DTRACE_PROBE2(plockstat, mutex__release, mp, 1); 2529 return (0); 2530 } 2531 goto fast_unlock; 2532 } 2533 if ((mtype & 2534 ~(USYNC_PROCESS|LOCK_RECURSIVE|LOCK_ERRORCHECK)) == 0) { 2535 /* 2536 * At this point we know that zero, one, or both of the 2537 * flags LOCK_RECURSIVE or LOCK_ERRORCHECK is set and 2538 * that the USYNC_PROCESS flag is set. 2539 */ 2540 if ((mtype & LOCK_ERRORCHECK) && !shared_mutex_held(mp)) 2541 return (EPERM); 2542 if ((mtype & LOCK_RECURSIVE) && mp->mutex_rcount != 0) { 2543 mp->mutex_rcount--; 2544 DTRACE_PROBE2(plockstat, mutex__release, mp, 1); 2545 return (0); 2546 } 2547 mutex_unlock_process(mp, 0); 2548 return (0); 2549 } 2550 } 2551 2552 /* else do it the long way */ 2553 slow_unlock: 2554 return (mutex_unlock_internal(mp, 0)); 2555 } 2556 2557 /* 2558 * Internally to the library, almost all mutex lock/unlock actions 2559 * go through these lmutex_ functions, to protect critical regions. 2560 * We replicate a bit of code from mutex_lock() and mutex_unlock() 2561 * to make these functions faster since we know that the mutex type 2562 * of all internal locks is USYNC_THREAD. We also know that internal 2563 * locking can never fail, so we panic if it does. 2564 */ 2565 void 2566 lmutex_lock(mutex_t *mp) 2567 { 2568 ulwp_t *self = curthread; 2569 uberdata_t *udp = self->ul_uberdata; 2570 2571 ASSERT(mp->mutex_type == USYNC_THREAD); 2572 2573 enter_critical(self); 2574 /* 2575 * Optimize the case of no lock statistics and only a single thread. 2576 * (Most likely a traditional single-threaded application.) 2577 */ 2578 if (udp->uberflags.uf_all == 0) { 2579 /* 2580 * Only one thread exists; the mutex must be free. 2581 */ 2582 ASSERT(mp->mutex_lockw == 0); 2583 mp->mutex_lockw = LOCKSET; 2584 mp->mutex_owner = (uintptr_t)self; 2585 DTRACE_PROBE3(plockstat, mutex__acquire, mp, 0, 0); 2586 } else { 2587 tdb_mutex_stats_t *msp = MUTEX_STATS(mp, udp); 2588 2589 if (!self->ul_schedctl_called) 2590 (void) setup_schedctl(); 2591 2592 if (set_lock_byte(&mp->mutex_lockw) == 0) { 2593 mp->mutex_owner = (uintptr_t)self; 2594 DTRACE_PROBE3(plockstat, mutex__acquire, mp, 0, 0); 2595 } else if (mutex_trylock_adaptive(mp, 1) != 0) { 2596 (void) mutex_lock_queue(self, msp, mp, NULL); 2597 } 2598 2599 if (msp) 2600 record_begin_hold(msp); 2601 } 2602 } 2603 2604 void 2605 lmutex_unlock(mutex_t *mp) 2606 { 2607 ulwp_t *self = curthread; 2608 uberdata_t *udp = self->ul_uberdata; 2609 2610 ASSERT(mp->mutex_type == USYNC_THREAD); 2611 2612 /* 2613 * Optimize the case of no lock statistics and only a single thread. 2614 * (Most likely a traditional single-threaded application.) 2615 */ 2616 if (udp->uberflags.uf_all == 0) { 2617 /* 2618 * Only one thread exists so there can be no waiters. 2619 */ 2620 mp->mutex_owner = 0; 2621 mp->mutex_lockword = 0; 2622 DTRACE_PROBE2(plockstat, mutex__release, mp, 0); 2623 } else { 2624 tdb_mutex_stats_t *msp = MUTEX_STATS(mp, udp); 2625 lwpid_t lwpid; 2626 2627 if (msp) 2628 (void) record_hold_time(msp); 2629 if ((lwpid = mutex_unlock_queue(mp, 0)) != 0) { 2630 (void) __lwp_unpark(lwpid); 2631 preempt(self); 2632 } 2633 } 2634 exit_critical(self); 2635 } 2636 2637 /* 2638 * For specialized code in libc, like the asynchronous i/o code, 2639 * the following sig_*() locking primitives are used in order 2640 * to make the code asynchronous signal safe. Signals are 2641 * deferred while locks acquired by these functions are held. 2642 */ 2643 void 2644 sig_mutex_lock(mutex_t *mp) 2645 { 2646 sigoff(curthread); 2647 (void) mutex_lock(mp); 2648 } 2649 2650 void 2651 sig_mutex_unlock(mutex_t *mp) 2652 { 2653 (void) mutex_unlock(mp); 2654 sigon(curthread); 2655 } 2656 2657 int 2658 sig_mutex_trylock(mutex_t *mp) 2659 { 2660 int error; 2661 2662 sigoff(curthread); 2663 if ((error = mutex_trylock(mp)) != 0) 2664 sigon(curthread); 2665 return (error); 2666 } 2667 2668 /* 2669 * sig_cond_wait() is a cancellation point. 2670 */ 2671 int 2672 sig_cond_wait(cond_t *cv, mutex_t *mp) 2673 { 2674 int error; 2675 2676 ASSERT(curthread->ul_sigdefer != 0); 2677 pthread_testcancel(); 2678 error = __cond_wait(cv, mp); 2679 if (error == EINTR && curthread->ul_cursig) { 2680 sig_mutex_unlock(mp); 2681 /* take the deferred signal here */ 2682 sig_mutex_lock(mp); 2683 } 2684 pthread_testcancel(); 2685 return (error); 2686 } 2687 2688 /* 2689 * sig_cond_reltimedwait() is a cancellation point. 2690 */ 2691 int 2692 sig_cond_reltimedwait(cond_t *cv, mutex_t *mp, const timespec_t *ts) 2693 { 2694 int error; 2695 2696 ASSERT(curthread->ul_sigdefer != 0); 2697 pthread_testcancel(); 2698 error = __cond_reltimedwait(cv, mp, ts); 2699 if (error == EINTR && curthread->ul_cursig) { 2700 sig_mutex_unlock(mp); 2701 /* take the deferred signal here */ 2702 sig_mutex_lock(mp); 2703 } 2704 pthread_testcancel(); 2705 return (error); 2706 } 2707 2708 /* 2709 * For specialized code in libc, like the stdio code. 2710 * the following cancel_safe_*() locking primitives are used in 2711 * order to make the code cancellation-safe. Cancellation is 2712 * deferred while locks acquired by these functions are held. 2713 */ 2714 void 2715 cancel_safe_mutex_lock(mutex_t *mp) 2716 { 2717 (void) mutex_lock(mp); 2718 curthread->ul_libc_locks++; 2719 } 2720 2721 int 2722 cancel_safe_mutex_trylock(mutex_t *mp) 2723 { 2724 int error; 2725 2726 if ((error = mutex_trylock(mp)) == 0) 2727 curthread->ul_libc_locks++; 2728 return (error); 2729 } 2730 2731 void 2732 cancel_safe_mutex_unlock(mutex_t *mp) 2733 { 2734 ulwp_t *self = curthread; 2735 2736 ASSERT(self->ul_libc_locks != 0); 2737 2738 (void) mutex_unlock(mp); 2739 2740 /* 2741 * Decrement the count of locks held by cancel_safe_mutex_lock(). 2742 * If we are then in a position to terminate cleanly and 2743 * if there is a pending cancellation and cancellation 2744 * is not disabled and we received EINTR from a recent 2745 * system call then perform the cancellation action now. 2746 */ 2747 if (--self->ul_libc_locks == 0 && 2748 !(self->ul_vfork | self->ul_nocancel | 2749 self->ul_critical | self->ul_sigdefer) && 2750 cancel_active()) 2751 pthread_exit(PTHREAD_CANCELED); 2752 } 2753 2754 static int 2755 shared_mutex_held(mutex_t *mparg) 2756 { 2757 /* 2758 * The 'volatile' is necessary to make sure the compiler doesn't 2759 * reorder the tests of the various components of the mutex. 2760 * They must be tested in this order: 2761 * mutex_lockw 2762 * mutex_owner 2763 * mutex_ownerpid 2764 * This relies on the fact that everywhere mutex_lockw is cleared, 2765 * mutex_owner and mutex_ownerpid are cleared before mutex_lockw 2766 * is cleared, and that everywhere mutex_lockw is set, mutex_owner 2767 * and mutex_ownerpid are set after mutex_lockw is set, and that 2768 * mutex_lockw is set or cleared with a memory barrier. 2769 */ 2770 volatile mutex_t *mp = (volatile mutex_t *)mparg; 2771 ulwp_t *self = curthread; 2772 uberdata_t *udp = self->ul_uberdata; 2773 2774 return (MUTEX_OWNED(mp, self) && mp->mutex_ownerpid == udp->pid); 2775 } 2776 2777 #pragma weak _mutex_held = mutex_held 2778 int 2779 mutex_held(mutex_t *mparg) 2780 { 2781 volatile mutex_t *mp = (volatile mutex_t *)mparg; 2782 2783 if (mparg->mutex_type & USYNC_PROCESS) 2784 return (shared_mutex_held(mparg)); 2785 return (MUTEX_OWNED(mp, curthread)); 2786 } 2787 2788 #pragma weak pthread_mutex_destroy = mutex_destroy 2789 #pragma weak _mutex_destroy = mutex_destroy 2790 int 2791 mutex_destroy(mutex_t *mp) 2792 { 2793 if (mp->mutex_type & USYNC_PROCESS) 2794 forget_lock(mp); 2795 (void) memset(mp, 0, sizeof (*mp)); 2796 tdb_sync_obj_deregister(mp); 2797 return (0); 2798 } 2799 2800 #pragma weak pthread_mutex_consistent_np = mutex_consistent 2801 #pragma weak pthread_mutex_consistent = mutex_consistent 2802 int 2803 mutex_consistent(mutex_t *mp) 2804 { 2805 /* 2806 * Do this only for an inconsistent, initialized robust lock 2807 * that we hold. For all other cases, return EINVAL. 2808 */ 2809 if (mutex_held(mp) && 2810 (mp->mutex_type & LOCK_ROBUST) && 2811 (mp->mutex_flag & LOCK_INITED) && 2812 (mp->mutex_flag & (LOCK_OWNERDEAD | LOCK_UNMAPPED))) { 2813 mp->mutex_flag &= ~(LOCK_OWNERDEAD | LOCK_UNMAPPED); 2814 mp->mutex_rcount = 0; 2815 return (0); 2816 } 2817 return (EINVAL); 2818 } 2819 2820 /* 2821 * Spin locks are separate from ordinary mutexes, 2822 * but we use the same data structure for them. 2823 */ 2824 2825 int 2826 pthread_spin_init(pthread_spinlock_t *lock, int pshared) 2827 { 2828 mutex_t *mp = (mutex_t *)lock; 2829 2830 (void) memset(mp, 0, sizeof (*mp)); 2831 if (pshared == PTHREAD_PROCESS_SHARED) 2832 mp->mutex_type = USYNC_PROCESS; 2833 else 2834 mp->mutex_type = USYNC_THREAD; 2835 mp->mutex_flag = LOCK_INITED; 2836 mp->mutex_magic = MUTEX_MAGIC; 2837 2838 /* 2839 * This should be at the beginning of the function, 2840 * but for the sake of old broken applications that 2841 * do not have proper alignment for their mutexes 2842 * (and don't check the return code from pthread_spin_init), 2843 * we put it here, after initializing the mutex regardless. 2844 */ 2845 if (((uintptr_t)mp & (_LONG_LONG_ALIGNMENT - 1)) && 2846 curthread->ul_misaligned == 0) 2847 return (EINVAL); 2848 2849 return (0); 2850 } 2851 2852 int 2853 pthread_spin_destroy(pthread_spinlock_t *lock) 2854 { 2855 (void) memset(lock, 0, sizeof (*lock)); 2856 return (0); 2857 } 2858 2859 int 2860 pthread_spin_trylock(pthread_spinlock_t *lock) 2861 { 2862 mutex_t *mp = (mutex_t *)lock; 2863 ulwp_t *self = curthread; 2864 int error = 0; 2865 2866 no_preempt(self); 2867 if (set_lock_byte(&mp->mutex_lockw) != 0) 2868 error = EBUSY; 2869 else { 2870 mp->mutex_owner = (uintptr_t)self; 2871 if (mp->mutex_type == USYNC_PROCESS) 2872 mp->mutex_ownerpid = self->ul_uberdata->pid; 2873 DTRACE_PROBE3(plockstat, mutex__acquire, mp, 0, 0); 2874 } 2875 preempt(self); 2876 return (error); 2877 } 2878 2879 int 2880 pthread_spin_lock(pthread_spinlock_t *lock) 2881 { 2882 mutex_t *mp = (mutex_t *)lock; 2883 ulwp_t *self = curthread; 2884 volatile uint8_t *lockp = (volatile uint8_t *)&mp->mutex_lockw; 2885 int count = 0; 2886 2887 ASSERT(!self->ul_critical || self->ul_bindflags); 2888 2889 DTRACE_PROBE1(plockstat, mutex__spin, mp); 2890 2891 /* 2892 * We don't care whether the owner is running on a processor. 2893 * We just spin because that's what this interface requires. 2894 */ 2895 for (;;) { 2896 if (*lockp == 0) { /* lock byte appears to be clear */ 2897 no_preempt(self); 2898 if (set_lock_byte(lockp) == 0) 2899 break; 2900 preempt(self); 2901 } 2902 if (count < INT_MAX) 2903 count++; 2904 SMT_PAUSE(); 2905 } 2906 mp->mutex_owner = (uintptr_t)self; 2907 if (mp->mutex_type == USYNC_PROCESS) 2908 mp->mutex_ownerpid = self->ul_uberdata->pid; 2909 preempt(self); 2910 if (count) { 2911 DTRACE_PROBE2(plockstat, mutex__spun, 1, count); 2912 } 2913 DTRACE_PROBE3(plockstat, mutex__acquire, mp, 0, count); 2914 return (0); 2915 } 2916 2917 int 2918 pthread_spin_unlock(pthread_spinlock_t *lock) 2919 { 2920 mutex_t *mp = (mutex_t *)lock; 2921 ulwp_t *self = curthread; 2922 2923 no_preempt(self); 2924 mp->mutex_owner = 0; 2925 mp->mutex_ownerpid = 0; 2926 DTRACE_PROBE2(plockstat, mutex__release, mp, 0); 2927 (void) atomic_swap_32(&mp->mutex_lockword, 0); 2928 preempt(self); 2929 return (0); 2930 } 2931 2932 #define INITIAL_LOCKS 8 /* initial size of ul_heldlocks.array */ 2933 2934 /* 2935 * Find/allocate an entry for 'lock' in our array of held locks. 2936 */ 2937 static mutex_t ** 2938 find_lock_entry(mutex_t *lock) 2939 { 2940 ulwp_t *self = curthread; 2941 mutex_t **remembered = NULL; 2942 mutex_t **lockptr; 2943 uint_t nlocks; 2944 2945 if ((nlocks = self->ul_heldlockcnt) != 0) 2946 lockptr = self->ul_heldlocks.array; 2947 else { 2948 nlocks = 1; 2949 lockptr = &self->ul_heldlocks.single; 2950 } 2951 2952 for (; nlocks; nlocks--, lockptr++) { 2953 if (*lockptr == lock) 2954 return (lockptr); 2955 if (*lockptr == NULL && remembered == NULL) 2956 remembered = lockptr; 2957 } 2958 if (remembered != NULL) { 2959 *remembered = lock; 2960 return (remembered); 2961 } 2962 2963 /* 2964 * No entry available. Allocate more space, converting 2965 * the single entry into an array of entries if necessary. 2966 */ 2967 if ((nlocks = self->ul_heldlockcnt) == 0) { 2968 /* 2969 * Initial allocation of the array. 2970 * Convert the single entry into an array. 2971 */ 2972 self->ul_heldlockcnt = nlocks = INITIAL_LOCKS; 2973 lockptr = lmalloc(nlocks * sizeof (mutex_t *)); 2974 /* 2975 * The single entry becomes the first entry in the array. 2976 */ 2977 *lockptr = self->ul_heldlocks.single; 2978 self->ul_heldlocks.array = lockptr; 2979 /* 2980 * Return the next available entry in the array. 2981 */ 2982 *++lockptr = lock; 2983 return (lockptr); 2984 } 2985 /* 2986 * Reallocate the array, double the size each time. 2987 */ 2988 lockptr = lmalloc(nlocks * 2 * sizeof (mutex_t *)); 2989 (void) memcpy(lockptr, self->ul_heldlocks.array, 2990 nlocks * sizeof (mutex_t *)); 2991 lfree(self->ul_heldlocks.array, nlocks * sizeof (mutex_t *)); 2992 self->ul_heldlocks.array = lockptr; 2993 self->ul_heldlockcnt *= 2; 2994 /* 2995 * Return the next available entry in the newly allocated array. 2996 */ 2997 *(lockptr += nlocks) = lock; 2998 return (lockptr); 2999 } 3000 3001 /* 3002 * Insert 'lock' into our list of held locks. 3003 * Currently only used for LOCK_ROBUST mutexes. 3004 */ 3005 void 3006 remember_lock(mutex_t *lock) 3007 { 3008 (void) find_lock_entry(lock); 3009 } 3010 3011 /* 3012 * Remove 'lock' from our list of held locks. 3013 * Currently only used for LOCK_ROBUST mutexes. 3014 */ 3015 void 3016 forget_lock(mutex_t *lock) 3017 { 3018 *find_lock_entry(lock) = NULL; 3019 } 3020 3021 /* 3022 * Free the array of held locks. 3023 */ 3024 void 3025 heldlock_free(ulwp_t *ulwp) 3026 { 3027 uint_t nlocks; 3028 3029 if ((nlocks = ulwp->ul_heldlockcnt) != 0) 3030 lfree(ulwp->ul_heldlocks.array, nlocks * sizeof (mutex_t *)); 3031 ulwp->ul_heldlockcnt = 0; 3032 ulwp->ul_heldlocks.array = NULL; 3033 } 3034 3035 /* 3036 * Mark all held LOCK_ROBUST mutexes LOCK_OWNERDEAD. 3037 * Called from _thrp_exit() to deal with abandoned locks. 3038 */ 3039 void 3040 heldlock_exit(void) 3041 { 3042 ulwp_t *self = curthread; 3043 mutex_t **lockptr; 3044 uint_t nlocks; 3045 mutex_t *mp; 3046 3047 if ((nlocks = self->ul_heldlockcnt) != 0) 3048 lockptr = self->ul_heldlocks.array; 3049 else { 3050 nlocks = 1; 3051 lockptr = &self->ul_heldlocks.single; 3052 } 3053 3054 for (; nlocks; nlocks--, lockptr++) { 3055 /* 3056 * The kernel takes care of transitioning held 3057 * LOCK_PRIO_INHERIT mutexes to LOCK_OWNERDEAD. 3058 * We avoid that case here. 3059 */ 3060 if ((mp = *lockptr) != NULL && 3061 mutex_held(mp) && 3062 (mp->mutex_type & (LOCK_ROBUST | LOCK_PRIO_INHERIT)) == 3063 LOCK_ROBUST) { 3064 mp->mutex_rcount = 0; 3065 if (!(mp->mutex_flag & LOCK_UNMAPPED)) 3066 mp->mutex_flag |= LOCK_OWNERDEAD; 3067 (void) mutex_unlock_internal(mp, 1); 3068 } 3069 } 3070 3071 heldlock_free(self); 3072 } 3073 3074 #pragma weak _cond_init = cond_init 3075 /* ARGSUSED2 */ 3076 int 3077 cond_init(cond_t *cvp, int type, void *arg) 3078 { 3079 if (type != USYNC_THREAD && type != USYNC_PROCESS) 3080 return (EINVAL); 3081 (void) memset(cvp, 0, sizeof (*cvp)); 3082 cvp->cond_type = (uint16_t)type; 3083 cvp->cond_magic = COND_MAGIC; 3084 3085 /* 3086 * This should be at the beginning of the function, 3087 * but for the sake of old broken applications that 3088 * do not have proper alignment for their condvars 3089 * (and don't check the return code from cond_init), 3090 * we put it here, after initializing the condvar regardless. 3091 */ 3092 if (((uintptr_t)cvp & (_LONG_LONG_ALIGNMENT - 1)) && 3093 curthread->ul_misaligned == 0) 3094 return (EINVAL); 3095 3096 return (0); 3097 } 3098 3099 /* 3100 * cond_sleep_queue(): utility function for cond_wait_queue(). 3101 * 3102 * Go to sleep on a condvar sleep queue, expect to be waked up 3103 * by someone calling cond_signal() or cond_broadcast() or due 3104 * to receiving a UNIX signal or being cancelled, or just simply 3105 * due to a spurious wakeup (like someome calling forkall()). 3106 * 3107 * The associated mutex is *not* reacquired before returning. 3108 * That must be done by the caller of cond_sleep_queue(). 3109 */ 3110 static int 3111 cond_sleep_queue(cond_t *cvp, mutex_t *mp, timespec_t *tsp) 3112 { 3113 ulwp_t *self = curthread; 3114 queue_head_t *qp; 3115 queue_head_t *mqp; 3116 lwpid_t lwpid; 3117 int signalled; 3118 int error; 3119 int cv_wake; 3120 int release_all; 3121 3122 /* 3123 * Put ourself on the CV sleep queue, unlock the mutex, then 3124 * park ourself and unpark a candidate lwp to grab the mutex. 3125 * We must go onto the CV sleep queue before dropping the 3126 * mutex in order to guarantee atomicity of the operation. 3127 */ 3128 self->ul_sp = stkptr(); 3129 qp = queue_lock(cvp, CV); 3130 enqueue(qp, self, 0); 3131 cvp->cond_waiters_user = 1; 3132 self->ul_cvmutex = mp; 3133 self->ul_cv_wake = cv_wake = (tsp != NULL); 3134 self->ul_signalled = 0; 3135 if (mp->mutex_flag & LOCK_OWNERDEAD) { 3136 mp->mutex_flag &= ~LOCK_OWNERDEAD; 3137 mp->mutex_flag |= LOCK_NOTRECOVERABLE; 3138 } 3139 release_all = ((mp->mutex_flag & LOCK_NOTRECOVERABLE) != 0); 3140 lwpid = mutex_unlock_queue(mp, release_all); 3141 for (;;) { 3142 set_parking_flag(self, 1); 3143 queue_unlock(qp); 3144 if (lwpid != 0) { 3145 lwpid = preempt_unpark(self, lwpid); 3146 preempt(self); 3147 } 3148 /* 3149 * We may have a deferred signal present, 3150 * in which case we should return EINTR. 3151 * Also, we may have received a SIGCANCEL; if so 3152 * and we are cancelable we should return EINTR. 3153 * We force an immediate EINTR return from 3154 * __lwp_park() by turning our parking flag off. 3155 */ 3156 if (self->ul_cursig != 0 || 3157 (self->ul_cancelable && self->ul_cancel_pending)) 3158 set_parking_flag(self, 0); 3159 /* 3160 * __lwp_park() will return the residual time in tsp 3161 * if we are unparked before the timeout expires. 3162 */ 3163 error = __lwp_park(tsp, lwpid); 3164 set_parking_flag(self, 0); 3165 lwpid = 0; /* unpark the other lwp only once */ 3166 /* 3167 * We were waked up by cond_signal(), cond_broadcast(), 3168 * by an interrupt or timeout (EINTR or ETIME), 3169 * or we may just have gotten a spurious wakeup. 3170 */ 3171 qp = queue_lock(cvp, CV); 3172 if (!cv_wake) 3173 mqp = queue_lock(mp, MX); 3174 if (self->ul_sleepq == NULL) 3175 break; 3176 /* 3177 * We are on either the condvar sleep queue or the 3178 * mutex sleep queue. Break out of the sleep if we 3179 * were interrupted or we timed out (EINTR or ETIME). 3180 * Else this is a spurious wakeup; continue the loop. 3181 */ 3182 if (!cv_wake && self->ul_sleepq == mqp) { /* mutex queue */ 3183 if (error) { 3184 mp->mutex_waiters = dequeue_self(mqp); 3185 break; 3186 } 3187 tsp = NULL; /* no more timeout */ 3188 } else if (self->ul_sleepq == qp) { /* condvar queue */ 3189 if (error) { 3190 cvp->cond_waiters_user = dequeue_self(qp); 3191 break; 3192 } 3193 /* 3194 * Else a spurious wakeup on the condvar queue. 3195 * __lwp_park() has already adjusted the timeout. 3196 */ 3197 } else { 3198 thr_panic("cond_sleep_queue(): thread not on queue"); 3199 } 3200 if (!cv_wake) 3201 queue_unlock(mqp); 3202 } 3203 3204 self->ul_sp = 0; 3205 self->ul_cv_wake = 0; 3206 ASSERT(self->ul_cvmutex == NULL); 3207 ASSERT(self->ul_sleepq == NULL && self->ul_link == NULL && 3208 self->ul_wchan == NULL); 3209 3210 signalled = self->ul_signalled; 3211 self->ul_signalled = 0; 3212 queue_unlock(qp); 3213 if (!cv_wake) 3214 queue_unlock(mqp); 3215 3216 /* 3217 * If we were concurrently cond_signal()d and any of: 3218 * received a UNIX signal, were cancelled, or got a timeout, 3219 * then perform another cond_signal() to avoid consuming it. 3220 */ 3221 if (error && signalled) 3222 (void) cond_signal(cvp); 3223 3224 return (error); 3225 } 3226 3227 static void 3228 cond_wait_check_alignment(cond_t *cvp, mutex_t *mp) 3229 { 3230 if ((uintptr_t)mp & (_LONG_LONG_ALIGNMENT - 1)) 3231 lock_error(mp, "cond_wait", cvp, "mutex is misaligned"); 3232 if ((uintptr_t)cvp & (_LONG_LONG_ALIGNMENT - 1)) 3233 lock_error(mp, "cond_wait", cvp, "condvar is misaligned"); 3234 } 3235 3236 int 3237 cond_wait_queue(cond_t *cvp, mutex_t *mp, timespec_t *tsp) 3238 { 3239 ulwp_t *self = curthread; 3240 int error; 3241 int merror; 3242 3243 if (self->ul_error_detection && self->ul_misaligned == 0) 3244 cond_wait_check_alignment(cvp, mp); 3245 3246 /* 3247 * The old thread library was programmed to defer signals 3248 * while in cond_wait() so that the associated mutex would 3249 * be guaranteed to be held when the application signal 3250 * handler was invoked. 3251 * 3252 * We do not behave this way by default; the state of the 3253 * associated mutex in the signal handler is undefined. 3254 * 3255 * To accommodate applications that depend on the old 3256 * behavior, the _THREAD_COND_WAIT_DEFER environment 3257 * variable can be set to 1 and we will behave in the 3258 * old way with respect to cond_wait(). 3259 */ 3260 if (self->ul_cond_wait_defer) 3261 sigoff(self); 3262 3263 error = cond_sleep_queue(cvp, mp, tsp); 3264 3265 /* 3266 * Reacquire the mutex. 3267 */ 3268 if ((merror = mutex_lock_impl(mp, NULL)) != 0) 3269 error = merror; 3270 3271 /* 3272 * Take any deferred signal now, after we have reacquired the mutex. 3273 */ 3274 if (self->ul_cond_wait_defer) 3275 sigon(self); 3276 3277 return (error); 3278 } 3279 3280 /* 3281 * cond_sleep_kernel(): utility function for cond_wait_kernel(). 3282 * See the comment ahead of cond_sleep_queue(), above. 3283 */ 3284 static int 3285 cond_sleep_kernel(cond_t *cvp, mutex_t *mp, timespec_t *tsp) 3286 { 3287 int mtype = mp->mutex_type; 3288 ulwp_t *self = curthread; 3289 int error; 3290 3291 if ((mtype & LOCK_PRIO_PROTECT) && _ceil_mylist_del(mp)) 3292 _ceil_prio_waive(); 3293 3294 self->ul_sp = stkptr(); 3295 self->ul_wchan = cvp; 3296 sigoff(self); 3297 mp->mutex_owner = 0; 3298 /* mp->mutex_ownerpid is cleared by ___lwp_cond_wait() */ 3299 if (mtype & LOCK_PRIO_INHERIT) { 3300 mp->mutex_lockw = LOCKCLEAR; 3301 self->ul_pilocks--; 3302 } 3303 /* 3304 * ___lwp_cond_wait() returns immediately with EINTR if 3305 * set_parking_flag(self,0) is called on this lwp before it 3306 * goes to sleep in the kernel. sigacthandler() calls this 3307 * when a deferred signal is noted. This assures that we don't 3308 * get stuck in ___lwp_cond_wait() with all signals blocked 3309 * due to taking a deferred signal before going to sleep. 3310 */ 3311 set_parking_flag(self, 1); 3312 if (self->ul_cursig != 0 || 3313 (self->ul_cancelable && self->ul_cancel_pending)) 3314 set_parking_flag(self, 0); 3315 error = ___lwp_cond_wait(cvp, mp, tsp, 1); 3316 set_parking_flag(self, 0); 3317 sigon(self); 3318 self->ul_sp = 0; 3319 self->ul_wchan = NULL; 3320 return (error); 3321 } 3322 3323 int 3324 cond_wait_kernel(cond_t *cvp, mutex_t *mp, timespec_t *tsp) 3325 { 3326 ulwp_t *self = curthread; 3327 int error; 3328 int merror; 3329 3330 if (self->ul_error_detection && self->ul_misaligned == 0) 3331 cond_wait_check_alignment(cvp, mp); 3332 3333 /* 3334 * See the large comment in cond_wait_queue(), above. 3335 */ 3336 if (self->ul_cond_wait_defer) 3337 sigoff(self); 3338 3339 error = cond_sleep_kernel(cvp, mp, tsp); 3340 3341 /* 3342 * Override the return code from ___lwp_cond_wait() 3343 * with any non-zero return code from mutex_lock(). 3344 * This addresses robust lock failures in particular; 3345 * the caller must see the EOWNERDEAD or ENOTRECOVERABLE 3346 * errors in order to take corrective action. 3347 */ 3348 if ((merror = mutex_lock_impl(mp, NULL)) != 0) 3349 error = merror; 3350 3351 /* 3352 * Take any deferred signal now, after we have reacquired the mutex. 3353 */ 3354 if (self->ul_cond_wait_defer) 3355 sigon(self); 3356 3357 return (error); 3358 } 3359 3360 /* 3361 * Common code for cond_wait() and cond_timedwait() 3362 */ 3363 int 3364 cond_wait_common(cond_t *cvp, mutex_t *mp, timespec_t *tsp) 3365 { 3366 int mtype = mp->mutex_type; 3367 hrtime_t begin_sleep = 0; 3368 ulwp_t *self = curthread; 3369 uberdata_t *udp = self->ul_uberdata; 3370 tdb_cond_stats_t *csp = COND_STATS(cvp, udp); 3371 tdb_mutex_stats_t *msp = MUTEX_STATS(mp, udp); 3372 uint8_t rcount; 3373 int error = 0; 3374 3375 /* 3376 * The SUSV3 Posix spec for pthread_cond_timedwait() states: 3377 * Except in the case of [ETIMEDOUT], all these error checks 3378 * shall act as if they were performed immediately at the 3379 * beginning of processing for the function and shall cause 3380 * an error return, in effect, prior to modifying the state 3381 * of the mutex specified by mutex or the condition variable 3382 * specified by cond. 3383 * Therefore, we must return EINVAL now if the timout is invalid. 3384 */ 3385 if (tsp != NULL && 3386 (tsp->tv_sec < 0 || (ulong_t)tsp->tv_nsec >= NANOSEC)) 3387 return (EINVAL); 3388 3389 if (__td_event_report(self, TD_SLEEP, udp)) { 3390 self->ul_sp = stkptr(); 3391 self->ul_wchan = cvp; 3392 self->ul_td_evbuf.eventnum = TD_SLEEP; 3393 self->ul_td_evbuf.eventdata = cvp; 3394 tdb_event(TD_SLEEP, udp); 3395 self->ul_sp = 0; 3396 } 3397 if (csp) { 3398 if (tsp) 3399 tdb_incr(csp->cond_timedwait); 3400 else 3401 tdb_incr(csp->cond_wait); 3402 } 3403 if (msp) 3404 begin_sleep = record_hold_time(msp); 3405 else if (csp) 3406 begin_sleep = gethrtime(); 3407 3408 if (self->ul_error_detection) { 3409 if (!mutex_held(mp)) 3410 lock_error(mp, "cond_wait", cvp, NULL); 3411 if ((mtype & LOCK_RECURSIVE) && mp->mutex_rcount != 0) 3412 lock_error(mp, "recursive mutex in cond_wait", 3413 cvp, NULL); 3414 if (cvp->cond_type & USYNC_PROCESS) { 3415 if (!(mtype & USYNC_PROCESS)) 3416 lock_error(mp, "cond_wait", cvp, 3417 "condvar process-shared, " 3418 "mutex process-private"); 3419 } else { 3420 if (mtype & USYNC_PROCESS) 3421 lock_error(mp, "cond_wait", cvp, 3422 "condvar process-private, " 3423 "mutex process-shared"); 3424 } 3425 } 3426 3427 /* 3428 * We deal with recursive mutexes by completely 3429 * dropping the lock and restoring the recursion 3430 * count after waking up. This is arguably wrong, 3431 * but it obeys the principle of least astonishment. 3432 */ 3433 rcount = mp->mutex_rcount; 3434 mp->mutex_rcount = 0; 3435 if ((mtype & 3436 (USYNC_PROCESS | LOCK_PRIO_INHERIT | LOCK_PRIO_PROTECT)) | 3437 (cvp->cond_type & USYNC_PROCESS)) 3438 error = cond_wait_kernel(cvp, mp, tsp); 3439 else 3440 error = cond_wait_queue(cvp, mp, tsp); 3441 mp->mutex_rcount = rcount; 3442 3443 if (csp) { 3444 hrtime_t lapse = gethrtime() - begin_sleep; 3445 if (tsp == NULL) 3446 csp->cond_wait_sleep_time += lapse; 3447 else { 3448 csp->cond_timedwait_sleep_time += lapse; 3449 if (error == ETIME) 3450 tdb_incr(csp->cond_timedwait_timeout); 3451 } 3452 } 3453 return (error); 3454 } 3455 3456 /* 3457 * cond_wait() is a cancellation point but __cond_wait() is not. 3458 * Internally, libc calls the non-cancellation version. 3459 * Other libraries need to use pthread_setcancelstate(), as appropriate, 3460 * since __cond_wait() is not exported from libc. 3461 */ 3462 int 3463 __cond_wait(cond_t *cvp, mutex_t *mp) 3464 { 3465 ulwp_t *self = curthread; 3466 uberdata_t *udp = self->ul_uberdata; 3467 uberflags_t *gflags; 3468 3469 if ((mp->mutex_type & (LOCK_ERRORCHECK | LOCK_ROBUST)) && 3470 !mutex_held(mp)) 3471 return (EPERM); 3472 3473 /* 3474 * Optimize the common case of USYNC_THREAD plus 3475 * no error detection, no lock statistics, and no event tracing. 3476 */ 3477 if ((gflags = self->ul_schedctl_called) != NULL && 3478 (cvp->cond_type | mp->mutex_type | gflags->uf_trs_ted | 3479 self->ul_td_events_enable | 3480 udp->tdb.tdb_ev_global_mask.event_bits[0]) == 0) 3481 return (cond_wait_queue(cvp, mp, NULL)); 3482 3483 /* 3484 * Else do it the long way. 3485 */ 3486 return (cond_wait_common(cvp, mp, NULL)); 3487 } 3488 3489 #pragma weak _cond_wait = cond_wait 3490 int 3491 cond_wait(cond_t *cvp, mutex_t *mp) 3492 { 3493 int error; 3494 3495 _cancelon(); 3496 error = __cond_wait(cvp, mp); 3497 if (error == EINTR) 3498 _canceloff(); 3499 else 3500 _canceloff_nocancel(); 3501 return (error); 3502 } 3503 3504 /* 3505 * pthread_cond_wait() is a cancellation point. 3506 */ 3507 int 3508 pthread_cond_wait(pthread_cond_t *_RESTRICT_KYWD cvp, 3509 pthread_mutex_t *_RESTRICT_KYWD mp) 3510 { 3511 int error; 3512 3513 error = cond_wait((cond_t *)cvp, (mutex_t *)mp); 3514 return ((error == EINTR)? 0 : error); 3515 } 3516 3517 /* 3518 * cond_timedwait() is a cancellation point but __cond_timedwait() is not. 3519 */ 3520 int 3521 __cond_timedwait(cond_t *cvp, mutex_t *mp, const timespec_t *abstime) 3522 { 3523 clockid_t clock_id = cvp->cond_clockid; 3524 timespec_t reltime; 3525 int error; 3526 3527 if ((mp->mutex_type & (LOCK_ERRORCHECK | LOCK_ROBUST)) && 3528 !mutex_held(mp)) 3529 return (EPERM); 3530 3531 if (clock_id != CLOCK_REALTIME && clock_id != CLOCK_HIGHRES) 3532 clock_id = CLOCK_REALTIME; 3533 abstime_to_reltime(clock_id, abstime, &reltime); 3534 error = cond_wait_common(cvp, mp, &reltime); 3535 if (error == ETIME && clock_id == CLOCK_HIGHRES) { 3536 /* 3537 * Don't return ETIME if we didn't really get a timeout. 3538 * This can happen if we return because someone resets 3539 * the system clock. Just return zero in this case, 3540 * giving a spurious wakeup but not a timeout. 3541 */ 3542 if ((hrtime_t)(uint32_t)abstime->tv_sec * NANOSEC + 3543 abstime->tv_nsec > gethrtime()) 3544 error = 0; 3545 } 3546 return (error); 3547 } 3548 3549 int 3550 cond_timedwait(cond_t *cvp, mutex_t *mp, const timespec_t *abstime) 3551 { 3552 int error; 3553 3554 _cancelon(); 3555 error = __cond_timedwait(cvp, mp, abstime); 3556 if (error == EINTR) 3557 _canceloff(); 3558 else 3559 _canceloff_nocancel(); 3560 return (error); 3561 } 3562 3563 /* 3564 * pthread_cond_timedwait() is a cancellation point. 3565 */ 3566 int 3567 pthread_cond_timedwait(pthread_cond_t *_RESTRICT_KYWD cvp, 3568 pthread_mutex_t *_RESTRICT_KYWD mp, 3569 const struct timespec *_RESTRICT_KYWD abstime) 3570 { 3571 int error; 3572 3573 error = cond_timedwait((cond_t *)cvp, (mutex_t *)mp, abstime); 3574 if (error == ETIME) 3575 error = ETIMEDOUT; 3576 else if (error == EINTR) 3577 error = 0; 3578 return (error); 3579 } 3580 3581 /* 3582 * cond_reltimedwait() is a cancellation point but __cond_reltimedwait() is not. 3583 */ 3584 int 3585 __cond_reltimedwait(cond_t *cvp, mutex_t *mp, const timespec_t *reltime) 3586 { 3587 timespec_t tslocal = *reltime; 3588 3589 if ((mp->mutex_type & (LOCK_ERRORCHECK | LOCK_ROBUST)) && 3590 !mutex_held(mp)) 3591 return (EPERM); 3592 3593 return (cond_wait_common(cvp, mp, &tslocal)); 3594 } 3595 3596 int 3597 cond_reltimedwait(cond_t *cvp, mutex_t *mp, const timespec_t *reltime) 3598 { 3599 int error; 3600 3601 _cancelon(); 3602 error = __cond_reltimedwait(cvp, mp, reltime); 3603 if (error == EINTR) 3604 _canceloff(); 3605 else 3606 _canceloff_nocancel(); 3607 return (error); 3608 } 3609 3610 int 3611 pthread_cond_reltimedwait_np(pthread_cond_t *_RESTRICT_KYWD cvp, 3612 pthread_mutex_t *_RESTRICT_KYWD mp, 3613 const struct timespec *_RESTRICT_KYWD reltime) 3614 { 3615 int error; 3616 3617 error = cond_reltimedwait((cond_t *)cvp, (mutex_t *)mp, reltime); 3618 if (error == ETIME) 3619 error = ETIMEDOUT; 3620 else if (error == EINTR) 3621 error = 0; 3622 return (error); 3623 } 3624 3625 #pragma weak pthread_cond_signal = cond_signal 3626 #pragma weak _cond_signal = cond_signal 3627 int 3628 cond_signal(cond_t *cvp) 3629 { 3630 ulwp_t *self = curthread; 3631 uberdata_t *udp = self->ul_uberdata; 3632 tdb_cond_stats_t *csp = COND_STATS(cvp, udp); 3633 int error = 0; 3634 int more; 3635 lwpid_t lwpid; 3636 queue_head_t *qp; 3637 mutex_t *mp; 3638 queue_head_t *mqp; 3639 ulwp_t **ulwpp; 3640 ulwp_t *ulwp; 3641 ulwp_t *prev; 3642 3643 if (csp) 3644 tdb_incr(csp->cond_signal); 3645 3646 if (cvp->cond_waiters_kernel) /* someone sleeping in the kernel? */ 3647 error = _lwp_cond_signal(cvp); 3648 3649 if (!cvp->cond_waiters_user) /* no one sleeping at user-level */ 3650 return (error); 3651 3652 /* 3653 * Move someone from the condvar sleep queue to the mutex sleep 3654 * queue for the mutex that he will acquire on being waked up. 3655 * We can do this only if we own the mutex he will acquire. 3656 * If we do not own the mutex, or if his ul_cv_wake flag 3657 * is set, just dequeue and unpark him. 3658 */ 3659 qp = queue_lock(cvp, CV); 3660 ulwpp = queue_slot(qp, &prev, &more); 3661 cvp->cond_waiters_user = more; 3662 if (ulwpp == NULL) { /* no one on the sleep queue */ 3663 queue_unlock(qp); 3664 return (error); 3665 } 3666 ulwp = *ulwpp; 3667 3668 /* 3669 * Inform the thread that he was the recipient of a cond_signal(). 3670 * This lets him deal with cond_signal() and, concurrently, 3671 * one or more of a cancellation, a UNIX signal, or a timeout. 3672 * These latter conditions must not consume a cond_signal(). 3673 */ 3674 ulwp->ul_signalled = 1; 3675 3676 /* 3677 * Dequeue the waiter but leave his ul_sleepq non-NULL 3678 * while we move him to the mutex queue so that he can 3679 * deal properly with spurious wakeups. 3680 */ 3681 queue_unlink(qp, ulwpp, prev); 3682 3683 mp = ulwp->ul_cvmutex; /* the mutex he will acquire */ 3684 ulwp->ul_cvmutex = NULL; 3685 ASSERT(mp != NULL); 3686 3687 if (ulwp->ul_cv_wake || !MUTEX_OWNED(mp, self)) { 3688 /* just wake him up */ 3689 lwpid = ulwp->ul_lwpid; 3690 no_preempt(self); 3691 ulwp->ul_sleepq = NULL; 3692 ulwp->ul_wchan = NULL; 3693 queue_unlock(qp); 3694 (void) __lwp_unpark(lwpid); 3695 preempt(self); 3696 } else { 3697 /* move him to the mutex queue */ 3698 mqp = queue_lock(mp, MX); 3699 enqueue(mqp, ulwp, 0); 3700 mp->mutex_waiters = 1; 3701 queue_unlock(mqp); 3702 queue_unlock(qp); 3703 } 3704 3705 return (error); 3706 } 3707 3708 /* 3709 * Utility function called by mutex_wakeup_all(), cond_broadcast(), 3710 * and rw_queue_release() to (re)allocate a big buffer to hold the 3711 * lwpids of all the threads to be set running after they are removed 3712 * from their sleep queues. Since we are holding a queue lock, we 3713 * cannot call any function that might acquire a lock. mmap(), munmap(), 3714 * lwp_unpark_all() are simple system calls and are safe in this regard. 3715 */ 3716 lwpid_t * 3717 alloc_lwpids(lwpid_t *lwpid, int *nlwpid_ptr, int *maxlwps_ptr) 3718 { 3719 /* 3720 * Allocate NEWLWPS ids on the first overflow. 3721 * Double the allocation each time after that. 3722 */ 3723 int nlwpid = *nlwpid_ptr; 3724 int maxlwps = *maxlwps_ptr; 3725 int first_allocation; 3726 int newlwps; 3727 void *vaddr; 3728 3729 ASSERT(nlwpid == maxlwps); 3730 3731 first_allocation = (maxlwps == MAXLWPS); 3732 newlwps = first_allocation? NEWLWPS : 2 * maxlwps; 3733 vaddr = mmap(NULL, newlwps * sizeof (lwpid_t), 3734 PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANON, -1, (off_t)0); 3735 3736 if (vaddr == MAP_FAILED) { 3737 /* 3738 * Let's hope this never happens. 3739 * If it does, then we have a terrible 3740 * thundering herd on our hands. 3741 */ 3742 (void) __lwp_unpark_all(lwpid, nlwpid); 3743 *nlwpid_ptr = 0; 3744 } else { 3745 (void) memcpy(vaddr, lwpid, maxlwps * sizeof (lwpid_t)); 3746 if (!first_allocation) 3747 (void) munmap((caddr_t)lwpid, 3748 maxlwps * sizeof (lwpid_t)); 3749 lwpid = vaddr; 3750 *maxlwps_ptr = newlwps; 3751 } 3752 3753 return (lwpid); 3754 } 3755 3756 #pragma weak pthread_cond_broadcast = cond_broadcast 3757 #pragma weak _cond_broadcast = cond_broadcast 3758 int 3759 cond_broadcast(cond_t *cvp) 3760 { 3761 ulwp_t *self = curthread; 3762 uberdata_t *udp = self->ul_uberdata; 3763 tdb_cond_stats_t *csp = COND_STATS(cvp, udp); 3764 int error = 0; 3765 queue_head_t *qp; 3766 queue_root_t *qrp; 3767 mutex_t *mp; 3768 mutex_t *mp_cache = NULL; 3769 queue_head_t *mqp = NULL; 3770 ulwp_t *ulwp; 3771 int nlwpid = 0; 3772 int maxlwps = MAXLWPS; 3773 lwpid_t buffer[MAXLWPS]; 3774 lwpid_t *lwpid = buffer; 3775 3776 if (csp) 3777 tdb_incr(csp->cond_broadcast); 3778 3779 if (cvp->cond_waiters_kernel) /* someone sleeping in the kernel? */ 3780 error = _lwp_cond_broadcast(cvp); 3781 3782 if (!cvp->cond_waiters_user) /* no one sleeping at user-level */ 3783 return (error); 3784 3785 /* 3786 * Move everyone from the condvar sleep queue to the mutex sleep 3787 * queue for the mutex that they will acquire on being waked up. 3788 * We can do this only if we own the mutex they will acquire. 3789 * If we do not own the mutex, or if their ul_cv_wake flag 3790 * is set, just dequeue and unpark them. 3791 * 3792 * We keep track of lwpids that are to be unparked in lwpid[]. 3793 * __lwp_unpark_all() is called to unpark all of them after 3794 * they have been removed from the sleep queue and the sleep 3795 * queue lock has been dropped. If we run out of space in our 3796 * on-stack buffer, we need to allocate more but we can't call 3797 * lmalloc() because we are holding a queue lock when the overflow 3798 * occurs and lmalloc() acquires a lock. We can't use alloca() 3799 * either because the application may have allocated a small 3800 * stack and we don't want to overrun the stack. So we call 3801 * alloc_lwpids() to allocate a bigger buffer using the mmap() 3802 * system call directly since that path acquires no locks. 3803 */ 3804 qp = queue_lock(cvp, CV); 3805 cvp->cond_waiters_user = 0; 3806 for (;;) { 3807 if ((qrp = qp->qh_root) == NULL || 3808 (ulwp = qrp->qr_head) == NULL) 3809 break; 3810 ASSERT(ulwp->ul_wchan == cvp); 3811 queue_unlink(qp, &qrp->qr_head, NULL); 3812 mp = ulwp->ul_cvmutex; /* his mutex */ 3813 ulwp->ul_cvmutex = NULL; 3814 ASSERT(mp != NULL); 3815 if (ulwp->ul_cv_wake || !MUTEX_OWNED(mp, self)) { 3816 /* just wake him up */ 3817 ulwp->ul_sleepq = NULL; 3818 ulwp->ul_wchan = NULL; 3819 if (nlwpid == maxlwps) 3820 lwpid = alloc_lwpids(lwpid, &nlwpid, &maxlwps); 3821 lwpid[nlwpid++] = ulwp->ul_lwpid; 3822 } else { 3823 /* move him to the mutex queue */ 3824 if (mp != mp_cache) { 3825 mp_cache = mp; 3826 if (mqp != NULL) 3827 queue_unlock(mqp); 3828 mqp = queue_lock(mp, MX); 3829 } 3830 enqueue(mqp, ulwp, 0); 3831 mp->mutex_waiters = 1; 3832 } 3833 } 3834 if (mqp != NULL) 3835 queue_unlock(mqp); 3836 if (nlwpid == 0) { 3837 queue_unlock(qp); 3838 } else { 3839 no_preempt(self); 3840 queue_unlock(qp); 3841 if (nlwpid == 1) 3842 (void) __lwp_unpark(lwpid[0]); 3843 else 3844 (void) __lwp_unpark_all(lwpid, nlwpid); 3845 preempt(self); 3846 } 3847 if (lwpid != buffer) 3848 (void) munmap((caddr_t)lwpid, maxlwps * sizeof (lwpid_t)); 3849 return (error); 3850 } 3851 3852 #pragma weak pthread_cond_destroy = cond_destroy 3853 int 3854 cond_destroy(cond_t *cvp) 3855 { 3856 cvp->cond_magic = 0; 3857 tdb_sync_obj_deregister(cvp); 3858 return (0); 3859 } 3860 3861 #if defined(THREAD_DEBUG) 3862 void 3863 assert_no_libc_locks_held(void) 3864 { 3865 ASSERT(!curthread->ul_critical || curthread->ul_bindflags); 3866 } 3867 3868 /* protected by link_lock */ 3869 uint64_t spin_lock_spin; 3870 uint64_t spin_lock_spin2; 3871 uint64_t spin_lock_sleep; 3872 uint64_t spin_lock_wakeup; 3873 3874 /* 3875 * Record spin lock statistics. 3876 * Called by a thread exiting itself in thrp_exit(). 3877 * Also called via atexit() from the thread calling 3878 * exit() to do all the other threads as well. 3879 */ 3880 void 3881 record_spin_locks(ulwp_t *ulwp) 3882 { 3883 spin_lock_spin += ulwp->ul_spin_lock_spin; 3884 spin_lock_spin2 += ulwp->ul_spin_lock_spin2; 3885 spin_lock_sleep += ulwp->ul_spin_lock_sleep; 3886 spin_lock_wakeup += ulwp->ul_spin_lock_wakeup; 3887 ulwp->ul_spin_lock_spin = 0; 3888 ulwp->ul_spin_lock_spin2 = 0; 3889 ulwp->ul_spin_lock_sleep = 0; 3890 ulwp->ul_spin_lock_wakeup = 0; 3891 } 3892 3893 /* 3894 * atexit function: dump the queue statistics to stderr. 3895 */ 3896 #include <stdio.h> 3897 void 3898 dump_queue_statistics(void) 3899 { 3900 uberdata_t *udp = curthread->ul_uberdata; 3901 queue_head_t *qp; 3902 int qn; 3903 uint64_t spin_lock_total = 0; 3904 3905 if (udp->queue_head == NULL || thread_queue_dump == 0) 3906 return; 3907 3908 if (fprintf(stderr, "\n%5d mutex queues:\n", QHASHSIZE) < 0 || 3909 fprintf(stderr, "queue# lockcount max qlen max hlen\n") < 0) 3910 return; 3911 for (qn = 0, qp = udp->queue_head; qn < QHASHSIZE; qn++, qp++) { 3912 if (qp->qh_lockcount == 0) 3913 continue; 3914 spin_lock_total += qp->qh_lockcount; 3915 if (fprintf(stderr, "%5d %12llu%12u%12u\n", qn, 3916 (u_longlong_t)qp->qh_lockcount, 3917 qp->qh_qmax, qp->qh_hmax) < 0) 3918 return; 3919 } 3920 3921 if (fprintf(stderr, "\n%5d condvar queues:\n", QHASHSIZE) < 0 || 3922 fprintf(stderr, "queue# lockcount max qlen max hlen\n") < 0) 3923 return; 3924 for (qn = 0; qn < QHASHSIZE; qn++, qp++) { 3925 if (qp->qh_lockcount == 0) 3926 continue; 3927 spin_lock_total += qp->qh_lockcount; 3928 if (fprintf(stderr, "%5d %12llu%12u%12u\n", qn, 3929 (u_longlong_t)qp->qh_lockcount, 3930 qp->qh_qmax, qp->qh_hmax) < 0) 3931 return; 3932 } 3933 3934 (void) fprintf(stderr, "\n spin_lock_total = %10llu\n", 3935 (u_longlong_t)spin_lock_total); 3936 (void) fprintf(stderr, " spin_lock_spin = %10llu\n", 3937 (u_longlong_t)spin_lock_spin); 3938 (void) fprintf(stderr, " spin_lock_spin2 = %10llu\n", 3939 (u_longlong_t)spin_lock_spin2); 3940 (void) fprintf(stderr, " spin_lock_sleep = %10llu\n", 3941 (u_longlong_t)spin_lock_sleep); 3942 (void) fprintf(stderr, " spin_lock_wakeup = %10llu\n", 3943 (u_longlong_t)spin_lock_wakeup); 3944 } 3945 #endif 3946