1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 #include "lint.h" 30 #include "thr_uberdata.h" 31 #include <stdarg.h> 32 #include <poll.h> 33 #include <stropts.h> 34 #include <dlfcn.h> 35 #include <sys/uio.h> 36 37 /* 38 * fork_lock is special -- We can't use lmutex_lock() (and thereby enter 39 * a critical region) because the second thread to reach this point would 40 * become unstoppable and the first thread would hang waiting for the 41 * second thread to stop itself. Therefore we don't use lmutex_lock() in 42 * fork_lock_enter(), but we do defer signals (the other form of concurrency). 43 * 44 * fork_lock_enter() does triple-duty. Not only does it serialize 45 * calls to fork() and forkall(), but it also serializes calls to 46 * thr_suspend() (fork() and forkall() also suspend other threads), 47 * and furthermore it serializes I18N calls to functions in other 48 * dlopen()ed L10N objects that might be calling malloc()/free(). 49 */ 50 51 static void 52 fork_lock_error(const char *who) 53 { 54 char msg[200]; 55 56 (void) strlcpy(msg, "deadlock condition: ", sizeof (msg)); 57 (void) strlcat(msg, who, sizeof (msg)); 58 (void) strlcat(msg, "() called from a fork handler", sizeof (msg)); 59 thread_error(msg); 60 } 61 62 int 63 fork_lock_enter(const char *who) 64 { 65 ulwp_t *self = curthread; 66 uberdata_t *udp = self->ul_uberdata; 67 int error = 0; 68 69 ASSERT(self->ul_critical == 0); 70 sigoff(self); 71 (void) _private_mutex_lock(&udp->fork_lock); 72 while (udp->fork_count) { 73 if (udp->fork_owner == self) { 74 /* 75 * This is like a recursive lock except that we 76 * inform the caller if we have been called from 77 * a fork handler and let it deal with that fact. 78 */ 79 if (self->ul_fork) { 80 /* 81 * We have been called from a fork handler. 82 */ 83 if (who != NULL && 84 udp->uberflags.uf_thread_error_detection) 85 fork_lock_error(who); 86 error = EDEADLK; 87 } 88 break; 89 } 90 ASSERT(self->ul_fork == 0); 91 (void) _cond_wait(&udp->fork_cond, &udp->fork_lock); 92 } 93 udp->fork_owner = self; 94 udp->fork_count++; 95 (void) _private_mutex_unlock(&udp->fork_lock); 96 return (error); 97 } 98 99 void 100 fork_lock_exit(void) 101 { 102 ulwp_t *self = curthread; 103 uberdata_t *udp = self->ul_uberdata; 104 105 ASSERT(self->ul_critical == 0); 106 (void) _private_mutex_lock(&udp->fork_lock); 107 ASSERT(udp->fork_count != 0 && udp->fork_owner == self); 108 if (--udp->fork_count == 0) { 109 udp->fork_owner = NULL; 110 (void) _cond_signal(&udp->fork_cond); 111 } 112 (void) _private_mutex_unlock(&udp->fork_lock); 113 sigon(self); 114 } 115 116 /* 117 * fork() is fork1() for both Posix threads and Solaris threads. 118 * The forkall() interface exists for applications that require 119 * the semantics of replicating all threads. 120 */ 121 #pragma weak fork = _fork1 122 #pragma weak _fork = _fork1 123 #pragma weak fork1 = _fork1 124 pid_t 125 _fork1(void) 126 { 127 ulwp_t *self = curthread; 128 uberdata_t *udp = self->ul_uberdata; 129 pid_t pid; 130 int error; 131 132 if (self->ul_vfork) { 133 /* 134 * We are a child of vfork(); omit all of the fork 135 * logic and go straight to the system call trap. 136 * A vfork() child of a multithreaded parent 137 * must never call fork(). 138 */ 139 if (udp->uberflags.uf_mt) { 140 errno = ENOTSUP; 141 return (-1); 142 } 143 pid = __fork1(); 144 if (pid == 0) { /* child */ 145 udp->pid = _private_getpid(); 146 self->ul_vfork = 0; 147 } 148 return (pid); 149 } 150 151 if ((error = fork_lock_enter("fork")) != 0) { 152 /* 153 * Cannot call fork() from a fork handler. 154 */ 155 fork_lock_exit(); 156 errno = error; 157 return (-1); 158 } 159 self->ul_fork = 1; 160 161 /* 162 * The functions registered by pthread_atfork() are defined by 163 * the application and its libraries and we must not hold any 164 * internal libc locks while invoking them. The fork_lock_enter() 165 * function serializes fork(), thr_suspend(), pthread_atfork() and 166 * dlclose() (which destroys whatever pthread_atfork() functions 167 * the library may have set up). If one of these pthread_atfork() 168 * functions attempts to fork or suspend another thread or call 169 * pthread_atfork() or dlclose a library, it will detect a deadlock 170 * in fork_lock_enter(). Otherwise, the pthread_atfork() functions 171 * are free to do anything they please (except they will not 172 * receive any signals). 173 */ 174 _prefork_handler(); 175 176 /* 177 * Block all signals. 178 * Just deferring them via sigon() is not enough. 179 * We have to avoid taking a deferred signal in the child 180 * that was actually sent to the parent before __fork1(). 181 */ 182 block_all_signals(self); 183 184 /* 185 * This suspends all threads but this one, leaving them 186 * suspended outside of any critical regions in the library. 187 * Thus, we are assured that no library locks are held 188 * while we invoke fork1() from the current thread. 189 */ 190 (void) _private_mutex_lock(&udp->fork_lock); 191 suspend_fork(); 192 (void) _private_mutex_unlock(&udp->fork_lock); 193 194 pid = __fork1(); 195 196 if (pid == 0) { /* child */ 197 /* 198 * Clear our schedctl pointer. 199 * Discard any deferred signal that was sent to the parent. 200 * Because we blocked all signals before __fork1(), a 201 * deferred signal cannot have been taken by the child. 202 */ 203 self->ul_schedctl_called = NULL; 204 self->ul_schedctl = NULL; 205 self->ul_cursig = 0; 206 self->ul_siginfo.si_signo = 0; 207 udp->pid = _private_getpid(); 208 /* reset the library's data structures to reflect one thread */ 209 _postfork1_child(); 210 restore_signals(self); 211 _postfork_child_handler(); 212 } else { 213 /* restart all threads that were suspended for fork1() */ 214 continue_fork(0); 215 restore_signals(self); 216 _postfork_parent_handler(); 217 } 218 219 self->ul_fork = 0; 220 fork_lock_exit(); 221 222 return (pid); 223 } 224 225 /* 226 * Much of the logic here is the same as in fork1(). 227 * See the comments in fork1(), above. 228 */ 229 #pragma weak forkall = _forkall 230 pid_t 231 _forkall(void) 232 { 233 ulwp_t *self = curthread; 234 uberdata_t *udp = self->ul_uberdata; 235 pid_t pid; 236 int error; 237 238 if (self->ul_vfork) { 239 if (udp->uberflags.uf_mt) { 240 errno = ENOTSUP; 241 return (-1); 242 } 243 pid = __forkall(); 244 if (pid == 0) { /* child */ 245 udp->pid = _private_getpid(); 246 self->ul_vfork = 0; 247 } 248 return (pid); 249 } 250 251 if ((error = fork_lock_enter("forkall")) != 0) { 252 fork_lock_exit(); 253 errno = error; 254 return (-1); 255 } 256 self->ul_fork = 1; 257 block_all_signals(self); 258 suspend_fork(); 259 260 pid = __forkall(); 261 262 if (pid == 0) { 263 self->ul_schedctl_called = NULL; 264 self->ul_schedctl = NULL; 265 self->ul_cursig = 0; 266 self->ul_siginfo.si_signo = 0; 267 udp->pid = _private_getpid(); 268 continue_fork(1); 269 } else { 270 continue_fork(0); 271 } 272 restore_signals(self); 273 self->ul_fork = 0; 274 fork_lock_exit(); 275 276 return (pid); 277 } 278 279 /* 280 * Hacks for system calls to provide cancellation 281 * and improve java garbage collection. 282 */ 283 #define PROLOGUE \ 284 { \ 285 ulwp_t *self = curthread; \ 286 int nocancel = (self->ul_vfork | self->ul_nocancel); \ 287 if (nocancel == 0) { \ 288 self->ul_save_async = self->ul_cancel_async; \ 289 if (!self->ul_cancel_disabled) { \ 290 self->ul_cancel_async = 1; \ 291 if (self->ul_cancel_pending) \ 292 _pthread_exit(PTHREAD_CANCELED); \ 293 } \ 294 self->ul_sp = stkptr(); \ 295 } 296 297 #define EPILOGUE \ 298 if (nocancel == 0) { \ 299 self->ul_sp = 0; \ 300 self->ul_cancel_async = self->ul_save_async; \ 301 } \ 302 } 303 304 /* 305 * Perform the body of the action required by most of the cancelable 306 * function calls. The return(function_call) part is to allow the 307 * compiler to make the call be executed with tail recursion, which 308 * saves a register window on sparc and slightly (not much) improves 309 * the code for x86/x64 compilations. 310 */ 311 #define PERFORM(function_call) \ 312 PROLOGUE \ 313 if (nocancel) \ 314 return (function_call); \ 315 rv = function_call; \ 316 EPILOGUE \ 317 return (rv); 318 319 /* 320 * Specialized prologue for sigsuspend() and pollsys(). 321 * These system calls pass a signal mask to the kernel. 322 * The kernel replaces the thread's signal mask with the 323 * temporary mask before the thread goes to sleep. If 324 * a signal is received, the signal handler will execute 325 * with the temporary mask, as modified by the sigaction 326 * for the particular signal. 327 * 328 * We block all signals until we reach the kernel with the 329 * temporary mask. This eliminates race conditions with 330 * setting the signal mask while signals are being posted. 331 */ 332 #define PROLOGUE_MASK(sigmask) \ 333 { \ 334 ulwp_t *self = curthread; \ 335 int nocancel = (self->ul_vfork | self->ul_nocancel); \ 336 if (!self->ul_vfork) { \ 337 if (sigmask) { \ 338 block_all_signals(self); \ 339 self->ul_tmpmask.__sigbits[0] = sigmask->__sigbits[0]; \ 340 self->ul_tmpmask.__sigbits[1] = sigmask->__sigbits[1]; \ 341 delete_reserved_signals(&self->ul_tmpmask); \ 342 self->ul_sigsuspend = 1; \ 343 } \ 344 if (nocancel == 0) { \ 345 self->ul_save_async = self->ul_cancel_async; \ 346 if (!self->ul_cancel_disabled) { \ 347 self->ul_cancel_async = 1; \ 348 if (self->ul_cancel_pending) { \ 349 if (self->ul_sigsuspend) { \ 350 self->ul_sigsuspend = 0;\ 351 restore_signals(self); \ 352 } \ 353 _pthread_exit(PTHREAD_CANCELED);\ 354 } \ 355 } \ 356 self->ul_sp = stkptr(); \ 357 } \ 358 } 359 360 /* 361 * If a signal is taken, we return from the system call wrapper with 362 * our original signal mask restored (see code in call_user_handler()). 363 * If not (self->ul_sigsuspend is still non-zero), we must restore our 364 * original signal mask ourself. 365 */ 366 #define EPILOGUE_MASK \ 367 if (nocancel == 0) { \ 368 self->ul_sp = 0; \ 369 self->ul_cancel_async = self->ul_save_async; \ 370 } \ 371 if (self->ul_sigsuspend) { \ 372 self->ul_sigsuspend = 0; \ 373 restore_signals(self); \ 374 } \ 375 } 376 377 /* 378 * Externally-callable cancellation prologue and epilogue 379 * functions, for cancellation points outside of libc. 380 */ 381 void 382 _cancel_prologue(void) 383 { 384 ulwp_t *self = curthread; 385 386 self->ul_cancel_prologue = (self->ul_vfork | self->ul_nocancel); 387 if (self->ul_cancel_prologue == 0) { 388 self->ul_save_async = self->ul_cancel_async; 389 if (!self->ul_cancel_disabled) { 390 self->ul_cancel_async = 1; 391 if (self->ul_cancel_pending) 392 _pthread_exit(PTHREAD_CANCELED); 393 } 394 self->ul_sp = stkptr(); 395 } 396 } 397 398 void 399 _cancel_epilogue(void) 400 { 401 ulwp_t *self = curthread; 402 403 if (self->ul_cancel_prologue == 0) { 404 self->ul_sp = 0; 405 self->ul_cancel_async = self->ul_save_async; 406 } 407 } 408 409 /* 410 * Called from _thrp_join() (thr_join() is a cancellation point) 411 */ 412 int 413 lwp_wait(thread_t tid, thread_t *found) 414 { 415 int error; 416 417 PROLOGUE 418 while ((error = __lwp_wait(tid, found)) == EINTR) 419 ; 420 EPILOGUE 421 return (error); 422 } 423 424 ssize_t 425 read(int fd, void *buf, size_t size) 426 { 427 extern ssize_t _read(int, void *, size_t); 428 ssize_t rv; 429 430 PERFORM(_read(fd, buf, size)) 431 } 432 433 ssize_t 434 write(int fd, const void *buf, size_t size) 435 { 436 extern ssize_t _write(int, const void *, size_t); 437 ssize_t rv; 438 439 PERFORM(_write(fd, buf, size)) 440 } 441 442 int 443 getmsg(int fd, struct strbuf *ctlptr, struct strbuf *dataptr, 444 int *flagsp) 445 { 446 extern int _getmsg(int, struct strbuf *, struct strbuf *, int *); 447 int rv; 448 449 PERFORM(_getmsg(fd, ctlptr, dataptr, flagsp)) 450 } 451 452 int 453 getpmsg(int fd, struct strbuf *ctlptr, struct strbuf *dataptr, 454 int *bandp, int *flagsp) 455 { 456 extern int _getpmsg(int, struct strbuf *, struct strbuf *, 457 int *, int *); 458 int rv; 459 460 PERFORM(_getpmsg(fd, ctlptr, dataptr, bandp, flagsp)) 461 } 462 463 int 464 putmsg(int fd, const struct strbuf *ctlptr, 465 const struct strbuf *dataptr, int flags) 466 { 467 extern int _putmsg(int, const struct strbuf *, 468 const struct strbuf *, int); 469 int rv; 470 471 PERFORM(_putmsg(fd, ctlptr, dataptr, flags)) 472 } 473 474 int 475 __xpg4_putmsg(int fd, const struct strbuf *ctlptr, 476 const struct strbuf *dataptr, int flags) 477 { 478 extern int _putmsg(int, const struct strbuf *, 479 const struct strbuf *, int); 480 int rv; 481 482 PERFORM(_putmsg(fd, ctlptr, dataptr, flags|MSG_XPG4)) 483 } 484 485 int 486 putpmsg(int fd, const struct strbuf *ctlptr, 487 const struct strbuf *dataptr, int band, int flags) 488 { 489 extern int _putpmsg(int, const struct strbuf *, 490 const struct strbuf *, int, int); 491 int rv; 492 493 PERFORM(_putpmsg(fd, ctlptr, dataptr, band, flags)) 494 } 495 496 int 497 __xpg4_putpmsg(int fd, const struct strbuf *ctlptr, 498 const struct strbuf *dataptr, int band, int flags) 499 { 500 extern int _putpmsg(int, const struct strbuf *, 501 const struct strbuf *, int, int); 502 int rv; 503 504 PERFORM(_putpmsg(fd, ctlptr, dataptr, band, flags|MSG_XPG4)) 505 } 506 507 int 508 __nanosleep(const timespec_t *rqtp, timespec_t *rmtp) 509 { 510 int error; 511 512 PROLOGUE 513 error = ___nanosleep(rqtp, rmtp); 514 EPILOGUE 515 if (error) { 516 errno = error; 517 return (-1); 518 } 519 return (0); 520 } 521 522 int 523 __clock_nanosleep(clockid_t clock_id, int flags, 524 const timespec_t *rqtp, timespec_t *rmtp) 525 { 526 timespec_t reltime; 527 hrtime_t start; 528 hrtime_t rqlapse; 529 hrtime_t lapse; 530 int error; 531 532 switch (clock_id) { 533 case CLOCK_VIRTUAL: 534 case CLOCK_PROCESS_CPUTIME_ID: 535 case CLOCK_THREAD_CPUTIME_ID: 536 return (ENOTSUP); 537 case CLOCK_REALTIME: 538 case CLOCK_HIGHRES: 539 break; 540 default: 541 return (EINVAL); 542 } 543 if (flags & TIMER_ABSTIME) { 544 abstime_to_reltime(clock_id, rqtp, &reltime); 545 rmtp = NULL; 546 } else { 547 reltime = *rqtp; 548 if (clock_id == CLOCK_HIGHRES) 549 start = gethrtime(); 550 } 551 restart: 552 PROLOGUE 553 error = ___nanosleep(&reltime, rmtp); 554 EPILOGUE 555 if (error == 0 && clock_id == CLOCK_HIGHRES) { 556 /* 557 * Don't return yet if we didn't really get a timeout. 558 * This can happen if we return because someone resets 559 * the system clock. 560 */ 561 if (flags & TIMER_ABSTIME) { 562 if ((hrtime_t)(uint32_t)rqtp->tv_sec * NANOSEC + 563 rqtp->tv_nsec > gethrtime()) { 564 abstime_to_reltime(clock_id, rqtp, &reltime); 565 goto restart; 566 } 567 } else { 568 rqlapse = (hrtime_t)(uint32_t)rqtp->tv_sec * NANOSEC + 569 rqtp->tv_nsec; 570 lapse = gethrtime() - start; 571 if (rqlapse > lapse) { 572 hrt2ts(rqlapse - lapse, &reltime); 573 goto restart; 574 } 575 } 576 } 577 if (error == 0 && clock_id == CLOCK_REALTIME && 578 (flags & TIMER_ABSTIME)) { 579 /* 580 * Don't return yet just because someone reset the 581 * system clock. Recompute the new relative time 582 * and reissue the nanosleep() call if necessary. 583 * 584 * Resetting the system clock causes all sorts of 585 * problems and the SUSV3 standards body should 586 * have made the behavior of clock_nanosleep() be 587 * implementation-defined in such a case rather than 588 * being specific about honoring the new system time. 589 * Standards bodies are filled with fools and idiots. 590 */ 591 abstime_to_reltime(clock_id, rqtp, &reltime); 592 if (reltime.tv_sec != 0 || reltime.tv_nsec != 0) 593 goto restart; 594 } 595 return (error); 596 } 597 598 #pragma weak sleep = _sleep 599 unsigned int 600 _sleep(unsigned int sec) 601 { 602 unsigned int rem = 0; 603 int error; 604 timespec_t ts; 605 timespec_t tsr; 606 607 ts.tv_sec = (time_t)sec; 608 ts.tv_nsec = 0; 609 PROLOGUE 610 error = ___nanosleep(&ts, &tsr); 611 EPILOGUE 612 if (error == EINTR) { 613 rem = (unsigned int)tsr.tv_sec; 614 if (tsr.tv_nsec >= NANOSEC / 2) 615 rem++; 616 } 617 return (rem); 618 } 619 620 #pragma weak usleep = _usleep 621 int 622 _usleep(useconds_t usec) 623 { 624 timespec_t ts; 625 626 ts.tv_sec = usec / MICROSEC; 627 ts.tv_nsec = (long)(usec % MICROSEC) * 1000; 628 PROLOGUE 629 (void) ___nanosleep(&ts, NULL); 630 EPILOGUE 631 return (0); 632 } 633 634 int 635 close(int fildes) 636 { 637 extern int _close(int); 638 int rv; 639 640 PERFORM(_close(fildes)) 641 } 642 643 int 644 creat(const char *path, mode_t mode) 645 { 646 extern int _creat(const char *, mode_t); 647 int rv; 648 649 PERFORM(_creat(path, mode)) 650 } 651 652 #if !defined(_LP64) 653 int 654 creat64(const char *path, mode_t mode) 655 { 656 extern int _creat64(const char *, mode_t); 657 int rv; 658 659 PERFORM(_creat64(path, mode)) 660 } 661 #endif /* !_LP64 */ 662 663 int 664 fcntl(int fildes, int cmd, ...) 665 { 666 extern int _fcntl(int, int, ...); 667 intptr_t arg; 668 int rv; 669 va_list ap; 670 671 va_start(ap, cmd); 672 arg = va_arg(ap, intptr_t); 673 va_end(ap); 674 if (cmd != F_SETLKW) 675 return (_fcntl(fildes, cmd, arg)); 676 PERFORM(_fcntl(fildes, cmd, arg)) 677 } 678 679 int 680 fsync(int fildes) 681 { 682 extern int _fsync(int); 683 int rv; 684 685 PERFORM(_fsync(fildes)) 686 } 687 688 int 689 lockf(int fildes, int function, off_t size) 690 { 691 extern int _lockf(int, int, off_t); 692 int rv; 693 694 PERFORM(_lockf(fildes, function, size)) 695 } 696 697 #if !defined(_LP64) 698 int 699 lockf64(int fildes, int function, off64_t size) 700 { 701 extern int _lockf64(int, int, off64_t); 702 int rv; 703 704 PERFORM(_lockf64(fildes, function, size)) 705 } 706 #endif /* !_LP64 */ 707 708 ssize_t 709 msgrcv(int msqid, void *msgp, size_t msgsz, long msgtyp, int msgflg) 710 { 711 extern ssize_t _msgrcv(int, void *, size_t, long, int); 712 ssize_t rv; 713 714 PERFORM(_msgrcv(msqid, msgp, msgsz, msgtyp, msgflg)) 715 } 716 717 int 718 msgsnd(int msqid, const void *msgp, size_t msgsz, int msgflg) 719 { 720 extern int _msgsnd(int, const void *, size_t, int); 721 int rv; 722 723 PERFORM(_msgsnd(msqid, msgp, msgsz, msgflg)) 724 } 725 726 int 727 msync(caddr_t addr, size_t len, int flags) 728 { 729 extern int _msync(caddr_t, size_t, int); 730 int rv; 731 732 PERFORM(_msync(addr, len, flags)) 733 } 734 735 int 736 open(const char *path, int oflag, ...) 737 { 738 extern int _open(const char *, int, ...); 739 mode_t mode; 740 int rv; 741 va_list ap; 742 743 va_start(ap, oflag); 744 mode = va_arg(ap, mode_t); 745 va_end(ap); 746 PERFORM(_open(path, oflag, mode)) 747 } 748 749 #if !defined(_LP64) 750 int 751 open64(const char *path, int oflag, ...) 752 { 753 extern int _open64(const char *, int, ...); 754 mode_t mode; 755 int rv; 756 va_list ap; 757 758 va_start(ap, oflag); 759 mode = va_arg(ap, mode_t); 760 va_end(ap); 761 PERFORM(_open64(path, oflag, mode)) 762 } 763 #endif /* !_LP64 */ 764 765 int 766 pause(void) 767 { 768 extern int _pause(void); 769 int rv; 770 771 PERFORM(_pause()) 772 } 773 774 ssize_t 775 pread(int fildes, void *buf, size_t nbyte, off_t offset) 776 { 777 extern ssize_t _pread(int, void *, size_t, off_t); 778 ssize_t rv; 779 780 PERFORM(_pread(fildes, buf, nbyte, offset)) 781 } 782 783 #if !defined(_LP64) 784 ssize_t 785 pread64(int fildes, void *buf, size_t nbyte, off64_t offset) 786 { 787 extern ssize_t _pread64(int, void *, size_t, off64_t); 788 ssize_t rv; 789 790 PERFORM(_pread64(fildes, buf, nbyte, offset)) 791 } 792 #endif /* !_LP64 */ 793 794 ssize_t 795 pwrite(int fildes, const void *buf, size_t nbyte, off_t offset) 796 { 797 extern ssize_t _pwrite(int, const void *, size_t, off_t); 798 ssize_t rv; 799 800 PERFORM(_pwrite(fildes, buf, nbyte, offset)) 801 } 802 803 #if !defined(_LP64) 804 ssize_t 805 pwrite64(int fildes, const void *buf, size_t nbyte, off64_t offset) 806 { 807 extern ssize_t _pwrite64(int, const void *, size_t, off64_t); 808 ssize_t rv; 809 810 PERFORM(_pwrite64(fildes, buf, nbyte, offset)) 811 } 812 #endif /* !_LP64 */ 813 814 ssize_t 815 readv(int fildes, const struct iovec *iov, int iovcnt) 816 { 817 extern ssize_t _readv(int, const struct iovec *, int); 818 ssize_t rv; 819 820 PERFORM(_readv(fildes, iov, iovcnt)) 821 } 822 823 int 824 sigpause(int sig) 825 { 826 extern int _sigpause(int); 827 int rv; 828 829 PERFORM(_sigpause(sig)) 830 } 831 832 #pragma weak sigsuspend = _sigsuspend 833 int 834 _sigsuspend(const sigset_t *set) 835 { 836 extern int __sigsuspend(const sigset_t *); 837 int rv; 838 839 PROLOGUE_MASK(set) 840 rv = __sigsuspend(set); 841 EPILOGUE_MASK 842 return (rv); 843 } 844 845 int 846 _pollsys(struct pollfd *fds, nfds_t nfd, const timespec_t *timeout, 847 const sigset_t *sigmask) 848 { 849 extern int __pollsys(struct pollfd *, nfds_t, const timespec_t *, 850 const sigset_t *); 851 int rv; 852 853 PROLOGUE_MASK(sigmask) 854 rv = __pollsys(fds, nfd, timeout, sigmask); 855 EPILOGUE_MASK 856 return (rv); 857 } 858 859 int 860 __sigtimedwait(const sigset_t *set, siginfo_t *infop, 861 const timespec_t *timeout) 862 { 863 extern int ___sigtimedwait(const sigset_t *, siginfo_t *, 864 const timespec_t *); 865 siginfo_t info; 866 int sig; 867 868 PROLOGUE 869 sig = ___sigtimedwait(set, &info, timeout); 870 if (sig == SIGCANCEL && 871 (SI_FROMKERNEL(&info) || info.si_code == SI_LWP)) { 872 do_sigcancel(); 873 errno = EINTR; 874 sig = -1; 875 } 876 EPILOGUE 877 if (sig != -1 && infop) 878 (void) _private_memcpy(infop, &info, sizeof (*infop)); 879 return (sig); 880 } 881 882 #pragma weak sigwait = _sigwait 883 int 884 _sigwait(sigset_t *set) 885 { 886 return (__sigtimedwait(set, NULL, NULL)); 887 } 888 889 int 890 tcdrain(int fildes) 891 { 892 extern int _tcdrain(int); 893 int rv; 894 895 PERFORM(_tcdrain(fildes)) 896 } 897 898 pid_t 899 wait(int *stat_loc) 900 { 901 extern pid_t _wait(int *); 902 pid_t rv; 903 904 PERFORM(_wait(stat_loc)) 905 } 906 907 pid_t 908 wait3(int *statusp, int options, struct rusage *rusage) 909 { 910 extern pid_t _wait3(int *, int, struct rusage *); 911 pid_t rv; 912 913 PERFORM(_wait3(statusp, options, rusage)) 914 } 915 916 int 917 waitid(idtype_t idtype, id_t id, siginfo_t *infop, int options) 918 { 919 extern int _waitid(idtype_t, id_t, siginfo_t *, int); 920 int rv; 921 922 PERFORM(_waitid(idtype, id, infop, options)) 923 } 924 925 /* 926 * waitpid_cancel() is a libc-private symbol for internal use 927 * where cancellation semantics is desired (see system()). 928 */ 929 #pragma weak waitpid_cancel = waitpid 930 pid_t 931 waitpid(pid_t pid, int *stat_loc, int options) 932 { 933 extern pid_t _waitpid(pid_t, int *, int); 934 pid_t rv; 935 936 PERFORM(_waitpid(pid, stat_loc, options)) 937 } 938 939 ssize_t 940 writev(int fildes, const struct iovec *iov, int iovcnt) 941 { 942 extern ssize_t _writev(int, const struct iovec *, int); 943 ssize_t rv; 944 945 PERFORM(_writev(fildes, iov, iovcnt)) 946 } 947