xref: /titanic_41/usr/src/lib/libast/common/uwin/crypt.c (revision da2e3ebdc1edfbc5028edf1354e7dd2fa69a7968)
1*da2e3ebdSchin #include "FEATURE/uwin"
2*da2e3ebdSchin 
3*da2e3ebdSchin #if !_UWIN || _lib_crypt
4*da2e3ebdSchin 
_STUB_crypt()5*da2e3ebdSchin void _STUB_crypt(){}
6*da2e3ebdSchin 
7*da2e3ebdSchin #else
8*da2e3ebdSchin 
9*da2e3ebdSchin /*
10*da2e3ebdSchin  * Copyright (c) 1989, 1993
11*da2e3ebdSchin  *	The Regents of the University of California.  All rights reserved.
12*da2e3ebdSchin  *
13*da2e3ebdSchin  * This code is derived from software contributed to Berkeley by
14*da2e3ebdSchin  * Tom Truscott.
15*da2e3ebdSchin  *
16*da2e3ebdSchin  * Redistribution and use in source and binary forms, with or without
17*da2e3ebdSchin  * modification, are permitted provided that the following conditions
18*da2e3ebdSchin  * are met:
19*da2e3ebdSchin  * 1. Redistributions of source code must retain the above copyright
20*da2e3ebdSchin  *    notice, this list of conditions and the following disclaimer.
21*da2e3ebdSchin  * 2. Redistributions in binary form must reproduce the above copyright
22*da2e3ebdSchin  *    notice, this list of conditions and the following disclaimer in the
23*da2e3ebdSchin  *    documentation and/or other materials provided with the distribution.
24*da2e3ebdSchin  * 3. Neither the name of the University nor the names of its contributors
25*da2e3ebdSchin  *    may be used to endorse or promote products derived from this software
26*da2e3ebdSchin  *    without specific prior written permission.
27*da2e3ebdSchin  *
28*da2e3ebdSchin  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29*da2e3ebdSchin  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30*da2e3ebdSchin  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31*da2e3ebdSchin  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32*da2e3ebdSchin  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33*da2e3ebdSchin  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34*da2e3ebdSchin  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35*da2e3ebdSchin  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36*da2e3ebdSchin  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37*da2e3ebdSchin  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38*da2e3ebdSchin  * SUCH DAMAGE.
39*da2e3ebdSchin  */
40*da2e3ebdSchin 
41*da2e3ebdSchin #if defined(LIBC_SCCS) && !defined(lint)
42*da2e3ebdSchin static char sccsid[] = "@(#)crypt.c	8.1 (Berkeley) 6/4/93";
43*da2e3ebdSchin #endif /* LIBC_SCCS and not lint */
44*da2e3ebdSchin 
45*da2e3ebdSchin #define crypt		______crypt
46*da2e3ebdSchin #define encrypt		______encrypt
47*da2e3ebdSchin #define setkey		______setkey
48*da2e3ebdSchin 
49*da2e3ebdSchin /* #include <unistd.h> */
50*da2e3ebdSchin #include <stdio.h>
51*da2e3ebdSchin #include <limits.h>
52*da2e3ebdSchin #include <pwd.h>
53*da2e3ebdSchin 
54*da2e3ebdSchin #undef	crypt
55*da2e3ebdSchin #undef	encrypt
56*da2e3ebdSchin #undef	setkey
57*da2e3ebdSchin 
58*da2e3ebdSchin #ifndef _PASSWORD_EFMT1
59*da2e3ebdSchin #define _PASSWORD_EFMT1 '-'
60*da2e3ebdSchin #endif
61*da2e3ebdSchin 
62*da2e3ebdSchin #if defined(__EXPORT__)
63*da2e3ebdSchin #define extern	__EXPORT__
64*da2e3ebdSchin #endif
65*da2e3ebdSchin 
66*da2e3ebdSchin /*
67*da2e3ebdSchin  * UNIX password, and DES, encryption.
68*da2e3ebdSchin  * By Tom Truscott, trt@rti.rti.org,
69*da2e3ebdSchin  * from algorithms by Robert W. Baldwin and James Gillogly.
70*da2e3ebdSchin  *
71*da2e3ebdSchin  * References:
72*da2e3ebdSchin  * "Mathematical Cryptology for Computer Scientists and Mathematicians,"
73*da2e3ebdSchin  * by Wayne Patterson, 1987, ISBN 0-8476-7438-X.
74*da2e3ebdSchin  *
75*da2e3ebdSchin  * "Password Security: A Case History," R. Morris and Ken Thompson,
76*da2e3ebdSchin  * Communications of the ACM, vol. 22, pp. 594-597, Nov. 1979.
77*da2e3ebdSchin  *
78*da2e3ebdSchin  * "DES will be Totally Insecure within Ten Years," M.E. Hellman,
79*da2e3ebdSchin  * IEEE Spectrum, vol. 16, pp. 32-39, July 1979.
80*da2e3ebdSchin  */
81*da2e3ebdSchin 
82*da2e3ebdSchin /* =====  Configuration ==================== */
83*da2e3ebdSchin 
84*da2e3ebdSchin /*
85*da2e3ebdSchin  * define "MUST_ALIGN" if your compiler cannot load/store
86*da2e3ebdSchin  * long integers at arbitrary (e.g. odd) memory locations.
87*da2e3ebdSchin  * (Either that or never pass unaligned addresses to des_cipher!)
88*da2e3ebdSchin  */
89*da2e3ebdSchin #if !defined(vax)
90*da2e3ebdSchin #define	MUST_ALIGN
91*da2e3ebdSchin #endif
92*da2e3ebdSchin 
93*da2e3ebdSchin #ifdef CHAR_BITS
94*da2e3ebdSchin #if CHAR_BITS != 8
95*da2e3ebdSchin 	#error C_block structure assumes 8 bit characters
96*da2e3ebdSchin #endif
97*da2e3ebdSchin #endif
98*da2e3ebdSchin 
99*da2e3ebdSchin /*
100*da2e3ebdSchin  * define "LONG_IS_32_BITS" only if sizeof(long)==4.
101*da2e3ebdSchin  * This avoids use of bit fields (your compiler may be sloppy with them).
102*da2e3ebdSchin  */
103*da2e3ebdSchin #if !defined(cray)
104*da2e3ebdSchin #define	LONG_IS_32_BITS
105*da2e3ebdSchin #endif
106*da2e3ebdSchin 
107*da2e3ebdSchin /*
108*da2e3ebdSchin  * define "B64" to be the declaration for a 64 bit integer.
109*da2e3ebdSchin  * XXX this feature is currently unused, see "endian" comment below.
110*da2e3ebdSchin  */
111*da2e3ebdSchin #if defined(cray)
112*da2e3ebdSchin #define	B64	long
113*da2e3ebdSchin #endif
114*da2e3ebdSchin #if defined(convex)
115*da2e3ebdSchin #define	B64	long long
116*da2e3ebdSchin #endif
117*da2e3ebdSchin 
118*da2e3ebdSchin /*
119*da2e3ebdSchin  * define "LARGEDATA" to get faster permutations, by using about 72 kilobytes
120*da2e3ebdSchin  * of lookup tables.  This speeds up des_setkey() and des_cipher(), but has
121*da2e3ebdSchin  * little effect on crypt().
122*da2e3ebdSchin  */
123*da2e3ebdSchin #if defined(notdef)
124*da2e3ebdSchin #define	LARGEDATA
125*da2e3ebdSchin #endif
126*da2e3ebdSchin 
127*da2e3ebdSchin /* ==================================== */
128*da2e3ebdSchin 
129*da2e3ebdSchin /*
130*da2e3ebdSchin  * Cipher-block representation (Bob Baldwin):
131*da2e3ebdSchin  *
132*da2e3ebdSchin  * DES operates on groups of 64 bits, numbered 1..64 (sigh).  One
133*da2e3ebdSchin  * representation is to store one bit per byte in an array of bytes.  Bit N of
134*da2e3ebdSchin  * the NBS spec is stored as the LSB of the Nth byte (index N-1) in the array.
135*da2e3ebdSchin  * Another representation stores the 64 bits in 8 bytes, with bits 1..8 in the
136*da2e3ebdSchin  * first byte, 9..16 in the second, and so on.  The DES spec apparently has
137*da2e3ebdSchin  * bit 1 in the MSB of the first byte, but that is particularly noxious so we
138*da2e3ebdSchin  * bit-reverse each byte so that bit 1 is the LSB of the first byte, bit 8 is
139*da2e3ebdSchin  * the MSB of the first byte.  Specifically, the 64-bit input data and key are
140*da2e3ebdSchin  * converted to LSB format, and the output 64-bit block is converted back into
141*da2e3ebdSchin  * MSB format.
142*da2e3ebdSchin  *
143*da2e3ebdSchin  * DES operates internally on groups of 32 bits which are expanded to 48 bits
144*da2e3ebdSchin  * by permutation E and shrunk back to 32 bits by the S boxes.  To speed up
145*da2e3ebdSchin  * the computation, the expansion is applied only once, the expanded
146*da2e3ebdSchin  * representation is maintained during the encryption, and a compression
147*da2e3ebdSchin  * permutation is applied only at the end.  To speed up the S-box lookups,
148*da2e3ebdSchin  * the 48 bits are maintained as eight 6 bit groups, one per byte, which
149*da2e3ebdSchin  * directly feed the eight S-boxes.  Within each byte, the 6 bits are the
150*da2e3ebdSchin  * most significant ones.  The low two bits of each byte are zero.  (Thus,
151*da2e3ebdSchin  * bit 1 of the 48 bit E expansion is stored as the "4"-valued bit of the
152*da2e3ebdSchin  * first byte in the eight byte representation, bit 2 of the 48 bit value is
153*da2e3ebdSchin  * the "8"-valued bit, and so on.)  In fact, a combined "SPE"-box lookup is
154*da2e3ebdSchin  * used, in which the output is the 64 bit result of an S-box lookup which
155*da2e3ebdSchin  * has been permuted by P and expanded by E, and is ready for use in the next
156*da2e3ebdSchin  * iteration.  Two 32-bit wide tables, SPE[0] and SPE[1], are used for this
157*da2e3ebdSchin  * lookup.  Since each byte in the 48 bit path is a multiple of four, indexed
158*da2e3ebdSchin  * lookup of SPE[0] and SPE[1] is simple and fast.  The key schedule and
159*da2e3ebdSchin  * "salt" are also converted to this 8*(6+2) format.  The SPE table size is
160*da2e3ebdSchin  * 8*64*8 = 4K bytes.
161*da2e3ebdSchin  *
162*da2e3ebdSchin  * To speed up bit-parallel operations (such as XOR), the 8 byte
163*da2e3ebdSchin  * representation is "union"ed with 32 bit values "i0" and "i1", and, on
164*da2e3ebdSchin  * machines which support it, a 64 bit value "b64".  This data structure,
165*da2e3ebdSchin  * "C_block", has two problems.  First, alignment restrictions must be
166*da2e3ebdSchin  * honored.  Second, the byte-order (e.g. little-endian or big-endian) of
167*da2e3ebdSchin  * the architecture becomes visible.
168*da2e3ebdSchin  *
169*da2e3ebdSchin  * The byte-order problem is unfortunate, since on the one hand it is good
170*da2e3ebdSchin  * to have a machine-independent C_block representation (bits 1..8 in the
171*da2e3ebdSchin  * first byte, etc.), and on the other hand it is good for the LSB of the
172*da2e3ebdSchin  * first byte to be the LSB of i0.  We cannot have both these things, so we
173*da2e3ebdSchin  * currently use the "little-endian" representation and avoid any multi-byte
174*da2e3ebdSchin  * operations that depend on byte order.  This largely precludes use of the
175*da2e3ebdSchin  * 64-bit datatype since the relative order of i0 and i1 are unknown.  It
176*da2e3ebdSchin  * also inhibits grouping the SPE table to look up 12 bits at a time.  (The
177*da2e3ebdSchin  * 12 bits can be stored in a 16-bit field with 3 low-order zeroes and 1
178*da2e3ebdSchin  * high-order zero, providing fast indexing into a 64-bit wide SPE.)  On the
179*da2e3ebdSchin  * other hand, 64-bit datatypes are currently rare, and a 12-bit SPE lookup
180*da2e3ebdSchin  * requires a 128 kilobyte table, so perhaps this is not a big loss.
181*da2e3ebdSchin  *
182*da2e3ebdSchin  * Permutation representation (Jim Gillogly):
183*da2e3ebdSchin  *
184*da2e3ebdSchin  * A transformation is defined by its effect on each of the 8 bytes of the
185*da2e3ebdSchin  * 64-bit input.  For each byte we give a 64-bit output that has the bits in
186*da2e3ebdSchin  * the input distributed appropriately.  The transformation is then the OR
187*da2e3ebdSchin  * of the 8 sets of 64-bits.  This uses 8*256*8 = 16K bytes of storage for
188*da2e3ebdSchin  * each transformation.  Unless LARGEDATA is defined, however, a more compact
189*da2e3ebdSchin  * table is used which looks up 16 4-bit "chunks" rather than 8 8-bit chunks.
190*da2e3ebdSchin  * The smaller table uses 16*16*8 = 2K bytes for each transformation.  This
191*da2e3ebdSchin  * is slower but tolerable, particularly for password encryption in which
192*da2e3ebdSchin  * the SPE transformation is iterated many times.  The small tables total 9K
193*da2e3ebdSchin  * bytes, the large tables total 72K bytes.
194*da2e3ebdSchin  *
195*da2e3ebdSchin  * The transformations used are:
196*da2e3ebdSchin  * IE3264: MSB->LSB conversion, initial permutation, and expansion.
197*da2e3ebdSchin  *	This is done by collecting the 32 even-numbered bits and applying
198*da2e3ebdSchin  *	a 32->64 bit transformation, and then collecting the 32 odd-numbered
199*da2e3ebdSchin  *	bits and applying the same transformation.  Since there are only
200*da2e3ebdSchin  *	32 input bits, the IE3264 transformation table is half the size of
201*da2e3ebdSchin  *	the usual table.
202*da2e3ebdSchin  * CF6464: Compression, final permutation, and LSB->MSB conversion.
203*da2e3ebdSchin  *	This is done by two trivial 48->32 bit compressions to obtain
204*da2e3ebdSchin  *	a 64-bit block (the bit numbering is given in the "CIFP" table)
205*da2e3ebdSchin  *	followed by a 64->64 bit "cleanup" transformation.  (It would
206*da2e3ebdSchin  *	be possible to group the bits in the 64-bit block so that 2
207*da2e3ebdSchin  *	identical 32->32 bit transformations could be used instead,
208*da2e3ebdSchin  *	saving a factor of 4 in space and possibly 2 in time, but
209*da2e3ebdSchin  *	byte-ordering and other complications rear their ugly head.
210*da2e3ebdSchin  *	Similar opportunities/problems arise in the key schedule
211*da2e3ebdSchin  *	transforms.)
212*da2e3ebdSchin  * PC1ROT: MSB->LSB, PC1 permutation, rotate, and PC2 permutation.
213*da2e3ebdSchin  *	This admittedly baroque 64->64 bit transformation is used to
214*da2e3ebdSchin  *	produce the first code (in 8*(6+2) format) of the key schedule.
215*da2e3ebdSchin  * PC2ROT[0]: Inverse PC2 permutation, rotate, and PC2 permutation.
216*da2e3ebdSchin  *	It would be possible to define 15 more transformations, each
217*da2e3ebdSchin  *	with a different rotation, to generate the entire key schedule.
218*da2e3ebdSchin  *	To save space, however, we instead permute each code into the
219*da2e3ebdSchin  *	next by using a transformation that "undoes" the PC2 permutation,
220*da2e3ebdSchin  *	rotates the code, and then applies PC2.  Unfortunately, PC2
221*da2e3ebdSchin  *	transforms 56 bits into 48 bits, dropping 8 bits, so PC2 is not
222*da2e3ebdSchin  *	invertible.  We get around that problem by using a modified PC2
223*da2e3ebdSchin  *	which retains the 8 otherwise-lost bits in the unused low-order
224*da2e3ebdSchin  *	bits of each byte.  The low-order bits are cleared when the
225*da2e3ebdSchin  *	codes are stored into the key schedule.
226*da2e3ebdSchin  * PC2ROT[1]: Same as PC2ROT[0], but with two rotations.
227*da2e3ebdSchin  *	This is faster than applying PC2ROT[0] twice,
228*da2e3ebdSchin  *
229*da2e3ebdSchin  * The Bell Labs "salt" (Bob Baldwin):
230*da2e3ebdSchin  *
231*da2e3ebdSchin  * The salting is a simple permutation applied to the 48-bit result of E.
232*da2e3ebdSchin  * Specifically, if bit i (1 <= i <= 24) of the salt is set then bits i and
233*da2e3ebdSchin  * i+24 of the result are swapped.  The salt is thus a 24 bit number, with
234*da2e3ebdSchin  * 16777216 possible values.  (The original salt was 12 bits and could not
235*da2e3ebdSchin  * swap bits 13..24 with 36..48.)
236*da2e3ebdSchin  *
237*da2e3ebdSchin  * It is possible, but ugly, to warp the SPE table to account for the salt
238*da2e3ebdSchin  * permutation.  Fortunately, the conditional bit swapping requires only
239*da2e3ebdSchin  * about four machine instructions and can be done on-the-fly with about an
240*da2e3ebdSchin  * 8% performance penalty.
241*da2e3ebdSchin  */
242*da2e3ebdSchin 
243*da2e3ebdSchin typedef union {
244*da2e3ebdSchin 	unsigned char b[8];
245*da2e3ebdSchin 	struct  {
246*da2e3ebdSchin #if defined(LONG_IS_32_BITS)
247*da2e3ebdSchin 		/* long is often faster than a 32-bit bit field */
248*da2e3ebdSchin 		long	i0;
249*da2e3ebdSchin 		long	i1;
250*da2e3ebdSchin #else
251*da2e3ebdSchin 		long	i0: 32;
252*da2e3ebdSchin 		long	i1: 32;
253*da2e3ebdSchin #endif
254*da2e3ebdSchin 	} b32;
255*da2e3ebdSchin #if defined(B64)
256*da2e3ebdSchin 	B64	b64;
257*da2e3ebdSchin #endif
258*da2e3ebdSchin } C_block;
259*da2e3ebdSchin 
260*da2e3ebdSchin /*
261*da2e3ebdSchin  * Convert twenty-four-bit long in host-order
262*da2e3ebdSchin  * to six bits (and 2 low-order zeroes) per char little-endian format.
263*da2e3ebdSchin  */
264*da2e3ebdSchin #define	TO_SIX_BIT(rslt, src) {				\
265*da2e3ebdSchin 		C_block cvt;				\
266*da2e3ebdSchin 		cvt.b[0] = (unsigned char) src; src >>= 6;		\
267*da2e3ebdSchin 		cvt.b[1] = (unsigned char) src; src >>= 6;		\
268*da2e3ebdSchin 		cvt.b[2] = (unsigned char) src; src >>= 6;		\
269*da2e3ebdSchin 		cvt.b[3] = (unsigned char) src;				\
270*da2e3ebdSchin 		rslt = (cvt.b32.i0 & 0x3f3f3f3fL) << 2;	\
271*da2e3ebdSchin 	}
272*da2e3ebdSchin 
273*da2e3ebdSchin /*
274*da2e3ebdSchin  * These macros may someday permit efficient use of 64-bit integers.
275*da2e3ebdSchin  */
276*da2e3ebdSchin #define	ZERO(d,d0,d1)			d0 = 0, d1 = 0
277*da2e3ebdSchin #define	LOAD(d,d0,d1,bl)		d0 = (bl).b32.i0, d1 = (bl).b32.i1
278*da2e3ebdSchin #define	LOADREG(d,d0,d1,s,s0,s1)	d0 = s0, d1 = s1
279*da2e3ebdSchin #define	OR(d,d0,d1,bl)			d0 |= (bl).b32.i0, d1 |= (bl).b32.i1
280*da2e3ebdSchin #define	STORE(s,s0,s1,bl)		(bl).b32.i0 = s0, (bl).b32.i1 = s1
281*da2e3ebdSchin #define	DCL_BLOCK(d,d0,d1)		long d0, d1
282*da2e3ebdSchin /* proto(1) workarounds -- barf */
283*da2e3ebdSchin #define DCL_BLOCK_D			DCL_BLOCK(D,D0,D1)
284*da2e3ebdSchin #define DCL_BLOCK_K			DCL_BLOCK(K,K0,K1)
285*da2e3ebdSchin 
286*da2e3ebdSchin #if defined(LARGEDATA)
287*da2e3ebdSchin 	/* Waste memory like crazy.  Also, do permutations in line */
288*da2e3ebdSchin #define	LGCHUNKBITS	3
289*da2e3ebdSchin #define	CHUNKBITS	(1<<LGCHUNKBITS)
290*da2e3ebdSchin #define	PERM6464(d,d0,d1,cpp,p)				\
291*da2e3ebdSchin 	LOAD(d,d0,d1,(p)[(0<<CHUNKBITS)+(cpp)[0]]);		\
292*da2e3ebdSchin 	OR (d,d0,d1,(p)[(1<<CHUNKBITS)+(cpp)[1]]);		\
293*da2e3ebdSchin 	OR (d,d0,d1,(p)[(2<<CHUNKBITS)+(cpp)[2]]);		\
294*da2e3ebdSchin 	OR (d,d0,d1,(p)[(3<<CHUNKBITS)+(cpp)[3]]);		\
295*da2e3ebdSchin 	OR (d,d0,d1,(p)[(4<<CHUNKBITS)+(cpp)[4]]);		\
296*da2e3ebdSchin 	OR (d,d0,d1,(p)[(5<<CHUNKBITS)+(cpp)[5]]);		\
297*da2e3ebdSchin 	OR (d,d0,d1,(p)[(6<<CHUNKBITS)+(cpp)[6]]);		\
298*da2e3ebdSchin 	OR (d,d0,d1,(p)[(7<<CHUNKBITS)+(cpp)[7]]);
299*da2e3ebdSchin #define	PERM3264(d,d0,d1,cpp,p)				\
300*da2e3ebdSchin 	LOAD(d,d0,d1,(p)[(0<<CHUNKBITS)+(cpp)[0]]);		\
301*da2e3ebdSchin 	OR (d,d0,d1,(p)[(1<<CHUNKBITS)+(cpp)[1]]);		\
302*da2e3ebdSchin 	OR (d,d0,d1,(p)[(2<<CHUNKBITS)+(cpp)[2]]);		\
303*da2e3ebdSchin 	OR (d,d0,d1,(p)[(3<<CHUNKBITS)+(cpp)[3]]);
304*da2e3ebdSchin #else
305*da2e3ebdSchin 	/* "small data" */
306*da2e3ebdSchin #define	LGCHUNKBITS	2
307*da2e3ebdSchin #define	CHUNKBITS	(1<<LGCHUNKBITS)
308*da2e3ebdSchin #define	PERM6464(d,d0,d1,cpp,p)				\
309*da2e3ebdSchin 	{ C_block tblk; permute(cpp,&tblk,p,8); LOAD (d,d0,d1,tblk); }
310*da2e3ebdSchin #define	PERM3264(d,d0,d1,cpp,p)				\
311*da2e3ebdSchin 	{ C_block tblk; permute(cpp,&tblk,p,4); LOAD (d,d0,d1,tblk); }
312*da2e3ebdSchin 
permute(unsigned char * cp,C_block * out,register C_block * p,int chars_in)313*da2e3ebdSchin static void permute(unsigned char *cp, C_block *out, register C_block *p, int chars_in) {
314*da2e3ebdSchin 	register DCL_BLOCK_D;
315*da2e3ebdSchin 	register C_block *tp;
316*da2e3ebdSchin 	register int t;
317*da2e3ebdSchin 
318*da2e3ebdSchin 	ZERO(D,D0,D1);
319*da2e3ebdSchin 	do {
320*da2e3ebdSchin 		t = *cp++;
321*da2e3ebdSchin 		tp = &p[t&0xf]; OR(D,D0,D1,*tp); p += (1<<CHUNKBITS);
322*da2e3ebdSchin 		tp = &p[t>>4];  OR(D,D0,D1,*tp); p += (1<<CHUNKBITS);
323*da2e3ebdSchin 	} while (--chars_in > 0);
324*da2e3ebdSchin 	STORE(D,D0,D1,*out);
325*da2e3ebdSchin }
326*da2e3ebdSchin #endif /* LARGEDATA */
327*da2e3ebdSchin 
328*da2e3ebdSchin 
329*da2e3ebdSchin /* =====  (mostly) Standard DES Tables ==================== */
330*da2e3ebdSchin 
331*da2e3ebdSchin static unsigned char IP[] = {		/* initial permutation */
332*da2e3ebdSchin 	58, 50, 42, 34, 26, 18, 10,  2,
333*da2e3ebdSchin 	60, 52, 44, 36, 28, 20, 12,  4,
334*da2e3ebdSchin 	62, 54, 46, 38, 30, 22, 14,  6,
335*da2e3ebdSchin 	64, 56, 48, 40, 32, 24, 16,  8,
336*da2e3ebdSchin 	57, 49, 41, 33, 25, 17,  9,  1,
337*da2e3ebdSchin 	59, 51, 43, 35, 27, 19, 11,  3,
338*da2e3ebdSchin 	61, 53, 45, 37, 29, 21, 13,  5,
339*da2e3ebdSchin 	63, 55, 47, 39, 31, 23, 15,  7,
340*da2e3ebdSchin };
341*da2e3ebdSchin 
342*da2e3ebdSchin /* The final permutation is the inverse of IP - no table is necessary */
343*da2e3ebdSchin 
344*da2e3ebdSchin static unsigned char ExpandTr[] = {	/* expansion operation */
345*da2e3ebdSchin 	32,  1,  2,  3,  4,  5,
346*da2e3ebdSchin 	 4,  5,  6,  7,  8,  9,
347*da2e3ebdSchin 	 8,  9, 10, 11, 12, 13,
348*da2e3ebdSchin 	12, 13, 14, 15, 16, 17,
349*da2e3ebdSchin 	16, 17, 18, 19, 20, 21,
350*da2e3ebdSchin 	20, 21, 22, 23, 24, 25,
351*da2e3ebdSchin 	24, 25, 26, 27, 28, 29,
352*da2e3ebdSchin 	28, 29, 30, 31, 32,  1,
353*da2e3ebdSchin };
354*da2e3ebdSchin 
355*da2e3ebdSchin static unsigned char PC1[] = {		/* permuted choice table 1 */
356*da2e3ebdSchin 	57, 49, 41, 33, 25, 17,  9,
357*da2e3ebdSchin 	 1, 58, 50, 42, 34, 26, 18,
358*da2e3ebdSchin 	10,  2, 59, 51, 43, 35, 27,
359*da2e3ebdSchin 	19, 11,  3, 60, 52, 44, 36,
360*da2e3ebdSchin 
361*da2e3ebdSchin 	63, 55, 47, 39, 31, 23, 15,
362*da2e3ebdSchin 	 7, 62, 54, 46, 38, 30, 22,
363*da2e3ebdSchin 	14,  6, 61, 53, 45, 37, 29,
364*da2e3ebdSchin 	21, 13,  5, 28, 20, 12,  4,
365*da2e3ebdSchin };
366*da2e3ebdSchin 
367*da2e3ebdSchin static unsigned char Rotates[] = {	/* PC1 rotation schedule */
368*da2e3ebdSchin 	1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1,
369*da2e3ebdSchin };
370*da2e3ebdSchin 
371*da2e3ebdSchin /* note: each "row" of PC2 is left-padded with bits that make it invertible */
372*da2e3ebdSchin static unsigned char PC2[] = {		/* permuted choice table 2 */
373*da2e3ebdSchin 	 9, 18,    14, 17, 11, 24,  1,  5,
374*da2e3ebdSchin 	22, 25,     3, 28, 15,  6, 21, 10,
375*da2e3ebdSchin 	35, 38,    23, 19, 12,  4, 26,  8,
376*da2e3ebdSchin 	43, 54,    16,  7, 27, 20, 13,  2,
377*da2e3ebdSchin 
378*da2e3ebdSchin 	 0,  0,    41, 52, 31, 37, 47, 55,
379*da2e3ebdSchin 	 0,  0,    30, 40, 51, 45, 33, 48,
380*da2e3ebdSchin 	 0,  0,    44, 49, 39, 56, 34, 53,
381*da2e3ebdSchin 	 0,  0,    46, 42, 50, 36, 29, 32,
382*da2e3ebdSchin };
383*da2e3ebdSchin 
384*da2e3ebdSchin static unsigned char S[8][64] = {	/* 48->32 bit substitution tables */
385*da2e3ebdSchin 					/* S[1]			*/
386*da2e3ebdSchin 	14,  4, 13,  1,  2, 15, 11,  8,  3, 10,  6, 12,  5,  9,  0,  7,
387*da2e3ebdSchin 	 0, 15,  7,  4, 14,  2, 13,  1, 10,  6, 12, 11,  9,  5,  3,  8,
388*da2e3ebdSchin 	 4,  1, 14,  8, 13,  6,  2, 11, 15, 12,  9,  7,  3, 10,  5,  0,
389*da2e3ebdSchin 	15, 12,  8,  2,  4,  9,  1,  7,  5, 11,  3, 14, 10,  0,  6, 13,
390*da2e3ebdSchin 					/* S[2]			*/
391*da2e3ebdSchin 	15,  1,  8, 14,  6, 11,  3,  4,  9,  7,  2, 13, 12,  0,  5, 10,
392*da2e3ebdSchin 	 3, 13,  4,  7, 15,  2,  8, 14, 12,  0,  1, 10,  6,  9, 11,  5,
393*da2e3ebdSchin 	 0, 14,  7, 11, 10,  4, 13,  1,  5,  8, 12,  6,  9,  3,  2, 15,
394*da2e3ebdSchin 	13,  8, 10,  1,  3, 15,  4,  2, 11,  6,  7, 12,  0,  5, 14,  9,
395*da2e3ebdSchin 					/* S[3]			*/
396*da2e3ebdSchin 	10,  0,  9, 14,  6,  3, 15,  5,  1, 13, 12,  7, 11,  4,  2,  8,
397*da2e3ebdSchin 	13,  7,  0,  9,  3,  4,  6, 10,  2,  8,  5, 14, 12, 11, 15,  1,
398*da2e3ebdSchin 	13,  6,  4,  9,  8, 15,  3,  0, 11,  1,  2, 12,  5, 10, 14,  7,
399*da2e3ebdSchin 	 1, 10, 13,  0,  6,  9,  8,  7,  4, 15, 14,  3, 11,  5,  2, 12,
400*da2e3ebdSchin 					/* S[4]			*/
401*da2e3ebdSchin 	 7, 13, 14,  3,  0,  6,  9, 10,  1,  2,  8,  5, 11, 12,  4, 15,
402*da2e3ebdSchin 	13,  8, 11,  5,  6, 15,  0,  3,  4,  7,  2, 12,  1, 10, 14,  9,
403*da2e3ebdSchin 	10,  6,  9,  0, 12, 11,  7, 13, 15,  1,  3, 14,  5,  2,  8,  4,
404*da2e3ebdSchin 	 3, 15,  0,  6, 10,  1, 13,  8,  9,  4,  5, 11, 12,  7,  2, 14,
405*da2e3ebdSchin 					/* S[5]			*/
406*da2e3ebdSchin 	 2, 12,  4,  1,  7, 10, 11,  6,  8,  5,  3, 15, 13,  0, 14,  9,
407*da2e3ebdSchin 	14, 11,  2, 12,  4,  7, 13,  1,  5,  0, 15, 10,  3,  9,  8,  6,
408*da2e3ebdSchin 	 4,  2,  1, 11, 10, 13,  7,  8, 15,  9, 12,  5,  6,  3,  0, 14,
409*da2e3ebdSchin 	11,  8, 12,  7,  1, 14,  2, 13,  6, 15,  0,  9, 10,  4,  5,  3,
410*da2e3ebdSchin 					/* S[6]			*/
411*da2e3ebdSchin 	12,  1, 10, 15,  9,  2,  6,  8,  0, 13,  3,  4, 14,  7,  5, 11,
412*da2e3ebdSchin 	10, 15,  4,  2,  7, 12,  9,  5,  6,  1, 13, 14,  0, 11,  3,  8,
413*da2e3ebdSchin 	 9, 14, 15,  5,  2,  8, 12,  3,  7,  0,  4, 10,  1, 13, 11,  6,
414*da2e3ebdSchin 	 4,  3,  2, 12,  9,  5, 15, 10, 11, 14,  1,  7,  6,  0,  8, 13,
415*da2e3ebdSchin 					/* S[7]			*/
416*da2e3ebdSchin 	 4, 11,  2, 14, 15,  0,  8, 13,  3, 12,  9,  7,  5, 10,  6,  1,
417*da2e3ebdSchin 	13,  0, 11,  7,  4,  9,  1, 10, 14,  3,  5, 12,  2, 15,  8,  6,
418*da2e3ebdSchin 	 1,  4, 11, 13, 12,  3,  7, 14, 10, 15,  6,  8,  0,  5,  9,  2,
419*da2e3ebdSchin 	 6, 11, 13,  8,  1,  4, 10,  7,  9,  5,  0, 15, 14,  2,  3, 12,
420*da2e3ebdSchin 					/* S[8]			*/
421*da2e3ebdSchin 	13,  2,  8,  4,  6, 15, 11,  1, 10,  9,  3, 14,  5,  0, 12,  7,
422*da2e3ebdSchin 	 1, 15, 13,  8, 10,  3,  7,  4, 12,  5,  6, 11,  0, 14,  9,  2,
423*da2e3ebdSchin 	 7, 11,  4,  1,  9, 12, 14,  2,  0,  6, 10, 13, 15,  3,  5,  8,
424*da2e3ebdSchin 	 2,  1, 14,  7,  4, 10,  8, 13, 15, 12,  9,  0,  3,  5,  6, 11,
425*da2e3ebdSchin };
426*da2e3ebdSchin 
427*da2e3ebdSchin static unsigned char P32Tr[] = {	/* 32-bit permutation function */
428*da2e3ebdSchin 	16,  7, 20, 21,
429*da2e3ebdSchin 	29, 12, 28, 17,
430*da2e3ebdSchin 	 1, 15, 23, 26,
431*da2e3ebdSchin 	 5, 18, 31, 10,
432*da2e3ebdSchin 	 2,  8, 24, 14,
433*da2e3ebdSchin 	32, 27,  3,  9,
434*da2e3ebdSchin 	19, 13, 30,  6,
435*da2e3ebdSchin 	22, 11,  4, 25,
436*da2e3ebdSchin };
437*da2e3ebdSchin 
438*da2e3ebdSchin static unsigned char CIFP[] = {		/* compressed/interleaved permutation */
439*da2e3ebdSchin 	 1,  2,  3,  4,   17, 18, 19, 20,
440*da2e3ebdSchin 	 5,  6,  7,  8,   21, 22, 23, 24,
441*da2e3ebdSchin 	 9, 10, 11, 12,   25, 26, 27, 28,
442*da2e3ebdSchin 	13, 14, 15, 16,   29, 30, 31, 32,
443*da2e3ebdSchin 
444*da2e3ebdSchin 	33, 34, 35, 36,   49, 50, 51, 52,
445*da2e3ebdSchin 	37, 38, 39, 40,   53, 54, 55, 56,
446*da2e3ebdSchin 	41, 42, 43, 44,   57, 58, 59, 60,
447*da2e3ebdSchin 	45, 46, 47, 48,   61, 62, 63, 64,
448*da2e3ebdSchin };
449*da2e3ebdSchin 
450*da2e3ebdSchin static unsigned char itoa64[] =		/* 0..63 => ascii-64 */
451*da2e3ebdSchin 	"./0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz";
452*da2e3ebdSchin 
453*da2e3ebdSchin 
454*da2e3ebdSchin /* =====  Tables that are initialized at run time  ==================== */
455*da2e3ebdSchin 
456*da2e3ebdSchin 
457*da2e3ebdSchin static unsigned char a64toi[128];	/* ascii-64 => 0..63 */
458*da2e3ebdSchin 
459*da2e3ebdSchin /* Initial key schedule permutation */
460*da2e3ebdSchin static C_block	PC1ROT[64/CHUNKBITS][1<<CHUNKBITS];
461*da2e3ebdSchin 
462*da2e3ebdSchin /* Subsequent key schedule rotation permutations */
463*da2e3ebdSchin static C_block	PC2ROT[2][64/CHUNKBITS][1<<CHUNKBITS];
464*da2e3ebdSchin 
465*da2e3ebdSchin /* Initial permutation/expansion table */
466*da2e3ebdSchin static C_block	IE3264[32/CHUNKBITS][1<<CHUNKBITS];
467*da2e3ebdSchin 
468*da2e3ebdSchin /* Table that combines the S, P, and E operations.  */
469*da2e3ebdSchin static long SPE[2][8][64];
470*da2e3ebdSchin 
471*da2e3ebdSchin /* compressed/interleaved => final permutation table */
472*da2e3ebdSchin static C_block	CF6464[64/CHUNKBITS][1<<CHUNKBITS];
473*da2e3ebdSchin 
474*da2e3ebdSchin 
475*da2e3ebdSchin /* ==================================== */
476*da2e3ebdSchin 
477*da2e3ebdSchin static C_block	constdatablock;			/* encryption constant */
478*da2e3ebdSchin static char	cryptresult[1+4+4+11+1];	/* encrypted result */
479*da2e3ebdSchin 
480*da2e3ebdSchin /*
481*da2e3ebdSchin  * Initialize "perm" to represent transformation "p", which rearranges
482*da2e3ebdSchin  * (perhaps with expansion and/or contraction) one packed array of bits
483*da2e3ebdSchin  * (of size "chars_in" characters) into another array (of size "chars_out"
484*da2e3ebdSchin  * characters).
485*da2e3ebdSchin  *
486*da2e3ebdSchin  * "perm" must be all-zeroes on entry to this routine.
487*da2e3ebdSchin  */
init_perm(C_block perm[64/CHUNKBITS][1<<CHUNKBITS],unsigned char p[64],int chars_in,int chars_out)488*da2e3ebdSchin static void init_perm(C_block perm[64/CHUNKBITS][1<<CHUNKBITS],
489*da2e3ebdSchin 	unsigned char p[64], int chars_in, int chars_out) {
490*da2e3ebdSchin 	register int i, j, k, l;
491*da2e3ebdSchin 
492*da2e3ebdSchin 	for (k = 0; k < chars_out*8; k++) {	/* each output bit position */
493*da2e3ebdSchin 		l = p[k] - 1;		/* where this bit comes from */
494*da2e3ebdSchin 		if (l < 0)
495*da2e3ebdSchin 			continue;	/* output bit is always 0 */
496*da2e3ebdSchin 		i = l>>LGCHUNKBITS;	/* which chunk this bit comes from */
497*da2e3ebdSchin 		l = 1<<(l&(CHUNKBITS-1));	/* mask for this bit */
498*da2e3ebdSchin 		for (j = 0; j < (1<<CHUNKBITS); j++) {	/* each chunk value */
499*da2e3ebdSchin 			if ((j & l) != 0)
500*da2e3ebdSchin 				perm[i][j].b[k>>3] |= 1<<(k&07);
501*da2e3ebdSchin 		}
502*da2e3ebdSchin 	}
503*da2e3ebdSchin }
504*da2e3ebdSchin 
505*da2e3ebdSchin /*
506*da2e3ebdSchin  * Initialize various tables.  This need only be done once.  It could even be
507*da2e3ebdSchin  * done at compile time, if the compiler were capable of that sort of thing.
508*da2e3ebdSchin  */
init_des(void)509*da2e3ebdSchin static void init_des(void) {
510*da2e3ebdSchin 	register int i, j;
511*da2e3ebdSchin 	register long k;
512*da2e3ebdSchin 	register int tableno;
513*da2e3ebdSchin 	static unsigned char perm[64], tmp32[32];	/* "static" for speed */
514*da2e3ebdSchin 
515*da2e3ebdSchin 	/*
516*da2e3ebdSchin 	 * table that converts chars "./0-9A-Za-z"to integers 0-63.
517*da2e3ebdSchin 	 */
518*da2e3ebdSchin 	for (i = 0; i < 64; i++)
519*da2e3ebdSchin 		a64toi[itoa64[i]] = i;
520*da2e3ebdSchin 
521*da2e3ebdSchin 	/*
522*da2e3ebdSchin 	 * PC1ROT - bit reverse, then PC1, then Rotate, then PC2.
523*da2e3ebdSchin 	 */
524*da2e3ebdSchin 	for (i = 0; i < 64; i++)
525*da2e3ebdSchin 		perm[i] = 0;
526*da2e3ebdSchin 	for (i = 0; i < 64; i++) {
527*da2e3ebdSchin 		if ((k = PC2[i]) == 0)
528*da2e3ebdSchin 			continue;
529*da2e3ebdSchin 		k += Rotates[0]-1;
530*da2e3ebdSchin 		if ((k%28) < Rotates[0]) k -= 28;
531*da2e3ebdSchin 		k = PC1[k];
532*da2e3ebdSchin 		if (k > 0) {
533*da2e3ebdSchin 			k--;
534*da2e3ebdSchin 			k = (k|07) - (k&07);
535*da2e3ebdSchin 			k++;
536*da2e3ebdSchin 		}
537*da2e3ebdSchin 		perm[i] = (unsigned char) k;
538*da2e3ebdSchin 	}
539*da2e3ebdSchin #ifdef DEBUG
540*da2e3ebdSchin 	prtab("pc1tab", perm, 8);
541*da2e3ebdSchin #endif
542*da2e3ebdSchin 	init_perm(PC1ROT, perm, 8, 8);
543*da2e3ebdSchin 
544*da2e3ebdSchin 	/*
545*da2e3ebdSchin 	 * PC2ROT - PC2 inverse, then Rotate (once or twice), then PC2.
546*da2e3ebdSchin 	 */
547*da2e3ebdSchin 	for (j = 0; j < 2; j++) {
548*da2e3ebdSchin 		unsigned char pc2inv[64];
549*da2e3ebdSchin 		for (i = 0; i < 64; i++)
550*da2e3ebdSchin 			perm[i] = pc2inv[i] = 0;
551*da2e3ebdSchin 		for (i = 0; i < 64; i++) {
552*da2e3ebdSchin 			if ((k = PC2[i]) == 0)
553*da2e3ebdSchin 				continue;
554*da2e3ebdSchin 			pc2inv[k-1] = i+1;
555*da2e3ebdSchin 		}
556*da2e3ebdSchin 		for (i = 0; i < 64; i++) {
557*da2e3ebdSchin 			if ((k = PC2[i]) == 0)
558*da2e3ebdSchin 				continue;
559*da2e3ebdSchin 			k += j;
560*da2e3ebdSchin 			if ((k%28) <= j) k -= 28;
561*da2e3ebdSchin 			perm[i] = pc2inv[k];
562*da2e3ebdSchin 		}
563*da2e3ebdSchin #ifdef DEBUG
564*da2e3ebdSchin 		prtab("pc2tab", perm, 8);
565*da2e3ebdSchin #endif
566*da2e3ebdSchin 		init_perm(PC2ROT[j], perm, 8, 8);
567*da2e3ebdSchin 	}
568*da2e3ebdSchin 
569*da2e3ebdSchin 	/*
570*da2e3ebdSchin 	 * Bit reverse, then initial permutation, then expansion.
571*da2e3ebdSchin 	 */
572*da2e3ebdSchin 	for (i = 0; i < 8; i++) {
573*da2e3ebdSchin 		for (j = 0; j < 8; j++) {
574*da2e3ebdSchin 			k = (j < 2)? 0: IP[ExpandTr[i*6+j-2]-1];
575*da2e3ebdSchin 			if (k > 32)
576*da2e3ebdSchin 				k -= 32;
577*da2e3ebdSchin 			else if (k > 0)
578*da2e3ebdSchin 				k--;
579*da2e3ebdSchin 			if (k > 0) {
580*da2e3ebdSchin 				k--;
581*da2e3ebdSchin 				k = (k|07) - (k&07);
582*da2e3ebdSchin 				k++;
583*da2e3ebdSchin 			}
584*da2e3ebdSchin 			perm[i*8+j] = (unsigned char) k;
585*da2e3ebdSchin 		}
586*da2e3ebdSchin 	}
587*da2e3ebdSchin #ifdef DEBUG
588*da2e3ebdSchin 	prtab("ietab", perm, 8);
589*da2e3ebdSchin #endif
590*da2e3ebdSchin 	init_perm(IE3264, perm, 4, 8);
591*da2e3ebdSchin 
592*da2e3ebdSchin 	/*
593*da2e3ebdSchin 	 * Compression, then final permutation, then bit reverse.
594*da2e3ebdSchin 	 */
595*da2e3ebdSchin 	for (i = 0; i < 64; i++) {
596*da2e3ebdSchin 		k = IP[CIFP[i]-1];
597*da2e3ebdSchin 		if (k > 0) {
598*da2e3ebdSchin 			k--;
599*da2e3ebdSchin 			k = (k|07) - (k&07);
600*da2e3ebdSchin 			k++;
601*da2e3ebdSchin 		}
602*da2e3ebdSchin 		perm[k-1] = i+1;
603*da2e3ebdSchin 	}
604*da2e3ebdSchin #ifdef DEBUG
605*da2e3ebdSchin 	prtab("cftab", perm, 8);
606*da2e3ebdSchin #endif
607*da2e3ebdSchin 	init_perm(CF6464, perm, 8, 8);
608*da2e3ebdSchin 
609*da2e3ebdSchin 	/*
610*da2e3ebdSchin 	 * SPE table
611*da2e3ebdSchin 	 */
612*da2e3ebdSchin 	for (i = 0; i < 48; i++)
613*da2e3ebdSchin 		perm[i] = P32Tr[ExpandTr[i]-1];
614*da2e3ebdSchin 	for (tableno = 0; tableno < 8; tableno++) {
615*da2e3ebdSchin 		for (j = 0; j < 64; j++)  {
616*da2e3ebdSchin 			k = (((j >> 0) &01) << 5)|
617*da2e3ebdSchin 			    (((j >> 1) &01) << 3)|
618*da2e3ebdSchin 			    (((j >> 2) &01) << 2)|
619*da2e3ebdSchin 			    (((j >> 3) &01) << 1)|
620*da2e3ebdSchin 			    (((j >> 4) &01) << 0)|
621*da2e3ebdSchin 			    (((j >> 5) &01) << 4);
622*da2e3ebdSchin 			k = S[tableno][k];
623*da2e3ebdSchin 			k = (((k >> 3)&01) << 0)|
624*da2e3ebdSchin 			    (((k >> 2)&01) << 1)|
625*da2e3ebdSchin 			    (((k >> 1)&01) << 2)|
626*da2e3ebdSchin 			    (((k >> 0)&01) << 3);
627*da2e3ebdSchin 			for (i = 0; i < 32; i++)
628*da2e3ebdSchin 				tmp32[i] = 0;
629*da2e3ebdSchin 			for (i = 0; i < 4; i++)
630*da2e3ebdSchin 				tmp32[4 * tableno + i] = (k >> i) & 01;
631*da2e3ebdSchin 			k = 0;
632*da2e3ebdSchin 			for (i = 24; --i >= 0; )
633*da2e3ebdSchin 				k = (k<<1) | tmp32[perm[i]-1];
634*da2e3ebdSchin 			TO_SIX_BIT(SPE[0][tableno][j], k);
635*da2e3ebdSchin 			k = 0;
636*da2e3ebdSchin 			for (i = 24; --i >= 0; )
637*da2e3ebdSchin 				k = (k<<1) | tmp32[perm[i+24]-1];
638*da2e3ebdSchin 			TO_SIX_BIT(SPE[1][tableno][j], k);
639*da2e3ebdSchin 		}
640*da2e3ebdSchin 	}
641*da2e3ebdSchin }
642*da2e3ebdSchin 
643*da2e3ebdSchin /*
644*da2e3ebdSchin  * The Key Schedule, filled in by des_setkey() or setkey().
645*da2e3ebdSchin  */
646*da2e3ebdSchin #define	KS_SIZE	16
647*da2e3ebdSchin static C_block	KS[KS_SIZE];
648*da2e3ebdSchin 
649*da2e3ebdSchin /*
650*da2e3ebdSchin  * Set up the key schedule from the key.
651*da2e3ebdSchin  */
des_setkey(register const char * key)652*da2e3ebdSchin static int des_setkey(register const char *key) {
653*da2e3ebdSchin 	register DCL_BLOCK_K;
654*da2e3ebdSchin 	register C_block *ptabp;
655*da2e3ebdSchin 	register int i;
656*da2e3ebdSchin 	static int des_ready = 0;
657*da2e3ebdSchin 
658*da2e3ebdSchin 	if (!des_ready) {
659*da2e3ebdSchin 		init_des();
660*da2e3ebdSchin 		des_ready = 1;
661*da2e3ebdSchin 	}
662*da2e3ebdSchin 
663*da2e3ebdSchin 	PERM6464(K,K0,K1,(unsigned char *)key,(C_block *)PC1ROT);
664*da2e3ebdSchin 	key = (char *)&KS[0];
665*da2e3ebdSchin 	STORE(K&~0x03030303L, K0&~0x03030303L, K1, *(C_block *)key);
666*da2e3ebdSchin 	for (i = 1; i < 16; i++) {
667*da2e3ebdSchin 		key += sizeof(C_block);
668*da2e3ebdSchin 		STORE(K,K0,K1,*(C_block *)key);
669*da2e3ebdSchin 		ptabp = (C_block *)PC2ROT[Rotates[i]-1];
670*da2e3ebdSchin 		PERM6464(K,K0,K1,(unsigned char *)key,ptabp);
671*da2e3ebdSchin 		STORE(K&~0x03030303L, K0&~0x03030303L, K1, *(C_block *)key);
672*da2e3ebdSchin 	}
673*da2e3ebdSchin 	return (0);
674*da2e3ebdSchin }
675*da2e3ebdSchin 
676*da2e3ebdSchin /*
677*da2e3ebdSchin  * Encrypt (or decrypt if num_iter < 0) the 8 chars at "in" with abs(num_iter)
678*da2e3ebdSchin  * iterations of DES, using the the given 24-bit salt and the pre-computed key
679*da2e3ebdSchin  * schedule, and store the resulting 8 chars at "out" (in == out is permitted).
680*da2e3ebdSchin  *
681*da2e3ebdSchin  * NOTE: the performance of this routine is critically dependent on your
682*da2e3ebdSchin  * compiler and machine architecture.
683*da2e3ebdSchin  */
des_cipher(const char * in,char * out,long salt,int num_iter)684*da2e3ebdSchin static int des_cipher(const char *in, char *out, long salt, int num_iter) {
685*da2e3ebdSchin 	/* variables that we want in registers, most important first */
686*da2e3ebdSchin #if defined(pdp11)
687*da2e3ebdSchin 	register int j;
688*da2e3ebdSchin #endif
689*da2e3ebdSchin 	register long L0, L1, R0, R1, k;
690*da2e3ebdSchin 	register C_block *kp;
691*da2e3ebdSchin 	register int ks_inc, loop_count;
692*da2e3ebdSchin 	C_block B;
693*da2e3ebdSchin 
694*da2e3ebdSchin 	L0 = salt;
695*da2e3ebdSchin 	TO_SIX_BIT(salt, L0);	/* convert to 4*(6+2) format */
696*da2e3ebdSchin 
697*da2e3ebdSchin #if defined(vax) || defined(pdp11)
698*da2e3ebdSchin 	salt = ~salt;	/* "x &~ y" is faster than "x & y". */
699*da2e3ebdSchin #define	SALT (~salt)
700*da2e3ebdSchin #else
701*da2e3ebdSchin #define	SALT salt
702*da2e3ebdSchin #endif
703*da2e3ebdSchin 
704*da2e3ebdSchin #if defined(MUST_ALIGN)
705*da2e3ebdSchin 	B.b[0] = in[0]; B.b[1] = in[1]; B.b[2] = in[2]; B.b[3] = in[3];
706*da2e3ebdSchin 	B.b[4] = in[4]; B.b[5] = in[5]; B.b[6] = in[6]; B.b[7] = in[7];
707*da2e3ebdSchin 	LOAD(L,L0,L1,B);
708*da2e3ebdSchin #else
709*da2e3ebdSchin 	LOAD(L,L0,L1,*(C_block *)in);
710*da2e3ebdSchin #endif
711*da2e3ebdSchin 	LOADREG(R,R0,R1,L,L0,L1);
712*da2e3ebdSchin 	L0 &= 0x55555555L;
713*da2e3ebdSchin 	L1 &= 0x55555555L;
714*da2e3ebdSchin 	L0 = (L0 << 1) | L1;	/* L0 is the even-numbered input bits */
715*da2e3ebdSchin 	R0 &= 0xaaaaaaaaL;
716*da2e3ebdSchin 	R1 = (R1 >> 1) & 0x55555555L;
717*da2e3ebdSchin 	L1 = R0 | R1;		/* L1 is the odd-numbered input bits */
718*da2e3ebdSchin 	STORE(L,L0,L1,B);
719*da2e3ebdSchin 	PERM3264(L,L0,L1,B.b,  (C_block *)IE3264);	/* even bits */
720*da2e3ebdSchin 	PERM3264(R,R0,R1,B.b+4,(C_block *)IE3264);	/* odd bits */
721*da2e3ebdSchin 
722*da2e3ebdSchin 	if (num_iter >= 0)
723*da2e3ebdSchin 	{		/* encryption */
724*da2e3ebdSchin 		kp = &KS[0];
725*da2e3ebdSchin 		ks_inc  = sizeof(*kp);
726*da2e3ebdSchin 	}
727*da2e3ebdSchin 	else
728*da2e3ebdSchin 	{		/* decryption */
729*da2e3ebdSchin 		num_iter = -num_iter;
730*da2e3ebdSchin 		kp = &KS[KS_SIZE-1];
731*da2e3ebdSchin 		ks_inc  = -((int) sizeof(*kp));
732*da2e3ebdSchin 	}
733*da2e3ebdSchin 
734*da2e3ebdSchin 	while (--num_iter >= 0) {
735*da2e3ebdSchin 		loop_count = 8;
736*da2e3ebdSchin 		do {
737*da2e3ebdSchin 
738*da2e3ebdSchin #define	SPTAB(t, i)	(*(long *)((unsigned char *)t + i*(sizeof(long)/4)))
739*da2e3ebdSchin #if defined(gould)
740*da2e3ebdSchin 			/* use this if B.b[i] is evaluated just once ... */
741*da2e3ebdSchin #define	DOXOR(x,y,i)	x^=SPTAB(SPE[0][i],B.b[i]); y^=SPTAB(SPE[1][i],B.b[i]);
742*da2e3ebdSchin #else
743*da2e3ebdSchin #if defined(pdp11)
744*da2e3ebdSchin 			/* use this if your "long" int indexing is slow */
745*da2e3ebdSchin #define	DOXOR(x,y,i)	j=B.b[i]; x^=SPTAB(SPE[0][i],j); y^=SPTAB(SPE[1][i],j);
746*da2e3ebdSchin #else
747*da2e3ebdSchin 			/* use this if "k" is allocated to a register ... */
748*da2e3ebdSchin #define	DOXOR(x,y,i)	k=B.b[i]; x^=SPTAB(SPE[0][i],k); y^=SPTAB(SPE[1][i],k);
749*da2e3ebdSchin #endif
750*da2e3ebdSchin #endif
751*da2e3ebdSchin 
752*da2e3ebdSchin #define	CRUNCH(p0, p1, q0, q1)	\
753*da2e3ebdSchin 			k = (q0 ^ q1) & SALT;	\
754*da2e3ebdSchin 			B.b32.i0 = k ^ q0 ^ kp->b32.i0;		\
755*da2e3ebdSchin 			B.b32.i1 = k ^ q1 ^ kp->b32.i1;		\
756*da2e3ebdSchin 			kp = (C_block *)((char *)kp+ks_inc);	\
757*da2e3ebdSchin 							\
758*da2e3ebdSchin 			DOXOR(p0, p1, 0);		\
759*da2e3ebdSchin 			DOXOR(p0, p1, 1);		\
760*da2e3ebdSchin 			DOXOR(p0, p1, 2);		\
761*da2e3ebdSchin 			DOXOR(p0, p1, 3);		\
762*da2e3ebdSchin 			DOXOR(p0, p1, 4);		\
763*da2e3ebdSchin 			DOXOR(p0, p1, 5);		\
764*da2e3ebdSchin 			DOXOR(p0, p1, 6);		\
765*da2e3ebdSchin 			DOXOR(p0, p1, 7);
766*da2e3ebdSchin 
767*da2e3ebdSchin 			CRUNCH(L0, L1, R0, R1);
768*da2e3ebdSchin 			CRUNCH(R0, R1, L0, L1);
769*da2e3ebdSchin 		} while (--loop_count != 0);
770*da2e3ebdSchin 		kp = (C_block *)((char *)kp-(ks_inc*KS_SIZE));
771*da2e3ebdSchin 
772*da2e3ebdSchin 
773*da2e3ebdSchin 		/* swap L and R */
774*da2e3ebdSchin 		L0 ^= R0;  L1 ^= R1;
775*da2e3ebdSchin 		R0 ^= L0;  R1 ^= L1;
776*da2e3ebdSchin 		L0 ^= R0;  L1 ^= R1;
777*da2e3ebdSchin 	}
778*da2e3ebdSchin 
779*da2e3ebdSchin 	/* store the encrypted (or decrypted) result */
780*da2e3ebdSchin 	L0 = ((L0 >> 3) & 0x0f0f0f0fL) | ((L1 << 1) & 0xf0f0f0f0L);
781*da2e3ebdSchin 	L1 = ((R0 >> 3) & 0x0f0f0f0fL) | ((R1 << 1) & 0xf0f0f0f0L);
782*da2e3ebdSchin 	STORE(L,L0,L1,B);
783*da2e3ebdSchin 	PERM6464(L,L0,L1,B.b, (C_block *)CF6464);
784*da2e3ebdSchin #if defined(MUST_ALIGN)
785*da2e3ebdSchin 	STORE(L,L0,L1,B);
786*da2e3ebdSchin 	out[0] = B.b[0]; out[1] = B.b[1]; out[2] = B.b[2]; out[3] = B.b[3];
787*da2e3ebdSchin 	out[4] = B.b[4]; out[5] = B.b[5]; out[6] = B.b[6]; out[7] = B.b[7];
788*da2e3ebdSchin #else
789*da2e3ebdSchin 	STORE(L,L0,L1,*(C_block *)out);
790*da2e3ebdSchin #endif
791*da2e3ebdSchin 	return (0);
792*da2e3ebdSchin }
793*da2e3ebdSchin 
794*da2e3ebdSchin /*
795*da2e3ebdSchin  * "setkey" routine (for backwards compatibility)
796*da2e3ebdSchin  */
setkey(register const char * key)797*da2e3ebdSchin extern int setkey(register const char *key) {
798*da2e3ebdSchin 	register int i, j, k;
799*da2e3ebdSchin 	C_block keyblock;
800*da2e3ebdSchin 
801*da2e3ebdSchin 	for (i = 0; i < 8; i++) {
802*da2e3ebdSchin 		k = 0;
803*da2e3ebdSchin 		for (j = 0; j < 8; j++) {
804*da2e3ebdSchin 			k <<= 1;
805*da2e3ebdSchin 			k |= (unsigned char)*key++;
806*da2e3ebdSchin 		}
807*da2e3ebdSchin 		keyblock.b[i] = k;
808*da2e3ebdSchin 	}
809*da2e3ebdSchin 	return (des_setkey((char *)keyblock.b));
810*da2e3ebdSchin }
811*da2e3ebdSchin 
812*da2e3ebdSchin /*
813*da2e3ebdSchin  * "encrypt" routine (for backwards compatibility)
814*da2e3ebdSchin  */
encrypt(register char * block,int flag)815*da2e3ebdSchin extern int encrypt(register char *block, int flag) {
816*da2e3ebdSchin 	register int i, j, k;
817*da2e3ebdSchin 	C_block cblock;
818*da2e3ebdSchin 
819*da2e3ebdSchin 	for (i = 0; i < 8; i++) {
820*da2e3ebdSchin 		k = 0;
821*da2e3ebdSchin 		for (j = 0; j < 8; j++) {
822*da2e3ebdSchin 			k <<= 1;
823*da2e3ebdSchin 			k |= (unsigned char)*block++;
824*da2e3ebdSchin 		}
825*da2e3ebdSchin 		cblock.b[i] = k;
826*da2e3ebdSchin 	}
827*da2e3ebdSchin 	if (des_cipher((char *)&cblock, (char *)&cblock, 0L, (flag ? -1: 1)))
828*da2e3ebdSchin 		return (1);
829*da2e3ebdSchin 	for (i = 7; i >= 0; i--) {
830*da2e3ebdSchin 		k = cblock.b[i];
831*da2e3ebdSchin 		for (j = 7; j >= 0; j--) {
832*da2e3ebdSchin 			*--block = k&01;
833*da2e3ebdSchin 			k >>= 1;
834*da2e3ebdSchin 		}
835*da2e3ebdSchin 	}
836*da2e3ebdSchin 	return (0);
837*da2e3ebdSchin }
838*da2e3ebdSchin 
839*da2e3ebdSchin /*
840*da2e3ebdSchin  * Return a pointer to static data consisting of the "setting"
841*da2e3ebdSchin  * followed by an encryption produced by the "key" and "setting".
842*da2e3ebdSchin  */
crypt(register const char * key,register const char * setting)843*da2e3ebdSchin extern char * crypt(register const char *key, register const char *setting) {
844*da2e3ebdSchin 	register char *encp;
845*da2e3ebdSchin 	register long i;
846*da2e3ebdSchin 	register int t;
847*da2e3ebdSchin 	long salt;
848*da2e3ebdSchin 	int num_iter, salt_size;
849*da2e3ebdSchin 	C_block keyblock, rsltblock;
850*da2e3ebdSchin 
851*da2e3ebdSchin #ifdef HL_NOENCRYPTION
852*da2e3ebdSchin 	char buff[1024];
853*da2e3ebdSchin 	strncpy(buff, key, 1024);
854*da2e3ebdSchin 	buff[1023] = 0;
855*da2e3ebdSchin 	return buff;
856*da2e3ebdSchin #endif
857*da2e3ebdSchin 
858*da2e3ebdSchin 	for (i = 0; i < 8; i++) {
859*da2e3ebdSchin 		if ((t = 2*(unsigned char)(*key)) != 0)
860*da2e3ebdSchin 			key++;
861*da2e3ebdSchin 		keyblock.b[i] = t;
862*da2e3ebdSchin 	}
863*da2e3ebdSchin 	if (des_setkey((char *)keyblock.b))	/* also initializes "a64toi" */
864*da2e3ebdSchin 		return (NULL);
865*da2e3ebdSchin 
866*da2e3ebdSchin 	encp = &cryptresult[0];
867*da2e3ebdSchin 	switch (*setting) {
868*da2e3ebdSchin 	case _PASSWORD_EFMT1:
869*da2e3ebdSchin 		/*
870*da2e3ebdSchin 		 * Involve the rest of the password 8 characters at a time.
871*da2e3ebdSchin 		 */
872*da2e3ebdSchin 		while (*key) {
873*da2e3ebdSchin 			if (des_cipher((char *)&keyblock,
874*da2e3ebdSchin 			    (char *)&keyblock, 0L, 1))
875*da2e3ebdSchin 				return (NULL);
876*da2e3ebdSchin 			for (i = 0; i < 8; i++) {
877*da2e3ebdSchin 				if ((t = 2*(unsigned char)(*key)) != 0)
878*da2e3ebdSchin 					key++;
879*da2e3ebdSchin 				keyblock.b[i] ^= t;
880*da2e3ebdSchin 			}
881*da2e3ebdSchin 			if (des_setkey((char *)keyblock.b))
882*da2e3ebdSchin 				return (NULL);
883*da2e3ebdSchin 		}
884*da2e3ebdSchin 
885*da2e3ebdSchin 		*encp++ = *setting++;
886*da2e3ebdSchin 
887*da2e3ebdSchin 		/* get iteration count */
888*da2e3ebdSchin 		num_iter = 0;
889*da2e3ebdSchin 		for (i = 4; --i >= 0; ) {
890*da2e3ebdSchin 			if ((t = (unsigned char)setting[i]) == '\0')
891*da2e3ebdSchin 				t = '.';
892*da2e3ebdSchin 			encp[i] = t;
893*da2e3ebdSchin 			num_iter = (num_iter<<6) | a64toi[t];
894*da2e3ebdSchin 		}
895*da2e3ebdSchin 		setting += 4;
896*da2e3ebdSchin 		encp += 4;
897*da2e3ebdSchin 		salt_size = 4;
898*da2e3ebdSchin 		break;
899*da2e3ebdSchin 	default:
900*da2e3ebdSchin 		num_iter = 25;
901*da2e3ebdSchin 		salt_size = 2;
902*da2e3ebdSchin 	}
903*da2e3ebdSchin 
904*da2e3ebdSchin 	salt = 0;
905*da2e3ebdSchin 	for (i = salt_size; --i >= 0; ) {
906*da2e3ebdSchin 		if ((t = (unsigned char)setting[i]) == '\0')
907*da2e3ebdSchin 			t = '.';
908*da2e3ebdSchin 		encp[i] = t;
909*da2e3ebdSchin 		salt = (salt<<6) | a64toi[t];
910*da2e3ebdSchin 	}
911*da2e3ebdSchin 	encp += salt_size;
912*da2e3ebdSchin 	if (des_cipher((char *)&constdatablock, (char *)&rsltblock,
913*da2e3ebdSchin 	    salt, num_iter))
914*da2e3ebdSchin 		return (NULL);
915*da2e3ebdSchin 
916*da2e3ebdSchin 	/*
917*da2e3ebdSchin 	 * Encode the 64 cipher bits as 11 ascii characters.
918*da2e3ebdSchin 	 */
919*da2e3ebdSchin 	i = ((long)((rsltblock.b[0]<<8) | rsltblock.b[1])<<8) | rsltblock.b[2];
920*da2e3ebdSchin 	encp[3] = itoa64[i&0x3f];	i >>= 6;
921*da2e3ebdSchin 	encp[2] = itoa64[i&0x3f];	i >>= 6;
922*da2e3ebdSchin 	encp[1] = itoa64[i&0x3f];	i >>= 6;
923*da2e3ebdSchin 	encp[0] = itoa64[i];		encp += 4;
924*da2e3ebdSchin 	i = ((long)((rsltblock.b[3]<<8) | rsltblock.b[4])<<8) | rsltblock.b[5];
925*da2e3ebdSchin 	encp[3] = itoa64[i&0x3f];	i >>= 6;
926*da2e3ebdSchin 	encp[2] = itoa64[i&0x3f];	i >>= 6;
927*da2e3ebdSchin 	encp[1] = itoa64[i&0x3f];	i >>= 6;
928*da2e3ebdSchin 	encp[0] = itoa64[i];		encp += 4;
929*da2e3ebdSchin 	i = ((long)((rsltblock.b[6])<<8) | rsltblock.b[7])<<2;
930*da2e3ebdSchin 	encp[2] = itoa64[i&0x3f];	i >>= 6;
931*da2e3ebdSchin 	encp[1] = itoa64[i&0x3f];	i >>= 6;
932*da2e3ebdSchin 	encp[0] = itoa64[i];
933*da2e3ebdSchin 
934*da2e3ebdSchin 	encp[3] = 0;
935*da2e3ebdSchin 
936*da2e3ebdSchin 	return (cryptresult);
937*da2e3ebdSchin }
938*da2e3ebdSchin 
939*da2e3ebdSchin #ifdef DEBUG
940*da2e3ebdSchin STATIC
prtab(s,t,num_rows)941*da2e3ebdSchin prtab(s, t, num_rows)
942*da2e3ebdSchin 	char *s;
943*da2e3ebdSchin 	unsigned char *t;
944*da2e3ebdSchin 	int num_rows;
945*da2e3ebdSchin {
946*da2e3ebdSchin 	register int i, j;
947*da2e3ebdSchin 
948*da2e3ebdSchin 	(void)printf("%s:\n", s);
949*da2e3ebdSchin 	for (i = 0; i < num_rows; i++) {
950*da2e3ebdSchin 		for (j = 0; j < 8; j++) {
951*da2e3ebdSchin 			 (void)printf("%3d", t[i*8+j]);
952*da2e3ebdSchin 		}
953*da2e3ebdSchin 		(void)printf("\n");
954*da2e3ebdSchin 	}
955*da2e3ebdSchin 	(void)printf("\n");
956*da2e3ebdSchin }
957*da2e3ebdSchin #endif
958*da2e3ebdSchin 
959*da2e3ebdSchin #endif
960