1 /* 2 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 3 * Use is subject to license terms. 4 * 5 * Copyright (c) 1988, 1989, 1993 6 * The Regents of the University of California. All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 4. Neither the name of the University nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 * 32 * @(#)radix.c 8.5 (Berkeley) 5/19/95 33 * $FreeBSD: /repoman/r/ncvs/src/sys/net/radix.c,v 1.36.2.1 2005/01/31 23:26:23 34 * imp Exp $ 35 */ 36 37 #pragma ident "%Z%%M% %I% %E% SMI" 38 39 /* 40 * Routines to build and maintain radix trees for routing lookups. 41 */ 42 #include <sys/types.h> 43 44 #ifndef _RADIX_H_ 45 #include <sys/param.h> 46 #ifdef _KERNEL 47 #include <sys/lock.h> 48 #include <sys/mutex.h> 49 #include <sys/systm.h> 50 #include <sys/cmn_err.h> 51 #else 52 #include <assert.h> 53 #define ASSERT assert 54 #include <stdio.h> 55 #include <stdlib.h> 56 #include <syslog.h> 57 #include <strings.h> 58 #endif /* _KERNEL */ 59 #include <net/radix.h> 60 #endif 61 62 #ifndef _KERNEL 63 void 64 panic(const char *str) 65 { 66 fprintf(stderr, "Panic - %s\n", str); 67 abort(); 68 } 69 #endif /* _KERNEL */ 70 71 static int rn_walktree(struct radix_node_head *, walktree_f_t *, void *); 72 static int rn_walktree_mt(struct radix_node_head *, walktree_f_t *, 73 void *, lockf_t, lockf_t); 74 static struct radix_node 75 *rn_insert(void *, struct radix_node_head *, int *, 76 struct radix_node [2]), 77 *rn_newpair(void *, int, struct radix_node[2]), 78 *rn_search(void *, struct radix_node *), 79 *rn_search_m(void *, struct radix_node *, void *), 80 *rn_lookup(void *, void *, struct radix_node_head *), 81 *rn_match(void *, struct radix_node_head *), 82 *rn_match_args(void *, struct radix_node_head *, match_leaf_t *, 83 void *), 84 *rn_addmask(void *, int, int), 85 *rn_addroute(void *, void *, struct radix_node_head *, 86 struct radix_node [2]), 87 *rn_delete(void *, void *, struct radix_node_head *); 88 static boolean_t rn_refines(void *, void *); 89 90 #define MAX_KEYLEN 16 91 static int max_keylen = MAX_KEYLEN; 92 93 #ifdef _KERNEL 94 static struct kmem_cache *radix_mask_cache; /* for rn_mkfreelist */ 95 static struct kmem_cache *radix_node_cache; 96 #else 97 static char *radix_mask_cache, *radix_node_cache; /* dummy vars. never inited */ 98 #endif /* _KERNEL */ 99 100 static struct radix_mask *rn_mkfreelist; 101 static struct radix_node_head *mask_rnhead; 102 /* 103 * Work area -- the following point to 2 buffers of size max_keylen, 104 * allocated in this order in a block of memory malloc'ed by rn_init. 105 * A third buffer of size MAX_KEYLEN is allocated from the stack. 106 */ 107 static char *rn_zeros, *rn_ones; 108 109 #define MKGet(m) R_Malloc(m, radix_mask_cache, sizeof (struct radix_mask)) 110 #define MKFree(m) Free(m, radix_mask_cache) 111 #define rn_masktop (mask_rnhead->rnh_treetop) 112 113 static boolean_t rn_lexobetter(void *m_arg, void *n_arg); 114 static struct radix_mask * 115 rn_new_radix_mask(struct radix_node *tt, 116 struct radix_mask *next); 117 static boolean_t 118 rn_satisfies_leaf(char *trial, struct radix_node *leaf, 119 int skip, match_leaf_t *rn_leaf_fn, void *rn_leaf_arg); 120 121 #define RN_MATCHF(rn, f, arg) (f == NULL || (*f)((rn), arg)) 122 123 /* 124 * The data structure for the keys is a radix tree with one way 125 * branching removed. The index rn_bit at an internal node n represents a bit 126 * position to be tested. The tree is arranged so that all descendants 127 * of a node n have keys whose bits all agree up to position rn_bit - 1. 128 * (We say the index of n is rn_bit.) 129 * 130 * There is at least one descendant which has a one bit at position rn_bit, 131 * and at least one with a zero there. 132 * 133 * A route is determined by a pair of key and mask. We require that the 134 * bit-wise logical and of the key and mask to be the key. 135 * We define the index of a route associated with the mask to be 136 * the first bit number in the mask where 0 occurs (with bit number 0 137 * representing the highest order bit). 138 * 139 * We say a mask is normal if every bit is 0, past the index of the mask. 140 * If a node n has a descendant (k, m) with index(m) == index(n) == rn_bit, 141 * and m is a normal mask, then the route applies to every descendant of n. 142 * If the index(m) < rn_bit, this implies the trailing last few bits of k 143 * before bit b are all 0, (and hence consequently true of every descendant 144 * of n), so the route applies to all descendants of the node as well. 145 * 146 * Similar logic shows that a non-normal mask m such that 147 * index(m) <= index(n) could potentially apply to many children of n. 148 * Thus, for each non-host route, we attach its mask to a list at an internal 149 * node as high in the tree as we can go. 150 * 151 * The present version of the code makes use of normal routes in short- 152 * circuiting an explict mask and compare operation when testing whether 153 * a key satisfies a normal route, and also in remembering the unique leaf 154 * that governs a subtree. 155 */ 156 157 /* 158 * Most of the functions in this code assume that the key/mask arguments 159 * are sockaddr-like structures, where the first byte is an uchar_t 160 * indicating the size of the entire structure. 161 * 162 * To make the assumption more explicit, we use the LEN() macro to access 163 * this field. It is safe to pass an expression with side effects 164 * to LEN() as the argument is evaluated only once. 165 */ 166 #define LEN(x) (*(const uchar_t *)(x)) 167 168 169 /* 170 * Search a node in the tree matching the key. 171 */ 172 static struct radix_node * 173 rn_search(v_arg, head) 174 void *v_arg; 175 struct radix_node *head; 176 { 177 struct radix_node *x; 178 caddr_t v; 179 180 for (x = head, v = v_arg; x->rn_bit >= 0; ) { 181 if (x->rn_bmask & v[x->rn_offset]) 182 x = x->rn_right; 183 else 184 x = x->rn_left; 185 } 186 return (x); 187 } 188 189 /* 190 * Same as above, but with an additional mask. 191 */ 192 static struct radix_node * 193 rn_search_m(v_arg, head, m_arg) 194 struct radix_node *head; 195 void *v_arg, *m_arg; 196 { 197 struct radix_node *x; 198 caddr_t v = v_arg, m = m_arg; 199 200 for (x = head; x->rn_bit >= 0; ) { 201 if ((x->rn_bmask & m[x->rn_offset]) && 202 (x->rn_bmask & v[x->rn_offset])) 203 x = x->rn_right; 204 else 205 x = x->rn_left; 206 } 207 return (x); 208 } 209 210 /* 211 * Returns true if there are no bits set in n_arg that are zero in 212 * m_arg and the masks aren't equal. In other words, it returns true 213 * when m_arg is a finer-granularity netmask -- it represents a subset 214 * of the destinations implied by n_arg. 215 */ 216 static boolean_t 217 rn_refines(m_arg, n_arg) 218 void *m_arg, *n_arg; 219 { 220 caddr_t m = m_arg, n = n_arg; 221 caddr_t lim = n + LEN(n), lim2 = lim; 222 int longer = LEN(n++) - (int)LEN(m++); 223 boolean_t masks_are_equal = B_TRUE; 224 225 if (longer > 0) 226 lim -= longer; 227 while (n < lim) { 228 if (*n & ~(*m)) 229 return (0); 230 if (*n++ != *m++) 231 masks_are_equal = B_FALSE; 232 } 233 while (n < lim2) 234 if (*n++) 235 return (B_FALSE); 236 if (masks_are_equal && (longer < 0)) 237 for (lim2 = m - longer; m < lim2; ) 238 if (*m++) 239 return (B_TRUE); 240 return (!masks_are_equal); 241 } 242 243 static struct radix_node * 244 rn_lookup(v_arg, m_arg, head) 245 void *v_arg, *m_arg; 246 struct radix_node_head *head; 247 { 248 struct radix_node *x; 249 caddr_t netmask = NULL; 250 251 if (m_arg) { 252 x = rn_addmask(m_arg, 1, head->rnh_treetop->rn_offset); 253 if (x == NULL) 254 return (NULL); 255 netmask = x->rn_key; 256 } 257 x = rn_match(v_arg, head); 258 if (x && netmask) { 259 while (x && x->rn_mask != netmask) 260 x = x->rn_dupedkey; 261 } 262 return (x); 263 } 264 265 /* 266 * Returns true if address 'trial' has no bits differing from the 267 * leaf's key when compared under the leaf's mask. In other words, 268 * returns true when 'trial' matches leaf. 269 * In addition, if a rn_leaf_fn is passed in, that is used to find 270 * a match on conditions defined by the caller of rn_match. This is 271 * used by the kernel ftable to match on IRE_MATCH_* conditions. 272 */ 273 static boolean_t 274 rn_satisfies_leaf(trial, leaf, skip, rn_leaf_fn, rn_leaf_arg) 275 caddr_t trial; 276 struct radix_node *leaf; 277 int skip; 278 match_leaf_t *rn_leaf_fn; 279 void *rn_leaf_arg; 280 { 281 char *cp = trial, *cp2 = leaf->rn_key, *cp3 = leaf->rn_mask; 282 char *cplim; 283 int length = min(LEN(cp), LEN(cp2)); 284 285 if (cp3 == 0) 286 cp3 = rn_ones; 287 else 288 length = min(length, LEN(cp3)); 289 cplim = cp + length; 290 cp3 += skip; 291 cp2 += skip; 292 293 for (cp += skip; cp < cplim; cp++, cp2++, cp3++) 294 if ((*cp ^ *cp2) & *cp3) 295 return (B_FALSE); 296 297 return (RN_MATCHF(leaf, rn_leaf_fn, rn_leaf_arg)); 298 } 299 300 static struct radix_node * 301 rn_match(v_arg, head) 302 void *v_arg; 303 struct radix_node_head *head; 304 { 305 return (rn_match_args(v_arg, head, NULL, NULL)); 306 } 307 308 static struct radix_node * 309 rn_match_args(v_arg, head, rn_leaf_fn, rn_leaf_arg) 310 void *v_arg; 311 struct radix_node_head *head; 312 match_leaf_t *rn_leaf_fn; 313 void *rn_leaf_arg; 314 { 315 caddr_t v = v_arg; 316 struct radix_node *t = head->rnh_treetop, *x; 317 caddr_t cp = v, cp2; 318 caddr_t cplim; 319 struct radix_node *saved_t, *top = t; 320 int off = t->rn_offset, vlen = LEN(cp), matched_off; 321 int test, b, rn_bit; 322 323 /* 324 * Open code rn_search(v, top) to avoid overhead of extra 325 * subroutine call. 326 */ 327 for (; t->rn_bit >= 0; ) { 328 if (t->rn_bmask & cp[t->rn_offset]) 329 t = t->rn_right; 330 else 331 t = t->rn_left; 332 } 333 /* 334 * See if we match exactly as a host destination 335 * or at least learn how many bits match, for normal mask finesse. 336 * 337 * It doesn't hurt us to limit how many bytes to check 338 * to the length of the mask, since if it matches we had a genuine 339 * match and the leaf we have is the most specific one anyway; 340 * if it didn't match with a shorter length it would fail 341 * with a long one. This wins big for class B&C netmasks which 342 * are probably the most common case... 343 */ 344 if (t->rn_mask) 345 vlen = LEN(t->rn_mask); 346 cp += off; cp2 = t->rn_key + off; cplim = v + vlen; 347 for (; cp < cplim; cp++, cp2++) 348 if (*cp != *cp2) 349 goto keydiff; 350 /* 351 * This extra grot is in case we are explicitly asked 352 * to look up the default. Ugh! 353 * 354 * Never return the root node itself, it seems to cause a 355 * lot of confusion. 356 */ 357 if (t->rn_flags & RNF_ROOT) 358 t = t->rn_dupedkey; 359 if (t == NULL || RN_MATCHF(t, rn_leaf_fn, rn_leaf_arg)) { 360 return (t); 361 } else { 362 /* 363 * Although we found an exact match on the key, rn_leaf_fn 364 * is looking for some other criteria as well. Continue 365 * looking as if the exact match failed. 366 */ 367 if (t->rn_parent->rn_flags & RNF_ROOT) { 368 /* hit the top. have to give up */ 369 return (NULL); 370 } 371 b = 0; 372 goto keeplooking; 373 374 } 375 keydiff: 376 test = (*cp ^ *cp2) & 0xff; /* find first bit that differs */ 377 for (b = 7; (test >>= 1) > 0; ) 378 b--; 379 keeplooking: 380 matched_off = cp - v; 381 b += matched_off << 3; 382 rn_bit = -1 - b; 383 384 /* 385 * If there is a host route in a duped-key chain, it will be first. 386 */ 387 if ((saved_t = t)->rn_mask == 0) 388 t = t->rn_dupedkey; 389 for (; t != NULL; t = t->rn_dupedkey) { 390 /* 391 * Even if we don't match exactly as a host, 392 * we may match if the leaf we wound up at is 393 * a route to a net. 394 */ 395 396 if (t->rn_flags & RNF_NORMAL) { 397 if ((rn_bit <= t->rn_bit) && 398 RN_MATCHF(t, rn_leaf_fn, rn_leaf_arg)) { 399 return (t); 400 } 401 } else if (rn_satisfies_leaf(v, t, matched_off, rn_leaf_fn, 402 rn_leaf_arg)) { 403 return (t); 404 } 405 } 406 t = saved_t; 407 /* start searching up the tree */ 408 do { 409 struct radix_mask *m; 410 411 t = t->rn_parent; 412 m = t->rn_mklist; 413 /* 414 * If non-contiguous masks ever become important 415 * we can restore the masking and open coding of 416 * the search and satisfaction test and put the 417 * calculation of "off" back before the "do". 418 */ 419 while (m) { 420 if (m->rm_flags & RNF_NORMAL) { 421 if ((rn_bit <= m->rm_bit) && 422 RN_MATCHF(m->rm_leaf, rn_leaf_fn, 423 rn_leaf_arg)) { 424 return (m->rm_leaf); 425 } 426 } else { 427 off = min(t->rn_offset, matched_off); 428 x = rn_search_m(v, t, m->rm_mask); 429 while (x != NULL && x->rn_mask != m->rm_mask) 430 x = x->rn_dupedkey; 431 if (x && rn_satisfies_leaf(v, x, off, 432 rn_leaf_fn, rn_leaf_arg)) { 433 return (x); 434 } 435 } 436 m = m->rm_mklist; 437 } 438 } while (t != top); 439 return (0); 440 } 441 442 /* 443 * Whenever we add a new leaf to the tree, we also add a parent node, 444 * so we allocate them as an array of two elements: the first one must be 445 * the leaf (see RNTORT() in route.c), the second one is the parent. 446 * This routine initializes the relevant fields of the nodes, so that 447 * the leaf is the left child of the parent node, and both nodes have 448 * (almost) all all fields filled as appropriate. 449 * The function returns a pointer to the parent node. 450 */ 451 452 static struct radix_node * 453 rn_newpair(v, b, nodes) 454 void *v; 455 int b; 456 struct radix_node nodes[2]; 457 { 458 struct radix_node *tt = nodes, *t = tt + 1; 459 460 t->rn_bit = b; 461 t->rn_bmask = 0x80 >> (b & 7); 462 t->rn_left = tt; 463 t->rn_offset = b >> 3; 464 465 /* 466 * t->rn_parent, r->rn_right, tt->rn_mask, tt->rn_dupedkey 467 * and tt->rn_bmask must have been zeroed by caller. 468 */ 469 tt->rn_bit = -1; 470 tt->rn_key = v; 471 tt->rn_parent = t; 472 tt->rn_flags = t->rn_flags = RNF_ACTIVE; 473 tt->rn_mklist = t->rn_mklist = 0; 474 return (t); 475 } 476 477 static struct radix_node * 478 rn_insert(v_arg, head, dupentry, nodes) 479 void *v_arg; 480 struct radix_node_head *head; 481 int *dupentry; 482 struct radix_node nodes[2]; 483 { 484 caddr_t v = v_arg; 485 struct radix_node *top = head->rnh_treetop; 486 int head_off = top->rn_offset, vlen = (int)LEN(v); 487 struct radix_node *t = rn_search(v_arg, top); 488 caddr_t cp = v + head_off; 489 int b; 490 struct radix_node *tt; 491 492 /* 493 * Find first bit at which v and t->rn_key differ 494 */ 495 { 496 caddr_t cp2 = t->rn_key + head_off; 497 int cmp_res; 498 caddr_t cplim = v + vlen; 499 500 while (cp < cplim) 501 if (*cp2++ != *cp++) 502 goto on1; 503 *dupentry = 1; 504 return (t); 505 on1: 506 *dupentry = 0; 507 cmp_res = (cp[-1] ^ cp2[-1]) & 0xff; 508 for (b = (cp - v) << 3; cmp_res; b--) 509 cmp_res >>= 1; 510 } 511 { 512 struct radix_node *p, *x = top; 513 cp = v; 514 do { 515 p = x; 516 if (cp[x->rn_offset] & x->rn_bmask) 517 x = x->rn_right; 518 else 519 x = x->rn_left; 520 } while (b > (unsigned)x->rn_bit); 521 /* x->rn_bit < b && x->rn_bit >= 0 */ 522 t = rn_newpair(v_arg, b, nodes); 523 tt = t->rn_left; 524 if ((cp[p->rn_offset] & p->rn_bmask) == 0) 525 p->rn_left = t; 526 else 527 p->rn_right = t; 528 x->rn_parent = t; 529 t->rn_parent = p; 530 if ((cp[t->rn_offset] & t->rn_bmask) == 0) { 531 t->rn_right = x; 532 } else { 533 t->rn_right = tt; 534 t->rn_left = x; 535 } 536 } 537 return (tt); 538 } 539 540 static struct radix_node * 541 rn_addmask(n_arg, search, skip) 542 int search, skip; 543 void *n_arg; 544 { 545 caddr_t netmask = (caddr_t)n_arg; 546 struct radix_node *x; 547 caddr_t cp, cplim; 548 int b = 0, mlen, j; 549 int maskduplicated, m0, isnormal; 550 struct radix_node *saved_x; 551 int last_zeroed = 0; 552 char addmask_key[MAX_KEYLEN]; 553 554 if ((mlen = LEN(netmask)) > max_keylen) 555 mlen = max_keylen; 556 if (skip == 0) 557 skip = 1; 558 if (mlen <= skip) 559 return (mask_rnhead->rnh_nodes); 560 if (skip > 1) 561 bcopy(rn_ones + 1, addmask_key + 1, skip - 1); 562 if ((m0 = mlen) > skip) 563 bcopy(netmask + skip, addmask_key + skip, mlen - skip); 564 /* 565 * Trim trailing zeroes. 566 */ 567 for (cp = addmask_key + mlen; (cp > addmask_key) && cp[-1] == 0; ) 568 cp--; 569 mlen = cp - addmask_key; 570 if (mlen <= skip) { 571 if (m0 >= last_zeroed) 572 last_zeroed = mlen; 573 return (mask_rnhead->rnh_nodes); 574 } 575 if (m0 < last_zeroed) 576 bzero(addmask_key + m0, last_zeroed - m0); 577 *addmask_key = last_zeroed = mlen; 578 x = rn_search(addmask_key, rn_masktop); 579 if (bcmp(addmask_key, x->rn_key, mlen) != 0) 580 x = 0; 581 if (x || search) 582 return (x); 583 R_Zalloc(x, radix_node_cache, max_keylen + 2 * sizeof (*x)); 584 585 if ((saved_x = x) == 0) 586 return (0); 587 netmask = cp = (caddr_t)(x + 2); 588 bcopy(addmask_key, cp, mlen); 589 x = rn_insert(cp, mask_rnhead, &maskduplicated, x); 590 if (maskduplicated) { 591 #ifdef _KERNEL 592 cmn_err(CE_WARN, "rn_addmask: mask impossibly already in tree"); 593 #else 594 syslog(LOG_ERR, "rn_addmask: mask impossibly already in tree"); 595 #endif /* _KERNEL */ 596 Free(saved_x, radix_node_cache); 597 return (x); 598 } 599 /* 600 * Calculate index of mask, and check for normalcy. 601 * First find the first byte with a 0 bit, then if there are 602 * more bits left (remember we already trimmed the trailing 0's), 603 * the pattern must be one of those in normal_chars[], or we have 604 * a non-contiguous mask. 605 */ 606 cplim = netmask + mlen; 607 isnormal = 1; 608 for (cp = netmask + skip; (cp < cplim) && *(uchar_t *)cp == 0xff; ) 609 cp++; 610 if (cp != cplim) { 611 static uint8_t normal_chars[] = { 612 0, 0x80, 0xc0, 0xe0, 0xf0, 0xf8, 0xfc, 0xfe, 0xff}; 613 614 for (j = 0x80; (j & *cp) != 0; j >>= 1) 615 b++; 616 if (*cp != normal_chars[b] || cp != (cplim - 1)) 617 isnormal = 0; 618 } 619 b += (cp - netmask) << 3; 620 x->rn_bit = -1 - b; 621 if (isnormal) 622 x->rn_flags |= RNF_NORMAL; 623 return (x); 624 } 625 626 /* arbitrary ordering for non-contiguous masks */ 627 static boolean_t 628 rn_lexobetter(m_arg, n_arg) 629 void *m_arg, *n_arg; 630 { 631 uchar_t *mp = m_arg, *np = n_arg, *lim; 632 633 if (LEN(mp) > LEN(np)) 634 /* not really, but need to check longer one first */ 635 return (B_TRUE); 636 if (LEN(mp) == LEN(np)) 637 for (lim = mp + LEN(mp); mp < lim; ) 638 if (*mp++ > *np++) 639 return (B_TRUE); 640 return (B_FALSE); 641 } 642 643 static struct radix_mask * 644 rn_new_radix_mask(tt, next) 645 struct radix_node *tt; 646 struct radix_mask *next; 647 { 648 struct radix_mask *m; 649 650 MKGet(m); 651 if (m == 0) { 652 #ifndef _KERNEL 653 syslog(LOG_ERR, "Mask for route not entered\n"); 654 #endif /* _KERNEL */ 655 return (0); 656 } 657 bzero(m, sizeof (*m)); 658 m->rm_bit = tt->rn_bit; 659 m->rm_flags = tt->rn_flags; 660 if (tt->rn_flags & RNF_NORMAL) 661 m->rm_leaf = tt; 662 else 663 m->rm_mask = tt->rn_mask; 664 m->rm_mklist = next; 665 tt->rn_mklist = m; 666 return (m); 667 } 668 669 static struct radix_node * 670 rn_addroute(v_arg, n_arg, head, treenodes) 671 void *v_arg, *n_arg; 672 struct radix_node_head *head; 673 struct radix_node treenodes[2]; 674 { 675 caddr_t v = (caddr_t)v_arg, netmask = (caddr_t)n_arg; 676 struct radix_node *t, *x = 0, *tt; 677 struct radix_node *saved_tt, *top = head->rnh_treetop; 678 short b = 0, b_leaf = 0; 679 int keyduplicated; 680 caddr_t mmask; 681 struct radix_mask *m, **mp; 682 683 /* 684 * In dealing with non-contiguous masks, there may be 685 * many different routes which have the same mask. 686 * We will find it useful to have a unique pointer to 687 * the mask to speed avoiding duplicate references at 688 * nodes and possibly save time in calculating indices. 689 */ 690 if (netmask) { 691 if ((x = rn_addmask(netmask, 0, top->rn_offset)) == 0) 692 return (0); 693 b_leaf = x->rn_bit; 694 b = -1 - x->rn_bit; 695 netmask = x->rn_key; 696 } 697 /* 698 * Deal with duplicated keys: attach node to previous instance 699 */ 700 saved_tt = tt = rn_insert(v, head, &keyduplicated, treenodes); 701 if (keyduplicated) { 702 for (t = tt; tt; t = tt, tt = tt->rn_dupedkey) { 703 if (tt->rn_mask == netmask) 704 return (0); 705 if (netmask == 0 || 706 (tt->rn_mask && 707 /* index (netmask) > node */ 708 ((b_leaf < tt->rn_bit) || 709 rn_refines(netmask, tt->rn_mask) || 710 rn_lexobetter(netmask, tt->rn_mask)))) 711 break; 712 } 713 /* 714 * If the mask is not duplicated, we wouldn't 715 * find it among possible duplicate key entries 716 * anyway, so the above test doesn't hurt. 717 * 718 * We sort the masks for a duplicated key the same way as 719 * in a masklist -- most specific to least specific. 720 * This may require the unfortunate nuisance of relocating 721 * the head of the list. 722 * 723 * We also reverse, or doubly link the list through the 724 * parent pointer. 725 */ 726 if (tt == saved_tt) { 727 struct radix_node *xx = x; 728 /* link in at head of list */ 729 (tt = treenodes)->rn_dupedkey = t; 730 tt->rn_flags = t->rn_flags; 731 tt->rn_parent = x = t->rn_parent; 732 t->rn_parent = tt; /* parent */ 733 if (x->rn_left == t) 734 x->rn_left = tt; 735 else 736 x->rn_right = tt; 737 saved_tt = tt; x = xx; 738 } else { 739 (tt = treenodes)->rn_dupedkey = t->rn_dupedkey; 740 t->rn_dupedkey = tt; 741 /* Set rn_parent value for tt and tt->rn_dupedkey */ 742 tt->rn_parent = t; 743 if (tt->rn_dupedkey) 744 tt->rn_dupedkey->rn_parent = tt; 745 } 746 tt->rn_key = v; 747 tt->rn_bit = -1; 748 tt->rn_flags = RNF_ACTIVE; 749 } 750 /* 751 * Put mask in tree. 752 */ 753 if (netmask) { 754 tt->rn_mask = netmask; 755 tt->rn_bit = x->rn_bit; 756 tt->rn_flags |= x->rn_flags & RNF_NORMAL; 757 } 758 t = saved_tt->rn_parent; 759 if (keyduplicated) 760 goto key_exists; 761 b_leaf = -1 - t->rn_bit; 762 if (t->rn_right == saved_tt) 763 x = t->rn_left; 764 else 765 x = t->rn_right; 766 /* Promote general routes from below */ 767 if (x->rn_bit < 0) { 768 for (mp = &t->rn_mklist; x; x = x->rn_dupedkey) 769 if (x->rn_mask && (x->rn_bit >= b_leaf) && x->rn_mklist == 0) { 770 *mp = m = rn_new_radix_mask(x, 0); 771 if (m) 772 mp = &m->rm_mklist; 773 } 774 } else if (x->rn_mklist) { 775 /* 776 * Skip over masks whose index is > that of new node 777 */ 778 for (mp = &x->rn_mklist; (m = *mp) != NULL; mp = &m->rm_mklist) 779 if (m->rm_bit >= b_leaf) 780 break; 781 t->rn_mklist = m; *mp = 0; 782 } 783 key_exists: 784 /* Add new route to highest possible ancestor's list */ 785 if ((netmask == 0) || (b > t->rn_bit)) 786 return (tt); /* can't lift at all */ 787 b_leaf = tt->rn_bit; 788 do { 789 x = t; 790 t = t->rn_parent; 791 } while (b <= t->rn_bit && x != top); 792 /* 793 * Search through routes associated with node to 794 * insert new route according to index. 795 * Need same criteria as when sorting dupedkeys to avoid 796 * double loop on deletion. 797 */ 798 for (mp = &x->rn_mklist; (m = *mp) != NULL; mp = &m->rm_mklist) { 799 if (m->rm_bit < b_leaf) 800 continue; 801 if (m->rm_bit > b_leaf) 802 break; 803 if (m->rm_flags & RNF_NORMAL) { 804 mmask = m->rm_leaf->rn_mask; 805 if (tt->rn_flags & RNF_NORMAL) { 806 #ifdef _KERNEL 807 cmn_err(CE_WARN, "Non-unique normal route, " 808 "mask not entered\n"); 809 #else 810 syslog(LOG_ERR, "Non-unique normal route, " 811 "mask not entered\n"); 812 #endif /* _KERNEL */ 813 return (tt); 814 } 815 } else 816 mmask = m->rm_mask; 817 if (mmask == netmask) { 818 m->rm_refs++; 819 tt->rn_mklist = m; 820 return (tt); 821 } 822 if (rn_refines(netmask, mmask) || 823 rn_lexobetter(netmask, mmask)) 824 break; 825 } 826 *mp = rn_new_radix_mask(tt, *mp); 827 return (tt); 828 } 829 830 static struct radix_node * 831 rn_delete(v_arg, netmask_arg, head) 832 void *v_arg, *netmask_arg; 833 struct radix_node_head *head; 834 { 835 struct radix_node *t, *p, *x, *tt; 836 struct radix_mask *m, *saved_m, **mp; 837 struct radix_node *dupedkey, *saved_tt, *top; 838 caddr_t v, netmask; 839 int b, head_off, vlen; 840 841 v = v_arg; 842 netmask = netmask_arg; 843 x = head->rnh_treetop; 844 tt = rn_search(v, x); 845 head_off = x->rn_offset; 846 vlen = LEN(v); 847 saved_tt = tt; 848 top = x; 849 if (tt == 0 || 850 bcmp(v + head_off, tt->rn_key + head_off, vlen - head_off)) 851 return (0); 852 /* 853 * Delete our route from mask lists. 854 */ 855 if (netmask) { 856 if ((x = rn_addmask(netmask, 1, head_off)) == 0) 857 return (0); 858 netmask = x->rn_key; 859 while (tt->rn_mask != netmask) 860 if ((tt = tt->rn_dupedkey) == 0) 861 return (0); 862 } 863 if (tt->rn_mask == 0 || (saved_m = m = tt->rn_mklist) == 0) 864 goto on1; 865 if (tt->rn_flags & RNF_NORMAL) { 866 if (m->rm_leaf != tt || m->rm_refs > 0) { 867 #ifdef _KERNEL 868 cmn_err(CE_WARN, 869 "rn_delete: inconsistent annotation\n"); 870 #else 871 syslog(LOG_ERR, "rn_delete: inconsistent annotation\n"); 872 #endif /* _KERNEL */ 873 return (0); /* dangling ref could cause disaster */ 874 } 875 } else { 876 if (m->rm_mask != tt->rn_mask) { 877 #ifdef _KERNEL 878 cmn_err(CE_WARN, 879 "rn_delete: inconsistent annotation 2\n"); 880 #else 881 syslog(LOG_ERR, 882 "rn_delete: inconsistent annotation 2\n"); 883 #endif /* _KERNEL */ 884 goto on1; 885 } 886 if (--m->rm_refs >= 0) 887 goto on1; 888 } 889 b = -1 - tt->rn_bit; 890 t = saved_tt->rn_parent; 891 if (b > t->rn_bit) 892 goto on1; /* Wasn't lifted at all */ 893 do { 894 x = t; 895 t = t->rn_parent; 896 } while (b <= t->rn_bit && x != top); 897 for (mp = &x->rn_mklist; (m = *mp) != NULL; mp = &m->rm_mklist) 898 if (m == saved_m) { 899 *mp = m->rm_mklist; 900 MKFree(m); 901 break; 902 } 903 if (m == 0) { 904 #ifdef _KERNEL 905 cmn_err(CE_WARN, "rn_delete: couldn't find our annotation\n"); 906 #else 907 syslog(LOG_ERR, "rn_delete: couldn't find our annotation\n"); 908 #endif /* _KERNEL */ 909 if (tt->rn_flags & RNF_NORMAL) 910 return (0); /* Dangling ref to us */ 911 } 912 on1: 913 /* 914 * Eliminate us from tree 915 */ 916 if (tt->rn_flags & RNF_ROOT) 917 return (0); 918 t = tt->rn_parent; 919 dupedkey = saved_tt->rn_dupedkey; 920 if (dupedkey) { 921 /* 922 * Here, tt is the deletion target and 923 * saved_tt is the head of the dupekey chain. 924 */ 925 if (tt == saved_tt) { 926 /* remove from head of chain */ 927 x = dupedkey; x->rn_parent = t; 928 if (t->rn_left == tt) 929 t->rn_left = x; 930 else 931 t->rn_right = x; 932 } else { 933 /* find node in front of tt on the chain */ 934 for (x = p = saved_tt; p && p->rn_dupedkey != tt; ) 935 p = p->rn_dupedkey; 936 if (p) { 937 p->rn_dupedkey = tt->rn_dupedkey; 938 if (tt->rn_dupedkey) /* parent */ 939 tt->rn_dupedkey->rn_parent = p; 940 /* parent */ 941 } else 942 #ifdef _KERNEL 943 cmn_err(CE_WARN, 944 "rn_delete: couldn't find us\n"); 945 #else 946 syslog(LOG_ERR, 947 "rn_delete: couldn't find us\n"); 948 #endif /* _KERNEL */ 949 } 950 t = tt + 1; 951 if (t->rn_flags & RNF_ACTIVE) { 952 *++x = *t; 953 p = t->rn_parent; 954 if (p->rn_left == t) 955 p->rn_left = x; 956 else 957 p->rn_right = x; 958 x->rn_left->rn_parent = x; 959 x->rn_right->rn_parent = x; 960 } 961 goto out; 962 } 963 if (t->rn_left == tt) 964 x = t->rn_right; 965 else 966 x = t->rn_left; 967 p = t->rn_parent; 968 if (p->rn_right == t) 969 p->rn_right = x; 970 else 971 p->rn_left = x; 972 x->rn_parent = p; 973 /* 974 * Demote routes attached to us. 975 */ 976 if (t->rn_mklist) { 977 if (x->rn_bit >= 0) { 978 for (mp = &x->rn_mklist; (m = *mp) != NULL; ) 979 mp = &m->rm_mklist; 980 *mp = t->rn_mklist; 981 } else { 982 /* 983 * If there are any key,mask pairs in a sibling 984 * duped-key chain, some subset will appear sorted 985 * in the same order attached to our mklist 986 */ 987 for (m = t->rn_mklist; m && x; x = x->rn_dupedkey) 988 if (m == x->rn_mklist) { 989 struct radix_mask *mm = m->rm_mklist; 990 x->rn_mklist = 0; 991 if (--(m->rm_refs) < 0) 992 MKFree(m); 993 m = mm; 994 } 995 if (m) 996 #ifdef _KERNEL 997 cmn_err(CE_WARN, 998 "rn_delete: Orphaned Mask %p at %p\n", 999 (void *)m, (void *)x); 1000 #else 1001 syslog(LOG_ERR, 1002 "rn_delete: Orphaned Mask %p at %p\n", 1003 (void *)m, (void *)x); 1004 #endif /* _KERNEL */ 1005 } 1006 } 1007 /* 1008 * We may be holding an active internal node in the tree. 1009 */ 1010 x = tt + 1; 1011 if (t != x) { 1012 *t = *x; 1013 t->rn_left->rn_parent = t; 1014 t->rn_right->rn_parent = t; 1015 p = x->rn_parent; 1016 if (p->rn_left == x) 1017 p->rn_left = t; 1018 else 1019 p->rn_right = t; 1020 } 1021 out: 1022 tt->rn_flags &= ~RNF_ACTIVE; 1023 tt[1].rn_flags &= ~RNF_ACTIVE; 1024 return (tt); 1025 } 1026 1027 /* 1028 * Walk the radix tree; For the kernel routing table, we hold additional 1029 * refs on the ire_bucket to ensure that the walk function f() does not 1030 * run into trashed memory. The kernel routing table is identified by 1031 * a rnh_treetop that has RNF_SUNW_FT set in the rn_flags. 1032 * Note that all refs takein in rn_walktree are released before it returns, 1033 * so that f() will need to take any additional references on memory 1034 * to be passed back to the caller of rn_walktree. 1035 */ 1036 static int 1037 rn_walktree(h, f, w) 1038 struct radix_node_head *h; 1039 walktree_f_t *f; 1040 void *w; 1041 { 1042 return (rn_walktree_mt(h, f, w, NULL, NULL)); 1043 } 1044 static int 1045 rn_walktree_mt(h, f, w, lockf, unlockf) 1046 struct radix_node_head *h; 1047 walktree_f_t *f; 1048 void *w; 1049 lockf_t lockf, unlockf; 1050 { 1051 int error; 1052 struct radix_node *base, *next; 1053 struct radix_node *rn = h->rnh_treetop; 1054 boolean_t is_mt = B_FALSE; 1055 1056 if (lockf != NULL) { 1057 ASSERT(unlockf != NULL); 1058 is_mt = B_TRUE; 1059 } 1060 /* 1061 * This gets complicated because we may delete the node 1062 * while applying the function f to it, so we need to calculate 1063 * the successor node in advance. 1064 */ 1065 RADIX_NODE_HEAD_RLOCK(h); 1066 /* First time through node, go left */ 1067 while (rn->rn_bit >= 0) { 1068 rn = rn->rn_left; 1069 } 1070 1071 if (is_mt) 1072 (*lockf)(rn); 1073 1074 for (;;) { 1075 base = rn; 1076 /* If at right child go back up, otherwise, go right */ 1077 while (rn->rn_parent->rn_right == rn && 1078 (rn->rn_flags & RNF_ROOT) == 0) { 1079 rn = rn->rn_parent; 1080 } 1081 /* Find the next *leaf* since next node might vanish, too */ 1082 for (rn = rn->rn_parent->rn_right; rn->rn_bit >= 0; ) { 1083 rn = rn->rn_left; 1084 } 1085 next = rn; 1086 1087 if (is_mt && next != NULL) 1088 (*lockf)(next); 1089 1090 /* Process leaves */ 1091 while ((rn = base) != NULL) { 1092 base = rn->rn_dupedkey; 1093 1094 if (is_mt && base != NULL) 1095 (*lockf)(base); 1096 1097 RADIX_NODE_HEAD_UNLOCK(h); 1098 if (!(rn->rn_flags & RNF_ROOT) && 1099 (error = (*f)(rn, w))) { 1100 if (is_mt) { 1101 (*unlockf)(rn); 1102 if (base != NULL) 1103 (*unlockf)(base); 1104 if (next != NULL) 1105 (*unlockf)(next); 1106 } 1107 return (error); 1108 } 1109 if (is_mt) 1110 (*unlockf)(rn); 1111 RADIX_NODE_HEAD_RLOCK(h); 1112 } 1113 rn = next; 1114 if (rn->rn_flags & RNF_ROOT) { 1115 RADIX_NODE_HEAD_UNLOCK(h); 1116 /* 1117 * no ref to release, since we never take a ref 1118 * on the root node- it can't be deleted. 1119 */ 1120 return (0); 1121 } 1122 } 1123 /* NOTREACHED */ 1124 } 1125 1126 /* 1127 * Allocate and initialize an empty tree. This has 3 nodes, which are 1128 * part of the radix_node_head (in the order <left,root,right>) and are 1129 * marked RNF_ROOT so they cannot be freed. 1130 * The leaves have all-zero and all-one keys, with significant 1131 * bits starting at 'off'. 1132 * Return 1 on success, 0 on error. 1133 */ 1134 int 1135 rn_inithead(head, off) 1136 void **head; 1137 int off; 1138 { 1139 struct radix_node_head *rnh; 1140 struct radix_node *t, *tt, *ttt; 1141 if (*head) 1142 return (1); 1143 R_ZallocSleep(rnh, struct radix_node_head *, sizeof (*rnh)); 1144 if (rnh == 0) 1145 return (0); 1146 #ifdef _KERNEL 1147 RADIX_NODE_HEAD_LOCK_INIT(rnh); 1148 #endif 1149 *head = rnh; 1150 t = rn_newpair(rn_zeros, off, rnh->rnh_nodes); 1151 ttt = rnh->rnh_nodes + 2; 1152 t->rn_right = ttt; 1153 t->rn_parent = t; 1154 tt = t->rn_left; /* ... which in turn is rnh->rnh_nodes */ 1155 tt->rn_flags = t->rn_flags = RNF_ROOT | RNF_ACTIVE; 1156 tt->rn_bit = -1 - off; 1157 *ttt = *tt; 1158 ttt->rn_key = rn_ones; 1159 rnh->rnh_addaddr = rn_addroute; 1160 rnh->rnh_deladdr = rn_delete; 1161 rnh->rnh_matchaddr = rn_match; 1162 rnh->rnh_matchaddr_args = rn_match_args; 1163 rnh->rnh_lookup = rn_lookup; 1164 rnh->rnh_walktree = rn_walktree; 1165 rnh->rnh_walktree_mt = rn_walktree_mt; 1166 rnh->rnh_walktree_from = NULL; /* not implemented */ 1167 rnh->rnh_treetop = t; 1168 return (1); 1169 } 1170 1171 void 1172 rn_init() 1173 { 1174 char *cp, *cplim; 1175 1176 #ifdef _KERNEL 1177 radix_mask_cache = kmem_cache_create("radix_mask", 1178 sizeof (struct radix_mask), 0, NULL, NULL, NULL, NULL, NULL, 0); 1179 radix_node_cache = kmem_cache_create("radix_node", 1180 max_keylen + 2 * sizeof (struct radix_node), 1181 0, NULL, NULL, NULL, NULL, NULL, 0); 1182 #endif /* _KERNEL */ 1183 R_ZallocSleep(rn_zeros, char *, 2 * max_keylen); 1184 1185 ASSERT(rn_zeros != NULL); 1186 bzero(rn_zeros, 2 * max_keylen); 1187 rn_ones = cp = rn_zeros + max_keylen; 1188 cplim = rn_ones + max_keylen; 1189 while (cp < cplim) 1190 *cp++ = -1; 1191 if (rn_inithead((void **)(void *)&mask_rnhead, 0) == 0) 1192 panic("rn_init: could not init mask_rnhead "); 1193 } 1194 1195 int 1196 rn_freenode(n, p) 1197 struct radix_node *n; 1198 void *p; 1199 { 1200 struct radix_node_head *rnh = p; 1201 struct radix_node *d; 1202 1203 d = rnh->rnh_deladdr(n->rn_key, NULL, rnh); 1204 if (d != NULL) { 1205 Free(d, radix_node_cache); 1206 } 1207 return (0); 1208 } 1209 1210 1211 void 1212 rn_freehead(rnh) 1213 struct radix_node_head *rnh; 1214 { 1215 (void) rn_walktree(rnh, rn_freenode, rnh); 1216 1217 rnh->rnh_addaddr = NULL; 1218 rnh->rnh_deladdr = NULL; 1219 rnh->rnh_matchaddr = NULL; 1220 rnh->rnh_lookup = NULL; 1221 rnh->rnh_walktree = NULL; 1222 1223 #ifdef _KERNEL 1224 RADIX_NODE_HEAD_DESTROY(rnh); 1225 FreeHead(rnh, sizeof (*rnh)); 1226 #else 1227 Free(rnh, NULL); 1228 #endif /* _KERNEL */ 1229 } 1230 1231 void 1232 rn_fini() 1233 { 1234 struct radix_mask *m; 1235 1236 if (rn_zeros != NULL) { 1237 #ifdef _KERNEL 1238 FreeHead(rn_zeros, 2 * max_keylen); 1239 #else 1240 Free(rn_zeros, NULL); 1241 #endif 1242 rn_zeros = NULL; 1243 } 1244 1245 1246 if (mask_rnhead != NULL) { 1247 rn_freehead(mask_rnhead); 1248 mask_rnhead = NULL; 1249 } 1250 1251 while ((m = rn_mkfreelist) != NULL) { 1252 rn_mkfreelist = m->rm_mklist; 1253 Free(m, NULL); 1254 } 1255 } 1256