1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2010 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #include "lint.h" 28 #include "thr_uberdata.h" 29 #include <stdarg.h> 30 #include <poll.h> 31 #include <stropts.h> 32 #include <dlfcn.h> 33 #include <wait.h> 34 #include <sys/socket.h> 35 #include <sys/uio.h> 36 #include <sys/file.h> 37 #include <sys/door.h> 38 39 /* 40 * These leading-underbar symbols exist because mistakes were made 41 * in the past that put them into non-SUNWprivate versions of 42 * the libc mapfiles. They should be eliminated, but oh well... 43 */ 44 #pragma weak _fork = fork 45 #pragma weak _read = read 46 #pragma weak _write = write 47 #pragma weak _getmsg = getmsg 48 #pragma weak _getpmsg = getpmsg 49 #pragma weak _putmsg = putmsg 50 #pragma weak _putpmsg = putpmsg 51 #pragma weak _sleep = sleep 52 #pragma weak _close = close 53 #pragma weak _creat = creat 54 #pragma weak _fcntl = fcntl 55 #pragma weak _fsync = fsync 56 #pragma weak _lockf = lockf 57 #pragma weak _msgrcv = msgrcv 58 #pragma weak _msgsnd = msgsnd 59 #pragma weak _msync = msync 60 #pragma weak _open = open 61 #pragma weak _openat = openat 62 #pragma weak _pause = pause 63 #pragma weak _readv = readv 64 #pragma weak _sigpause = sigpause 65 #pragma weak _sigsuspend = sigsuspend 66 #pragma weak _tcdrain = tcdrain 67 #pragma weak _waitid = waitid 68 #pragma weak _writev = writev 69 70 #if !defined(_LP64) 71 #pragma weak _creat64 = creat64 72 #pragma weak _lockf64 = lockf64 73 #pragma weak _open64 = open64 74 #pragma weak _openat64 = openat64 75 #pragma weak _pread64 = pread64 76 #pragma weak _pwrite64 = pwrite64 77 #endif 78 79 /* 80 * These are SUNWprivate, but they are being used by Sun Studio libcollector. 81 */ 82 #pragma weak _fork1 = fork1 83 #pragma weak _forkall = forkall 84 85 /* 86 * atfork_lock protects the pthread_atfork() data structures. 87 * 88 * fork_lock does double-duty. Not only does it (and atfork_lock) 89 * serialize calls to fork() and forkall(), but it also serializes calls 90 * to thr_suspend() and thr_continue() (because fork() and forkall() also 91 * suspend and continue other threads and they want no competition). 92 * 93 * Functions called in dlopen()ed L10N objects can do anything, including 94 * call malloc() and free(). Such calls are not fork-safe when protected 95 * by an ordinary mutex that is acquired in libc's prefork processing 96 * because, with an interposed malloc library present, there would be a 97 * lock ordering violation due to the pthread_atfork() prefork function 98 * in the interposition library acquiring its malloc lock(s) before the 99 * ordinary mutex in libc being acquired by libc's prefork functions. 100 * 101 * Within libc, calls to malloc() and free() are fork-safe if the calls 102 * are made while holding no other libc locks. This covers almost all 103 * of libc's malloc() and free() calls. For those libc code paths, such 104 * as the above-mentioned L10N calls, that require serialization and that 105 * may call malloc() or free(), libc uses callout_lock_enter() to perform 106 * the serialization. This works because callout_lock is not acquired as 107 * part of running the pthread_atfork() prefork handlers (to avoid the 108 * lock ordering violation described above). Rather, it is simply 109 * reinitialized in postfork1_child() to cover the case that some 110 * now-defunct thread might have been suspended while holding it. 111 */ 112 113 void 114 fork_lock_enter(void) 115 { 116 ASSERT(curthread->ul_critical == 0); 117 (void) mutex_lock(&curthread->ul_uberdata->fork_lock); 118 } 119 120 void 121 fork_lock_exit(void) 122 { 123 ASSERT(curthread->ul_critical == 0); 124 (void) mutex_unlock(&curthread->ul_uberdata->fork_lock); 125 } 126 127 /* 128 * Use cancel_safe_mutex_lock() to protect against being cancelled while 129 * holding callout_lock and calling outside of libc (via L10N plugins). 130 * We will honor a pending cancellation request when callout_lock_exit() 131 * is called, by calling cancel_safe_mutex_unlock(). 132 */ 133 void 134 callout_lock_enter(void) 135 { 136 ASSERT(curthread->ul_critical == 0); 137 cancel_safe_mutex_lock(&curthread->ul_uberdata->callout_lock); 138 } 139 140 void 141 callout_lock_exit(void) 142 { 143 ASSERT(curthread->ul_critical == 0); 144 cancel_safe_mutex_unlock(&curthread->ul_uberdata->callout_lock); 145 } 146 147 pid_t 148 forkx(int flags) 149 { 150 ulwp_t *self = curthread; 151 uberdata_t *udp = self->ul_uberdata; 152 pid_t pid; 153 154 if (self->ul_vfork) { 155 /* 156 * We are a child of vfork(); omit all of the fork 157 * logic and go straight to the system call trap. 158 * A vfork() child of a multithreaded parent 159 * must never call fork(). 160 */ 161 if (udp->uberflags.uf_mt) { 162 errno = ENOTSUP; 163 return (-1); 164 } 165 pid = __forkx(flags); 166 if (pid == 0) { /* child */ 167 udp->pid = getpid(); 168 self->ul_vfork = 0; 169 } 170 return (pid); 171 } 172 173 sigoff(self); 174 if (self->ul_fork) { 175 /* 176 * Cannot call fork() from a fork handler. 177 */ 178 sigon(self); 179 errno = EDEADLK; 180 return (-1); 181 } 182 self->ul_fork = 1; 183 184 /* 185 * The functions registered by pthread_atfork() are defined by 186 * the application and its libraries and we must not hold any 187 * internal lmutex_lock()-acquired locks while invoking them. 188 * We hold only udp->atfork_lock to protect the atfork linkages. 189 * If one of these pthread_atfork() functions attempts to fork 190 * or to call pthread_atfork(), libc will detect the error and 191 * fail the call with EDEADLK. Otherwise, the pthread_atfork() 192 * functions are free to do anything they please (except they 193 * will not receive any signals). 194 */ 195 (void) mutex_lock(&udp->atfork_lock); 196 197 /* 198 * Posix (SUSv3) requires fork() to be async-signal-safe. 199 * This cannot be made to happen with fork handlers in place 200 * (they grab locks). To be in nominal compliance, don't run 201 * any fork handlers if we are called within a signal context. 202 * This leaves the child process in a questionable state with 203 * respect to its locks, but at least the parent process does 204 * not become deadlocked due to the calling thread attempting 205 * to acquire a lock that it already owns. 206 */ 207 if (self->ul_siglink == NULL) 208 _prefork_handler(); 209 210 /* 211 * Block every other thread attempting thr_suspend() or thr_continue(). 212 */ 213 (void) mutex_lock(&udp->fork_lock); 214 215 /* 216 * Block all signals. 217 * Just deferring them via sigoff() is not enough. 218 * We have to avoid taking a deferred signal in the child 219 * that was actually sent to the parent before __forkx(). 220 */ 221 block_all_signals(self); 222 223 /* 224 * This suspends all threads but this one, leaving them 225 * suspended outside of any critical regions in the library. 226 * Thus, we are assured that no lmutex_lock()-acquired library 227 * locks are held while we invoke fork() from the current thread. 228 */ 229 suspend_fork(); 230 231 pid = __forkx(flags); 232 233 if (pid == 0) { /* child */ 234 /* 235 * Clear our schedctl pointer. 236 * Discard any deferred signal that was sent to the parent. 237 * Because we blocked all signals before __forkx(), a 238 * deferred signal cannot have been taken by the child. 239 */ 240 self->ul_schedctl_called = NULL; 241 self->ul_schedctl = NULL; 242 self->ul_cursig = 0; 243 self->ul_siginfo.si_signo = 0; 244 udp->pid = getpid(); 245 /* reset the library's data structures to reflect one thread */ 246 unregister_locks(); 247 postfork1_child(); 248 restore_signals(self); 249 (void) mutex_unlock(&udp->fork_lock); 250 if (self->ul_siglink == NULL) 251 _postfork_child_handler(); 252 } else { 253 /* restart all threads that were suspended for fork() */ 254 continue_fork(0); 255 restore_signals(self); 256 (void) mutex_unlock(&udp->fork_lock); 257 if (self->ul_siglink == NULL) 258 _postfork_parent_handler(); 259 } 260 261 (void) mutex_unlock(&udp->atfork_lock); 262 self->ul_fork = 0; 263 sigon(self); 264 265 return (pid); 266 } 267 268 /* 269 * fork() is fork1() for both Posix threads and Solaris threads. 270 * The forkall() interface exists for applications that require 271 * the semantics of replicating all threads. 272 */ 273 #pragma weak fork1 = fork 274 pid_t 275 fork(void) 276 { 277 return (forkx(0)); 278 } 279 280 /* 281 * Much of the logic here is the same as in forkx(). 282 * See the comments in forkx(), above. 283 */ 284 pid_t 285 forkallx(int flags) 286 { 287 ulwp_t *self = curthread; 288 uberdata_t *udp = self->ul_uberdata; 289 pid_t pid; 290 291 if (self->ul_vfork) { 292 if (udp->uberflags.uf_mt) { 293 errno = ENOTSUP; 294 return (-1); 295 } 296 pid = __forkallx(flags); 297 if (pid == 0) { /* child */ 298 udp->pid = getpid(); 299 self->ul_vfork = 0; 300 } 301 return (pid); 302 } 303 304 sigoff(self); 305 if (self->ul_fork) { 306 sigon(self); 307 errno = EDEADLK; 308 return (-1); 309 } 310 self->ul_fork = 1; 311 (void) mutex_lock(&udp->atfork_lock); 312 (void) mutex_lock(&udp->fork_lock); 313 block_all_signals(self); 314 suspend_fork(); 315 316 pid = __forkallx(flags); 317 318 if (pid == 0) { 319 self->ul_schedctl_called = NULL; 320 self->ul_schedctl = NULL; 321 self->ul_cursig = 0; 322 self->ul_siginfo.si_signo = 0; 323 udp->pid = getpid(); 324 unregister_locks(); 325 continue_fork(1); 326 } else { 327 continue_fork(0); 328 } 329 restore_signals(self); 330 (void) mutex_unlock(&udp->fork_lock); 331 (void) mutex_unlock(&udp->atfork_lock); 332 self->ul_fork = 0; 333 sigon(self); 334 335 return (pid); 336 } 337 338 pid_t 339 forkall(void) 340 { 341 return (forkallx(0)); 342 } 343 344 /* 345 * For the implementation of cancellation at cancellation points. 346 */ 347 #define PROLOGUE \ 348 { \ 349 ulwp_t *self = curthread; \ 350 int nocancel = \ 351 (self->ul_vfork | self->ul_nocancel | self->ul_libc_locks | \ 352 self->ul_critical | self->ul_sigdefer); \ 353 int abort = 0; \ 354 if (nocancel == 0) { \ 355 self->ul_save_async = self->ul_cancel_async; \ 356 if (!self->ul_cancel_disabled) { \ 357 self->ul_cancel_async = 1; \ 358 if (self->ul_cancel_pending) \ 359 pthread_exit(PTHREAD_CANCELED); \ 360 } \ 361 self->ul_sp = stkptr(); \ 362 } else if (self->ul_cancel_pending && \ 363 !self->ul_cancel_disabled) { \ 364 set_cancel_eintr_flag(self); \ 365 abort = 1; \ 366 } 367 368 #define EPILOGUE \ 369 if (nocancel == 0) { \ 370 self->ul_sp = 0; \ 371 self->ul_cancel_async = self->ul_save_async; \ 372 } \ 373 } 374 375 /* 376 * Perform the body of the action required by most of the cancelable 377 * function calls. The return(function_call) part is to allow the 378 * compiler to make the call be executed with tail recursion, which 379 * saves a register window on sparc and slightly (not much) improves 380 * the code for x86/x64 compilations. 381 */ 382 #define PERFORM(function_call) \ 383 PROLOGUE \ 384 if (abort) { \ 385 *self->ul_errnop = EINTR; \ 386 return (-1); \ 387 } \ 388 if (nocancel) \ 389 return (function_call); \ 390 rv = function_call; \ 391 EPILOGUE \ 392 return (rv); 393 394 /* 395 * Specialized prologue for sigsuspend() and pollsys(). 396 * These system calls pass a signal mask to the kernel. 397 * The kernel replaces the thread's signal mask with the 398 * temporary mask before the thread goes to sleep. If 399 * a signal is received, the signal handler will execute 400 * with the temporary mask, as modified by the sigaction 401 * for the particular signal. 402 * 403 * We block all signals until we reach the kernel with the 404 * temporary mask. This eliminates race conditions with 405 * setting the signal mask while signals are being posted. 406 */ 407 #define PROLOGUE_MASK(sigmask) \ 408 { \ 409 ulwp_t *self = curthread; \ 410 int nocancel = \ 411 (self->ul_vfork | self->ul_nocancel | self->ul_libc_locks | \ 412 self->ul_critical | self->ul_sigdefer); \ 413 if (!self->ul_vfork) { \ 414 if (sigmask) { \ 415 block_all_signals(self); \ 416 self->ul_tmpmask = *sigmask; \ 417 delete_reserved_signals(&self->ul_tmpmask); \ 418 self->ul_sigsuspend = 1; \ 419 } \ 420 if (nocancel == 0) { \ 421 self->ul_save_async = self->ul_cancel_async; \ 422 if (!self->ul_cancel_disabled) { \ 423 self->ul_cancel_async = 1; \ 424 if (self->ul_cancel_pending) { \ 425 if (self->ul_sigsuspend) { \ 426 self->ul_sigsuspend = 0;\ 427 restore_signals(self); \ 428 } \ 429 pthread_exit(PTHREAD_CANCELED); \ 430 } \ 431 } \ 432 self->ul_sp = stkptr(); \ 433 } \ 434 } 435 436 /* 437 * If a signal is taken, we return from the system call wrapper with 438 * our original signal mask restored (see code in call_user_handler()). 439 * If not (self->ul_sigsuspend is still non-zero), we must restore our 440 * original signal mask ourself. 441 */ 442 #define EPILOGUE_MASK \ 443 if (nocancel == 0) { \ 444 self->ul_sp = 0; \ 445 self->ul_cancel_async = self->ul_save_async; \ 446 } \ 447 if (self->ul_sigsuspend) { \ 448 self->ul_sigsuspend = 0; \ 449 restore_signals(self); \ 450 } \ 451 } 452 453 /* 454 * Cancellation prologue and epilogue functions, 455 * for cancellation points too complex to include here. 456 */ 457 void 458 _cancel_prologue(void) 459 { 460 ulwp_t *self = curthread; 461 462 self->ul_cancel_prologue = 463 (self->ul_vfork | self->ul_nocancel | self->ul_libc_locks | 464 self->ul_critical | self->ul_sigdefer) != 0; 465 if (self->ul_cancel_prologue == 0) { 466 self->ul_save_async = self->ul_cancel_async; 467 if (!self->ul_cancel_disabled) { 468 self->ul_cancel_async = 1; 469 if (self->ul_cancel_pending) 470 pthread_exit(PTHREAD_CANCELED); 471 } 472 self->ul_sp = stkptr(); 473 } else if (self->ul_cancel_pending && 474 !self->ul_cancel_disabled) { 475 set_cancel_eintr_flag(self); 476 } 477 } 478 479 void 480 _cancel_epilogue(void) 481 { 482 ulwp_t *self = curthread; 483 484 if (self->ul_cancel_prologue == 0) { 485 self->ul_sp = 0; 486 self->ul_cancel_async = self->ul_save_async; 487 } 488 } 489 490 /* 491 * Called from _thrp_join() (thr_join() is a cancellation point) 492 */ 493 int 494 lwp_wait(thread_t tid, thread_t *found) 495 { 496 int error; 497 498 PROLOGUE 499 if (abort) 500 return (EINTR); 501 while ((error = __lwp_wait(tid, found)) == EINTR && !cancel_active()) 502 continue; 503 EPILOGUE 504 return (error); 505 } 506 507 ssize_t 508 read(int fd, void *buf, size_t size) 509 { 510 extern ssize_t __read(int, void *, size_t); 511 ssize_t rv; 512 513 PERFORM(__read(fd, buf, size)) 514 } 515 516 ssize_t 517 write(int fd, const void *buf, size_t size) 518 { 519 extern ssize_t __write(int, const void *, size_t); 520 ssize_t rv; 521 522 PERFORM(__write(fd, buf, size)) 523 } 524 525 int 526 getmsg(int fd, struct strbuf *ctlptr, struct strbuf *dataptr, 527 int *flagsp) 528 { 529 extern int __getmsg(int, struct strbuf *, struct strbuf *, int *); 530 int rv; 531 532 PERFORM(__getmsg(fd, ctlptr, dataptr, flagsp)) 533 } 534 535 int 536 getpmsg(int fd, struct strbuf *ctlptr, struct strbuf *dataptr, 537 int *bandp, int *flagsp) 538 { 539 extern int __getpmsg(int, struct strbuf *, struct strbuf *, 540 int *, int *); 541 int rv; 542 543 PERFORM(__getpmsg(fd, ctlptr, dataptr, bandp, flagsp)) 544 } 545 546 int 547 putmsg(int fd, const struct strbuf *ctlptr, 548 const struct strbuf *dataptr, int flags) 549 { 550 extern int __putmsg(int, const struct strbuf *, 551 const struct strbuf *, int); 552 int rv; 553 554 PERFORM(__putmsg(fd, ctlptr, dataptr, flags)) 555 } 556 557 int 558 __xpg4_putmsg(int fd, const struct strbuf *ctlptr, 559 const struct strbuf *dataptr, int flags) 560 { 561 extern int __putmsg(int, const struct strbuf *, 562 const struct strbuf *, int); 563 int rv; 564 565 PERFORM(__putmsg(fd, ctlptr, dataptr, flags|MSG_XPG4)) 566 } 567 568 int 569 putpmsg(int fd, const struct strbuf *ctlptr, 570 const struct strbuf *dataptr, int band, int flags) 571 { 572 extern int __putpmsg(int, const struct strbuf *, 573 const struct strbuf *, int, int); 574 int rv; 575 576 PERFORM(__putpmsg(fd, ctlptr, dataptr, band, flags)) 577 } 578 579 int 580 __xpg4_putpmsg(int fd, const struct strbuf *ctlptr, 581 const struct strbuf *dataptr, int band, int flags) 582 { 583 extern int __putpmsg(int, const struct strbuf *, 584 const struct strbuf *, int, int); 585 int rv; 586 587 PERFORM(__putpmsg(fd, ctlptr, dataptr, band, flags|MSG_XPG4)) 588 } 589 590 int 591 nanosleep(const timespec_t *rqtp, timespec_t *rmtp) 592 { 593 int error; 594 595 PROLOGUE 596 error = abort? EINTR : __nanosleep(rqtp, rmtp); 597 EPILOGUE 598 if (error) { 599 errno = error; 600 return (-1); 601 } 602 return (0); 603 } 604 605 int 606 clock_nanosleep(clockid_t clock_id, int flags, 607 const timespec_t *rqtp, timespec_t *rmtp) 608 { 609 timespec_t reltime; 610 hrtime_t start; 611 hrtime_t rqlapse; 612 hrtime_t lapse; 613 int error; 614 615 switch (clock_id) { 616 case CLOCK_VIRTUAL: 617 case CLOCK_PROCESS_CPUTIME_ID: 618 case CLOCK_THREAD_CPUTIME_ID: 619 return (ENOTSUP); 620 case CLOCK_REALTIME: 621 case CLOCK_HIGHRES: 622 break; 623 default: 624 return (EINVAL); 625 } 626 if (flags & TIMER_ABSTIME) { 627 abstime_to_reltime(clock_id, rqtp, &reltime); 628 rmtp = NULL; 629 } else { 630 reltime = *rqtp; 631 if (clock_id == CLOCK_HIGHRES) 632 start = gethrtime(); 633 } 634 restart: 635 PROLOGUE 636 error = abort? EINTR : __nanosleep(&reltime, rmtp); 637 EPILOGUE 638 if (error == 0 && clock_id == CLOCK_HIGHRES) { 639 /* 640 * Don't return yet if we didn't really get a timeout. 641 * This can happen if we return because someone resets 642 * the system clock. 643 */ 644 if (flags & TIMER_ABSTIME) { 645 if ((hrtime_t)(uint32_t)rqtp->tv_sec * NANOSEC + 646 rqtp->tv_nsec > gethrtime()) { 647 abstime_to_reltime(clock_id, rqtp, &reltime); 648 goto restart; 649 } 650 } else { 651 rqlapse = (hrtime_t)(uint32_t)rqtp->tv_sec * NANOSEC + 652 rqtp->tv_nsec; 653 lapse = gethrtime() - start; 654 if (rqlapse > lapse) { 655 hrt2ts(rqlapse - lapse, &reltime); 656 goto restart; 657 } 658 } 659 } 660 if (error == 0 && clock_id == CLOCK_REALTIME && 661 (flags & TIMER_ABSTIME)) { 662 /* 663 * Don't return yet just because someone reset the 664 * system clock. Recompute the new relative time 665 * and reissue the nanosleep() call if necessary. 666 * 667 * Resetting the system clock causes all sorts of 668 * problems and the SUSV3 standards body should 669 * have made the behavior of clock_nanosleep() be 670 * implementation-defined in such a case rather than 671 * being specific about honoring the new system time. 672 * Standards bodies are filled with fools and idiots. 673 */ 674 abstime_to_reltime(clock_id, rqtp, &reltime); 675 if (reltime.tv_sec != 0 || reltime.tv_nsec != 0) 676 goto restart; 677 } 678 return (error); 679 } 680 681 unsigned int 682 sleep(unsigned int sec) 683 { 684 unsigned int rem = 0; 685 timespec_t ts; 686 timespec_t tsr; 687 688 ts.tv_sec = (time_t)sec; 689 ts.tv_nsec = 0; 690 if (nanosleep(&ts, &tsr) == -1 && errno == EINTR) { 691 rem = (unsigned int)tsr.tv_sec; 692 if (tsr.tv_nsec >= NANOSEC / 2) 693 rem++; 694 } 695 return (rem); 696 } 697 698 int 699 usleep(useconds_t usec) 700 { 701 timespec_t ts; 702 703 ts.tv_sec = usec / MICROSEC; 704 ts.tv_nsec = (long)(usec % MICROSEC) * 1000; 705 (void) nanosleep(&ts, NULL); 706 return (0); 707 } 708 709 int 710 close(int fildes) 711 { 712 extern void _aio_close(int); 713 extern int __close(int); 714 int rv; 715 716 /* 717 * If we call _aio_close() while in a critical region, 718 * we will draw an ASSERT() failure, so don't do it. 719 * No calls to close() from within libc need _aio_close(); 720 * only the application's calls to close() need this, 721 * and such calls are never from a libc critical region. 722 */ 723 if (curthread->ul_critical == 0) 724 _aio_close(fildes); 725 PERFORM(__close(fildes)) 726 } 727 728 int 729 door_call(int d, door_arg_t *params) 730 { 731 extern int __door_call(int, door_arg_t *); 732 int rv; 733 734 PERFORM(__door_call(d, params)) 735 } 736 737 int 738 fcntl(int fildes, int cmd, ...) 739 { 740 extern int __fcntl(int, int, ...); 741 intptr_t arg; 742 int rv; 743 va_list ap; 744 745 va_start(ap, cmd); 746 arg = va_arg(ap, intptr_t); 747 va_end(ap); 748 if (cmd != F_SETLKW) 749 return (__fcntl(fildes, cmd, arg)); 750 PERFORM(__fcntl(fildes, cmd, arg)) 751 } 752 753 int 754 fdatasync(int fildes) 755 { 756 extern int __fdsync(int, int); 757 int rv; 758 759 PERFORM(__fdsync(fildes, FDSYNC)) 760 } 761 762 int 763 fsync(int fildes) 764 { 765 extern int __fdsync(int, int); 766 int rv; 767 768 PERFORM(__fdsync(fildes, FSYNC)) 769 } 770 771 int 772 lockf(int fildes, int function, off_t size) 773 { 774 extern int __lockf(int, int, off_t); 775 int rv; 776 777 PERFORM(__lockf(fildes, function, size)) 778 } 779 780 #if !defined(_LP64) 781 int 782 lockf64(int fildes, int function, off64_t size) 783 { 784 extern int __lockf64(int, int, off64_t); 785 int rv; 786 787 PERFORM(__lockf64(fildes, function, size)) 788 } 789 #endif /* !_LP64 */ 790 791 ssize_t 792 msgrcv(int msqid, void *msgp, size_t msgsz, long msgtyp, int msgflg) 793 { 794 extern ssize_t __msgrcv(int, void *, size_t, long, int); 795 ssize_t rv; 796 797 PERFORM(__msgrcv(msqid, msgp, msgsz, msgtyp, msgflg)) 798 } 799 800 int 801 msgsnd(int msqid, const void *msgp, size_t msgsz, int msgflg) 802 { 803 extern int __msgsnd(int, const void *, size_t, int); 804 int rv; 805 806 PERFORM(__msgsnd(msqid, msgp, msgsz, msgflg)) 807 } 808 809 int 810 msync(caddr_t addr, size_t len, int flags) 811 { 812 extern int __msync(caddr_t, size_t, int); 813 int rv; 814 815 PERFORM(__msync(addr, len, flags)) 816 } 817 818 int 819 openat(int fd, const char *path, int oflag, ...) 820 { 821 mode_t mode; 822 int rv; 823 va_list ap; 824 825 va_start(ap, oflag); 826 mode = va_arg(ap, mode_t); 827 va_end(ap); 828 PERFORM(__openat(fd, path, oflag, mode)) 829 } 830 831 int 832 open(const char *path, int oflag, ...) 833 { 834 mode_t mode; 835 int rv; 836 va_list ap; 837 838 va_start(ap, oflag); 839 mode = va_arg(ap, mode_t); 840 va_end(ap); 841 PERFORM(__open(path, oflag, mode)) 842 } 843 844 int 845 creat(const char *path, mode_t mode) 846 { 847 return (open(path, O_WRONLY | O_CREAT | O_TRUNC, mode)); 848 } 849 850 #if !defined(_LP64) 851 int 852 openat64(int fd, const char *path, int oflag, ...) 853 { 854 mode_t mode; 855 int rv; 856 va_list ap; 857 858 va_start(ap, oflag); 859 mode = va_arg(ap, mode_t); 860 va_end(ap); 861 PERFORM(__openat64(fd, path, oflag, mode)) 862 } 863 864 int 865 open64(const char *path, int oflag, ...) 866 { 867 mode_t mode; 868 int rv; 869 va_list ap; 870 871 va_start(ap, oflag); 872 mode = va_arg(ap, mode_t); 873 va_end(ap); 874 PERFORM(__open64(path, oflag, mode)) 875 } 876 877 int 878 creat64(const char *path, mode_t mode) 879 { 880 return (open64(path, O_WRONLY | O_CREAT | O_TRUNC, mode)); 881 } 882 #endif /* !_LP64 */ 883 884 int 885 pause(void) 886 { 887 extern int __pause(void); 888 int rv; 889 890 PERFORM(__pause()) 891 } 892 893 ssize_t 894 pread(int fildes, void *buf, size_t nbyte, off_t offset) 895 { 896 extern ssize_t __pread(int, void *, size_t, off_t); 897 ssize_t rv; 898 899 PERFORM(__pread(fildes, buf, nbyte, offset)) 900 } 901 902 #if !defined(_LP64) 903 ssize_t 904 pread64(int fildes, void *buf, size_t nbyte, off64_t offset) 905 { 906 extern ssize_t __pread64(int, void *, size_t, off64_t); 907 ssize_t rv; 908 909 PERFORM(__pread64(fildes, buf, nbyte, offset)) 910 } 911 #endif /* !_LP64 */ 912 913 ssize_t 914 pwrite(int fildes, const void *buf, size_t nbyte, off_t offset) 915 { 916 extern ssize_t __pwrite(int, const void *, size_t, off_t); 917 ssize_t rv; 918 919 PERFORM(__pwrite(fildes, buf, nbyte, offset)) 920 } 921 922 #if !defined(_LP64) 923 ssize_t 924 pwrite64(int fildes, const void *buf, size_t nbyte, off64_t offset) 925 { 926 extern ssize_t __pwrite64(int, const void *, size_t, off64_t); 927 ssize_t rv; 928 929 PERFORM(__pwrite64(fildes, buf, nbyte, offset)) 930 } 931 #endif /* !_LP64 */ 932 933 ssize_t 934 readv(int fildes, const struct iovec *iov, int iovcnt) 935 { 936 extern ssize_t __readv(int, const struct iovec *, int); 937 ssize_t rv; 938 939 PERFORM(__readv(fildes, iov, iovcnt)) 940 } 941 942 int 943 sigpause(int sig) 944 { 945 extern int __sigpause(int); 946 int rv; 947 948 PERFORM(__sigpause(sig)) 949 } 950 951 int 952 sigsuspend(const sigset_t *set) 953 { 954 extern int __sigsuspend(const sigset_t *); 955 int rv; 956 957 PROLOGUE_MASK(set) 958 rv = __sigsuspend(set); 959 EPILOGUE_MASK 960 return (rv); 961 } 962 963 int 964 _pollsys(struct pollfd *fds, nfds_t nfd, const timespec_t *timeout, 965 const sigset_t *sigmask) 966 { 967 extern int __pollsys(struct pollfd *, nfds_t, const timespec_t *, 968 const sigset_t *); 969 int rv; 970 971 PROLOGUE_MASK(sigmask) 972 rv = __pollsys(fds, nfd, timeout, sigmask); 973 EPILOGUE_MASK 974 return (rv); 975 } 976 977 int 978 sigtimedwait(const sigset_t *set, siginfo_t *infop, const timespec_t *timeout) 979 { 980 extern int __sigtimedwait(const sigset_t *, siginfo_t *, 981 const timespec_t *); 982 siginfo_t info; 983 int sig; 984 985 PROLOGUE 986 if (abort) { 987 *self->ul_errnop = EINTR; 988 sig = -1; 989 } else { 990 sig = __sigtimedwait(set, &info, timeout); 991 if (sig == SIGCANCEL && 992 (SI_FROMKERNEL(&info) || info.si_code == SI_LWP)) { 993 do_sigcancel(); 994 *self->ul_errnop = EINTR; 995 sig = -1; 996 } 997 } 998 EPILOGUE 999 if (sig != -1 && infop) 1000 (void) memcpy(infop, &info, sizeof (*infop)); 1001 return (sig); 1002 } 1003 1004 int 1005 sigwait(sigset_t *set) 1006 { 1007 return (sigtimedwait(set, NULL, NULL)); 1008 } 1009 1010 int 1011 sigwaitinfo(const sigset_t *set, siginfo_t *info) 1012 { 1013 return (sigtimedwait(set, info, NULL)); 1014 } 1015 1016 int 1017 sigqueue(pid_t pid, int signo, const union sigval value) 1018 { 1019 extern int __sigqueue(pid_t pid, int signo, 1020 /* const union sigval */ void *value, int si_code, int block); 1021 return (__sigqueue(pid, signo, value.sival_ptr, SI_QUEUE, 0)); 1022 } 1023 1024 int 1025 _so_accept(int sock, struct sockaddr *addr, uint_t *addrlen, int version) 1026 { 1027 extern int __so_accept(int, struct sockaddr *, uint_t *, int); 1028 int rv; 1029 1030 PERFORM(__so_accept(sock, addr, addrlen, version)) 1031 } 1032 1033 int 1034 _so_connect(int sock, struct sockaddr *addr, uint_t addrlen, int version) 1035 { 1036 extern int __so_connect(int, struct sockaddr *, uint_t, int); 1037 int rv; 1038 1039 PERFORM(__so_connect(sock, addr, addrlen, version)) 1040 } 1041 1042 int 1043 _so_recv(int sock, void *buf, size_t len, int flags) 1044 { 1045 extern int __so_recv(int, void *, size_t, int); 1046 int rv; 1047 1048 PERFORM(__so_recv(sock, buf, len, flags)) 1049 } 1050 1051 int 1052 _so_recvfrom(int sock, void *buf, size_t len, int flags, 1053 struct sockaddr *addr, int *addrlen) 1054 { 1055 extern int __so_recvfrom(int, void *, size_t, int, 1056 struct sockaddr *, int *); 1057 int rv; 1058 1059 PERFORM(__so_recvfrom(sock, buf, len, flags, addr, addrlen)) 1060 } 1061 1062 int 1063 _so_recvmsg(int sock, struct msghdr *msg, int flags) 1064 { 1065 extern int __so_recvmsg(int, struct msghdr *, int); 1066 int rv; 1067 1068 PERFORM(__so_recvmsg(sock, msg, flags)) 1069 } 1070 1071 int 1072 _so_send(int sock, const void *buf, size_t len, int flags) 1073 { 1074 extern int __so_send(int, const void *, size_t, int); 1075 int rv; 1076 1077 PERFORM(__so_send(sock, buf, len, flags)) 1078 } 1079 1080 int 1081 _so_sendmsg(int sock, const struct msghdr *msg, int flags) 1082 { 1083 extern int __so_sendmsg(int, const struct msghdr *, int); 1084 int rv; 1085 1086 PERFORM(__so_sendmsg(sock, msg, flags)) 1087 } 1088 1089 int 1090 _so_sendto(int sock, const void *buf, size_t len, int flags, 1091 const struct sockaddr *addr, int *addrlen) 1092 { 1093 extern int __so_sendto(int, const void *, size_t, int, 1094 const struct sockaddr *, int *); 1095 int rv; 1096 1097 PERFORM(__so_sendto(sock, buf, len, flags, addr, addrlen)) 1098 } 1099 1100 int 1101 tcdrain(int fildes) 1102 { 1103 extern int __tcdrain(int); 1104 int rv; 1105 1106 PERFORM(__tcdrain(fildes)) 1107 } 1108 1109 int 1110 waitid(idtype_t idtype, id_t id, siginfo_t *infop, int options) 1111 { 1112 extern int __waitid(idtype_t, id_t, siginfo_t *, int); 1113 int rv; 1114 1115 if (options & WNOHANG) 1116 return (__waitid(idtype, id, infop, options)); 1117 PERFORM(__waitid(idtype, id, infop, options)) 1118 } 1119 1120 ssize_t 1121 writev(int fildes, const struct iovec *iov, int iovcnt) 1122 { 1123 extern ssize_t __writev(int, const struct iovec *, int); 1124 ssize_t rv; 1125 1126 PERFORM(__writev(fildes, iov, iovcnt)) 1127 } 1128