xref: /titanic_41/usr/src/lib/libc/port/fp/qdivrem.c (revision 56b2bdd1f04d465cfe4a95b88ae5cba5884154e4)
1 /*
2  * Copyright (c) 1992, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This software was developed by the Computer Systems Engineering group
6  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
7  * contributed to Berkeley.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. All advertising materials mentioning features or use of this software
18  *    must display the following acknowledgement:
19  *	This product includes software developed by the University of
20  *	California, Berkeley and its contributors.
21  * 4. Neither the name of the University nor the names of its contributors
22  *    may be used to endorse or promote products derived from this software
23  *    without specific prior written permission.
24  *
25  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35  * SUCH DAMAGE.
36  */
37 
38 #pragma ident	"%Z%%M%	%I%	%E% SMI"
39 
40 /*
41  * Multiprecision divide.  This algorithm is from Knuth vol. 2 (2nd ed),
42  * section 4.3.1, pp. 257--259.
43  */
44 
45 #include "quadint.h"
46 
47 #define	B	(1 << HALF_BITS)	/* digit base */
48 
49 /* Combine two `digits' to make a single two-digit number. */
50 #define	COMBINE(a, b) (((ulong_t)(a) << HALF_BITS) | (b))
51 
52 /* select a type for digits in base B: use unsigned short if they fit */
53 #if ULONG_MAX == 0xffffffff && USHRT_MAX >= 0xffff
54 typedef unsigned short digit;
55 #else
56 typedef ulong_t digit;
57 #endif
58 
59 /*
60  * Shift p[0]..p[len] left `sh' bits, ignoring any bits that
61  * `fall out' the left (there never will be any such anyway).
62  * We may assume len >= 0.  NOTE THAT THIS WRITES len+1 DIGITS.
63  */
64 static void
65 shl(digit *p, int len, int sh)
66 {
67 	int i;
68 
69 	for (i = 0; i < len; i++)
70 		p[i] = LHALF(p[i] << sh) | (p[i + 1] >> (HALF_BITS - sh));
71 	p[i] = LHALF(p[i] << sh);
72 }
73 
74 /*
75  * ___qdivrem(u, v, rem) returns u/v and, optionally, sets *rem to u%v.
76  *
77  * We do this in base 2-sup-HALF_BITS, so that all intermediate products
78  * fit within ulong_t.  As a consequence, the maximum length dividend and
79  * divisor are 4 `digits' in this base (they are shorter if they have
80  * leading zeros).
81  */
82 u_longlong_t
83 ___qdivrem(u_longlong_t uq, u_longlong_t vq, u_longlong_t *arq)
84 {
85 	union uu tmp;
86 	digit *u, *v, *q;
87 	digit v1, v2;
88 	ulong_t qhat, rhat, t;
89 	int m, n, d, j, i;
90 	digit uspace[5], vspace[5], qspace[5];
91 
92 	/*
93 	 * Take care of special cases: divide by zero, and u < v.
94 	 */
95 	if (vq == 0) {
96 		/* divide by zero. */
97 		static volatile const unsigned int zero = 0;
98 
99 		tmp.ul[H] = tmp.ul[L] = 1 / zero;
100 		if (arq)
101 			*arq = uq;
102 		return (tmp.q);
103 	}
104 	if (uq < vq) {
105 		if (arq)
106 			*arq = uq;
107 		return (0);
108 	}
109 	u = &uspace[0];
110 	v = &vspace[0];
111 	q = &qspace[0];
112 
113 	/*
114 	 * Break dividend and divisor into digits in base B, then
115 	 * count leading zeros to determine m and n.  When done, we
116 	 * will have:
117 	 *	u = (u[1]u[2]...u[m+n]) sub B
118 	 *	v = (v[1]v[2]...v[n]) sub B
119 	 *	v[1] != 0
120 	 *	1 < n <= 4 (if n = 1, we use a different division algorithm)
121 	 *	m >= 0 (otherwise u < v, which we already checked)
122 	 *	m + n = 4
123 	 * and thus
124 	 *	m = 4 - n <= 2
125 	 */
126 	tmp.uq = uq;
127 	u[0] = 0;
128 	u[1] = HHALF(tmp.ul[H]);
129 	u[2] = LHALF(tmp.ul[H]);
130 	u[3] = HHALF(tmp.ul[L]);
131 	u[4] = LHALF(tmp.ul[L]);
132 	tmp.uq = vq;
133 	v[1] = HHALF(tmp.ul[H]);
134 	v[2] = LHALF(tmp.ul[H]);
135 	v[3] = HHALF(tmp.ul[L]);
136 	v[4] = LHALF(tmp.ul[L]);
137 	for (n = 4; v[1] == 0; v++) {
138 		if (--n == 1) {
139 			ulong_t rbj;	/* r*B+u[j] (not root boy jim) */
140 			digit q1, q2, q3, q4;
141 
142 			/*
143 			 * Change of plan, per exercise 16.
144 			 *	r = 0;
145 			 *	for j = 1..4:
146 			 *		q[j] = floor((r*B + u[j]) / v),
147 			 *		r = (r*B + u[j]) % v;
148 			 * We unroll this completely here.
149 			 */
150 			t = v[2];	/* nonzero, by definition */
151 			q1 = u[1] / t;
152 			rbj = COMBINE(u[1] % t, u[2]);
153 			q2 = rbj / t;
154 			rbj = COMBINE(rbj % t, u[3]);
155 			q3 = rbj / t;
156 			rbj = COMBINE(rbj % t, u[4]);
157 			q4 = rbj / t;
158 			if (arq)
159 				*arq = rbj % t;
160 			tmp.ul[H] = COMBINE(q1, q2);
161 			tmp.ul[L] = COMBINE(q3, q4);
162 			return (tmp.q);
163 		}
164 	}
165 
166 	/*
167 	 * By adjusting q once we determine m, we can guarantee that
168 	 * there is a complete four-digit quotient at &qspace[1] when
169 	 * we finally stop.
170 	 */
171 	for (m = 4 - n; u[1] == 0; u++)
172 		m--;
173 	for (i = 4 - m; --i >= 0; )
174 		q[i] = 0;
175 	q += 4 - m;
176 
177 	/*
178 	 * Here we run Program D, translated from MIX to C and acquiring
179 	 * a few minor changes.
180 	 *
181 	 * D1: choose multiplier 1 << d to ensure v[1] >= B/2.
182 	 */
183 	d = 0;
184 	for (t = v[1]; t < B / 2; t <<= 1)
185 		d++;
186 	if (d > 0) {
187 		shl(&u[0], m + n, d);		/* u <<= d */
188 		shl(&v[1], n - 1, d);		/* v <<= d */
189 	}
190 	/*
191 	 * D2: j = 0.
192 	 */
193 	j = 0;
194 	v1 = v[1];	/* for D3 -- note that v[1..n] are constant */
195 	v2 = v[2];	/* for D3 */
196 	do {
197 		digit uj0, uj1, uj2;
198 
199 		/*
200 		 * D3: Calculate qhat (\^q, in TeX notation).
201 		 * Let qhat = min((u[j]*B + u[j+1])/v[1], B-1), and
202 		 * let rhat = (u[j]*B + u[j+1]) mod v[1].
203 		 * While rhat < B and v[2]*qhat > rhat*B+u[j+2],
204 		 * decrement qhat and increase rhat correspondingly.
205 		 * Note that if rhat >= B, v[2]*qhat < rhat*B.
206 		 */
207 		uj0 = u[j + 0];	/* for D3 only -- note that u[j+...] change */
208 		uj1 = u[j + 1];	/* for D3 only */
209 		uj2 = u[j + 2];	/* for D3 only */
210 		if (uj0 == v1) {
211 			qhat = B;
212 			rhat = uj1;
213 			goto qhat_too_big;
214 		} else {
215 			ulong_t n = COMBINE(uj0, uj1);
216 			qhat = n / v1;
217 			rhat = n % v1;
218 		}
219 		while (v2 * qhat > COMBINE(rhat, uj2)) {
220 	qhat_too_big:
221 			qhat--;
222 			if ((rhat += v1) >= B)
223 				break;
224 		}
225 		/*
226 		 * D4: Multiply and subtract.
227 		 * The variable `t' holds any borrows across the loop.
228 		 * We split this up so that we do not require v[0] = 0,
229 		 * and to eliminate a final special case.
230 		 */
231 		for (t = 0, i = n; i > 0; i--) {
232 			t = u[i + j] - v[i] * qhat - t;
233 			u[i + j] = LHALF(t);
234 			t = (B - HHALF(t)) & (B - 1);
235 		}
236 		t = u[j] - t;
237 		u[j] = LHALF(t);
238 		/*
239 		 * D5: test remainder.
240 		 * There is a borrow if and only if HHALF(t) is nonzero;
241 		 * in that (rare) case, qhat was too large (by exactly 1).
242 		 * Fix it by adding v[1..n] to u[j..j+n].
243 		 */
244 		if (HHALF(t)) {
245 			qhat--;
246 			for (t = 0, i = n; i > 0; i--) { /* D6: add back. */
247 				t += u[i + j] + v[i];
248 				u[i + j] = LHALF(t);
249 				t = HHALF(t);
250 			}
251 			u[j] = LHALF(u[j] + t);
252 		}
253 		q[j] = (digit)qhat;
254 	} while (++j <= m);		/* D7: loop on j. */
255 
256 	/*
257 	 * If caller wants the remainder, we have to calculate it as
258 	 * u[m..m+n] >> d (this is at most n digits and thus fits in
259 	 * u[m+1..m+n], but we may need more source digits).
260 	 */
261 	if (arq) {
262 		if (d) {
263 			for (i = m + n; i > m; --i)
264 				u[i] = (u[i] >> d) |
265 				    LHALF(u[i - 1] << (HALF_BITS - d));
266 			u[i] = 0;
267 		}
268 		tmp.ul[H] = COMBINE(uspace[1], uspace[2]);
269 		tmp.ul[L] = COMBINE(uspace[3], uspace[4]);
270 		*arq = tmp.q;
271 	}
272 
273 	tmp.ul[H] = COMBINE(qspace[1], qspace[2]);
274 	tmp.ul[L] = COMBINE(qspace[3], qspace[4]);
275 	return (tmp.q);
276 }
277