1 #include "FEATURE/uwin" 2 3 #if !_UWIN || _lib_log1p 4 5 void _STUB_log1p(){} 6 7 #else 8 9 /* 10 * Copyright (c) 1985, 1993 11 * The Regents of the University of California. All rights reserved. 12 * 13 * Redistribution and use in source and binary forms, with or without 14 * modification, are permitted provided that the following conditions 15 * are met: 16 * 1. Redistributions of source code must retain the above copyright 17 * notice, this list of conditions and the following disclaimer. 18 * 2. Redistributions in binary form must reproduce the above copyright 19 * notice, this list of conditions and the following disclaimer in the 20 * documentation and/or other materials provided with the distribution. 21 * 3. Neither the name of the University nor the names of its contributors 22 * may be used to endorse or promote products derived from this software 23 * without specific prior written permission. 24 * 25 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 28 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 35 * SUCH DAMAGE. 36 */ 37 38 #ifndef lint 39 static char sccsid[] = "@(#)log1p.c 8.1 (Berkeley) 6/4/93"; 40 #endif /* not lint */ 41 42 /* LOG1P(x) 43 * RETURN THE LOGARITHM OF 1+x 44 * DOUBLE PRECISION (VAX D FORMAT 56 bits, IEEE DOUBLE 53 BITS) 45 * CODED IN C BY K.C. NG, 1/19/85; 46 * REVISED BY K.C. NG on 2/6/85, 3/7/85, 3/24/85, 4/16/85. 47 * 48 * Required system supported functions: 49 * scalb(x,n) 50 * copysign(x,y) 51 * logb(x) 52 * finite(x) 53 * 54 * Required kernel function: 55 * log__L(z) 56 * 57 * Method : 58 * 1. Argument Reduction: find k and f such that 59 * 1+x = 2^k * (1+f), 60 * where sqrt(2)/2 < 1+f < sqrt(2) . 61 * 62 * 2. Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s) 63 * = 2s + 2/3 s**3 + 2/5 s**5 + ....., 64 * log(1+f) is computed by 65 * 66 * log(1+f) = 2s + s*log__L(s*s) 67 * where 68 * log__L(z) = z*(L1 + z*(L2 + z*(... (L6 + z*L7)...))) 69 * 70 * See log__L() for the values of the coefficients. 71 * 72 * 3. Finally, log(1+x) = k*ln2 + log(1+f). 73 * 74 * Remarks 1. In step 3 n*ln2 will be stored in two floating point numbers 75 * n*ln2hi + n*ln2lo, where ln2hi is chosen such that the last 76 * 20 bits (for VAX D format), or the last 21 bits ( for IEEE 77 * double) is 0. This ensures n*ln2hi is exactly representable. 78 * 2. In step 1, f may not be representable. A correction term c 79 * for f is computed. It follows that the correction term for 80 * f - t (the leading term of log(1+f) in step 2) is c-c*x. We 81 * add this correction term to n*ln2lo to attenuate the error. 82 * 83 * 84 * Special cases: 85 * log1p(x) is NaN with signal if x < -1; log1p(NaN) is NaN with no signal; 86 * log1p(INF) is +INF; log1p(-1) is -INF with signal; 87 * only log1p(0)=0 is exact for finite argument. 88 * 89 * Accuracy: 90 * log1p(x) returns the exact log(1+x) nearly rounded. In a test run 91 * with 1,536,000 random arguments on a VAX, the maximum observed 92 * error was .846 ulps (units in the last place). 93 * 94 * Constants: 95 * The hexadecimal values are the intended ones for the following constants. 96 * The decimal values may be used, provided that the compiler will convert 97 * from decimal to binary accurately enough to produce the hexadecimal values 98 * shown. 99 */ 100 101 #include <errno.h> 102 #include "mathimpl.h" 103 104 vc(ln2hi, 6.9314718055829871446E-1 ,7217,4031,0000,f7d0, 0, .B17217F7D00000) 105 vc(ln2lo, 1.6465949582897081279E-12 ,bcd5,2ce7,d9cc,e4f1, -39, .E7BCD5E4F1D9CC) 106 vc(sqrt2, 1.4142135623730950622E0 ,04f3,40b5,de65,33f9, 1, .B504F333F9DE65) 107 108 ic(ln2hi, 6.9314718036912381649E-1, -1, 1.62E42FEE00000) 109 ic(ln2lo, 1.9082149292705877000E-10, -33, 1.A39EF35793C76) 110 ic(sqrt2, 1.4142135623730951455E0, 0, 1.6A09E667F3BCD) 111 112 #ifdef vccast 113 #define ln2hi vccast(ln2hi) 114 #define ln2lo vccast(ln2lo) 115 #define sqrt2 vccast(sqrt2) 116 #endif 117 118 extern double log1p(x) 119 double x; 120 { 121 const static double zero=0.0, negone= -1.0, one=1.0, 122 half=1.0/2.0, small=1.0E-20; /* 1+small == 1 */ 123 double z,s,t,c; 124 int k; 125 126 #if !defined(vax)&&!defined(tahoe) 127 if(x!=x) return(x); /* x is NaN */ 128 #endif /* !defined(vax)&&!defined(tahoe) */ 129 130 if(finite(x)) { 131 if( x > negone ) { 132 133 /* argument reduction */ 134 if(copysign(x,one)<small) return(x); 135 k=(int)logb(one+x); z=scalb(x,-k); t=scalb(one,-k); 136 if(z+t >= sqrt2 ) 137 { k += 1 ; z *= half; t *= half; } 138 t += negone; x = z + t; 139 c = (t-x)+z ; /* correction term for x */ 140 141 /* compute log(1+x) */ 142 s = x/(2+x); t = x*x*half; 143 c += (k*ln2lo-c*x); 144 z = c+s*(t+__log__L(s*s)); 145 x += (z - t) ; 146 147 return(k*ln2hi+x); 148 } 149 /* end of if (x > negone) */ 150 151 else { 152 #if defined(vax)||defined(tahoe) 153 if ( x == negone ) 154 return (infnan(-ERANGE)); /* -INF */ 155 else 156 return (infnan(EDOM)); /* NaN */ 157 #else /* defined(vax)||defined(tahoe) */ 158 /* x = -1, return -INF with signal */ 159 if ( x == negone ) return( negone/zero ); 160 161 /* negative argument for log, return NaN with signal */ 162 else return ( zero / zero ); 163 #endif /* defined(vax)||defined(tahoe) */ 164 } 165 } 166 /* end of if (finite(x)) */ 167 168 /* log(-INF) is NaN */ 169 else if(x<0) 170 return(zero/zero); 171 172 /* log(+INF) is INF */ 173 else return(x); 174 } 175 176 #endif 177