1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 /* LINTLIBRARY */ 28 29 /* 30 * String conversion routine for hardware capabilities types. 31 */ 32 #include <strings.h> 33 #include <stdio.h> 34 #include <ctype.h> 35 #include <sys/machelf.h> 36 #include <sys/elf.h> 37 #include <sys/auxv_SPARC.h> 38 #include <sys/auxv_386.h> 39 #include <elfcap.h> 40 41 /* 42 * Given a literal string, generate an initialization for an 43 * elfcap_str_t value. 44 */ 45 #define STRDESC(_str) { _str, sizeof (_str) - 1 } 46 47 /* 48 * The items in the elfcap_desc_t arrays are required to be 49 * ordered so that the array index is related to the 50 * c_val field as: 51 * 52 * array[ndx].c_val = 2^ndx 53 * 54 * meaning that 55 * 56 * array[0].c_val = 2^0 = 1 57 * array[1].c_val = 2^1 = 2 58 * array[2].c_val = 2^2 = 4 59 * . 60 * . 61 * . 62 * 63 * Since 0 is not a valid value for the c_val field, we use it to 64 * mark an array entry that is a placeholder. This can happen if there 65 * is a hole in the assigned bits. 66 * 67 * The RESERVED_ELFCAP_DESC macro is used to reserve such holes. 68 */ 69 #define RESERVED_ELFCAP_DESC { 0, { NULL, 0 }, { NULL, 0 }, { NULL, 0 } } 70 71 /* 72 * Define separators for output string processing. This must be kept in 73 * sync with the elfcap_fmt_t values in elfcap.h. 74 */ 75 static const elfcap_str_t format[] = { 76 STRDESC(" "), /* ELFCAP_FMT_SNGSPACE */ 77 STRDESC(" "), /* ELFCAP_FMT_DBLSPACE */ 78 STRDESC(" | ") /* ELFCAP_FMT_PIPSPACE */ 79 }; 80 #define FORMAT_NELTS (sizeof (format) / sizeof (format[0])) 81 82 83 84 /* 85 * Define all known software capabilities in all the supported styles. 86 * Order the capabilities by their numeric value. See SF1_SUNW_ 87 * values in sys/elf.h. 88 */ 89 static const elfcap_desc_t sf1[ELFCAP_NUM_SF1] = { 90 { /* 0x00000001 */ 91 SF1_SUNW_FPKNWN, STRDESC("SF1_SUNW_FPKNWN"), 92 STRDESC("FPKNWN"), STRDESC("fpknwn") 93 }, 94 { /* 0x00000002 */ 95 SF1_SUNW_FPUSED, STRDESC("SF1_SUNW_FPUSED"), 96 STRDESC("FPUSED"), STRDESC("fpused"), 97 }, 98 { /* 0x00000004 */ 99 SF1_SUNW_ADDR32, STRDESC("SF1_SUNW_ADDR32"), 100 STRDESC("ADDR32"), STRDESC("addr32"), 101 } 102 }; 103 104 105 106 /* 107 * Order the SPARC hardware capabilities to match their numeric value. See 108 * AV_SPARC_ values in sys/auxv_SPARC.h. 109 */ 110 static const elfcap_desc_t hw1_sparc[ELFCAP_NUM_HW1_SPARC] = { 111 { /* 0x00000001 */ 112 AV_SPARC_MUL32, STRDESC("AV_SPARC_MUL32"), 113 STRDESC("MUL32"), STRDESC("mul32"), 114 }, 115 { /* 0x00000002 */ 116 AV_SPARC_DIV32, STRDESC("AV_SPARC_DIV32"), 117 STRDESC("DIV32"), STRDESC("div32"), 118 }, 119 { /* 0x00000004 */ 120 AV_SPARC_FSMULD, STRDESC("AV_SPARC_FSMULD"), 121 STRDESC("FSMULD"), STRDESC("fsmuld"), 122 }, 123 { /* 0x00000008 */ 124 AV_SPARC_V8PLUS, STRDESC("AV_SPARC_V8PLUS"), 125 STRDESC("V8PLUS"), STRDESC("v8plus"), 126 }, 127 { /* 0x00000010 */ 128 AV_SPARC_POPC, STRDESC("AV_SPARC_POPC"), 129 STRDESC("POPC"), STRDESC("popc"), 130 }, 131 { /* 0x00000020 */ 132 AV_SPARC_VIS, STRDESC("AV_SPARC_VIS"), 133 STRDESC("VIS"), STRDESC("vis"), 134 }, 135 { /* 0x00000040 */ 136 AV_SPARC_VIS2, STRDESC("AV_SPARC_VIS2"), 137 STRDESC("VIS2"), STRDESC("vis2"), 138 }, 139 { /* 0x00000080 */ 140 AV_SPARC_ASI_BLK_INIT, STRDESC("AV_SPARC_ASI_BLK_INIT"), 141 STRDESC("ASI_BLK_INIT"), STRDESC("asi_blk_init"), 142 }, 143 { /* 0x00000100 */ 144 AV_SPARC_FMAF, STRDESC("AV_SPARC_FMAF"), 145 STRDESC("FMAF"), STRDESC("fmaf"), 146 }, 147 { /* 0x00000200 */ 148 AV_SPARC_FMAU, STRDESC("AV_SPARC_FMAU"), 149 STRDESC("FMAU"), STRDESC("fmau"), 150 }, 151 { /* 0x00000400 */ 152 AV_SPARC_VIS3, STRDESC("AV_SPARC_VIS3"), 153 STRDESC("VIS3"), STRDESC("vis3"), 154 }, 155 { /* 0x00000800 */ 156 AV_SPARC_HPC, STRDESC("AV_SPARC_HPC"), 157 STRDESC("HPC"), STRDESC("hpc"), 158 }, 159 { /* 0x00001000 */ 160 AV_SPARC_RANDOM, STRDESC("AV_SPARC_RANDOM"), 161 STRDESC("RANDOM"), STRDESC("random"), 162 }, 163 { /* 0x00002000 */ 164 AV_SPARC_TRANS, STRDESC("AV_SPARC_TRANS"), 165 STRDESC("TRANS"), STRDESC("trans"), 166 }, 167 { /* 0x00004000 */ 168 AV_SPARC_FJFMAU, STRDESC("AV_SPARC_FJFMAU"), 169 STRDESC("FJFMAU"), STRDESC("fjfmau"), 170 }, 171 { /* 0x00008000 */ 172 AV_SPARC_IMA, STRDESC("AV_SPARC_IMA"), 173 STRDESC("IMA"), STRDESC("ima"), 174 }, 175 { /* 0x00010000 */ 176 AV_SPARC_ASI_CACHE_SPARING, 177 STRDESC("AV_SPARC_ASI_CACHE_SPARING"), 178 STRDESC("CSPARE"), STRDESC("cspare"), 179 } 180 }; 181 182 183 184 /* 185 * Order the Intel hardware capabilities to match their numeric value. See 186 * AV_386_ values in sys/auxv_386.h. 187 */ 188 static const elfcap_desc_t hw1_386[ELFCAP_NUM_HW1_386] = { 189 { /* 0x00000001 */ 190 AV_386_FPU, STRDESC("AV_386_FPU"), 191 STRDESC("FPU"), STRDESC("fpu"), 192 }, 193 { /* 0x00000002 */ 194 AV_386_TSC, STRDESC("AV_386_TSC"), 195 STRDESC("TSC"), STRDESC("tsc"), 196 }, 197 { /* 0x00000004 */ 198 AV_386_CX8, STRDESC("AV_386_CX8"), 199 STRDESC("CX8"), STRDESC("cx8"), 200 }, 201 { /* 0x00000008 */ 202 AV_386_SEP, STRDESC("AV_386_SEP"), 203 STRDESC("SEP"), STRDESC("sep"), 204 }, 205 { /* 0x00000010 */ 206 AV_386_AMD_SYSC, STRDESC("AV_386_AMD_SYSC"), 207 STRDESC("AMD_SYSC"), STRDESC("amd_sysc"), 208 }, 209 { /* 0x00000020 */ 210 AV_386_CMOV, STRDESC("AV_386_CMOV"), 211 STRDESC("CMOV"), STRDESC("cmov"), 212 }, 213 { /* 0x00000040 */ 214 AV_386_MMX, STRDESC("AV_386_MMX"), 215 STRDESC("MMX"), STRDESC("mmx"), 216 }, 217 { /* 0x00000080 */ 218 AV_386_AMD_MMX, STRDESC("AV_386_AMD_MMX"), 219 STRDESC("AMD_MMX"), STRDESC("amd_mmx"), 220 }, 221 { /* 0x00000100 */ 222 AV_386_AMD_3DNow, STRDESC("AV_386_AMD_3DNow"), 223 STRDESC("AMD_3DNow"), STRDESC("amd_3dnow"), 224 }, 225 { /* 0x00000200 */ 226 AV_386_AMD_3DNowx, STRDESC("AV_386_AMD_3DNowx"), 227 STRDESC("AMD_3DNowx"), STRDESC("amd_3dnowx"), 228 }, 229 { /* 0x00000400 */ 230 AV_386_FXSR, STRDESC("AV_386_FXSR"), 231 STRDESC("FXSR"), STRDESC("fxsr"), 232 }, 233 { /* 0x00000800 */ 234 AV_386_SSE, STRDESC("AV_386_SSE"), 235 STRDESC("SSE"), STRDESC("sse"), 236 }, 237 { /* 0x00001000 */ 238 AV_386_SSE2, STRDESC("AV_386_SSE2"), 239 STRDESC("SSE2"), STRDESC("sse2"), 240 }, 241 { /* 0x00002000 */ 242 AV_386_PAUSE, STRDESC("AV_386_PAUSE"), 243 STRDESC("PAUSE"), STRDESC("pause"), 244 }, 245 { /* 0x00004000 */ 246 AV_386_SSE3, STRDESC("AV_386_SSE3"), 247 STRDESC("SSE3"), STRDESC("sse3"), 248 }, 249 { /* 0x00008000 */ 250 AV_386_MON, STRDESC("AV_386_MON"), 251 STRDESC("MON"), STRDESC("mon"), 252 }, 253 { /* 0x00010000 */ 254 AV_386_CX16, STRDESC("AV_386_CX16"), 255 STRDESC("CX16"), STRDESC("cx16"), 256 }, 257 { /* 0x00020000 */ 258 AV_386_AHF, STRDESC("AV_386_AHF"), 259 STRDESC("AHF"), STRDESC("ahf"), 260 }, 261 { /* 0x00040000 */ 262 AV_386_TSCP, STRDESC("AV_386_TSCP"), 263 STRDESC("TSCP"), STRDESC("tscp"), 264 }, 265 { /* 0x00080000 */ 266 AV_386_AMD_SSE4A, STRDESC("AV_386_AMD_SSE4A"), 267 STRDESC("AMD_SSE4A"), STRDESC("amd_sse4a"), 268 }, 269 { /* 0x00100000 */ 270 AV_386_POPCNT, STRDESC("AV_386_POPCNT"), 271 STRDESC("POPCNT"), STRDESC("popcnt"), 272 }, 273 { /* 0x00200000 */ 274 AV_386_AMD_LZCNT, STRDESC("AV_386_AMD_LZCNT"), 275 STRDESC("AMD_LZCNT"), STRDESC("amd_lzcnt"), 276 }, 277 { /* 0x00400000 */ 278 AV_386_SSSE3, STRDESC("AV_386_SSSE3"), 279 STRDESC("SSSE3"), STRDESC("ssse3"), 280 }, 281 { /* 0x00800000 */ 282 AV_386_SSE4_1, STRDESC("AV_386_SSE4_1"), 283 STRDESC("SSE4.1"), STRDESC("sse4.1"), 284 }, 285 { /* 0x01000000 */ 286 AV_386_SSE4_2, STRDESC("AV_386_SSE4_2"), 287 STRDESC("SSE4.2"), STRDESC("sse4.2"), 288 }, 289 { /* 0x02000000 */ 290 AV_386_MOVBE, STRDESC("AV_386_MOVBE"), 291 STRDESC("MOVBE"), STRDESC("movbe"), 292 }, 293 { /* 0x04000000 */ 294 AV_386_AES, STRDESC("AV_386_AES"), 295 STRDESC("AES"), STRDESC("aes"), 296 }, 297 { /* 0x08000000 */ 298 AV_386_PCLMULQDQ, STRDESC("AV_386_PCLMULQDQ"), 299 STRDESC("PCLMULQDQ"), STRDESC("pclmulqdq"), 300 } 301 }; 302 303 /* 304 * Concatenate a token to the string buffer. This can be a capabilities token 305 * or a separator token. 306 */ 307 static elfcap_err_t 308 token(char **ostr, size_t *olen, const elfcap_str_t *nstr) 309 { 310 if (*olen < nstr->s_len) 311 return (ELFCAP_ERR_BUFOVFL); 312 313 (void) strcat(*ostr, nstr->s_str); 314 *ostr += nstr->s_len; 315 *olen -= nstr->s_len; 316 317 return (ELFCAP_ERR_NONE); 318 } 319 320 static elfcap_err_t 321 get_str_desc(elfcap_style_t style, const elfcap_desc_t *cdp, 322 const elfcap_str_t **ret_str) 323 { 324 switch (style) { 325 case ELFCAP_STYLE_FULL: 326 *ret_str = &cdp->c_full; 327 break; 328 case ELFCAP_STYLE_UC: 329 *ret_str = &cdp->c_uc; 330 break; 331 case ELFCAP_STYLE_LC: 332 *ret_str = &cdp->c_lc; 333 break; 334 default: 335 return (ELFCAP_ERR_INVSTYLE); 336 } 337 338 return (ELFCAP_ERR_NONE); 339 } 340 341 342 /* 343 * Expand a capabilities value into the strings defined in the associated 344 * capabilities descriptor. 345 */ 346 static elfcap_err_t 347 expand(elfcap_style_t style, uint64_t val, const elfcap_desc_t *cdp, 348 uint_t cnum, char *str, size_t slen, elfcap_fmt_t fmt) 349 { 350 uint_t cnt; 351 int follow = 0, err; 352 const elfcap_str_t *nstr; 353 354 if (val == 0) 355 return (ELFCAP_ERR_NONE); 356 357 for (cnt = cnum; cnt > 0; cnt--) { 358 uint_t mask = cdp[cnt - 1].c_val; 359 360 if ((val & mask) != 0) { 361 if (follow++ && ((err = token(&str, &slen, 362 &format[fmt])) != ELFCAP_ERR_NONE)) 363 return (err); 364 365 err = get_str_desc(style, &cdp[cnt - 1], &nstr); 366 if (err != ELFCAP_ERR_NONE) 367 return (err); 368 if ((err = token(&str, &slen, nstr)) != ELFCAP_ERR_NONE) 369 return (err); 370 371 val = val & ~mask; 372 } 373 } 374 375 /* 376 * If there are any unknown bits remaining display the numeric value. 377 */ 378 if (val) { 379 if (follow && ((err = token(&str, &slen, &format[fmt])) != 380 ELFCAP_ERR_NONE)) 381 return (err); 382 383 (void) snprintf(str, slen, "0x%llx", val); 384 } 385 return (ELFCAP_ERR_NONE); 386 } 387 388 /* 389 * Expand a CA_SUNW_HW_1 value. 390 */ 391 elfcap_err_t 392 elfcap_hw1_to_str(elfcap_style_t style, uint64_t val, char *str, 393 size_t len, elfcap_fmt_t fmt, ushort_t mach) 394 { 395 /* 396 * Initialize the string buffer, and validate the format request. 397 */ 398 *str = '\0'; 399 if ((fmt < 0) || (fmt >= FORMAT_NELTS)) 400 return (ELFCAP_ERR_INVFMT); 401 402 if ((mach == EM_386) || (mach == EM_IA_64) || (mach == EM_AMD64)) 403 return (expand(style, val, &hw1_386[0], ELFCAP_NUM_HW1_386, 404 str, len, fmt)); 405 406 if ((mach == EM_SPARC) || (mach == EM_SPARC32PLUS) || 407 (mach == EM_SPARCV9)) 408 return (expand(style, val, hw1_sparc, ELFCAP_NUM_HW1_SPARC, 409 str, len, fmt)); 410 411 return (ELFCAP_ERR_UNKMACH); 412 } 413 414 /* 415 * Expand a CA_SUNW_SF_1 value. Note, that at present these capabilities are 416 * common across all platforms. The use of "mach" is therefore redundant, but 417 * is retained for compatibility with the interface of elfcap_hw1_to_str(), and 418 * possible future expansion. 419 */ 420 elfcap_err_t 421 /* ARGSUSED4 */ 422 elfcap_sf1_to_str(elfcap_style_t style, uint64_t val, char *str, 423 size_t len, elfcap_fmt_t fmt, ushort_t mach) 424 { 425 /* 426 * Initialize the string buffer, and validate the format request. 427 */ 428 *str = '\0'; 429 if ((fmt < 0) || (fmt >= FORMAT_NELTS)) 430 return (ELFCAP_ERR_INVFMT); 431 432 return (expand(style, val, &sf1[0], ELFCAP_NUM_SF1, str, len, fmt)); 433 } 434 435 /* 436 * Given a capability tag type and value, map it to a string representation. 437 */ 438 elfcap_err_t 439 elfcap_tag_to_str(elfcap_style_t style, uint64_t tag, uint64_t val, 440 char *str, size_t len, elfcap_fmt_t fmt, ushort_t mach) 441 { 442 if (tag == CA_SUNW_HW_1) 443 return (elfcap_hw1_to_str(style, val, str, len, fmt, mach)); 444 if (tag == CA_SUNW_SF_1) 445 return (elfcap_sf1_to_str(style, val, str, len, fmt, mach)); 446 447 return (ELFCAP_ERR_UNKTAG); 448 } 449 450 /* 451 * Determine a capabilities value from a capabilities string. 452 */ 453 static uint64_t 454 value(elfcap_style_t style, const char *str, const elfcap_desc_t *cdp, 455 uint_t cnum) 456 { 457 const elfcap_str_t *nstr; 458 uint_t num; 459 int err; 460 461 for (num = 0; num < cnum; num++) { 462 /* 463 * Skip "reserved" bits. These are unassigned bits in the 464 * middle of the assigned range. 465 */ 466 if (cdp[num].c_val == 0) 467 continue; 468 469 if ((err = get_str_desc(style, &cdp[num], &nstr)) != 0) 470 return (err); 471 if (strcmp(str, nstr->s_str) == 0) 472 return (cdp[num].c_val); 473 } 474 return (0); 475 } 476 477 uint64_t 478 elfcap_sf1_from_str(elfcap_style_t style, const char *str, ushort_t mach) 479 { 480 return (value(style, str, &sf1[0], ELFCAP_NUM_SF1)); 481 } 482 483 uint64_t 484 elfcap_hw1_from_str(elfcap_style_t style, const char *str, ushort_t mach) 485 { 486 if ((mach == EM_386) || (mach == EM_IA_64) || (mach == EM_AMD64)) 487 return (value(style, str, &hw1_386[0], ELFCAP_NUM_HW1_386)); 488 489 if ((mach == EM_SPARC) || (mach == EM_SPARC32PLUS) || 490 (mach == EM_SPARCV9)) 491 return (value(style, str, hw1_sparc, ELFCAP_NUM_HW1_SPARC)); 492 493 return (0); 494 } 495 496 /* 497 * These functions allow the caller to get direct access to the 498 * cap descriptors. 499 */ 500 const elfcap_desc_t * 501 elfcap_getdesc_hw1_sparc(void) 502 { 503 return (hw1_sparc); 504 } 505 506 const elfcap_desc_t * 507 elfcap_getdesc_hw1_386(void) 508 { 509 return (hw1_386); 510 } 511 512 const elfcap_desc_t * 513 elfcap_getdesc_sf1(void) 514 { 515 return (sf1); 516 } 517