xref: /titanic_41/usr/src/lib/libc/port/threads/scalls.c (revision 51dc496f7b9a380c6d839e3ad886ee0256e8baa3)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 #include "lint.h"
30 #include "thr_uberdata.h"
31 #include <stdarg.h>
32 #include <poll.h>
33 #include <stropts.h>
34 #include <dlfcn.h>
35 #include <sys/uio.h>
36 
37 /*
38  * fork_lock is special -- We can't use lmutex_lock() (and thereby enter
39  * a critical region) because the second thread to reach this point would
40  * become unstoppable and the first thread would hang waiting for the
41  * second thread to stop itself.  Therefore we don't use lmutex_lock() in
42  * fork_lock_enter(), but we do defer signals (the other form of concurrency).
43  *
44  * fork_lock_enter() does triple-duty.  Not only does it serialize
45  * calls to fork() and forkall(), but it also serializes calls to
46  * thr_suspend() (fork() and forkall() also suspend other threads),
47  * and furthermore it serializes I18N calls to functions in other
48  * dlopen()ed L10N objects that might be calling malloc()/free().
49  */
50 
51 static void
52 fork_lock_error(const char *who)
53 {
54 	char msg[200];
55 
56 	(void) strlcpy(msg, "deadlock condition: ", sizeof (msg));
57 	(void) strlcat(msg, who, sizeof (msg));
58 	(void) strlcat(msg, "() called from a fork handler", sizeof (msg));
59 	thread_error(msg);
60 }
61 
62 int
63 fork_lock_enter(const char *who)
64 {
65 	ulwp_t *self = curthread;
66 	uberdata_t *udp = self->ul_uberdata;
67 	int error = 0;
68 
69 	ASSERT(self->ul_critical == 0);
70 	sigoff(self);
71 	(void) _private_mutex_lock(&udp->fork_lock);
72 	if (udp->fork_count) {
73 		ASSERT(udp->fork_owner == self);
74 		/*
75 		 * This is a simple recursive lock except that we
76 		 * inform the caller if we have been called from
77 		 * a fork handler and let it deal with that fact.
78 		 */
79 		if (self->ul_fork) {
80 			/*
81 			 * We have been called from a fork handler.
82 			 */
83 			if (who != NULL &&
84 			    udp->uberflags.uf_thread_error_detection)
85 				fork_lock_error(who);
86 			error = EDEADLK;
87 		}
88 	}
89 	udp->fork_owner = self;
90 	udp->fork_count++;
91 	return (error);
92 }
93 
94 void
95 fork_lock_exit(void)
96 {
97 	ulwp_t *self = curthread;
98 	uberdata_t *udp = self->ul_uberdata;
99 
100 	ASSERT(self->ul_critical == 0);
101 	ASSERT(udp->fork_count != 0 && udp->fork_owner == self);
102 	if (--udp->fork_count == 0)
103 		udp->fork_owner = NULL;
104 	(void) _private_mutex_unlock(&udp->fork_lock);
105 	sigon(self);
106 }
107 
108 /*
109  * Note: Instead of making this function static, we reduce it to local
110  * scope in the mapfile. That allows the linker to prevent it from
111  * appearing in the .SUNW_dynsymsort section.
112  */
113 #pragma weak forkx = _private_forkx
114 #pragma weak _forkx = _private_forkx
115 pid_t
116 _private_forkx(int flags)
117 {
118 	ulwp_t *self = curthread;
119 	uberdata_t *udp = self->ul_uberdata;
120 	pid_t pid;
121 	int error;
122 
123 	if (self->ul_vfork) {
124 		/*
125 		 * We are a child of vfork(); omit all of the fork
126 		 * logic and go straight to the system call trap.
127 		 * A vfork() child of a multithreaded parent
128 		 * must never call fork().
129 		 */
130 		if (udp->uberflags.uf_mt) {
131 			errno = ENOTSUP;
132 			return (-1);
133 		}
134 		pid = __forkx(flags);
135 		if (pid == 0) {		/* child */
136 			udp->pid = _private_getpid();
137 			self->ul_vfork = 0;
138 		}
139 		return (pid);
140 	}
141 
142 	if ((error = fork_lock_enter("fork")) != 0) {
143 		/*
144 		 * Cannot call fork() from a fork handler.
145 		 */
146 		fork_lock_exit();
147 		errno = error;
148 		return (-1);
149 	}
150 	self->ul_fork = 1;
151 
152 	/*
153 	 * The functions registered by pthread_atfork() are defined by
154 	 * the application and its libraries and we must not hold any
155 	 * internal libc locks while invoking them.  The fork_lock_enter()
156 	 * function serializes fork(), thr_suspend(), pthread_atfork() and
157 	 * dlclose() (which destroys whatever pthread_atfork() functions
158 	 * the library may have set up).  If one of these pthread_atfork()
159 	 * functions attempts to fork or suspend another thread or call
160 	 * pthread_atfork() or dlclose a library, it will detect a deadlock
161 	 * in fork_lock_enter().  Otherwise, the pthread_atfork() functions
162 	 * are free to do anything they please (except they will not
163 	 * receive any signals).
164 	 */
165 	_prefork_handler();
166 
167 	/*
168 	 * Block all signals.
169 	 * Just deferring them via sigon() is not enough.
170 	 * We have to avoid taking a deferred signal in the child
171 	 * that was actually sent to the parent before __forkx().
172 	 */
173 	block_all_signals(self);
174 
175 	/*
176 	 * This suspends all threads but this one, leaving them
177 	 * suspended outside of any critical regions in the library.
178 	 * Thus, we are assured that no library locks are held
179 	 * while we invoke fork() from the current thread.
180 	 */
181 	suspend_fork();
182 
183 	pid = __forkx(flags);
184 
185 	if (pid == 0) {		/* child */
186 		/*
187 		 * Clear our schedctl pointer.
188 		 * Discard any deferred signal that was sent to the parent.
189 		 * Because we blocked all signals before __forkx(), a
190 		 * deferred signal cannot have been taken by the child.
191 		 */
192 		self->ul_schedctl_called = NULL;
193 		self->ul_schedctl = NULL;
194 		self->ul_cursig = 0;
195 		self->ul_siginfo.si_signo = 0;
196 		udp->pid = _private_getpid();
197 		/* reset the library's data structures to reflect one thread */
198 		unregister_locks();
199 		postfork1_child();
200 		restore_signals(self);
201 		_postfork_child_handler();
202 	} else {
203 		/* restart all threads that were suspended for fork() */
204 		continue_fork(0);
205 		restore_signals(self);
206 		_postfork_parent_handler();
207 	}
208 
209 	self->ul_fork = 0;
210 	fork_lock_exit();
211 
212 	return (pid);
213 }
214 
215 /*
216  * fork() is fork1() for both Posix threads and Solaris threads.
217  * The forkall() interface exists for applications that require
218  * the semantics of replicating all threads.
219  */
220 #pragma weak fork1 = _fork
221 #pragma weak _fork1 = _fork
222 #pragma weak fork = _fork
223 pid_t
224 _fork(void)
225 {
226 	return (_private_forkx(0));
227 }
228 
229 /*
230  * Much of the logic here is the same as in forkx().
231  * See the comments in forkx(), above.
232  */
233 #pragma weak forkallx = _private_forkallx
234 #pragma weak _forkallx = _private_forkallx
235 pid_t
236 _private_forkallx(int flags)
237 {
238 	ulwp_t *self = curthread;
239 	uberdata_t *udp = self->ul_uberdata;
240 	pid_t pid;
241 	int error;
242 
243 	if (self->ul_vfork) {
244 		if (udp->uberflags.uf_mt) {
245 			errno = ENOTSUP;
246 			return (-1);
247 		}
248 		pid = __forkallx(flags);
249 		if (pid == 0) {		/* child */
250 			udp->pid = _private_getpid();
251 			self->ul_vfork = 0;
252 		}
253 		return (pid);
254 	}
255 
256 	if ((error = fork_lock_enter("forkall")) != 0) {
257 		fork_lock_exit();
258 		errno = error;
259 		return (-1);
260 	}
261 	self->ul_fork = 1;
262 	block_all_signals(self);
263 	suspend_fork();
264 
265 	pid = __forkallx(flags);
266 
267 	if (pid == 0) {
268 		self->ul_schedctl_called = NULL;
269 		self->ul_schedctl = NULL;
270 		self->ul_cursig = 0;
271 		self->ul_siginfo.si_signo = 0;
272 		udp->pid = _private_getpid();
273 		unregister_locks();
274 		continue_fork(1);
275 	} else {
276 		continue_fork(0);
277 	}
278 	restore_signals(self);
279 	self->ul_fork = 0;
280 	fork_lock_exit();
281 
282 	return (pid);
283 }
284 
285 #pragma weak forkall = _forkall
286 pid_t
287 _forkall(void)
288 {
289 	return (_private_forkallx(0));
290 }
291 
292 /*
293  * Hacks for system calls to provide cancellation
294  * and improve java garbage collection.
295  */
296 #define	PROLOGUE							\
297 {									\
298 	ulwp_t *self = curthread;					\
299 	int nocancel = (self->ul_vfork | self->ul_nocancel);		\
300 	if (nocancel == 0) {						\
301 		self->ul_save_async = self->ul_cancel_async;		\
302 		if (!self->ul_cancel_disabled) {			\
303 			self->ul_cancel_async = 1;			\
304 			if (self->ul_cancel_pending)			\
305 				_pthread_exit(PTHREAD_CANCELED);	\
306 		}							\
307 		self->ul_sp = stkptr();					\
308 	}
309 
310 #define	EPILOGUE							\
311 	if (nocancel == 0) {						\
312 		self->ul_sp = 0;					\
313 		self->ul_cancel_async = self->ul_save_async;		\
314 	}								\
315 }
316 
317 /*
318  * Perform the body of the action required by most of the cancelable
319  * function calls.  The return(function_call) part is to allow the
320  * compiler to make the call be executed with tail recursion, which
321  * saves a register window on sparc and slightly (not much) improves
322  * the code for x86/x64 compilations.
323  */
324 #define	PERFORM(function_call)						\
325 	PROLOGUE							\
326 	if (nocancel)							\
327 		return (function_call);					\
328 	rv = function_call;						\
329 	EPILOGUE							\
330 	return (rv);
331 
332 /*
333  * Specialized prologue for sigsuspend() and pollsys().
334  * These system calls pass a signal mask to the kernel.
335  * The kernel replaces the thread's signal mask with the
336  * temporary mask before the thread goes to sleep.  If
337  * a signal is received, the signal handler will execute
338  * with the temporary mask, as modified by the sigaction
339  * for the particular signal.
340  *
341  * We block all signals until we reach the kernel with the
342  * temporary mask.  This eliminates race conditions with
343  * setting the signal mask while signals are being posted.
344  */
345 #define	PROLOGUE_MASK(sigmask)						\
346 {									\
347 	ulwp_t *self = curthread;					\
348 	int nocancel = (self->ul_vfork | self->ul_nocancel);		\
349 	if (!self->ul_vfork) {						\
350 		if (sigmask) {						\
351 			block_all_signals(self);			\
352 			self->ul_tmpmask.__sigbits[0] = sigmask->__sigbits[0]; \
353 			self->ul_tmpmask.__sigbits[1] = sigmask->__sigbits[1]; \
354 			delete_reserved_signals(&self->ul_tmpmask);	\
355 			self->ul_sigsuspend = 1;			\
356 		}							\
357 		if (nocancel == 0) {					\
358 			self->ul_save_async = self->ul_cancel_async;	\
359 			if (!self->ul_cancel_disabled) {		\
360 				self->ul_cancel_async = 1;		\
361 				if (self->ul_cancel_pending) {		\
362 					if (self->ul_sigsuspend) {	\
363 						self->ul_sigsuspend = 0;\
364 						restore_signals(self);	\
365 					}				\
366 					_pthread_exit(PTHREAD_CANCELED);\
367 				}					\
368 			}						\
369 			self->ul_sp = stkptr();				\
370 		}							\
371 	}
372 
373 /*
374  * If a signal is taken, we return from the system call wrapper with
375  * our original signal mask restored (see code in call_user_handler()).
376  * If not (self->ul_sigsuspend is still non-zero), we must restore our
377  * original signal mask ourself.
378  */
379 #define	EPILOGUE_MASK							\
380 	if (nocancel == 0) {						\
381 		self->ul_sp = 0;					\
382 		self->ul_cancel_async = self->ul_save_async;		\
383 	}								\
384 	if (self->ul_sigsuspend) {					\
385 		self->ul_sigsuspend = 0;				\
386 		restore_signals(self);					\
387 	}								\
388 }
389 
390 /*
391  * Cancellation prologue and epilogue functions,
392  * for cancellation points too complex to include here.
393  */
394 void
395 _cancel_prologue(void)
396 {
397 	ulwp_t *self = curthread;
398 
399 	self->ul_cancel_prologue = (self->ul_vfork | self->ul_nocancel);
400 	if (self->ul_cancel_prologue == 0) {
401 		self->ul_save_async = self->ul_cancel_async;
402 		if (!self->ul_cancel_disabled) {
403 			self->ul_cancel_async = 1;
404 			if (self->ul_cancel_pending)
405 				_pthread_exit(PTHREAD_CANCELED);
406 		}
407 		self->ul_sp = stkptr();
408 	}
409 }
410 
411 void
412 _cancel_epilogue(void)
413 {
414 	ulwp_t *self = curthread;
415 
416 	if (self->ul_cancel_prologue == 0) {
417 		self->ul_sp = 0;
418 		self->ul_cancel_async = self->ul_save_async;
419 	}
420 }
421 
422 /*
423  * Called from _thrp_join() (thr_join() is a cancellation point)
424  */
425 int
426 lwp_wait(thread_t tid, thread_t *found)
427 {
428 	int error;
429 
430 	PROLOGUE
431 	while ((error = __lwp_wait(tid, found)) == EINTR)
432 		;
433 	EPILOGUE
434 	return (error);
435 }
436 
437 ssize_t
438 read(int fd, void *buf, size_t size)
439 {
440 	extern ssize_t _read(int, void *, size_t);
441 	ssize_t rv;
442 
443 	PERFORM(_read(fd, buf, size))
444 }
445 
446 ssize_t
447 write(int fd, const void *buf, size_t size)
448 {
449 	extern ssize_t _write(int, const void *, size_t);
450 	ssize_t rv;
451 
452 	PERFORM(_write(fd, buf, size))
453 }
454 
455 int
456 getmsg(int fd, struct strbuf *ctlptr, struct strbuf *dataptr,
457 	int *flagsp)
458 {
459 	extern int _getmsg(int, struct strbuf *, struct strbuf *, int *);
460 	int rv;
461 
462 	PERFORM(_getmsg(fd, ctlptr, dataptr, flagsp))
463 }
464 
465 int
466 getpmsg(int fd, struct strbuf *ctlptr, struct strbuf *dataptr,
467 	int *bandp, int *flagsp)
468 {
469 	extern int _getpmsg(int, struct strbuf *, struct strbuf *,
470 		int *, int *);
471 	int rv;
472 
473 	PERFORM(_getpmsg(fd, ctlptr, dataptr, bandp, flagsp))
474 }
475 
476 int
477 putmsg(int fd, const struct strbuf *ctlptr,
478 	const struct strbuf *dataptr, int flags)
479 {
480 	extern int _putmsg(int, const struct strbuf *,
481 		const struct strbuf *, int);
482 	int rv;
483 
484 	PERFORM(_putmsg(fd, ctlptr, dataptr, flags))
485 }
486 
487 int
488 __xpg4_putmsg(int fd, const struct strbuf *ctlptr,
489 	const struct strbuf *dataptr, int flags)
490 {
491 	extern int _putmsg(int, const struct strbuf *,
492 		const struct strbuf *, int);
493 	int rv;
494 
495 	PERFORM(_putmsg(fd, ctlptr, dataptr, flags|MSG_XPG4))
496 }
497 
498 int
499 putpmsg(int fd, const struct strbuf *ctlptr,
500 	const struct strbuf *dataptr, int band, int flags)
501 {
502 	extern int _putpmsg(int, const struct strbuf *,
503 		const struct strbuf *, int, int);
504 	int rv;
505 
506 	PERFORM(_putpmsg(fd, ctlptr, dataptr, band, flags))
507 }
508 
509 int
510 __xpg4_putpmsg(int fd, const struct strbuf *ctlptr,
511 	const struct strbuf *dataptr, int band, int flags)
512 {
513 	extern int _putpmsg(int, const struct strbuf *,
514 		const struct strbuf *, int, int);
515 	int rv;
516 
517 	PERFORM(_putpmsg(fd, ctlptr, dataptr, band, flags|MSG_XPG4))
518 }
519 
520 #pragma weak nanosleep = _nanosleep
521 int
522 _nanosleep(const timespec_t *rqtp, timespec_t *rmtp)
523 {
524 	int error;
525 
526 	PROLOGUE
527 	error = __nanosleep(rqtp, rmtp);
528 	EPILOGUE
529 	if (error) {
530 		errno = error;
531 		return (-1);
532 	}
533 	return (0);
534 }
535 
536 #pragma weak clock_nanosleep = _clock_nanosleep
537 int
538 _clock_nanosleep(clockid_t clock_id, int flags,
539 	const timespec_t *rqtp, timespec_t *rmtp)
540 {
541 	timespec_t reltime;
542 	hrtime_t start;
543 	hrtime_t rqlapse;
544 	hrtime_t lapse;
545 	int error;
546 
547 	switch (clock_id) {
548 	case CLOCK_VIRTUAL:
549 	case CLOCK_PROCESS_CPUTIME_ID:
550 	case CLOCK_THREAD_CPUTIME_ID:
551 		return (ENOTSUP);
552 	case CLOCK_REALTIME:
553 	case CLOCK_HIGHRES:
554 		break;
555 	default:
556 		return (EINVAL);
557 	}
558 	if (flags & TIMER_ABSTIME) {
559 		abstime_to_reltime(clock_id, rqtp, &reltime);
560 		rmtp = NULL;
561 	} else {
562 		reltime = *rqtp;
563 		if (clock_id == CLOCK_HIGHRES)
564 			start = gethrtime();
565 	}
566 restart:
567 	PROLOGUE
568 	error = __nanosleep(&reltime, rmtp);
569 	EPILOGUE
570 	if (error == 0 && clock_id == CLOCK_HIGHRES) {
571 		/*
572 		 * Don't return yet if we didn't really get a timeout.
573 		 * This can happen if we return because someone resets
574 		 * the system clock.
575 		 */
576 		if (flags & TIMER_ABSTIME) {
577 			if ((hrtime_t)(uint32_t)rqtp->tv_sec * NANOSEC +
578 			    rqtp->tv_nsec > gethrtime()) {
579 				abstime_to_reltime(clock_id, rqtp, &reltime);
580 				goto restart;
581 			}
582 		} else {
583 			rqlapse = (hrtime_t)(uint32_t)rqtp->tv_sec * NANOSEC +
584 				rqtp->tv_nsec;
585 			lapse = gethrtime() - start;
586 			if (rqlapse > lapse) {
587 				hrt2ts(rqlapse - lapse, &reltime);
588 				goto restart;
589 			}
590 		}
591 	}
592 	if (error == 0 && clock_id == CLOCK_REALTIME &&
593 	    (flags & TIMER_ABSTIME)) {
594 		/*
595 		 * Don't return yet just because someone reset the
596 		 * system clock.  Recompute the new relative time
597 		 * and reissue the nanosleep() call if necessary.
598 		 *
599 		 * Resetting the system clock causes all sorts of
600 		 * problems and the SUSV3 standards body should
601 		 * have made the behavior of clock_nanosleep() be
602 		 * implementation-defined in such a case rather than
603 		 * being specific about honoring the new system time.
604 		 * Standards bodies are filled with fools and idiots.
605 		 */
606 		abstime_to_reltime(clock_id, rqtp, &reltime);
607 		if (reltime.tv_sec != 0 || reltime.tv_nsec != 0)
608 			goto restart;
609 	}
610 	return (error);
611 }
612 
613 #pragma weak sleep = _sleep
614 unsigned int
615 _sleep(unsigned int sec)
616 {
617 	unsigned int rem = 0;
618 	int error;
619 	timespec_t ts;
620 	timespec_t tsr;
621 
622 	ts.tv_sec = (time_t)sec;
623 	ts.tv_nsec = 0;
624 	PROLOGUE
625 	error = __nanosleep(&ts, &tsr);
626 	EPILOGUE
627 	if (error == EINTR) {
628 		rem = (unsigned int)tsr.tv_sec;
629 		if (tsr.tv_nsec >= NANOSEC / 2)
630 			rem++;
631 	}
632 	return (rem);
633 }
634 
635 #pragma weak usleep = _usleep
636 int
637 _usleep(useconds_t usec)
638 {
639 	timespec_t ts;
640 
641 	ts.tv_sec = usec / MICROSEC;
642 	ts.tv_nsec = (long)(usec % MICROSEC) * 1000;
643 	PROLOGUE
644 	(void) __nanosleep(&ts, NULL);
645 	EPILOGUE
646 	return (0);
647 }
648 
649 int
650 close(int fildes)
651 {
652 	extern void _aio_close(int);
653 	extern int _close(int);
654 	int rv;
655 
656 	_aio_close(fildes);
657 	PERFORM(_close(fildes))
658 }
659 
660 int
661 creat(const char *path, mode_t mode)
662 {
663 	extern int _creat(const char *, mode_t);
664 	int rv;
665 
666 	PERFORM(_creat(path, mode))
667 }
668 
669 #if !defined(_LP64)
670 int
671 creat64(const char *path, mode_t mode)
672 {
673 	extern int _creat64(const char *, mode_t);
674 	int rv;
675 
676 	PERFORM(_creat64(path, mode))
677 }
678 #endif	/* !_LP64 */
679 
680 int
681 fcntl(int fildes, int cmd, ...)
682 {
683 	extern int _fcntl(int, int, ...);
684 	intptr_t arg;
685 	int rv;
686 	va_list ap;
687 
688 	va_start(ap, cmd);
689 	arg = va_arg(ap, intptr_t);
690 	va_end(ap);
691 	if (cmd != F_SETLKW)
692 		return (_fcntl(fildes, cmd, arg));
693 	PERFORM(_fcntl(fildes, cmd, arg))
694 }
695 
696 int
697 fdatasync(int fildes)
698 {
699 	extern int _fdatasync(int);
700 	int rv;
701 
702 	PERFORM(_fdatasync(fildes))
703 }
704 
705 int
706 fsync(int fildes)
707 {
708 	extern int _fsync(int);
709 	int rv;
710 
711 	PERFORM(_fsync(fildes))
712 }
713 
714 int
715 lockf(int fildes, int function, off_t size)
716 {
717 	extern int _lockf(int, int, off_t);
718 	int rv;
719 
720 	PERFORM(_lockf(fildes, function, size))
721 }
722 
723 #if !defined(_LP64)
724 int
725 lockf64(int fildes, int function, off64_t size)
726 {
727 	extern int _lockf64(int, int, off64_t);
728 	int rv;
729 
730 	PERFORM(_lockf64(fildes, function, size))
731 }
732 #endif	/* !_LP64 */
733 
734 ssize_t
735 msgrcv(int msqid, void *msgp, size_t msgsz, long msgtyp, int msgflg)
736 {
737 	extern ssize_t _msgrcv(int, void *, size_t, long, int);
738 	ssize_t rv;
739 
740 	PERFORM(_msgrcv(msqid, msgp, msgsz, msgtyp, msgflg))
741 }
742 
743 int
744 msgsnd(int msqid, const void *msgp, size_t msgsz, int msgflg)
745 {
746 	extern int _msgsnd(int, const void *, size_t, int);
747 	int rv;
748 
749 	PERFORM(_msgsnd(msqid, msgp, msgsz, msgflg))
750 }
751 
752 int
753 msync(caddr_t addr, size_t len, int flags)
754 {
755 	extern int _msync(caddr_t, size_t, int);
756 	int rv;
757 
758 	PERFORM(_msync(addr, len, flags))
759 }
760 
761 int
762 open(const char *path, int oflag, ...)
763 {
764 	extern int _open(const char *, int, ...);
765 	mode_t mode;
766 	int rv;
767 	va_list ap;
768 
769 	va_start(ap, oflag);
770 	mode = va_arg(ap, mode_t);
771 	va_end(ap);
772 	PERFORM(_open(path, oflag, mode))
773 }
774 
775 #if !defined(_LP64)
776 int
777 open64(const char *path, int oflag, ...)
778 {
779 	extern int _open64(const char *, int, ...);
780 	mode_t mode;
781 	int rv;
782 	va_list ap;
783 
784 	va_start(ap, oflag);
785 	mode = va_arg(ap, mode_t);
786 	va_end(ap);
787 	PERFORM(_open64(path, oflag, mode))
788 }
789 #endif	/* !_LP64 */
790 
791 int
792 pause(void)
793 {
794 	extern int _pause(void);
795 	int rv;
796 
797 	PERFORM(_pause())
798 }
799 
800 ssize_t
801 pread(int fildes, void *buf, size_t nbyte, off_t offset)
802 {
803 	extern ssize_t _pread(int, void *, size_t, off_t);
804 	ssize_t rv;
805 
806 	PERFORM(_pread(fildes, buf, nbyte, offset))
807 }
808 
809 #if !defined(_LP64)
810 ssize_t
811 pread64(int fildes, void *buf, size_t nbyte, off64_t offset)
812 {
813 	extern ssize_t _pread64(int, void *, size_t, off64_t);
814 	ssize_t rv;
815 
816 	PERFORM(_pread64(fildes, buf, nbyte, offset))
817 }
818 #endif	/* !_LP64 */
819 
820 ssize_t
821 pwrite(int fildes, const void *buf, size_t nbyte, off_t offset)
822 {
823 	extern ssize_t _pwrite(int, const void *, size_t, off_t);
824 	ssize_t rv;
825 
826 	PERFORM(_pwrite(fildes, buf, nbyte, offset))
827 }
828 
829 #if !defined(_LP64)
830 ssize_t
831 pwrite64(int fildes, const void *buf, size_t nbyte, off64_t offset)
832 {
833 	extern ssize_t _pwrite64(int, const void *, size_t, off64_t);
834 	ssize_t rv;
835 
836 	PERFORM(_pwrite64(fildes, buf, nbyte, offset))
837 }
838 #endif	/* !_LP64 */
839 
840 ssize_t
841 readv(int fildes, const struct iovec *iov, int iovcnt)
842 {
843 	extern ssize_t _readv(int, const struct iovec *, int);
844 	ssize_t rv;
845 
846 	PERFORM(_readv(fildes, iov, iovcnt))
847 }
848 
849 int
850 sigpause(int sig)
851 {
852 	extern int _sigpause(int);
853 	int rv;
854 
855 	PERFORM(_sigpause(sig))
856 }
857 
858 #pragma weak sigsuspend = _sigsuspend
859 int
860 _sigsuspend(const sigset_t *set)
861 {
862 	extern int __sigsuspend(const sigset_t *);
863 	int rv;
864 
865 	PROLOGUE_MASK(set)
866 	rv = __sigsuspend(set);
867 	EPILOGUE_MASK
868 	return (rv);
869 }
870 
871 int
872 _pollsys(struct pollfd *fds, nfds_t nfd, const timespec_t *timeout,
873 	const sigset_t *sigmask)
874 {
875 	extern int __pollsys(struct pollfd *, nfds_t, const timespec_t *,
876 		const sigset_t *);
877 	int rv;
878 
879 	PROLOGUE_MASK(sigmask)
880 	rv = __pollsys(fds, nfd, timeout, sigmask);
881 	EPILOGUE_MASK
882 	return (rv);
883 }
884 
885 #pragma weak sigtimedwait = _sigtimedwait
886 int
887 _sigtimedwait(const sigset_t *set, siginfo_t *infop, const timespec_t *timeout)
888 {
889 	extern int __sigtimedwait(const sigset_t *, siginfo_t *,
890 		const timespec_t *);
891 	siginfo_t info;
892 	int sig;
893 
894 	PROLOGUE
895 	sig = __sigtimedwait(set, &info, timeout);
896 	if (sig == SIGCANCEL &&
897 	    (SI_FROMKERNEL(&info) || info.si_code == SI_LWP)) {
898 		do_sigcancel();
899 		errno = EINTR;
900 		sig = -1;
901 	}
902 	EPILOGUE
903 	if (sig != -1 && infop)
904 		(void) _private_memcpy(infop, &info, sizeof (*infop));
905 	return (sig);
906 }
907 
908 #pragma weak sigwait = _sigwait
909 int
910 _sigwait(sigset_t *set)
911 {
912 	return (_sigtimedwait(set, NULL, NULL));
913 }
914 
915 #pragma weak sigwaitinfo = _sigwaitinfo
916 int
917 _sigwaitinfo(const sigset_t *set, siginfo_t *info)
918 {
919 	return (_sigtimedwait(set, info, NULL));
920 }
921 
922 #pragma weak sigqueue = _sigqueue
923 int
924 _sigqueue(pid_t pid, int signo, const union sigval value)
925 {
926 	extern int __sigqueue(pid_t pid, int signo,
927 		/* const union sigval */ void *value, int si_code, int block);
928 	return (__sigqueue(pid, signo, value.sival_ptr, SI_QUEUE, 0));
929 }
930 
931 int
932 tcdrain(int fildes)
933 {
934 	extern int _tcdrain(int);
935 	int rv;
936 
937 	PERFORM(_tcdrain(fildes))
938 }
939 
940 pid_t
941 wait(int *stat_loc)
942 {
943 	extern pid_t _wait(int *);
944 	pid_t rv;
945 
946 	PERFORM(_wait(stat_loc))
947 }
948 
949 pid_t
950 wait3(int *statusp, int options, struct rusage *rusage)
951 {
952 	extern pid_t _wait3(int *, int, struct rusage *);
953 	pid_t rv;
954 
955 	PERFORM(_wait3(statusp, options, rusage))
956 }
957 
958 int
959 waitid(idtype_t idtype, id_t id, siginfo_t *infop, int options)
960 {
961 	extern int _waitid(idtype_t, id_t, siginfo_t *, int);
962 	int rv;
963 
964 	PERFORM(_waitid(idtype, id, infop, options))
965 }
966 
967 /*
968  * waitpid_cancel() is a libc-private symbol for internal use
969  * where cancellation semantics is desired (see system()).
970  */
971 #pragma weak waitpid_cancel = waitpid
972 pid_t
973 waitpid(pid_t pid, int *stat_loc, int options)
974 {
975 	extern pid_t _waitpid(pid_t, int *, int);
976 	pid_t rv;
977 
978 	PERFORM(_waitpid(pid, stat_loc, options))
979 }
980 
981 ssize_t
982 writev(int fildes, const struct iovec *iov, int iovcnt)
983 {
984 	extern ssize_t _writev(int, const struct iovec *, int);
985 	ssize_t rv;
986 
987 	PERFORM(_writev(fildes, iov, iovcnt))
988 }
989