xref: /titanic_41/usr/src/lib/libc/port/threads/scalls.c (revision f74990663a4ceb9ed367f98457dc42b52ca2642e)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 #include "lint.h"
30 #include "thr_uberdata.h"
31 #include <stdarg.h>
32 #include <poll.h>
33 #include <stropts.h>
34 #include <dlfcn.h>
35 #include <sys/uio.h>
36 
37 /*
38  * fork_lock is special -- We can't use lmutex_lock() (and thereby enter
39  * a critical region) because the second thread to reach this point would
40  * become unstoppable and the first thread would hang waiting for the
41  * second thread to stop itself.  Therefore we don't use lmutex_lock() in
42  * fork_lock_enter(), but we do defer signals (the other form of concurrency).
43  *
44  * fork_lock_enter() does triple-duty.  Not only does it serialize
45  * calls to fork() and forkall(), but it also serializes calls to
46  * thr_suspend() (fork() and forkall() also suspend other threads),
47  * and furthermore it serializes I18N calls to functions in other
48  * dlopen()ed L10N objects that might be calling malloc()/free().
49  */
50 
51 static void
52 fork_lock_error(const char *who)
53 {
54 	char msg[200];
55 
56 	(void) strlcpy(msg, "deadlock condition: ", sizeof (msg));
57 	(void) strlcat(msg, who, sizeof (msg));
58 	(void) strlcat(msg, "() called from a fork handler", sizeof (msg));
59 	thread_error(msg);
60 }
61 
62 int
63 fork_lock_enter(const char *who)
64 {
65 	ulwp_t *self = curthread;
66 	uberdata_t *udp = self->ul_uberdata;
67 	int error = 0;
68 
69 	ASSERT(self->ul_critical == 0);
70 	sigoff(self);
71 	(void) _private_mutex_lock(&udp->fork_lock);
72 	while (udp->fork_count) {
73 		if (udp->fork_owner == self) {
74 			/*
75 			 * This is like a recursive lock except that we
76 			 * inform the caller if we have been called from
77 			 * a fork handler and let it deal with that fact.
78 			 */
79 			if (self->ul_fork) {
80 				/*
81 				 * We have been called from a fork handler.
82 				 */
83 				if (who != NULL &&
84 				    udp->uberflags.uf_thread_error_detection)
85 					fork_lock_error(who);
86 				error = EDEADLK;
87 			}
88 			break;
89 		}
90 		ASSERT(self->ul_fork == 0);
91 		(void) _cond_wait(&udp->fork_cond, &udp->fork_lock);
92 	}
93 	udp->fork_owner = self;
94 	udp->fork_count++;
95 	(void) _private_mutex_unlock(&udp->fork_lock);
96 	return (error);
97 }
98 
99 void
100 fork_lock_exit(void)
101 {
102 	ulwp_t *self = curthread;
103 	uberdata_t *udp = self->ul_uberdata;
104 
105 	ASSERT(self->ul_critical == 0);
106 	(void) _private_mutex_lock(&udp->fork_lock);
107 	ASSERT(udp->fork_count != 0 && udp->fork_owner == self);
108 	if (--udp->fork_count == 0) {
109 		udp->fork_owner = NULL;
110 		(void) _cond_signal(&udp->fork_cond);
111 	}
112 	(void) _private_mutex_unlock(&udp->fork_lock);
113 	sigon(self);
114 }
115 
116 #pragma weak forkx = _private_forkx
117 #pragma weak _forkx = _private_forkx
118 static pid_t
119 _private_forkx(int flags)
120 {
121 	ulwp_t *self = curthread;
122 	uberdata_t *udp = self->ul_uberdata;
123 	pid_t pid;
124 	int error;
125 
126 	if (self->ul_vfork) {
127 		/*
128 		 * We are a child of vfork(); omit all of the fork
129 		 * logic and go straight to the system call trap.
130 		 * A vfork() child of a multithreaded parent
131 		 * must never call fork().
132 		 */
133 		if (udp->uberflags.uf_mt) {
134 			errno = ENOTSUP;
135 			return (-1);
136 		}
137 		pid = __forkx(flags);
138 		if (pid == 0) {		/* child */
139 			udp->pid = _private_getpid();
140 			self->ul_vfork = 0;
141 		}
142 		return (pid);
143 	}
144 
145 	if ((error = fork_lock_enter("fork")) != 0) {
146 		/*
147 		 * Cannot call fork() from a fork handler.
148 		 */
149 		fork_lock_exit();
150 		errno = error;
151 		return (-1);
152 	}
153 	self->ul_fork = 1;
154 
155 	/*
156 	 * The functions registered by pthread_atfork() are defined by
157 	 * the application and its libraries and we must not hold any
158 	 * internal libc locks while invoking them.  The fork_lock_enter()
159 	 * function serializes fork(), thr_suspend(), pthread_atfork() and
160 	 * dlclose() (which destroys whatever pthread_atfork() functions
161 	 * the library may have set up).  If one of these pthread_atfork()
162 	 * functions attempts to fork or suspend another thread or call
163 	 * pthread_atfork() or dlclose a library, it will detect a deadlock
164 	 * in fork_lock_enter().  Otherwise, the pthread_atfork() functions
165 	 * are free to do anything they please (except they will not
166 	 * receive any signals).
167 	 */
168 	_prefork_handler();
169 
170 	/*
171 	 * Block all signals.
172 	 * Just deferring them via sigon() is not enough.
173 	 * We have to avoid taking a deferred signal in the child
174 	 * that was actually sent to the parent before __forkx().
175 	 */
176 	block_all_signals(self);
177 
178 	/*
179 	 * This suspends all threads but this one, leaving them
180 	 * suspended outside of any critical regions in the library.
181 	 * Thus, we are assured that no library locks are held
182 	 * while we invoke fork() from the current thread.
183 	 */
184 	(void) _private_mutex_lock(&udp->fork_lock);
185 	suspend_fork();
186 	(void) _private_mutex_unlock(&udp->fork_lock);
187 
188 	pid = __forkx(flags);
189 
190 	if (pid == 0) {		/* child */
191 		/*
192 		 * Clear our schedctl pointer.
193 		 * Discard any deferred signal that was sent to the parent.
194 		 * Because we blocked all signals before __forkx(), a
195 		 * deferred signal cannot have been taken by the child.
196 		 */
197 		self->ul_schedctl_called = NULL;
198 		self->ul_schedctl = NULL;
199 		self->ul_cursig = 0;
200 		self->ul_siginfo.si_signo = 0;
201 		udp->pid = _private_getpid();
202 		/* reset the library's data structures to reflect one thread */
203 		postfork1_child();
204 		restore_signals(self);
205 		_postfork_child_handler();
206 	} else {
207 		/* restart all threads that were suspended for fork() */
208 		continue_fork(0);
209 		restore_signals(self);
210 		_postfork_parent_handler();
211 	}
212 
213 	self->ul_fork = 0;
214 	fork_lock_exit();
215 
216 	return (pid);
217 }
218 
219 /*
220  * fork() is fork1() for both Posix threads and Solaris threads.
221  * The forkall() interface exists for applications that require
222  * the semantics of replicating all threads.
223  */
224 #pragma weak fork1 = _fork
225 #pragma weak _fork1 = _fork
226 #pragma weak fork = _fork
227 pid_t
228 _fork(void)
229 {
230 	return (_private_forkx(0));
231 }
232 
233 /*
234  * Much of the logic here is the same as in forkx().
235  * See the comments in forkx(), above.
236  */
237 #pragma weak forkallx = _private_forkallx
238 #pragma weak _forkallx = _private_forkallx
239 static pid_t
240 _private_forkallx(int flags)
241 {
242 	ulwp_t *self = curthread;
243 	uberdata_t *udp = self->ul_uberdata;
244 	pid_t pid;
245 	int error;
246 
247 	if (self->ul_vfork) {
248 		if (udp->uberflags.uf_mt) {
249 			errno = ENOTSUP;
250 			return (-1);
251 		}
252 		pid = __forkallx(flags);
253 		if (pid == 0) {		/* child */
254 			udp->pid = _private_getpid();
255 			self->ul_vfork = 0;
256 		}
257 		return (pid);
258 	}
259 
260 	if ((error = fork_lock_enter("forkall")) != 0) {
261 		fork_lock_exit();
262 		errno = error;
263 		return (-1);
264 	}
265 	self->ul_fork = 1;
266 	block_all_signals(self);
267 	suspend_fork();
268 
269 	pid = __forkallx(flags);
270 
271 	if (pid == 0) {
272 		self->ul_schedctl_called = NULL;
273 		self->ul_schedctl = NULL;
274 		self->ul_cursig = 0;
275 		self->ul_siginfo.si_signo = 0;
276 		udp->pid = _private_getpid();
277 		continue_fork(1);
278 	} else {
279 		continue_fork(0);
280 	}
281 	restore_signals(self);
282 	self->ul_fork = 0;
283 	fork_lock_exit();
284 
285 	return (pid);
286 }
287 
288 #pragma weak forkall = _forkall
289 pid_t
290 _forkall(void)
291 {
292 	return (_private_forkallx(0));
293 }
294 
295 /*
296  * Hacks for system calls to provide cancellation
297  * and improve java garbage collection.
298  */
299 #define	PROLOGUE							\
300 {									\
301 	ulwp_t *self = curthread;					\
302 	int nocancel = (self->ul_vfork | self->ul_nocancel);		\
303 	if (nocancel == 0) {						\
304 		self->ul_save_async = self->ul_cancel_async;		\
305 		if (!self->ul_cancel_disabled) {			\
306 			self->ul_cancel_async = 1;			\
307 			if (self->ul_cancel_pending)			\
308 				_pthread_exit(PTHREAD_CANCELED);	\
309 		}							\
310 		self->ul_sp = stkptr();					\
311 	}
312 
313 #define	EPILOGUE							\
314 	if (nocancel == 0) {						\
315 		self->ul_sp = 0;					\
316 		self->ul_cancel_async = self->ul_save_async;		\
317 	}								\
318 }
319 
320 /*
321  * Perform the body of the action required by most of the cancelable
322  * function calls.  The return(function_call) part is to allow the
323  * compiler to make the call be executed with tail recursion, which
324  * saves a register window on sparc and slightly (not much) improves
325  * the code for x86/x64 compilations.
326  */
327 #define	PERFORM(function_call)						\
328 	PROLOGUE							\
329 	if (nocancel)							\
330 		return (function_call);					\
331 	rv = function_call;						\
332 	EPILOGUE							\
333 	return (rv);
334 
335 /*
336  * Specialized prologue for sigsuspend() and pollsys().
337  * These system calls pass a signal mask to the kernel.
338  * The kernel replaces the thread's signal mask with the
339  * temporary mask before the thread goes to sleep.  If
340  * a signal is received, the signal handler will execute
341  * with the temporary mask, as modified by the sigaction
342  * for the particular signal.
343  *
344  * We block all signals until we reach the kernel with the
345  * temporary mask.  This eliminates race conditions with
346  * setting the signal mask while signals are being posted.
347  */
348 #define	PROLOGUE_MASK(sigmask)						\
349 {									\
350 	ulwp_t *self = curthread;					\
351 	int nocancel = (self->ul_vfork | self->ul_nocancel);		\
352 	if (!self->ul_vfork) {						\
353 		if (sigmask) {						\
354 			block_all_signals(self);			\
355 			self->ul_tmpmask.__sigbits[0] = sigmask->__sigbits[0]; \
356 			self->ul_tmpmask.__sigbits[1] = sigmask->__sigbits[1]; \
357 			delete_reserved_signals(&self->ul_tmpmask);	\
358 			self->ul_sigsuspend = 1;			\
359 		}							\
360 		if (nocancel == 0) {					\
361 			self->ul_save_async = self->ul_cancel_async;	\
362 			if (!self->ul_cancel_disabled) {		\
363 				self->ul_cancel_async = 1;		\
364 				if (self->ul_cancel_pending) {		\
365 					if (self->ul_sigsuspend) {	\
366 						self->ul_sigsuspend = 0;\
367 						restore_signals(self);	\
368 					}				\
369 					_pthread_exit(PTHREAD_CANCELED);\
370 				}					\
371 			}						\
372 			self->ul_sp = stkptr();				\
373 		}							\
374 	}
375 
376 /*
377  * If a signal is taken, we return from the system call wrapper with
378  * our original signal mask restored (see code in call_user_handler()).
379  * If not (self->ul_sigsuspend is still non-zero), we must restore our
380  * original signal mask ourself.
381  */
382 #define	EPILOGUE_MASK							\
383 	if (nocancel == 0) {						\
384 		self->ul_sp = 0;					\
385 		self->ul_cancel_async = self->ul_save_async;		\
386 	}								\
387 	if (self->ul_sigsuspend) {					\
388 		self->ul_sigsuspend = 0;				\
389 		restore_signals(self);					\
390 	}								\
391 }
392 
393 /*
394  * Cancellation prologue and epilogue functions,
395  * for cancellation points too complex to include here.
396  */
397 void
398 _cancel_prologue(void)
399 {
400 	ulwp_t *self = curthread;
401 
402 	self->ul_cancel_prologue = (self->ul_vfork | self->ul_nocancel);
403 	if (self->ul_cancel_prologue == 0) {
404 		self->ul_save_async = self->ul_cancel_async;
405 		if (!self->ul_cancel_disabled) {
406 			self->ul_cancel_async = 1;
407 			if (self->ul_cancel_pending)
408 				_pthread_exit(PTHREAD_CANCELED);
409 		}
410 		self->ul_sp = stkptr();
411 	}
412 }
413 
414 void
415 _cancel_epilogue(void)
416 {
417 	ulwp_t *self = curthread;
418 
419 	if (self->ul_cancel_prologue == 0) {
420 		self->ul_sp = 0;
421 		self->ul_cancel_async = self->ul_save_async;
422 	}
423 }
424 
425 /*
426  * Called from _thrp_join() (thr_join() is a cancellation point)
427  */
428 int
429 lwp_wait(thread_t tid, thread_t *found)
430 {
431 	int error;
432 
433 	PROLOGUE
434 	while ((error = __lwp_wait(tid, found)) == EINTR)
435 		;
436 	EPILOGUE
437 	return (error);
438 }
439 
440 ssize_t
441 read(int fd, void *buf, size_t size)
442 {
443 	extern ssize_t _read(int, void *, size_t);
444 	ssize_t rv;
445 
446 	PERFORM(_read(fd, buf, size))
447 }
448 
449 ssize_t
450 write(int fd, const void *buf, size_t size)
451 {
452 	extern ssize_t _write(int, const void *, size_t);
453 	ssize_t rv;
454 
455 	PERFORM(_write(fd, buf, size))
456 }
457 
458 int
459 getmsg(int fd, struct strbuf *ctlptr, struct strbuf *dataptr,
460 	int *flagsp)
461 {
462 	extern int _getmsg(int, struct strbuf *, struct strbuf *, int *);
463 	int rv;
464 
465 	PERFORM(_getmsg(fd, ctlptr, dataptr, flagsp))
466 }
467 
468 int
469 getpmsg(int fd, struct strbuf *ctlptr, struct strbuf *dataptr,
470 	int *bandp, int *flagsp)
471 {
472 	extern int _getpmsg(int, struct strbuf *, struct strbuf *,
473 		int *, int *);
474 	int rv;
475 
476 	PERFORM(_getpmsg(fd, ctlptr, dataptr, bandp, flagsp))
477 }
478 
479 int
480 putmsg(int fd, const struct strbuf *ctlptr,
481 	const struct strbuf *dataptr, int flags)
482 {
483 	extern int _putmsg(int, const struct strbuf *,
484 		const struct strbuf *, int);
485 	int rv;
486 
487 	PERFORM(_putmsg(fd, ctlptr, dataptr, flags))
488 }
489 
490 int
491 __xpg4_putmsg(int fd, const struct strbuf *ctlptr,
492 	const struct strbuf *dataptr, int flags)
493 {
494 	extern int _putmsg(int, const struct strbuf *,
495 		const struct strbuf *, int);
496 	int rv;
497 
498 	PERFORM(_putmsg(fd, ctlptr, dataptr, flags|MSG_XPG4))
499 }
500 
501 int
502 putpmsg(int fd, const struct strbuf *ctlptr,
503 	const struct strbuf *dataptr, int band, int flags)
504 {
505 	extern int _putpmsg(int, const struct strbuf *,
506 		const struct strbuf *, int, int);
507 	int rv;
508 
509 	PERFORM(_putpmsg(fd, ctlptr, dataptr, band, flags))
510 }
511 
512 int
513 __xpg4_putpmsg(int fd, const struct strbuf *ctlptr,
514 	const struct strbuf *dataptr, int band, int flags)
515 {
516 	extern int _putpmsg(int, const struct strbuf *,
517 		const struct strbuf *, int, int);
518 	int rv;
519 
520 	PERFORM(_putpmsg(fd, ctlptr, dataptr, band, flags|MSG_XPG4))
521 }
522 
523 #pragma weak nanosleep = _nanosleep
524 int
525 _nanosleep(const timespec_t *rqtp, timespec_t *rmtp)
526 {
527 	int error;
528 
529 	PROLOGUE
530 	error = __nanosleep(rqtp, rmtp);
531 	EPILOGUE
532 	if (error) {
533 		errno = error;
534 		return (-1);
535 	}
536 	return (0);
537 }
538 
539 #pragma weak clock_nanosleep = _clock_nanosleep
540 int
541 _clock_nanosleep(clockid_t clock_id, int flags,
542 	const timespec_t *rqtp, timespec_t *rmtp)
543 {
544 	timespec_t reltime;
545 	hrtime_t start;
546 	hrtime_t rqlapse;
547 	hrtime_t lapse;
548 	int error;
549 
550 	switch (clock_id) {
551 	case CLOCK_VIRTUAL:
552 	case CLOCK_PROCESS_CPUTIME_ID:
553 	case CLOCK_THREAD_CPUTIME_ID:
554 		return (ENOTSUP);
555 	case CLOCK_REALTIME:
556 	case CLOCK_HIGHRES:
557 		break;
558 	default:
559 		return (EINVAL);
560 	}
561 	if (flags & TIMER_ABSTIME) {
562 		abstime_to_reltime(clock_id, rqtp, &reltime);
563 		rmtp = NULL;
564 	} else {
565 		reltime = *rqtp;
566 		if (clock_id == CLOCK_HIGHRES)
567 			start = gethrtime();
568 	}
569 restart:
570 	PROLOGUE
571 	error = __nanosleep(&reltime, rmtp);
572 	EPILOGUE
573 	if (error == 0 && clock_id == CLOCK_HIGHRES) {
574 		/*
575 		 * Don't return yet if we didn't really get a timeout.
576 		 * This can happen if we return because someone resets
577 		 * the system clock.
578 		 */
579 		if (flags & TIMER_ABSTIME) {
580 			if ((hrtime_t)(uint32_t)rqtp->tv_sec * NANOSEC +
581 			    rqtp->tv_nsec > gethrtime()) {
582 				abstime_to_reltime(clock_id, rqtp, &reltime);
583 				goto restart;
584 			}
585 		} else {
586 			rqlapse = (hrtime_t)(uint32_t)rqtp->tv_sec * NANOSEC +
587 				rqtp->tv_nsec;
588 			lapse = gethrtime() - start;
589 			if (rqlapse > lapse) {
590 				hrt2ts(rqlapse - lapse, &reltime);
591 				goto restart;
592 			}
593 		}
594 	}
595 	if (error == 0 && clock_id == CLOCK_REALTIME &&
596 	    (flags & TIMER_ABSTIME)) {
597 		/*
598 		 * Don't return yet just because someone reset the
599 		 * system clock.  Recompute the new relative time
600 		 * and reissue the nanosleep() call if necessary.
601 		 *
602 		 * Resetting the system clock causes all sorts of
603 		 * problems and the SUSV3 standards body should
604 		 * have made the behavior of clock_nanosleep() be
605 		 * implementation-defined in such a case rather than
606 		 * being specific about honoring the new system time.
607 		 * Standards bodies are filled with fools and idiots.
608 		 */
609 		abstime_to_reltime(clock_id, rqtp, &reltime);
610 		if (reltime.tv_sec != 0 || reltime.tv_nsec != 0)
611 			goto restart;
612 	}
613 	return (error);
614 }
615 
616 #pragma weak sleep = _sleep
617 unsigned int
618 _sleep(unsigned int sec)
619 {
620 	unsigned int rem = 0;
621 	int error;
622 	timespec_t ts;
623 	timespec_t tsr;
624 
625 	ts.tv_sec = (time_t)sec;
626 	ts.tv_nsec = 0;
627 	PROLOGUE
628 	error = __nanosleep(&ts, &tsr);
629 	EPILOGUE
630 	if (error == EINTR) {
631 		rem = (unsigned int)tsr.tv_sec;
632 		if (tsr.tv_nsec >= NANOSEC / 2)
633 			rem++;
634 	}
635 	return (rem);
636 }
637 
638 #pragma weak usleep = _usleep
639 int
640 _usleep(useconds_t usec)
641 {
642 	timespec_t ts;
643 
644 	ts.tv_sec = usec / MICROSEC;
645 	ts.tv_nsec = (long)(usec % MICROSEC) * 1000;
646 	PROLOGUE
647 	(void) __nanosleep(&ts, NULL);
648 	EPILOGUE
649 	return (0);
650 }
651 
652 int
653 close(int fildes)
654 {
655 	extern void _aio_close(int);
656 	extern int _close(int);
657 	int rv;
658 
659 	_aio_close(fildes);
660 	PERFORM(_close(fildes))
661 }
662 
663 int
664 creat(const char *path, mode_t mode)
665 {
666 	extern int _creat(const char *, mode_t);
667 	int rv;
668 
669 	PERFORM(_creat(path, mode))
670 }
671 
672 #if !defined(_LP64)
673 int
674 creat64(const char *path, mode_t mode)
675 {
676 	extern int _creat64(const char *, mode_t);
677 	int rv;
678 
679 	PERFORM(_creat64(path, mode))
680 }
681 #endif	/* !_LP64 */
682 
683 int
684 fcntl(int fildes, int cmd, ...)
685 {
686 	extern int _fcntl(int, int, ...);
687 	intptr_t arg;
688 	int rv;
689 	va_list ap;
690 
691 	va_start(ap, cmd);
692 	arg = va_arg(ap, intptr_t);
693 	va_end(ap);
694 	if (cmd != F_SETLKW)
695 		return (_fcntl(fildes, cmd, arg));
696 	PERFORM(_fcntl(fildes, cmd, arg))
697 }
698 
699 int
700 fsync(int fildes)
701 {
702 	extern int _fsync(int);
703 	int rv;
704 
705 	PERFORM(_fsync(fildes))
706 }
707 
708 int
709 lockf(int fildes, int function, off_t size)
710 {
711 	extern int _lockf(int, int, off_t);
712 	int rv;
713 
714 	PERFORM(_lockf(fildes, function, size))
715 }
716 
717 #if !defined(_LP64)
718 int
719 lockf64(int fildes, int function, off64_t size)
720 {
721 	extern int _lockf64(int, int, off64_t);
722 	int rv;
723 
724 	PERFORM(_lockf64(fildes, function, size))
725 }
726 #endif	/* !_LP64 */
727 
728 ssize_t
729 msgrcv(int msqid, void *msgp, size_t msgsz, long msgtyp, int msgflg)
730 {
731 	extern ssize_t _msgrcv(int, void *, size_t, long, int);
732 	ssize_t rv;
733 
734 	PERFORM(_msgrcv(msqid, msgp, msgsz, msgtyp, msgflg))
735 }
736 
737 int
738 msgsnd(int msqid, const void *msgp, size_t msgsz, int msgflg)
739 {
740 	extern int _msgsnd(int, const void *, size_t, int);
741 	int rv;
742 
743 	PERFORM(_msgsnd(msqid, msgp, msgsz, msgflg))
744 }
745 
746 int
747 msync(caddr_t addr, size_t len, int flags)
748 {
749 	extern int _msync(caddr_t, size_t, int);
750 	int rv;
751 
752 	PERFORM(_msync(addr, len, flags))
753 }
754 
755 int
756 open(const char *path, int oflag, ...)
757 {
758 	extern int _open(const char *, int, ...);
759 	mode_t mode;
760 	int rv;
761 	va_list ap;
762 
763 	va_start(ap, oflag);
764 	mode = va_arg(ap, mode_t);
765 	va_end(ap);
766 	PERFORM(_open(path, oflag, mode))
767 }
768 
769 #if !defined(_LP64)
770 int
771 open64(const char *path, int oflag, ...)
772 {
773 	extern int _open64(const char *, int, ...);
774 	mode_t mode;
775 	int rv;
776 	va_list ap;
777 
778 	va_start(ap, oflag);
779 	mode = va_arg(ap, mode_t);
780 	va_end(ap);
781 	PERFORM(_open64(path, oflag, mode))
782 }
783 #endif	/* !_LP64 */
784 
785 int
786 pause(void)
787 {
788 	extern int _pause(void);
789 	int rv;
790 
791 	PERFORM(_pause())
792 }
793 
794 ssize_t
795 pread(int fildes, void *buf, size_t nbyte, off_t offset)
796 {
797 	extern ssize_t _pread(int, void *, size_t, off_t);
798 	ssize_t rv;
799 
800 	PERFORM(_pread(fildes, buf, nbyte, offset))
801 }
802 
803 #if !defined(_LP64)
804 ssize_t
805 pread64(int fildes, void *buf, size_t nbyte, off64_t offset)
806 {
807 	extern ssize_t _pread64(int, void *, size_t, off64_t);
808 	ssize_t rv;
809 
810 	PERFORM(_pread64(fildes, buf, nbyte, offset))
811 }
812 #endif	/* !_LP64 */
813 
814 ssize_t
815 pwrite(int fildes, const void *buf, size_t nbyte, off_t offset)
816 {
817 	extern ssize_t _pwrite(int, const void *, size_t, off_t);
818 	ssize_t rv;
819 
820 	PERFORM(_pwrite(fildes, buf, nbyte, offset))
821 }
822 
823 #if !defined(_LP64)
824 ssize_t
825 pwrite64(int fildes, const void *buf, size_t nbyte, off64_t offset)
826 {
827 	extern ssize_t _pwrite64(int, const void *, size_t, off64_t);
828 	ssize_t rv;
829 
830 	PERFORM(_pwrite64(fildes, buf, nbyte, offset))
831 }
832 #endif	/* !_LP64 */
833 
834 ssize_t
835 readv(int fildes, const struct iovec *iov, int iovcnt)
836 {
837 	extern ssize_t _readv(int, const struct iovec *, int);
838 	ssize_t rv;
839 
840 	PERFORM(_readv(fildes, iov, iovcnt))
841 }
842 
843 int
844 sigpause(int sig)
845 {
846 	extern int _sigpause(int);
847 	int rv;
848 
849 	PERFORM(_sigpause(sig))
850 }
851 
852 #pragma weak sigsuspend = _sigsuspend
853 int
854 _sigsuspend(const sigset_t *set)
855 {
856 	extern int __sigsuspend(const sigset_t *);
857 	int rv;
858 
859 	PROLOGUE_MASK(set)
860 	rv = __sigsuspend(set);
861 	EPILOGUE_MASK
862 	return (rv);
863 }
864 
865 int
866 _pollsys(struct pollfd *fds, nfds_t nfd, const timespec_t *timeout,
867 	const sigset_t *sigmask)
868 {
869 	extern int __pollsys(struct pollfd *, nfds_t, const timespec_t *,
870 		const sigset_t *);
871 	int rv;
872 
873 	PROLOGUE_MASK(sigmask)
874 	rv = __pollsys(fds, nfd, timeout, sigmask);
875 	EPILOGUE_MASK
876 	return (rv);
877 }
878 
879 #pragma weak sigtimedwait = _sigtimedwait
880 int
881 _sigtimedwait(const sigset_t *set, siginfo_t *infop, const timespec_t *timeout)
882 {
883 	extern int __sigtimedwait(const sigset_t *, siginfo_t *,
884 		const timespec_t *);
885 	siginfo_t info;
886 	int sig;
887 
888 	PROLOGUE
889 	sig = __sigtimedwait(set, &info, timeout);
890 	if (sig == SIGCANCEL &&
891 	    (SI_FROMKERNEL(&info) || info.si_code == SI_LWP)) {
892 		do_sigcancel();
893 		errno = EINTR;
894 		sig = -1;
895 	}
896 	EPILOGUE
897 	if (sig != -1 && infop)
898 		(void) _private_memcpy(infop, &info, sizeof (*infop));
899 	return (sig);
900 }
901 
902 #pragma weak sigwait = _sigwait
903 int
904 _sigwait(sigset_t *set)
905 {
906 	return (_sigtimedwait(set, NULL, NULL));
907 }
908 
909 #pragma weak sigwaitinfo = _sigwaitinfo
910 int
911 _sigwaitinfo(const sigset_t *set, siginfo_t *info)
912 {
913 	return (_sigtimedwait(set, info, NULL));
914 }
915 
916 #pragma weak sigqueue = _sigqueue
917 int
918 _sigqueue(pid_t pid, int signo, const union sigval value)
919 {
920 	extern int __sigqueue(pid_t pid, int signo,
921 		/* const union sigval */ void *value, int si_code, int block);
922 	return (__sigqueue(pid, signo, value.sival_ptr, SI_QUEUE, 0));
923 }
924 
925 int
926 tcdrain(int fildes)
927 {
928 	extern int _tcdrain(int);
929 	int rv;
930 
931 	PERFORM(_tcdrain(fildes))
932 }
933 
934 pid_t
935 wait(int *stat_loc)
936 {
937 	extern pid_t _wait(int *);
938 	pid_t rv;
939 
940 	PERFORM(_wait(stat_loc))
941 }
942 
943 pid_t
944 wait3(int *statusp, int options, struct rusage *rusage)
945 {
946 	extern pid_t _wait3(int *, int, struct rusage *);
947 	pid_t rv;
948 
949 	PERFORM(_wait3(statusp, options, rusage))
950 }
951 
952 int
953 waitid(idtype_t idtype, id_t id, siginfo_t *infop, int options)
954 {
955 	extern int _waitid(idtype_t, id_t, siginfo_t *, int);
956 	int rv;
957 
958 	PERFORM(_waitid(idtype, id, infop, options))
959 }
960 
961 /*
962  * waitpid_cancel() is a libc-private symbol for internal use
963  * where cancellation semantics is desired (see system()).
964  */
965 #pragma weak waitpid_cancel = waitpid
966 pid_t
967 waitpid(pid_t pid, int *stat_loc, int options)
968 {
969 	extern pid_t _waitpid(pid_t, int *, int);
970 	pid_t rv;
971 
972 	PERFORM(_waitpid(pid, stat_loc, options))
973 }
974 
975 ssize_t
976 writev(int fildes, const struct iovec *iov, int iovcnt)
977 {
978 	extern ssize_t _writev(int, const struct iovec *, int);
979 	ssize_t rv;
980 
981 	PERFORM(_writev(fildes, iov, iovcnt))
982 }
983