1 /* 2 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 3 * Use is subject to license terms. 4 */ 5 6 #pragma ident "%Z%%M% %I% %E% SMI" 7 8 /* 9 * The basic framework for this code came from the reference 10 * implementation for MD5. That implementation is Copyright (C) 11 * 1991-2, RSA Data Security, Inc. Created 1991. All rights reserved. 12 * 13 * License to copy and use this software is granted provided that it 14 * is identified as the "RSA Data Security, Inc. MD5 Message-Digest 15 * Algorithm" in all material mentioning or referencing this software 16 * or this function. 17 * 18 * License is also granted to make and use derivative works provided 19 * that such works are identified as "derived from the RSA Data 20 * Security, Inc. MD5 Message-Digest Algorithm" in all material 21 * mentioning or referencing the derived work. 22 * 23 * RSA Data Security, Inc. makes no representations concerning either 24 * the merchantability of this software or the suitability of this 25 * software for any particular purpose. It is provided "as is" 26 * without express or implied warranty of any kind. 27 * 28 * These notices must be retained in any copies of any part of this 29 * documentation and/or software. 30 * 31 * NOTE: Cleaned-up and optimized, version of SHA2, based on the FIPS 180-2 32 * standard, available at http://www.itl.nist.gov/div897/pubs/fip180-2.htm 33 * Not as fast as one would like -- further optimizations are encouraged 34 * and appreciated. 35 */ 36 37 #include <sys/types.h> 38 #include <sys/param.h> 39 #include <sys/systm.h> 40 #include <sys/sysmacros.h> 41 #define _SHA2_IMPL 42 #include <sys/sha2.h> 43 #include <sys/sha2_consts.h> 44 45 #ifdef _KERNEL 46 #include <sys/cmn_err.h> 47 48 #else 49 #include <strings.h> 50 #include <stdlib.h> 51 #include <errno.h> 52 53 #pragma weak SHA256Update = SHA2Update 54 #pragma weak SHA384Update = SHA2Update 55 #pragma weak SHA512Update = SHA2Update 56 57 #pragma weak SHA256Final = SHA2Final 58 #pragma weak SHA384Final = SHA2Final 59 #pragma weak SHA512Final = SHA2Final 60 61 #endif /* _KERNEL */ 62 63 static void Encode(uint8_t *, uint32_t *, size_t); 64 static void Encode64(uint8_t *, uint64_t *, size_t); 65 66 #if defined(__amd64) 67 #define SHA512Transform(ctx, in) SHA512TransformBlocks((ctx), (in), 1) 68 #define SHA256Transform(ctx, in) SHA256TransformBlocks((ctx), (in), 1) 69 70 void SHA512TransformBlocks(SHA2_CTX *ctx, const void *in, size_t num); 71 void SHA256TransformBlocks(SHA2_CTX *ctx, const void *in, size_t num); 72 73 #else 74 static void SHA256Transform(SHA2_CTX *, const uint8_t *); 75 static void SHA512Transform(SHA2_CTX *, const uint8_t *); 76 #endif /* __amd64 */ 77 78 static uint8_t PADDING[128] = { 0x80, /* all zeros */ }; 79 80 /* Ch and Maj are the basic SHA2 functions. */ 81 #define Ch(b, c, d) (((b) & (c)) ^ ((~b) & (d))) 82 #define Maj(b, c, d) (((b) & (c)) ^ ((b) & (d)) ^ ((c) & (d))) 83 84 /* Rotates x right n bits. */ 85 #define ROTR(x, n) \ 86 (((x) >> (n)) | ((x) << ((sizeof (x) * NBBY)-(n)))) 87 88 /* Shift x right n bits */ 89 #define SHR(x, n) ((x) >> (n)) 90 91 /* SHA256 Functions */ 92 #define BIGSIGMA0_256(x) (ROTR((x), 2) ^ ROTR((x), 13) ^ ROTR((x), 22)) 93 #define BIGSIGMA1_256(x) (ROTR((x), 6) ^ ROTR((x), 11) ^ ROTR((x), 25)) 94 #define SIGMA0_256(x) (ROTR((x), 7) ^ ROTR((x), 18) ^ SHR((x), 3)) 95 #define SIGMA1_256(x) (ROTR((x), 17) ^ ROTR((x), 19) ^ SHR((x), 10)) 96 97 #define SHA256ROUND(a, b, c, d, e, f, g, h, i, w) \ 98 T1 = h + BIGSIGMA1_256(e) + Ch(e, f, g) + SHA256_CONST(i) + w; \ 99 d += T1; \ 100 T2 = BIGSIGMA0_256(a) + Maj(a, b, c); \ 101 h = T1 + T2 102 103 /* SHA384/512 Functions */ 104 #define BIGSIGMA0(x) (ROTR((x), 28) ^ ROTR((x), 34) ^ ROTR((x), 39)) 105 #define BIGSIGMA1(x) (ROTR((x), 14) ^ ROTR((x), 18) ^ ROTR((x), 41)) 106 #define SIGMA0(x) (ROTR((x), 1) ^ ROTR((x), 8) ^ SHR((x), 7)) 107 #define SIGMA1(x) (ROTR((x), 19) ^ ROTR((x), 61) ^ SHR((x), 6)) 108 #define SHA512ROUND(a, b, c, d, e, f, g, h, i, w) \ 109 T1 = h + BIGSIGMA1(e) + Ch(e, f, g) + SHA512_CONST(i) + w; \ 110 d += T1; \ 111 T2 = BIGSIGMA0(a) + Maj(a, b, c); \ 112 h = T1 + T2 113 114 /* 115 * sparc optimization: 116 * 117 * on the sparc, we can load big endian 32-bit data easily. note that 118 * special care must be taken to ensure the address is 32-bit aligned. 119 * in the interest of speed, we don't check to make sure, since 120 * careful programming can guarantee this for us. 121 */ 122 123 #if defined(_BIG_ENDIAN) 124 125 #define LOAD_BIG_32(addr) (*(uint32_t *)(addr)) 126 127 #else /* little endian -- will work on big endian, but slowly */ 128 129 #define LOAD_BIG_32(addr) \ 130 (((addr)[0] << 24) | ((addr)[1] << 16) | ((addr)[2] << 8) | (addr)[3]) 131 #endif 132 133 134 #if defined(_BIG_ENDIAN) 135 136 #define LOAD_BIG_64(addr) (*(uint64_t *)(addr)) 137 138 #else /* little endian -- will work on big endian, but slowly */ 139 140 #define LOAD_BIG_64(addr) \ 141 (((uint64_t)(addr)[0] << 56) | ((uint64_t)(addr)[1] << 48) | \ 142 ((uint64_t)(addr)[2] << 40) | ((uint64_t)(addr)[3] << 32) | \ 143 ((uint64_t)(addr)[4] << 24) | ((uint64_t)(addr)[5] << 16) | \ 144 ((uint64_t)(addr)[6] << 8) | (uint64_t)(addr)[7]) 145 #endif 146 147 148 #if !defined(__amd64) 149 /* SHA256 Transform */ 150 151 static void 152 SHA256Transform(SHA2_CTX *ctx, const uint8_t *blk) 153 { 154 uint32_t a = ctx->state.s32[0]; 155 uint32_t b = ctx->state.s32[1]; 156 uint32_t c = ctx->state.s32[2]; 157 uint32_t d = ctx->state.s32[3]; 158 uint32_t e = ctx->state.s32[4]; 159 uint32_t f = ctx->state.s32[5]; 160 uint32_t g = ctx->state.s32[6]; 161 uint32_t h = ctx->state.s32[7]; 162 163 uint32_t w0, w1, w2, w3, w4, w5, w6, w7; 164 uint32_t w8, w9, w10, w11, w12, w13, w14, w15; 165 uint32_t T1, T2; 166 167 #if defined(__sparc) 168 static const uint32_t sha256_consts[] = { 169 SHA256_CONST_0, SHA256_CONST_1, SHA256_CONST_2, 170 SHA256_CONST_3, SHA256_CONST_4, SHA256_CONST_5, 171 SHA256_CONST_6, SHA256_CONST_7, SHA256_CONST_8, 172 SHA256_CONST_9, SHA256_CONST_10, SHA256_CONST_11, 173 SHA256_CONST_12, SHA256_CONST_13, SHA256_CONST_14, 174 SHA256_CONST_15, SHA256_CONST_16, SHA256_CONST_17, 175 SHA256_CONST_18, SHA256_CONST_19, SHA256_CONST_20, 176 SHA256_CONST_21, SHA256_CONST_22, SHA256_CONST_23, 177 SHA256_CONST_24, SHA256_CONST_25, SHA256_CONST_26, 178 SHA256_CONST_27, SHA256_CONST_28, SHA256_CONST_29, 179 SHA256_CONST_30, SHA256_CONST_31, SHA256_CONST_32, 180 SHA256_CONST_33, SHA256_CONST_34, SHA256_CONST_35, 181 SHA256_CONST_36, SHA256_CONST_37, SHA256_CONST_38, 182 SHA256_CONST_39, SHA256_CONST_40, SHA256_CONST_41, 183 SHA256_CONST_42, SHA256_CONST_43, SHA256_CONST_44, 184 SHA256_CONST_45, SHA256_CONST_46, SHA256_CONST_47, 185 SHA256_CONST_48, SHA256_CONST_49, SHA256_CONST_50, 186 SHA256_CONST_51, SHA256_CONST_52, SHA256_CONST_53, 187 SHA256_CONST_54, SHA256_CONST_55, SHA256_CONST_56, 188 SHA256_CONST_57, SHA256_CONST_58, SHA256_CONST_59, 189 SHA256_CONST_60, SHA256_CONST_61, SHA256_CONST_62, 190 SHA256_CONST_63 191 }; 192 #endif /* __sparc */ 193 194 if ((uintptr_t)blk & 0x3) { /* not 4-byte aligned? */ 195 bcopy(blk, ctx->buf_un.buf32, sizeof (ctx->buf_un.buf32)); 196 blk = (uint8_t *)ctx->buf_un.buf32; 197 } 198 199 /* LINTED E_BAD_PTR_CAST_ALIGN */ 200 w0 = LOAD_BIG_32(blk + 4 * 0); 201 SHA256ROUND(a, b, c, d, e, f, g, h, 0, w0); 202 /* LINTED E_BAD_PTR_CAST_ALIGN */ 203 w1 = LOAD_BIG_32(blk + 4 * 1); 204 SHA256ROUND(h, a, b, c, d, e, f, g, 1, w1); 205 /* LINTED E_BAD_PTR_CAST_ALIGN */ 206 w2 = LOAD_BIG_32(blk + 4 * 2); 207 SHA256ROUND(g, h, a, b, c, d, e, f, 2, w2); 208 /* LINTED E_BAD_PTR_CAST_ALIGN */ 209 w3 = LOAD_BIG_32(blk + 4 * 3); 210 SHA256ROUND(f, g, h, a, b, c, d, e, 3, w3); 211 /* LINTED E_BAD_PTR_CAST_ALIGN */ 212 w4 = LOAD_BIG_32(blk + 4 * 4); 213 SHA256ROUND(e, f, g, h, a, b, c, d, 4, w4); 214 /* LINTED E_BAD_PTR_CAST_ALIGN */ 215 w5 = LOAD_BIG_32(blk + 4 * 5); 216 SHA256ROUND(d, e, f, g, h, a, b, c, 5, w5); 217 /* LINTED E_BAD_PTR_CAST_ALIGN */ 218 w6 = LOAD_BIG_32(blk + 4 * 6); 219 SHA256ROUND(c, d, e, f, g, h, a, b, 6, w6); 220 /* LINTED E_BAD_PTR_CAST_ALIGN */ 221 w7 = LOAD_BIG_32(blk + 4 * 7); 222 SHA256ROUND(b, c, d, e, f, g, h, a, 7, w7); 223 /* LINTED E_BAD_PTR_CAST_ALIGN */ 224 w8 = LOAD_BIG_32(blk + 4 * 8); 225 SHA256ROUND(a, b, c, d, e, f, g, h, 8, w8); 226 /* LINTED E_BAD_PTR_CAST_ALIGN */ 227 w9 = LOAD_BIG_32(blk + 4 * 9); 228 SHA256ROUND(h, a, b, c, d, e, f, g, 9, w9); 229 /* LINTED E_BAD_PTR_CAST_ALIGN */ 230 w10 = LOAD_BIG_32(blk + 4 * 10); 231 SHA256ROUND(g, h, a, b, c, d, e, f, 10, w10); 232 /* LINTED E_BAD_PTR_CAST_ALIGN */ 233 w11 = LOAD_BIG_32(blk + 4 * 11); 234 SHA256ROUND(f, g, h, a, b, c, d, e, 11, w11); 235 /* LINTED E_BAD_PTR_CAST_ALIGN */ 236 w12 = LOAD_BIG_32(blk + 4 * 12); 237 SHA256ROUND(e, f, g, h, a, b, c, d, 12, w12); 238 /* LINTED E_BAD_PTR_CAST_ALIGN */ 239 w13 = LOAD_BIG_32(blk + 4 * 13); 240 SHA256ROUND(d, e, f, g, h, a, b, c, 13, w13); 241 /* LINTED E_BAD_PTR_CAST_ALIGN */ 242 w14 = LOAD_BIG_32(blk + 4 * 14); 243 SHA256ROUND(c, d, e, f, g, h, a, b, 14, w14); 244 /* LINTED E_BAD_PTR_CAST_ALIGN */ 245 w15 = LOAD_BIG_32(blk + 4 * 15); 246 SHA256ROUND(b, c, d, e, f, g, h, a, 15, w15); 247 248 w0 = SIGMA1_256(w14) + w9 + SIGMA0_256(w1) + w0; 249 SHA256ROUND(a, b, c, d, e, f, g, h, 16, w0); 250 w1 = SIGMA1_256(w15) + w10 + SIGMA0_256(w2) + w1; 251 SHA256ROUND(h, a, b, c, d, e, f, g, 17, w1); 252 w2 = SIGMA1_256(w0) + w11 + SIGMA0_256(w3) + w2; 253 SHA256ROUND(g, h, a, b, c, d, e, f, 18, w2); 254 w3 = SIGMA1_256(w1) + w12 + SIGMA0_256(w4) + w3; 255 SHA256ROUND(f, g, h, a, b, c, d, e, 19, w3); 256 w4 = SIGMA1_256(w2) + w13 + SIGMA0_256(w5) + w4; 257 SHA256ROUND(e, f, g, h, a, b, c, d, 20, w4); 258 w5 = SIGMA1_256(w3) + w14 + SIGMA0_256(w6) + w5; 259 SHA256ROUND(d, e, f, g, h, a, b, c, 21, w5); 260 w6 = SIGMA1_256(w4) + w15 + SIGMA0_256(w7) + w6; 261 SHA256ROUND(c, d, e, f, g, h, a, b, 22, w6); 262 w7 = SIGMA1_256(w5) + w0 + SIGMA0_256(w8) + w7; 263 SHA256ROUND(b, c, d, e, f, g, h, a, 23, w7); 264 w8 = SIGMA1_256(w6) + w1 + SIGMA0_256(w9) + w8; 265 SHA256ROUND(a, b, c, d, e, f, g, h, 24, w8); 266 w9 = SIGMA1_256(w7) + w2 + SIGMA0_256(w10) + w9; 267 SHA256ROUND(h, a, b, c, d, e, f, g, 25, w9); 268 w10 = SIGMA1_256(w8) + w3 + SIGMA0_256(w11) + w10; 269 SHA256ROUND(g, h, a, b, c, d, e, f, 26, w10); 270 w11 = SIGMA1_256(w9) + w4 + SIGMA0_256(w12) + w11; 271 SHA256ROUND(f, g, h, a, b, c, d, e, 27, w11); 272 w12 = SIGMA1_256(w10) + w5 + SIGMA0_256(w13) + w12; 273 SHA256ROUND(e, f, g, h, a, b, c, d, 28, w12); 274 w13 = SIGMA1_256(w11) + w6 + SIGMA0_256(w14) + w13; 275 SHA256ROUND(d, e, f, g, h, a, b, c, 29, w13); 276 w14 = SIGMA1_256(w12) + w7 + SIGMA0_256(w15) + w14; 277 SHA256ROUND(c, d, e, f, g, h, a, b, 30, w14); 278 w15 = SIGMA1_256(w13) + w8 + SIGMA0_256(w0) + w15; 279 SHA256ROUND(b, c, d, e, f, g, h, a, 31, w15); 280 281 w0 = SIGMA1_256(w14) + w9 + SIGMA0_256(w1) + w0; 282 SHA256ROUND(a, b, c, d, e, f, g, h, 32, w0); 283 w1 = SIGMA1_256(w15) + w10 + SIGMA0_256(w2) + w1; 284 SHA256ROUND(h, a, b, c, d, e, f, g, 33, w1); 285 w2 = SIGMA1_256(w0) + w11 + SIGMA0_256(w3) + w2; 286 SHA256ROUND(g, h, a, b, c, d, e, f, 34, w2); 287 w3 = SIGMA1_256(w1) + w12 + SIGMA0_256(w4) + w3; 288 SHA256ROUND(f, g, h, a, b, c, d, e, 35, w3); 289 w4 = SIGMA1_256(w2) + w13 + SIGMA0_256(w5) + w4; 290 SHA256ROUND(e, f, g, h, a, b, c, d, 36, w4); 291 w5 = SIGMA1_256(w3) + w14 + SIGMA0_256(w6) + w5; 292 SHA256ROUND(d, e, f, g, h, a, b, c, 37, w5); 293 w6 = SIGMA1_256(w4) + w15 + SIGMA0_256(w7) + w6; 294 SHA256ROUND(c, d, e, f, g, h, a, b, 38, w6); 295 w7 = SIGMA1_256(w5) + w0 + SIGMA0_256(w8) + w7; 296 SHA256ROUND(b, c, d, e, f, g, h, a, 39, w7); 297 w8 = SIGMA1_256(w6) + w1 + SIGMA0_256(w9) + w8; 298 SHA256ROUND(a, b, c, d, e, f, g, h, 40, w8); 299 w9 = SIGMA1_256(w7) + w2 + SIGMA0_256(w10) + w9; 300 SHA256ROUND(h, a, b, c, d, e, f, g, 41, w9); 301 w10 = SIGMA1_256(w8) + w3 + SIGMA0_256(w11) + w10; 302 SHA256ROUND(g, h, a, b, c, d, e, f, 42, w10); 303 w11 = SIGMA1_256(w9) + w4 + SIGMA0_256(w12) + w11; 304 SHA256ROUND(f, g, h, a, b, c, d, e, 43, w11); 305 w12 = SIGMA1_256(w10) + w5 + SIGMA0_256(w13) + w12; 306 SHA256ROUND(e, f, g, h, a, b, c, d, 44, w12); 307 w13 = SIGMA1_256(w11) + w6 + SIGMA0_256(w14) + w13; 308 SHA256ROUND(d, e, f, g, h, a, b, c, 45, w13); 309 w14 = SIGMA1_256(w12) + w7 + SIGMA0_256(w15) + w14; 310 SHA256ROUND(c, d, e, f, g, h, a, b, 46, w14); 311 w15 = SIGMA1_256(w13) + w8 + SIGMA0_256(w0) + w15; 312 SHA256ROUND(b, c, d, e, f, g, h, a, 47, w15); 313 314 w0 = SIGMA1_256(w14) + w9 + SIGMA0_256(w1) + w0; 315 SHA256ROUND(a, b, c, d, e, f, g, h, 48, w0); 316 w1 = SIGMA1_256(w15) + w10 + SIGMA0_256(w2) + w1; 317 SHA256ROUND(h, a, b, c, d, e, f, g, 49, w1); 318 w2 = SIGMA1_256(w0) + w11 + SIGMA0_256(w3) + w2; 319 SHA256ROUND(g, h, a, b, c, d, e, f, 50, w2); 320 w3 = SIGMA1_256(w1) + w12 + SIGMA0_256(w4) + w3; 321 SHA256ROUND(f, g, h, a, b, c, d, e, 51, w3); 322 w4 = SIGMA1_256(w2) + w13 + SIGMA0_256(w5) + w4; 323 SHA256ROUND(e, f, g, h, a, b, c, d, 52, w4); 324 w5 = SIGMA1_256(w3) + w14 + SIGMA0_256(w6) + w5; 325 SHA256ROUND(d, e, f, g, h, a, b, c, 53, w5); 326 w6 = SIGMA1_256(w4) + w15 + SIGMA0_256(w7) + w6; 327 SHA256ROUND(c, d, e, f, g, h, a, b, 54, w6); 328 w7 = SIGMA1_256(w5) + w0 + SIGMA0_256(w8) + w7; 329 SHA256ROUND(b, c, d, e, f, g, h, a, 55, w7); 330 w8 = SIGMA1_256(w6) + w1 + SIGMA0_256(w9) + w8; 331 SHA256ROUND(a, b, c, d, e, f, g, h, 56, w8); 332 w9 = SIGMA1_256(w7) + w2 + SIGMA0_256(w10) + w9; 333 SHA256ROUND(h, a, b, c, d, e, f, g, 57, w9); 334 w10 = SIGMA1_256(w8) + w3 + SIGMA0_256(w11) + w10; 335 SHA256ROUND(g, h, a, b, c, d, e, f, 58, w10); 336 w11 = SIGMA1_256(w9) + w4 + SIGMA0_256(w12) + w11; 337 SHA256ROUND(f, g, h, a, b, c, d, e, 59, w11); 338 w12 = SIGMA1_256(w10) + w5 + SIGMA0_256(w13) + w12; 339 SHA256ROUND(e, f, g, h, a, b, c, d, 60, w12); 340 w13 = SIGMA1_256(w11) + w6 + SIGMA0_256(w14) + w13; 341 SHA256ROUND(d, e, f, g, h, a, b, c, 61, w13); 342 w14 = SIGMA1_256(w12) + w7 + SIGMA0_256(w15) + w14; 343 SHA256ROUND(c, d, e, f, g, h, a, b, 62, w14); 344 w15 = SIGMA1_256(w13) + w8 + SIGMA0_256(w0) + w15; 345 SHA256ROUND(b, c, d, e, f, g, h, a, 63, w15); 346 347 ctx->state.s32[0] += a; 348 ctx->state.s32[1] += b; 349 ctx->state.s32[2] += c; 350 ctx->state.s32[3] += d; 351 ctx->state.s32[4] += e; 352 ctx->state.s32[5] += f; 353 ctx->state.s32[6] += g; 354 ctx->state.s32[7] += h; 355 } 356 357 358 /* SHA384 and SHA512 Transform */ 359 360 static void 361 SHA512Transform(SHA2_CTX *ctx, const uint8_t *blk) 362 { 363 364 uint64_t a = ctx->state.s64[0]; 365 uint64_t b = ctx->state.s64[1]; 366 uint64_t c = ctx->state.s64[2]; 367 uint64_t d = ctx->state.s64[3]; 368 uint64_t e = ctx->state.s64[4]; 369 uint64_t f = ctx->state.s64[5]; 370 uint64_t g = ctx->state.s64[6]; 371 uint64_t h = ctx->state.s64[7]; 372 373 uint64_t w0, w1, w2, w3, w4, w5, w6, w7; 374 uint64_t w8, w9, w10, w11, w12, w13, w14, w15; 375 uint64_t T1, T2; 376 377 #if defined(__sparc) 378 static const uint64_t sha512_consts[] = { 379 SHA512_CONST_0, SHA512_CONST_1, SHA512_CONST_2, 380 SHA512_CONST_3, SHA512_CONST_4, SHA512_CONST_5, 381 SHA512_CONST_6, SHA512_CONST_7, SHA512_CONST_8, 382 SHA512_CONST_9, SHA512_CONST_10, SHA512_CONST_11, 383 SHA512_CONST_12, SHA512_CONST_13, SHA512_CONST_14, 384 SHA512_CONST_15, SHA512_CONST_16, SHA512_CONST_17, 385 SHA512_CONST_18, SHA512_CONST_19, SHA512_CONST_20, 386 SHA512_CONST_21, SHA512_CONST_22, SHA512_CONST_23, 387 SHA512_CONST_24, SHA512_CONST_25, SHA512_CONST_26, 388 SHA512_CONST_27, SHA512_CONST_28, SHA512_CONST_29, 389 SHA512_CONST_30, SHA512_CONST_31, SHA512_CONST_32, 390 SHA512_CONST_33, SHA512_CONST_34, SHA512_CONST_35, 391 SHA512_CONST_36, SHA512_CONST_37, SHA512_CONST_38, 392 SHA512_CONST_39, SHA512_CONST_40, SHA512_CONST_41, 393 SHA512_CONST_42, SHA512_CONST_43, SHA512_CONST_44, 394 SHA512_CONST_45, SHA512_CONST_46, SHA512_CONST_47, 395 SHA512_CONST_48, SHA512_CONST_49, SHA512_CONST_50, 396 SHA512_CONST_51, SHA512_CONST_52, SHA512_CONST_53, 397 SHA512_CONST_54, SHA512_CONST_55, SHA512_CONST_56, 398 SHA512_CONST_57, SHA512_CONST_58, SHA512_CONST_59, 399 SHA512_CONST_60, SHA512_CONST_61, SHA512_CONST_62, 400 SHA512_CONST_63, SHA512_CONST_64, SHA512_CONST_65, 401 SHA512_CONST_66, SHA512_CONST_67, SHA512_CONST_68, 402 SHA512_CONST_69, SHA512_CONST_70, SHA512_CONST_71, 403 SHA512_CONST_72, SHA512_CONST_73, SHA512_CONST_74, 404 SHA512_CONST_75, SHA512_CONST_76, SHA512_CONST_77, 405 SHA512_CONST_78, SHA512_CONST_79 406 }; 407 #endif /* __sparc */ 408 409 410 if ((uintptr_t)blk & 0x7) { /* not 8-byte aligned? */ 411 bcopy(blk, ctx->buf_un.buf64, sizeof (ctx->buf_un.buf64)); 412 blk = (uint8_t *)ctx->buf_un.buf64; 413 } 414 415 /* LINTED E_BAD_PTR_CAST_ALIGN */ 416 w0 = LOAD_BIG_64(blk + 8 * 0); 417 SHA512ROUND(a, b, c, d, e, f, g, h, 0, w0); 418 /* LINTED E_BAD_PTR_CAST_ALIGN */ 419 w1 = LOAD_BIG_64(blk + 8 * 1); 420 SHA512ROUND(h, a, b, c, d, e, f, g, 1, w1); 421 /* LINTED E_BAD_PTR_CAST_ALIGN */ 422 w2 = LOAD_BIG_64(blk + 8 * 2); 423 SHA512ROUND(g, h, a, b, c, d, e, f, 2, w2); 424 /* LINTED E_BAD_PTR_CAST_ALIGN */ 425 w3 = LOAD_BIG_64(blk + 8 * 3); 426 SHA512ROUND(f, g, h, a, b, c, d, e, 3, w3); 427 /* LINTED E_BAD_PTR_CAST_ALIGN */ 428 w4 = LOAD_BIG_64(blk + 8 * 4); 429 SHA512ROUND(e, f, g, h, a, b, c, d, 4, w4); 430 /* LINTED E_BAD_PTR_CAST_ALIGN */ 431 w5 = LOAD_BIG_64(blk + 8 * 5); 432 SHA512ROUND(d, e, f, g, h, a, b, c, 5, w5); 433 /* LINTED E_BAD_PTR_CAST_ALIGN */ 434 w6 = LOAD_BIG_64(blk + 8 * 6); 435 SHA512ROUND(c, d, e, f, g, h, a, b, 6, w6); 436 /* LINTED E_BAD_PTR_CAST_ALIGN */ 437 w7 = LOAD_BIG_64(blk + 8 * 7); 438 SHA512ROUND(b, c, d, e, f, g, h, a, 7, w7); 439 /* LINTED E_BAD_PTR_CAST_ALIGN */ 440 w8 = LOAD_BIG_64(blk + 8 * 8); 441 SHA512ROUND(a, b, c, d, e, f, g, h, 8, w8); 442 /* LINTED E_BAD_PTR_CAST_ALIGN */ 443 w9 = LOAD_BIG_64(blk + 8 * 9); 444 SHA512ROUND(h, a, b, c, d, e, f, g, 9, w9); 445 /* LINTED E_BAD_PTR_CAST_ALIGN */ 446 w10 = LOAD_BIG_64(blk + 8 * 10); 447 SHA512ROUND(g, h, a, b, c, d, e, f, 10, w10); 448 /* LINTED E_BAD_PTR_CAST_ALIGN */ 449 w11 = LOAD_BIG_64(blk + 8 * 11); 450 SHA512ROUND(f, g, h, a, b, c, d, e, 11, w11); 451 /* LINTED E_BAD_PTR_CAST_ALIGN */ 452 w12 = LOAD_BIG_64(blk + 8 * 12); 453 SHA512ROUND(e, f, g, h, a, b, c, d, 12, w12); 454 /* LINTED E_BAD_PTR_CAST_ALIGN */ 455 w13 = LOAD_BIG_64(blk + 8 * 13); 456 SHA512ROUND(d, e, f, g, h, a, b, c, 13, w13); 457 /* LINTED E_BAD_PTR_CAST_ALIGN */ 458 w14 = LOAD_BIG_64(blk + 8 * 14); 459 SHA512ROUND(c, d, e, f, g, h, a, b, 14, w14); 460 /* LINTED E_BAD_PTR_CAST_ALIGN */ 461 w15 = LOAD_BIG_64(blk + 8 * 15); 462 SHA512ROUND(b, c, d, e, f, g, h, a, 15, w15); 463 464 w0 = SIGMA1(w14) + w9 + SIGMA0(w1) + w0; 465 SHA512ROUND(a, b, c, d, e, f, g, h, 16, w0); 466 w1 = SIGMA1(w15) + w10 + SIGMA0(w2) + w1; 467 SHA512ROUND(h, a, b, c, d, e, f, g, 17, w1); 468 w2 = SIGMA1(w0) + w11 + SIGMA0(w3) + w2; 469 SHA512ROUND(g, h, a, b, c, d, e, f, 18, w2); 470 w3 = SIGMA1(w1) + w12 + SIGMA0(w4) + w3; 471 SHA512ROUND(f, g, h, a, b, c, d, e, 19, w3); 472 w4 = SIGMA1(w2) + w13 + SIGMA0(w5) + w4; 473 SHA512ROUND(e, f, g, h, a, b, c, d, 20, w4); 474 w5 = SIGMA1(w3) + w14 + SIGMA0(w6) + w5; 475 SHA512ROUND(d, e, f, g, h, a, b, c, 21, w5); 476 w6 = SIGMA1(w4) + w15 + SIGMA0(w7) + w6; 477 SHA512ROUND(c, d, e, f, g, h, a, b, 22, w6); 478 w7 = SIGMA1(w5) + w0 + SIGMA0(w8) + w7; 479 SHA512ROUND(b, c, d, e, f, g, h, a, 23, w7); 480 w8 = SIGMA1(w6) + w1 + SIGMA0(w9) + w8; 481 SHA512ROUND(a, b, c, d, e, f, g, h, 24, w8); 482 w9 = SIGMA1(w7) + w2 + SIGMA0(w10) + w9; 483 SHA512ROUND(h, a, b, c, d, e, f, g, 25, w9); 484 w10 = SIGMA1(w8) + w3 + SIGMA0(w11) + w10; 485 SHA512ROUND(g, h, a, b, c, d, e, f, 26, w10); 486 w11 = SIGMA1(w9) + w4 + SIGMA0(w12) + w11; 487 SHA512ROUND(f, g, h, a, b, c, d, e, 27, w11); 488 w12 = SIGMA1(w10) + w5 + SIGMA0(w13) + w12; 489 SHA512ROUND(e, f, g, h, a, b, c, d, 28, w12); 490 w13 = SIGMA1(w11) + w6 + SIGMA0(w14) + w13; 491 SHA512ROUND(d, e, f, g, h, a, b, c, 29, w13); 492 w14 = SIGMA1(w12) + w7 + SIGMA0(w15) + w14; 493 SHA512ROUND(c, d, e, f, g, h, a, b, 30, w14); 494 w15 = SIGMA1(w13) + w8 + SIGMA0(w0) + w15; 495 SHA512ROUND(b, c, d, e, f, g, h, a, 31, w15); 496 497 w0 = SIGMA1(w14) + w9 + SIGMA0(w1) + w0; 498 SHA512ROUND(a, b, c, d, e, f, g, h, 32, w0); 499 w1 = SIGMA1(w15) + w10 + SIGMA0(w2) + w1; 500 SHA512ROUND(h, a, b, c, d, e, f, g, 33, w1); 501 w2 = SIGMA1(w0) + w11 + SIGMA0(w3) + w2; 502 SHA512ROUND(g, h, a, b, c, d, e, f, 34, w2); 503 w3 = SIGMA1(w1) + w12 + SIGMA0(w4) + w3; 504 SHA512ROUND(f, g, h, a, b, c, d, e, 35, w3); 505 w4 = SIGMA1(w2) + w13 + SIGMA0(w5) + w4; 506 SHA512ROUND(e, f, g, h, a, b, c, d, 36, w4); 507 w5 = SIGMA1(w3) + w14 + SIGMA0(w6) + w5; 508 SHA512ROUND(d, e, f, g, h, a, b, c, 37, w5); 509 w6 = SIGMA1(w4) + w15 + SIGMA0(w7) + w6; 510 SHA512ROUND(c, d, e, f, g, h, a, b, 38, w6); 511 w7 = SIGMA1(w5) + w0 + SIGMA0(w8) + w7; 512 SHA512ROUND(b, c, d, e, f, g, h, a, 39, w7); 513 w8 = SIGMA1(w6) + w1 + SIGMA0(w9) + w8; 514 SHA512ROUND(a, b, c, d, e, f, g, h, 40, w8); 515 w9 = SIGMA1(w7) + w2 + SIGMA0(w10) + w9; 516 SHA512ROUND(h, a, b, c, d, e, f, g, 41, w9); 517 w10 = SIGMA1(w8) + w3 + SIGMA0(w11) + w10; 518 SHA512ROUND(g, h, a, b, c, d, e, f, 42, w10); 519 w11 = SIGMA1(w9) + w4 + SIGMA0(w12) + w11; 520 SHA512ROUND(f, g, h, a, b, c, d, e, 43, w11); 521 w12 = SIGMA1(w10) + w5 + SIGMA0(w13) + w12; 522 SHA512ROUND(e, f, g, h, a, b, c, d, 44, w12); 523 w13 = SIGMA1(w11) + w6 + SIGMA0(w14) + w13; 524 SHA512ROUND(d, e, f, g, h, a, b, c, 45, w13); 525 w14 = SIGMA1(w12) + w7 + SIGMA0(w15) + w14; 526 SHA512ROUND(c, d, e, f, g, h, a, b, 46, w14); 527 w15 = SIGMA1(w13) + w8 + SIGMA0(w0) + w15; 528 SHA512ROUND(b, c, d, e, f, g, h, a, 47, w15); 529 530 w0 = SIGMA1(w14) + w9 + SIGMA0(w1) + w0; 531 SHA512ROUND(a, b, c, d, e, f, g, h, 48, w0); 532 w1 = SIGMA1(w15) + w10 + SIGMA0(w2) + w1; 533 SHA512ROUND(h, a, b, c, d, e, f, g, 49, w1); 534 w2 = SIGMA1(w0) + w11 + SIGMA0(w3) + w2; 535 SHA512ROUND(g, h, a, b, c, d, e, f, 50, w2); 536 w3 = SIGMA1(w1) + w12 + SIGMA0(w4) + w3; 537 SHA512ROUND(f, g, h, a, b, c, d, e, 51, w3); 538 w4 = SIGMA1(w2) + w13 + SIGMA0(w5) + w4; 539 SHA512ROUND(e, f, g, h, a, b, c, d, 52, w4); 540 w5 = SIGMA1(w3) + w14 + SIGMA0(w6) + w5; 541 SHA512ROUND(d, e, f, g, h, a, b, c, 53, w5); 542 w6 = SIGMA1(w4) + w15 + SIGMA0(w7) + w6; 543 SHA512ROUND(c, d, e, f, g, h, a, b, 54, w6); 544 w7 = SIGMA1(w5) + w0 + SIGMA0(w8) + w7; 545 SHA512ROUND(b, c, d, e, f, g, h, a, 55, w7); 546 w8 = SIGMA1(w6) + w1 + SIGMA0(w9) + w8; 547 SHA512ROUND(a, b, c, d, e, f, g, h, 56, w8); 548 w9 = SIGMA1(w7) + w2 + SIGMA0(w10) + w9; 549 SHA512ROUND(h, a, b, c, d, e, f, g, 57, w9); 550 w10 = SIGMA1(w8) + w3 + SIGMA0(w11) + w10; 551 SHA512ROUND(g, h, a, b, c, d, e, f, 58, w10); 552 w11 = SIGMA1(w9) + w4 + SIGMA0(w12) + w11; 553 SHA512ROUND(f, g, h, a, b, c, d, e, 59, w11); 554 w12 = SIGMA1(w10) + w5 + SIGMA0(w13) + w12; 555 SHA512ROUND(e, f, g, h, a, b, c, d, 60, w12); 556 w13 = SIGMA1(w11) + w6 + SIGMA0(w14) + w13; 557 SHA512ROUND(d, e, f, g, h, a, b, c, 61, w13); 558 w14 = SIGMA1(w12) + w7 + SIGMA0(w15) + w14; 559 SHA512ROUND(c, d, e, f, g, h, a, b, 62, w14); 560 w15 = SIGMA1(w13) + w8 + SIGMA0(w0) + w15; 561 SHA512ROUND(b, c, d, e, f, g, h, a, 63, w15); 562 563 w0 = SIGMA1(w14) + w9 + SIGMA0(w1) + w0; 564 SHA512ROUND(a, b, c, d, e, f, g, h, 64, w0); 565 w1 = SIGMA1(w15) + w10 + SIGMA0(w2) + w1; 566 SHA512ROUND(h, a, b, c, d, e, f, g, 65, w1); 567 w2 = SIGMA1(w0) + w11 + SIGMA0(w3) + w2; 568 SHA512ROUND(g, h, a, b, c, d, e, f, 66, w2); 569 w3 = SIGMA1(w1) + w12 + SIGMA0(w4) + w3; 570 SHA512ROUND(f, g, h, a, b, c, d, e, 67, w3); 571 w4 = SIGMA1(w2) + w13 + SIGMA0(w5) + w4; 572 SHA512ROUND(e, f, g, h, a, b, c, d, 68, w4); 573 w5 = SIGMA1(w3) + w14 + SIGMA0(w6) + w5; 574 SHA512ROUND(d, e, f, g, h, a, b, c, 69, w5); 575 w6 = SIGMA1(w4) + w15 + SIGMA0(w7) + w6; 576 SHA512ROUND(c, d, e, f, g, h, a, b, 70, w6); 577 w7 = SIGMA1(w5) + w0 + SIGMA0(w8) + w7; 578 SHA512ROUND(b, c, d, e, f, g, h, a, 71, w7); 579 w8 = SIGMA1(w6) + w1 + SIGMA0(w9) + w8; 580 SHA512ROUND(a, b, c, d, e, f, g, h, 72, w8); 581 w9 = SIGMA1(w7) + w2 + SIGMA0(w10) + w9; 582 SHA512ROUND(h, a, b, c, d, e, f, g, 73, w9); 583 w10 = SIGMA1(w8) + w3 + SIGMA0(w11) + w10; 584 SHA512ROUND(g, h, a, b, c, d, e, f, 74, w10); 585 w11 = SIGMA1(w9) + w4 + SIGMA0(w12) + w11; 586 SHA512ROUND(f, g, h, a, b, c, d, e, 75, w11); 587 w12 = SIGMA1(w10) + w5 + SIGMA0(w13) + w12; 588 SHA512ROUND(e, f, g, h, a, b, c, d, 76, w12); 589 w13 = SIGMA1(w11) + w6 + SIGMA0(w14) + w13; 590 SHA512ROUND(d, e, f, g, h, a, b, c, 77, w13); 591 w14 = SIGMA1(w12) + w7 + SIGMA0(w15) + w14; 592 SHA512ROUND(c, d, e, f, g, h, a, b, 78, w14); 593 w15 = SIGMA1(w13) + w8 + SIGMA0(w0) + w15; 594 SHA512ROUND(b, c, d, e, f, g, h, a, 79, w15); 595 596 ctx->state.s64[0] += a; 597 ctx->state.s64[1] += b; 598 ctx->state.s64[2] += c; 599 ctx->state.s64[3] += d; 600 ctx->state.s64[4] += e; 601 ctx->state.s64[5] += f; 602 ctx->state.s64[6] += g; 603 ctx->state.s64[7] += h; 604 605 } 606 #endif /* !__amd64 */ 607 608 609 /* 610 * Encode() 611 * 612 * purpose: to convert a list of numbers from little endian to big endian 613 * input: uint8_t * : place to store the converted big endian numbers 614 * uint32_t * : place to get numbers to convert from 615 * size_t : the length of the input in bytes 616 * output: void 617 */ 618 619 static void 620 Encode(uint8_t *_RESTRICT_KYWD output, uint32_t *_RESTRICT_KYWD input, 621 size_t len) 622 { 623 size_t i, j; 624 625 #if defined(__sparc) 626 if (IS_P2ALIGNED(output, sizeof (uint32_t))) { 627 for (i = 0, j = 0; j < len; i++, j += 4) { 628 /* LINTED: pointer alignment */ 629 *((uint32_t *)(output + j)) = input[i]; 630 } 631 } else { 632 #endif /* little endian -- will work on big endian, but slowly */ 633 for (i = 0, j = 0; j < len; i++, j += 4) { 634 output[j] = (input[i] >> 24) & 0xff; 635 output[j + 1] = (input[i] >> 16) & 0xff; 636 output[j + 2] = (input[i] >> 8) & 0xff; 637 output[j + 3] = input[i] & 0xff; 638 } 639 #if defined(__sparc) 640 } 641 #endif 642 } 643 644 static void 645 Encode64(uint8_t *_RESTRICT_KYWD output, uint64_t *_RESTRICT_KYWD input, 646 size_t len) 647 { 648 size_t i, j; 649 650 #if defined(__sparc) 651 if (IS_P2ALIGNED(output, sizeof (uint64_t))) { 652 for (i = 0, j = 0; j < len; i++, j += 8) { 653 /* LINTED: pointer alignment */ 654 *((uint64_t *)(output + j)) = input[i]; 655 } 656 } else { 657 #endif /* little endian -- will work on big endian, but slowly */ 658 for (i = 0, j = 0; j < len; i++, j += 8) { 659 660 output[j] = (input[i] >> 56) & 0xff; 661 output[j + 1] = (input[i] >> 48) & 0xff; 662 output[j + 2] = (input[i] >> 40) & 0xff; 663 output[j + 3] = (input[i] >> 32) & 0xff; 664 output[j + 4] = (input[i] >> 24) & 0xff; 665 output[j + 5] = (input[i] >> 16) & 0xff; 666 output[j + 6] = (input[i] >> 8) & 0xff; 667 output[j + 7] = input[i] & 0xff; 668 } 669 #if defined(__sparc) 670 } 671 #endif 672 } 673 674 675 void 676 SHA2Init(uint64_t mech, SHA2_CTX *ctx) 677 { 678 679 switch (mech) { 680 case SHA256_MECH_INFO_TYPE: 681 case SHA256_HMAC_MECH_INFO_TYPE: 682 case SHA256_HMAC_GEN_MECH_INFO_TYPE: 683 ctx->state.s32[0] = 0x6a09e667U; 684 ctx->state.s32[1] = 0xbb67ae85U; 685 ctx->state.s32[2] = 0x3c6ef372U; 686 ctx->state.s32[3] = 0xa54ff53aU; 687 ctx->state.s32[4] = 0x510e527fU; 688 ctx->state.s32[5] = 0x9b05688cU; 689 ctx->state.s32[6] = 0x1f83d9abU; 690 ctx->state.s32[7] = 0x5be0cd19U; 691 break; 692 case SHA384_MECH_INFO_TYPE: 693 case SHA384_HMAC_MECH_INFO_TYPE: 694 case SHA384_HMAC_GEN_MECH_INFO_TYPE: 695 ctx->state.s64[0] = 0xcbbb9d5dc1059ed8ULL; 696 ctx->state.s64[1] = 0x629a292a367cd507ULL; 697 ctx->state.s64[2] = 0x9159015a3070dd17ULL; 698 ctx->state.s64[3] = 0x152fecd8f70e5939ULL; 699 ctx->state.s64[4] = 0x67332667ffc00b31ULL; 700 ctx->state.s64[5] = 0x8eb44a8768581511ULL; 701 ctx->state.s64[6] = 0xdb0c2e0d64f98fa7ULL; 702 ctx->state.s64[7] = 0x47b5481dbefa4fa4ULL; 703 break; 704 case SHA512_MECH_INFO_TYPE: 705 case SHA512_HMAC_MECH_INFO_TYPE: 706 case SHA512_HMAC_GEN_MECH_INFO_TYPE: 707 ctx->state.s64[0] = 0x6a09e667f3bcc908ULL; 708 ctx->state.s64[1] = 0xbb67ae8584caa73bULL; 709 ctx->state.s64[2] = 0x3c6ef372fe94f82bULL; 710 ctx->state.s64[3] = 0xa54ff53a5f1d36f1ULL; 711 ctx->state.s64[4] = 0x510e527fade682d1ULL; 712 ctx->state.s64[5] = 0x9b05688c2b3e6c1fULL; 713 ctx->state.s64[6] = 0x1f83d9abfb41bd6bULL; 714 ctx->state.s64[7] = 0x5be0cd19137e2179ULL; 715 break; 716 #ifdef _KERNEL 717 default: 718 cmn_err(CE_PANIC, "sha2_init: " 719 "failed to find a supported algorithm: 0x%x", 720 (uint32_t)mech); 721 722 #endif /* _KERNEL */ 723 } 724 725 ctx->algotype = mech; 726 ctx->count.c64[0] = ctx->count.c64[1] = 0; 727 } 728 729 #ifndef _KERNEL 730 731 #pragma inline(SHA256Init, SHA384Init, SHA512Init) 732 void 733 SHA256Init(SHA256_CTX *ctx) 734 { 735 SHA2Init(SHA256, ctx); 736 } 737 738 void 739 SHA384Init(SHA384_CTX *ctx) 740 { 741 SHA2Init(SHA384, ctx); 742 } 743 744 void 745 SHA512Init(SHA512_CTX *ctx) 746 { 747 SHA2Init(SHA512, ctx); 748 } 749 750 #endif /* _KERNEL */ 751 752 /* 753 * SHA2Update() 754 * 755 * purpose: continues an sha2 digest operation, using the message block 756 * to update the context. 757 * input: SHA2_CTX * : the context to update 758 * void * : the message block 759 * size_t : the length of the message block, in bytes 760 * output: void 761 */ 762 763 void 764 SHA2Update(SHA2_CTX *ctx, const void *inptr, size_t input_len) 765 { 766 uint32_t i, buf_index, buf_len, buf_limit; 767 const uint8_t *input = inptr; 768 uint32_t algotype = ctx->algotype; 769 #if defined(__amd64) 770 uint32_t block_count; 771 #endif /* !__amd64 */ 772 773 774 /* check for noop */ 775 if (input_len == 0) 776 return; 777 778 if (algotype <= SHA256_HMAC_GEN_MECH_INFO_TYPE) { 779 buf_limit = 64; 780 781 /* compute number of bytes mod 64 */ 782 buf_index = (ctx->count.c32[1] >> 3) & 0x3F; 783 784 /* update number of bits */ 785 if ((ctx->count.c32[1] += (input_len << 3)) < (input_len << 3)) 786 ctx->count.c32[0]++; 787 788 ctx->count.c32[0] += (input_len >> 29); 789 790 } else { 791 buf_limit = 128; 792 793 /* compute number of bytes mod 128 */ 794 buf_index = (ctx->count.c64[1] >> 3) & 0x7F; 795 796 /* update number of bits */ 797 if ((ctx->count.c64[1] += (input_len << 3)) < (input_len << 3)) 798 ctx->count.c64[0]++; 799 800 ctx->count.c64[0] += (input_len >> 29); 801 } 802 803 buf_len = buf_limit - buf_index; 804 805 /* transform as many times as possible */ 806 i = 0; 807 if (input_len >= buf_len) { 808 809 /* 810 * general optimization: 811 * 812 * only do initial bcopy() and SHA2Transform() if 813 * buf_index != 0. if buf_index == 0, we're just 814 * wasting our time doing the bcopy() since there 815 * wasn't any data left over from a previous call to 816 * SHA2Update(). 817 */ 818 if (buf_index) { 819 bcopy(input, &ctx->buf_un.buf8[buf_index], buf_len); 820 if (algotype <= SHA256_HMAC_GEN_MECH_INFO_TYPE) 821 SHA256Transform(ctx, ctx->buf_un.buf8); 822 else 823 SHA512Transform(ctx, ctx->buf_un.buf8); 824 825 i = buf_len; 826 } 827 828 #if !defined(__amd64) 829 if (algotype <= SHA256_HMAC_GEN_MECH_INFO_TYPE) { 830 for (; i + buf_limit - 1 < input_len; i += buf_limit) { 831 SHA256Transform(ctx, &input[i]); 832 } 833 } else { 834 for (; i + buf_limit - 1 < input_len; i += buf_limit) { 835 SHA512Transform(ctx, &input[i]); 836 } 837 } 838 839 #else 840 if (algotype <= SHA256_HMAC_GEN_MECH_INFO_TYPE) { 841 block_count = (input_len - i) >> 6; 842 if (block_count > 0) { 843 SHA256TransformBlocks(ctx, &input[i], 844 block_count); 845 i += block_count << 6; 846 } 847 } else { 848 block_count = (input_len - i) >> 7; 849 if (block_count > 0) { 850 SHA512TransformBlocks(ctx, &input[i], 851 block_count); 852 i += block_count << 7; 853 } 854 } 855 #endif /* !__amd64 */ 856 857 /* 858 * general optimization: 859 * 860 * if i and input_len are the same, return now instead 861 * of calling bcopy(), since the bcopy() in this case 862 * will be an expensive noop. 863 */ 864 865 if (input_len == i) 866 return; 867 868 buf_index = 0; 869 } 870 871 /* buffer remaining input */ 872 bcopy(&input[i], &ctx->buf_un.buf8[buf_index], input_len - i); 873 } 874 875 876 /* 877 * SHA2Final() 878 * 879 * purpose: ends an sha2 digest operation, finalizing the message digest and 880 * zeroing the context. 881 * input: uchar_t * : a buffer to store the digest 882 * : The function actually uses void* because many 883 * : callers pass things other than uchar_t here. 884 * SHA2_CTX * : the context to finalize, save, and zero 885 * output: void 886 */ 887 888 void 889 SHA2Final(void *digest, SHA2_CTX *ctx) 890 { 891 uint8_t bitcount_be[sizeof (ctx->count.c32)]; 892 uint8_t bitcount_be64[sizeof (ctx->count.c64)]; 893 uint32_t index; 894 uint32_t algotype = ctx->algotype; 895 896 if (algotype <= SHA256_HMAC_GEN_MECH_INFO_TYPE) { 897 index = (ctx->count.c32[1] >> 3) & 0x3f; 898 Encode(bitcount_be, ctx->count.c32, sizeof (bitcount_be)); 899 SHA2Update(ctx, PADDING, ((index < 56) ? 56 : 120) - index); 900 SHA2Update(ctx, bitcount_be, sizeof (bitcount_be)); 901 Encode(digest, ctx->state.s32, sizeof (ctx->state.s32)); 902 903 } else { 904 index = (ctx->count.c64[1] >> 3) & 0x7f; 905 Encode64(bitcount_be64, ctx->count.c64, 906 sizeof (bitcount_be64)); 907 SHA2Update(ctx, PADDING, ((index < 112) ? 112 : 240) - index); 908 SHA2Update(ctx, bitcount_be64, sizeof (bitcount_be64)); 909 if (algotype <= SHA384_HMAC_GEN_MECH_INFO_TYPE) { 910 ctx->state.s64[6] = ctx->state.s64[7] = 0; 911 Encode64(digest, ctx->state.s64, 912 sizeof (uint64_t) * 6); 913 } else 914 Encode64(digest, ctx->state.s64, 915 sizeof (ctx->state.s64)); 916 } 917 918 /* zeroize sensitive information */ 919 bzero(ctx, sizeof (*ctx)); 920 } 921