1 /* 2 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 3 * Use is subject to license terms. 4 */ 5 6 #pragma ident "%Z%%M% %I% %E% SMI" 7 8 9 /* 10 * The basic framework for this code came from the reference 11 * implementation for MD5. That implementation is Copyright (C) 12 * 1991-2, RSA Data Security, Inc. Created 1991. All rights reserved. 13 * 14 * License to copy and use this software is granted provided that it 15 * is identified as the "RSA Data Security, Inc. MD5 Message-Digest 16 * Algorithm" in all material mentioning or referencing this software 17 * or this function. 18 * 19 * License is also granted to make and use derivative works provided 20 * that such works are identified as "derived from the RSA Data 21 * Security, Inc. MD5 Message-Digest Algorithm" in all material 22 * mentioning or referencing the derived work. 23 * 24 * RSA Data Security, Inc. makes no representations concerning either 25 * the merchantability of this software or the suitability of this 26 * software for any particular purpose. It is provided "as is" 27 * without express or implied warranty of any kind. 28 * 29 * These notices must be retained in any copies of any part of this 30 * documentation and/or software. 31 * 32 * NOTE: Cleaned-up and optimized, version of SHA2, based on the FIPS 180-2 33 * standard, available at http://www.itl.nist.gov/div897/pubs/fip180-2.htm 34 * Not as fast as one would like -- further optimizations are encouraged 35 * and appreciated. 36 */ 37 38 #include <sys/types.h> 39 #include <sys/param.h> 40 #include <sys/systm.h> 41 #include <sys/sysmacros.h> 42 #define _SHA2_IMPL 43 #include <sys/sha2.h> 44 #include <sys/sha2_consts.h> 45 46 #ifndef _KERNEL 47 48 #include <strings.h> 49 #include <stdlib.h> 50 #include <errno.h> 51 52 #pragma weak SHA256Update = SHA2Update 53 #pragma weak SHA384Update = SHA2Update 54 #pragma weak SHA512Update = SHA2Update 55 56 #pragma weak SHA256Final = SHA2Final 57 #pragma weak SHA384Final = SHA2Final 58 #pragma weak SHA512Final = SHA2Final 59 60 #endif /* !_KERNEL */ 61 62 #ifdef _KERNEL 63 #include <sys/cmn_err.h> 64 #endif /* _KERNEL */ 65 66 static void Encode(uint8_t *, uint32_t *, size_t); 67 static void Encode64(uint8_t *, uint64_t *, size_t); 68 static void SHA256Transform(SHA2_CTX *, const uint8_t *); 69 static void SHA512Transform(SHA2_CTX *, const uint8_t *); 70 71 static uint8_t PADDING[128] = { 0x80, /* all zeros */ }; 72 73 /* Ch and Maj are the basic SHA2 functions. */ 74 #define Ch(b, c, d) (((b) & (c)) ^ ((~b) & (d))) 75 #define Maj(b, c, d) (((b) & (c)) ^ ((b) & (d)) ^ ((c) & (d))) 76 77 /* Rotates x right n bits. */ 78 #define ROTR(x, n) \ 79 (((x) >> (n)) | ((x) << ((sizeof (x) * NBBY)-(n)))) 80 81 /* Shift x right n bits */ 82 #define SHR(x, n) ((x) >> (n)) 83 84 /* SHA256 Functions */ 85 #define BIGSIGMA0_256(x) (ROTR((x), 2) ^ ROTR((x), 13) ^ ROTR((x), 22)) 86 #define BIGSIGMA1_256(x) (ROTR((x), 6) ^ ROTR((x), 11) ^ ROTR((x), 25)) 87 #define SIGMA0_256(x) (ROTR((x), 7) ^ ROTR((x), 18) ^ SHR((x), 3)) 88 #define SIGMA1_256(x) (ROTR((x), 17) ^ ROTR((x), 19) ^ SHR((x), 10)) 89 90 #define SHA256ROUND(a, b, c, d, e, f, g, h, i, w) \ 91 T1 = h + BIGSIGMA1_256(e) + Ch(e, f, g) + SHA256_CONST(i) + w; \ 92 d += T1; \ 93 T2 = BIGSIGMA0_256(a) + Maj(a, b, c); \ 94 h = T1 + T2 95 96 /* SHA384/512 Functions */ 97 #define BIGSIGMA0(x) (ROTR((x), 28) ^ ROTR((x), 34) ^ ROTR((x), 39)) 98 #define BIGSIGMA1(x) (ROTR((x), 14) ^ ROTR((x), 18) ^ ROTR((x), 41)) 99 #define SIGMA0(x) (ROTR((x), 1) ^ ROTR((x), 8) ^ SHR((x), 7)) 100 #define SIGMA1(x) (ROTR((x), 19) ^ ROTR((x), 61) ^ SHR((x), 6)) 101 #define SHA512ROUND(a, b, c, d, e, f, g, h, i, w) \ 102 T1 = h + BIGSIGMA1(e) + Ch(e, f, g) + SHA512_CONST(i) + w; \ 103 d += T1; \ 104 T2 = BIGSIGMA0(a) + Maj(a, b, c); \ 105 h = T1 + T2 106 107 /* 108 * sparc optimization: 109 * 110 * on the sparc, we can load big endian 32-bit data easily. note that 111 * special care must be taken to ensure the address is 32-bit aligned. 112 * in the interest of speed, we don't check to make sure, since 113 * careful programming can guarantee this for us. 114 */ 115 116 #if defined(_BIG_ENDIAN) 117 118 #define LOAD_BIG_32(addr) (*(uint32_t *)(addr)) 119 120 #else /* little endian -- will work on big endian, but slowly */ 121 122 #define LOAD_BIG_32(addr) \ 123 (((addr)[0] << 24) | ((addr)[1] << 16) | ((addr)[2] << 8) | (addr)[3]) 124 #endif 125 126 127 #if defined(_BIG_ENDIAN) 128 129 #define LOAD_BIG_64(addr) (*(uint64_t *)(addr)) 130 131 #else /* little endian -- will work on big endian, but slowly */ 132 133 #define LOAD_BIG_64(addr) \ 134 (((uint64_t)(addr)[0] << 56) | ((uint64_t)(addr)[1] << 48) | \ 135 ((uint64_t)(addr)[2] << 40) | ((uint64_t)(addr)[3] << 32) | \ 136 ((uint64_t)(addr)[4] << 24) | ((uint64_t)(addr)[5] << 16) | \ 137 ((uint64_t)(addr)[6] << 8) | (uint64_t)(addr)[7]) 138 139 #endif 140 141 142 /* SHA256 Transform */ 143 144 static void 145 SHA256Transform(SHA2_CTX *ctx, const uint8_t *blk) 146 { 147 148 uint32_t a = ctx->state.s32[0]; 149 uint32_t b = ctx->state.s32[1]; 150 uint32_t c = ctx->state.s32[2]; 151 uint32_t d = ctx->state.s32[3]; 152 uint32_t e = ctx->state.s32[4]; 153 uint32_t f = ctx->state.s32[5]; 154 uint32_t g = ctx->state.s32[6]; 155 uint32_t h = ctx->state.s32[7]; 156 157 uint32_t w0, w1, w2, w3, w4, w5, w6, w7; 158 uint32_t w8, w9, w10, w11, w12, w13, w14, w15; 159 uint32_t T1, T2; 160 161 #if defined(__sparc) 162 static const uint32_t sha256_consts[] = { 163 SHA256_CONST_0, SHA256_CONST_1, SHA256_CONST_2, 164 SHA256_CONST_3, SHA256_CONST_4, SHA256_CONST_5, 165 SHA256_CONST_6, SHA256_CONST_7, SHA256_CONST_8, 166 SHA256_CONST_9, SHA256_CONST_10, SHA256_CONST_11, 167 SHA256_CONST_12, SHA256_CONST_13, SHA256_CONST_14, 168 SHA256_CONST_15, SHA256_CONST_16, SHA256_CONST_17, 169 SHA256_CONST_18, SHA256_CONST_19, SHA256_CONST_20, 170 SHA256_CONST_21, SHA256_CONST_22, SHA256_CONST_23, 171 SHA256_CONST_24, SHA256_CONST_25, SHA256_CONST_26, 172 SHA256_CONST_27, SHA256_CONST_28, SHA256_CONST_29, 173 SHA256_CONST_30, SHA256_CONST_31, SHA256_CONST_32, 174 SHA256_CONST_33, SHA256_CONST_34, SHA256_CONST_35, 175 SHA256_CONST_36, SHA256_CONST_37, SHA256_CONST_38, 176 SHA256_CONST_39, SHA256_CONST_40, SHA256_CONST_41, 177 SHA256_CONST_42, SHA256_CONST_43, SHA256_CONST_44, 178 SHA256_CONST_45, SHA256_CONST_46, SHA256_CONST_47, 179 SHA256_CONST_48, SHA256_CONST_49, SHA256_CONST_50, 180 SHA256_CONST_51, SHA256_CONST_52, SHA256_CONST_53, 181 SHA256_CONST_54, SHA256_CONST_55, SHA256_CONST_56, 182 SHA256_CONST_57, SHA256_CONST_58, SHA256_CONST_59, 183 SHA256_CONST_60, SHA256_CONST_61, SHA256_CONST_62, 184 SHA256_CONST_63 185 }; 186 #endif 187 188 if ((uintptr_t)blk & 0x3) { /* not 4-byte aligned? */ 189 bcopy(blk, ctx->buf_un.buf32, sizeof (ctx->buf_un.buf32)); 190 blk = (uint8_t *)ctx->buf_un.buf32; 191 } 192 193 /* LINTED E_BAD_PTR_CAST_ALIGN */ 194 w0 = LOAD_BIG_32(blk + 4 * 0); 195 SHA256ROUND(a, b, c, d, e, f, g, h, 0, w0); 196 /* LINTED E_BAD_PTR_CAST_ALIGN */ 197 w1 = LOAD_BIG_32(blk + 4 * 1); 198 SHA256ROUND(h, a, b, c, d, e, f, g, 1, w1); 199 /* LINTED E_BAD_PTR_CAST_ALIGN */ 200 w2 = LOAD_BIG_32(blk + 4 * 2); 201 SHA256ROUND(g, h, a, b, c, d, e, f, 2, w2); 202 /* LINTED E_BAD_PTR_CAST_ALIGN */ 203 w3 = LOAD_BIG_32(blk + 4 * 3); 204 SHA256ROUND(f, g, h, a, b, c, d, e, 3, w3); 205 /* LINTED E_BAD_PTR_CAST_ALIGN */ 206 w4 = LOAD_BIG_32(blk + 4 * 4); 207 SHA256ROUND(e, f, g, h, a, b, c, d, 4, w4); 208 /* LINTED E_BAD_PTR_CAST_ALIGN */ 209 w5 = LOAD_BIG_32(blk + 4 * 5); 210 SHA256ROUND(d, e, f, g, h, a, b, c, 5, w5); 211 /* LINTED E_BAD_PTR_CAST_ALIGN */ 212 w6 = LOAD_BIG_32(blk + 4 * 6); 213 SHA256ROUND(c, d, e, f, g, h, a, b, 6, w6); 214 /* LINTED E_BAD_PTR_CAST_ALIGN */ 215 w7 = LOAD_BIG_32(blk + 4 * 7); 216 SHA256ROUND(b, c, d, e, f, g, h, a, 7, w7); 217 /* LINTED E_BAD_PTR_CAST_ALIGN */ 218 w8 = LOAD_BIG_32(blk + 4 * 8); 219 SHA256ROUND(a, b, c, d, e, f, g, h, 8, w8); 220 /* LINTED E_BAD_PTR_CAST_ALIGN */ 221 w9 = LOAD_BIG_32(blk + 4 * 9); 222 SHA256ROUND(h, a, b, c, d, e, f, g, 9, w9); 223 /* LINTED E_BAD_PTR_CAST_ALIGN */ 224 w10 = LOAD_BIG_32(blk + 4 * 10); 225 SHA256ROUND(g, h, a, b, c, d, e, f, 10, w10); 226 /* LINTED E_BAD_PTR_CAST_ALIGN */ 227 w11 = LOAD_BIG_32(blk + 4 * 11); 228 SHA256ROUND(f, g, h, a, b, c, d, e, 11, w11); 229 /* LINTED E_BAD_PTR_CAST_ALIGN */ 230 w12 = LOAD_BIG_32(blk + 4 * 12); 231 SHA256ROUND(e, f, g, h, a, b, c, d, 12, w12); 232 /* LINTED E_BAD_PTR_CAST_ALIGN */ 233 w13 = LOAD_BIG_32(blk + 4 * 13); 234 SHA256ROUND(d, e, f, g, h, a, b, c, 13, w13); 235 /* LINTED E_BAD_PTR_CAST_ALIGN */ 236 w14 = LOAD_BIG_32(blk + 4 * 14); 237 SHA256ROUND(c, d, e, f, g, h, a, b, 14, w14); 238 /* LINTED E_BAD_PTR_CAST_ALIGN */ 239 w15 = LOAD_BIG_32(blk + 4 * 15); 240 SHA256ROUND(b, c, d, e, f, g, h, a, 15, w15); 241 242 w0 = SIGMA1_256(w14) + w9 + SIGMA0_256(w1) + w0; 243 SHA256ROUND(a, b, c, d, e, f, g, h, 16, w0); 244 w1 = SIGMA1_256(w15) + w10 + SIGMA0_256(w2) + w1; 245 SHA256ROUND(h, a, b, c, d, e, f, g, 17, w1); 246 w2 = SIGMA1_256(w0) + w11 + SIGMA0_256(w3) + w2; 247 SHA256ROUND(g, h, a, b, c, d, e, f, 18, w2); 248 w3 = SIGMA1_256(w1) + w12 + SIGMA0_256(w4) + w3; 249 SHA256ROUND(f, g, h, a, b, c, d, e, 19, w3); 250 w4 = SIGMA1_256(w2) + w13 + SIGMA0_256(w5) + w4; 251 SHA256ROUND(e, f, g, h, a, b, c, d, 20, w4); 252 w5 = SIGMA1_256(w3) + w14 + SIGMA0_256(w6) + w5; 253 SHA256ROUND(d, e, f, g, h, a, b, c, 21, w5); 254 w6 = SIGMA1_256(w4) + w15 + SIGMA0_256(w7) + w6; 255 SHA256ROUND(c, d, e, f, g, h, a, b, 22, w6); 256 w7 = SIGMA1_256(w5) + w0 + SIGMA0_256(w8) + w7; 257 SHA256ROUND(b, c, d, e, f, g, h, a, 23, w7); 258 w8 = SIGMA1_256(w6) + w1 + SIGMA0_256(w9) + w8; 259 SHA256ROUND(a, b, c, d, e, f, g, h, 24, w8); 260 w9 = SIGMA1_256(w7) + w2 + SIGMA0_256(w10) + w9; 261 SHA256ROUND(h, a, b, c, d, e, f, g, 25, w9); 262 w10 = SIGMA1_256(w8) + w3 + SIGMA0_256(w11) + w10; 263 SHA256ROUND(g, h, a, b, c, d, e, f, 26, w10); 264 w11 = SIGMA1_256(w9) + w4 + SIGMA0_256(w12) + w11; 265 SHA256ROUND(f, g, h, a, b, c, d, e, 27, w11); 266 w12 = SIGMA1_256(w10) + w5 + SIGMA0_256(w13) + w12; 267 SHA256ROUND(e, f, g, h, a, b, c, d, 28, w12); 268 w13 = SIGMA1_256(w11) + w6 + SIGMA0_256(w14) + w13; 269 SHA256ROUND(d, e, f, g, h, a, b, c, 29, w13); 270 w14 = SIGMA1_256(w12) + w7 + SIGMA0_256(w15) + w14; 271 SHA256ROUND(c, d, e, f, g, h, a, b, 30, w14); 272 w15 = SIGMA1_256(w13) + w8 + SIGMA0_256(w0) + w15; 273 SHA256ROUND(b, c, d, e, f, g, h, a, 31, w15); 274 275 w0 = SIGMA1_256(w14) + w9 + SIGMA0_256(w1) + w0; 276 SHA256ROUND(a, b, c, d, e, f, g, h, 32, w0); 277 w1 = SIGMA1_256(w15) + w10 + SIGMA0_256(w2) + w1; 278 SHA256ROUND(h, a, b, c, d, e, f, g, 33, w1); 279 w2 = SIGMA1_256(w0) + w11 + SIGMA0_256(w3) + w2; 280 SHA256ROUND(g, h, a, b, c, d, e, f, 34, w2); 281 w3 = SIGMA1_256(w1) + w12 + SIGMA0_256(w4) + w3; 282 SHA256ROUND(f, g, h, a, b, c, d, e, 35, w3); 283 w4 = SIGMA1_256(w2) + w13 + SIGMA0_256(w5) + w4; 284 SHA256ROUND(e, f, g, h, a, b, c, d, 36, w4); 285 w5 = SIGMA1_256(w3) + w14 + SIGMA0_256(w6) + w5; 286 SHA256ROUND(d, e, f, g, h, a, b, c, 37, w5); 287 w6 = SIGMA1_256(w4) + w15 + SIGMA0_256(w7) + w6; 288 SHA256ROUND(c, d, e, f, g, h, a, b, 38, w6); 289 w7 = SIGMA1_256(w5) + w0 + SIGMA0_256(w8) + w7; 290 SHA256ROUND(b, c, d, e, f, g, h, a, 39, w7); 291 w8 = SIGMA1_256(w6) + w1 + SIGMA0_256(w9) + w8; 292 SHA256ROUND(a, b, c, d, e, f, g, h, 40, w8); 293 w9 = SIGMA1_256(w7) + w2 + SIGMA0_256(w10) + w9; 294 SHA256ROUND(h, a, b, c, d, e, f, g, 41, w9); 295 w10 = SIGMA1_256(w8) + w3 + SIGMA0_256(w11) + w10; 296 SHA256ROUND(g, h, a, b, c, d, e, f, 42, w10); 297 w11 = SIGMA1_256(w9) + w4 + SIGMA0_256(w12) + w11; 298 SHA256ROUND(f, g, h, a, b, c, d, e, 43, w11); 299 w12 = SIGMA1_256(w10) + w5 + SIGMA0_256(w13) + w12; 300 SHA256ROUND(e, f, g, h, a, b, c, d, 44, w12); 301 w13 = SIGMA1_256(w11) + w6 + SIGMA0_256(w14) + w13; 302 SHA256ROUND(d, e, f, g, h, a, b, c, 45, w13); 303 w14 = SIGMA1_256(w12) + w7 + SIGMA0_256(w15) + w14; 304 SHA256ROUND(c, d, e, f, g, h, a, b, 46, w14); 305 w15 = SIGMA1_256(w13) + w8 + SIGMA0_256(w0) + w15; 306 SHA256ROUND(b, c, d, e, f, g, h, a, 47, w15); 307 308 w0 = SIGMA1_256(w14) + w9 + SIGMA0_256(w1) + w0; 309 SHA256ROUND(a, b, c, d, e, f, g, h, 48, w0); 310 w1 = SIGMA1_256(w15) + w10 + SIGMA0_256(w2) + w1; 311 SHA256ROUND(h, a, b, c, d, e, f, g, 49, w1); 312 w2 = SIGMA1_256(w0) + w11 + SIGMA0_256(w3) + w2; 313 SHA256ROUND(g, h, a, b, c, d, e, f, 50, w2); 314 w3 = SIGMA1_256(w1) + w12 + SIGMA0_256(w4) + w3; 315 SHA256ROUND(f, g, h, a, b, c, d, e, 51, w3); 316 w4 = SIGMA1_256(w2) + w13 + SIGMA0_256(w5) + w4; 317 SHA256ROUND(e, f, g, h, a, b, c, d, 52, w4); 318 w5 = SIGMA1_256(w3) + w14 + SIGMA0_256(w6) + w5; 319 SHA256ROUND(d, e, f, g, h, a, b, c, 53, w5); 320 w6 = SIGMA1_256(w4) + w15 + SIGMA0_256(w7) + w6; 321 SHA256ROUND(c, d, e, f, g, h, a, b, 54, w6); 322 w7 = SIGMA1_256(w5) + w0 + SIGMA0_256(w8) + w7; 323 SHA256ROUND(b, c, d, e, f, g, h, a, 55, w7); 324 w8 = SIGMA1_256(w6) + w1 + SIGMA0_256(w9) + w8; 325 SHA256ROUND(a, b, c, d, e, f, g, h, 56, w8); 326 w9 = SIGMA1_256(w7) + w2 + SIGMA0_256(w10) + w9; 327 SHA256ROUND(h, a, b, c, d, e, f, g, 57, w9); 328 w10 = SIGMA1_256(w8) + w3 + SIGMA0_256(w11) + w10; 329 SHA256ROUND(g, h, a, b, c, d, e, f, 58, w10); 330 w11 = SIGMA1_256(w9) + w4 + SIGMA0_256(w12) + w11; 331 SHA256ROUND(f, g, h, a, b, c, d, e, 59, w11); 332 w12 = SIGMA1_256(w10) + w5 + SIGMA0_256(w13) + w12; 333 SHA256ROUND(e, f, g, h, a, b, c, d, 60, w12); 334 w13 = SIGMA1_256(w11) + w6 + SIGMA0_256(w14) + w13; 335 SHA256ROUND(d, e, f, g, h, a, b, c, 61, w13); 336 w14 = SIGMA1_256(w12) + w7 + SIGMA0_256(w15) + w14; 337 SHA256ROUND(c, d, e, f, g, h, a, b, 62, w14); 338 w15 = SIGMA1_256(w13) + w8 + SIGMA0_256(w0) + w15; 339 SHA256ROUND(b, c, d, e, f, g, h, a, 63, w15); 340 341 ctx->state.s32[0] += a; 342 ctx->state.s32[1] += b; 343 ctx->state.s32[2] += c; 344 ctx->state.s32[3] += d; 345 ctx->state.s32[4] += e; 346 ctx->state.s32[5] += f; 347 ctx->state.s32[6] += g; 348 ctx->state.s32[7] += h; 349 } 350 351 352 /* SHA384 and SHA512 Transform */ 353 354 static void 355 SHA512Transform(SHA2_CTX *ctx, const uint8_t *blk) 356 { 357 358 uint64_t a = ctx->state.s64[0]; 359 uint64_t b = ctx->state.s64[1]; 360 uint64_t c = ctx->state.s64[2]; 361 uint64_t d = ctx->state.s64[3]; 362 uint64_t e = ctx->state.s64[4]; 363 uint64_t f = ctx->state.s64[5]; 364 uint64_t g = ctx->state.s64[6]; 365 uint64_t h = ctx->state.s64[7]; 366 367 uint64_t w0, w1, w2, w3, w4, w5, w6, w7; 368 uint64_t w8, w9, w10, w11, w12, w13, w14, w15; 369 uint64_t T1, T2; 370 371 #if defined(__sparc) 372 static const uint64_t sha512_consts[] = { 373 SHA512_CONST_0, SHA512_CONST_1, SHA512_CONST_2, 374 SHA512_CONST_3, SHA512_CONST_4, SHA512_CONST_5, 375 SHA512_CONST_6, SHA512_CONST_7, SHA512_CONST_8, 376 SHA512_CONST_9, SHA512_CONST_10, SHA512_CONST_11, 377 SHA512_CONST_12, SHA512_CONST_13, SHA512_CONST_14, 378 SHA512_CONST_15, SHA512_CONST_16, SHA512_CONST_17, 379 SHA512_CONST_18, SHA512_CONST_19, SHA512_CONST_20, 380 SHA512_CONST_21, SHA512_CONST_22, SHA512_CONST_23, 381 SHA512_CONST_24, SHA512_CONST_25, SHA512_CONST_26, 382 SHA512_CONST_27, SHA512_CONST_28, SHA512_CONST_29, 383 SHA512_CONST_30, SHA512_CONST_31, SHA512_CONST_32, 384 SHA512_CONST_33, SHA512_CONST_34, SHA512_CONST_35, 385 SHA512_CONST_36, SHA512_CONST_37, SHA512_CONST_38, 386 SHA512_CONST_39, SHA512_CONST_40, SHA512_CONST_41, 387 SHA512_CONST_42, SHA512_CONST_43, SHA512_CONST_44, 388 SHA512_CONST_45, SHA512_CONST_46, SHA512_CONST_47, 389 SHA512_CONST_48, SHA512_CONST_49, SHA512_CONST_50, 390 SHA512_CONST_51, SHA512_CONST_52, SHA512_CONST_53, 391 SHA512_CONST_54, SHA512_CONST_55, SHA512_CONST_56, 392 SHA512_CONST_57, SHA512_CONST_58, SHA512_CONST_59, 393 SHA512_CONST_60, SHA512_CONST_61, SHA512_CONST_62, 394 SHA512_CONST_63, SHA512_CONST_64, SHA512_CONST_65, 395 SHA512_CONST_66, SHA512_CONST_67, SHA512_CONST_68, 396 SHA512_CONST_69, SHA512_CONST_70, SHA512_CONST_71, 397 SHA512_CONST_72, SHA512_CONST_73, SHA512_CONST_74, 398 SHA512_CONST_75, SHA512_CONST_76, SHA512_CONST_77, 399 SHA512_CONST_78, SHA512_CONST_79 400 }; 401 #endif 402 403 404 if ((uintptr_t)blk & 0x7) { /* not 8-byte aligned? */ 405 bcopy(blk, ctx->buf_un.buf64, sizeof (ctx->buf_un.buf64)); 406 blk = (uint8_t *)ctx->buf_un.buf64; 407 } 408 409 /* LINTED E_BAD_PTR_CAST_ALIGN */ 410 w0 = LOAD_BIG_64(blk + 8 * 0); 411 SHA512ROUND(a, b, c, d, e, f, g, h, 0, w0); 412 /* LINTED E_BAD_PTR_CAST_ALIGN */ 413 w1 = LOAD_BIG_64(blk + 8 * 1); 414 SHA512ROUND(h, a, b, c, d, e, f, g, 1, w1); 415 /* LINTED E_BAD_PTR_CAST_ALIGN */ 416 w2 = LOAD_BIG_64(blk + 8 * 2); 417 SHA512ROUND(g, h, a, b, c, d, e, f, 2, w2); 418 /* LINTED E_BAD_PTR_CAST_ALIGN */ 419 w3 = LOAD_BIG_64(blk + 8 * 3); 420 SHA512ROUND(f, g, h, a, b, c, d, e, 3, w3); 421 /* LINTED E_BAD_PTR_CAST_ALIGN */ 422 w4 = LOAD_BIG_64(blk + 8 * 4); 423 SHA512ROUND(e, f, g, h, a, b, c, d, 4, w4); 424 /* LINTED E_BAD_PTR_CAST_ALIGN */ 425 w5 = LOAD_BIG_64(blk + 8 * 5); 426 SHA512ROUND(d, e, f, g, h, a, b, c, 5, w5); 427 /* LINTED E_BAD_PTR_CAST_ALIGN */ 428 w6 = LOAD_BIG_64(blk + 8 * 6); 429 SHA512ROUND(c, d, e, f, g, h, a, b, 6, w6); 430 /* LINTED E_BAD_PTR_CAST_ALIGN */ 431 w7 = LOAD_BIG_64(blk + 8 * 7); 432 SHA512ROUND(b, c, d, e, f, g, h, a, 7, w7); 433 /* LINTED E_BAD_PTR_CAST_ALIGN */ 434 w8 = LOAD_BIG_64(blk + 8 * 8); 435 SHA512ROUND(a, b, c, d, e, f, g, h, 8, w8); 436 /* LINTED E_BAD_PTR_CAST_ALIGN */ 437 w9 = LOAD_BIG_64(blk + 8 * 9); 438 SHA512ROUND(h, a, b, c, d, e, f, g, 9, w9); 439 /* LINTED E_BAD_PTR_CAST_ALIGN */ 440 w10 = LOAD_BIG_64(blk + 8 * 10); 441 SHA512ROUND(g, h, a, b, c, d, e, f, 10, w10); 442 /* LINTED E_BAD_PTR_CAST_ALIGN */ 443 w11 = LOAD_BIG_64(blk + 8 * 11); 444 SHA512ROUND(f, g, h, a, b, c, d, e, 11, w11); 445 /* LINTED E_BAD_PTR_CAST_ALIGN */ 446 w12 = LOAD_BIG_64(blk + 8 * 12); 447 SHA512ROUND(e, f, g, h, a, b, c, d, 12, w12); 448 /* LINTED E_BAD_PTR_CAST_ALIGN */ 449 w13 = LOAD_BIG_64(blk + 8 * 13); 450 SHA512ROUND(d, e, f, g, h, a, b, c, 13, w13); 451 /* LINTED E_BAD_PTR_CAST_ALIGN */ 452 w14 = LOAD_BIG_64(blk + 8 * 14); 453 SHA512ROUND(c, d, e, f, g, h, a, b, 14, w14); 454 /* LINTED E_BAD_PTR_CAST_ALIGN */ 455 w15 = LOAD_BIG_64(blk + 8 * 15); 456 SHA512ROUND(b, c, d, e, f, g, h, a, 15, w15); 457 458 w0 = SIGMA1(w14) + w9 + SIGMA0(w1) + w0; 459 SHA512ROUND(a, b, c, d, e, f, g, h, 16, w0); 460 w1 = SIGMA1(w15) + w10 + SIGMA0(w2) + w1; 461 SHA512ROUND(h, a, b, c, d, e, f, g, 17, w1); 462 w2 = SIGMA1(w0) + w11 + SIGMA0(w3) + w2; 463 SHA512ROUND(g, h, a, b, c, d, e, f, 18, w2); 464 w3 = SIGMA1(w1) + w12 + SIGMA0(w4) + w3; 465 SHA512ROUND(f, g, h, a, b, c, d, e, 19, w3); 466 w4 = SIGMA1(w2) + w13 + SIGMA0(w5) + w4; 467 SHA512ROUND(e, f, g, h, a, b, c, d, 20, w4); 468 w5 = SIGMA1(w3) + w14 + SIGMA0(w6) + w5; 469 SHA512ROUND(d, e, f, g, h, a, b, c, 21, w5); 470 w6 = SIGMA1(w4) + w15 + SIGMA0(w7) + w6; 471 SHA512ROUND(c, d, e, f, g, h, a, b, 22, w6); 472 w7 = SIGMA1(w5) + w0 + SIGMA0(w8) + w7; 473 SHA512ROUND(b, c, d, e, f, g, h, a, 23, w7); 474 w8 = SIGMA1(w6) + w1 + SIGMA0(w9) + w8; 475 SHA512ROUND(a, b, c, d, e, f, g, h, 24, w8); 476 w9 = SIGMA1(w7) + w2 + SIGMA0(w10) + w9; 477 SHA512ROUND(h, a, b, c, d, e, f, g, 25, w9); 478 w10 = SIGMA1(w8) + w3 + SIGMA0(w11) + w10; 479 SHA512ROUND(g, h, a, b, c, d, e, f, 26, w10); 480 w11 = SIGMA1(w9) + w4 + SIGMA0(w12) + w11; 481 SHA512ROUND(f, g, h, a, b, c, d, e, 27, w11); 482 w12 = SIGMA1(w10) + w5 + SIGMA0(w13) + w12; 483 SHA512ROUND(e, f, g, h, a, b, c, d, 28, w12); 484 w13 = SIGMA1(w11) + w6 + SIGMA0(w14) + w13; 485 SHA512ROUND(d, e, f, g, h, a, b, c, 29, w13); 486 w14 = SIGMA1(w12) + w7 + SIGMA0(w15) + w14; 487 SHA512ROUND(c, d, e, f, g, h, a, b, 30, w14); 488 w15 = SIGMA1(w13) + w8 + SIGMA0(w0) + w15; 489 SHA512ROUND(b, c, d, e, f, g, h, a, 31, w15); 490 491 w0 = SIGMA1(w14) + w9 + SIGMA0(w1) + w0; 492 SHA512ROUND(a, b, c, d, e, f, g, h, 32, w0); 493 w1 = SIGMA1(w15) + w10 + SIGMA0(w2) + w1; 494 SHA512ROUND(h, a, b, c, d, e, f, g, 33, w1); 495 w2 = SIGMA1(w0) + w11 + SIGMA0(w3) + w2; 496 SHA512ROUND(g, h, a, b, c, d, e, f, 34, w2); 497 w3 = SIGMA1(w1) + w12 + SIGMA0(w4) + w3; 498 SHA512ROUND(f, g, h, a, b, c, d, e, 35, w3); 499 w4 = SIGMA1(w2) + w13 + SIGMA0(w5) + w4; 500 SHA512ROUND(e, f, g, h, a, b, c, d, 36, w4); 501 w5 = SIGMA1(w3) + w14 + SIGMA0(w6) + w5; 502 SHA512ROUND(d, e, f, g, h, a, b, c, 37, w5); 503 w6 = SIGMA1(w4) + w15 + SIGMA0(w7) + w6; 504 SHA512ROUND(c, d, e, f, g, h, a, b, 38, w6); 505 w7 = SIGMA1(w5) + w0 + SIGMA0(w8) + w7; 506 SHA512ROUND(b, c, d, e, f, g, h, a, 39, w7); 507 w8 = SIGMA1(w6) + w1 + SIGMA0(w9) + w8; 508 SHA512ROUND(a, b, c, d, e, f, g, h, 40, w8); 509 w9 = SIGMA1(w7) + w2 + SIGMA0(w10) + w9; 510 SHA512ROUND(h, a, b, c, d, e, f, g, 41, w9); 511 w10 = SIGMA1(w8) + w3 + SIGMA0(w11) + w10; 512 SHA512ROUND(g, h, a, b, c, d, e, f, 42, w10); 513 w11 = SIGMA1(w9) + w4 + SIGMA0(w12) + w11; 514 SHA512ROUND(f, g, h, a, b, c, d, e, 43, w11); 515 w12 = SIGMA1(w10) + w5 + SIGMA0(w13) + w12; 516 SHA512ROUND(e, f, g, h, a, b, c, d, 44, w12); 517 w13 = SIGMA1(w11) + w6 + SIGMA0(w14) + w13; 518 SHA512ROUND(d, e, f, g, h, a, b, c, 45, w13); 519 w14 = SIGMA1(w12) + w7 + SIGMA0(w15) + w14; 520 SHA512ROUND(c, d, e, f, g, h, a, b, 46, w14); 521 w15 = SIGMA1(w13) + w8 + SIGMA0(w0) + w15; 522 SHA512ROUND(b, c, d, e, f, g, h, a, 47, w15); 523 524 w0 = SIGMA1(w14) + w9 + SIGMA0(w1) + w0; 525 SHA512ROUND(a, b, c, d, e, f, g, h, 48, w0); 526 w1 = SIGMA1(w15) + w10 + SIGMA0(w2) + w1; 527 SHA512ROUND(h, a, b, c, d, e, f, g, 49, w1); 528 w2 = SIGMA1(w0) + w11 + SIGMA0(w3) + w2; 529 SHA512ROUND(g, h, a, b, c, d, e, f, 50, w2); 530 w3 = SIGMA1(w1) + w12 + SIGMA0(w4) + w3; 531 SHA512ROUND(f, g, h, a, b, c, d, e, 51, w3); 532 w4 = SIGMA1(w2) + w13 + SIGMA0(w5) + w4; 533 SHA512ROUND(e, f, g, h, a, b, c, d, 52, w4); 534 w5 = SIGMA1(w3) + w14 + SIGMA0(w6) + w5; 535 SHA512ROUND(d, e, f, g, h, a, b, c, 53, w5); 536 w6 = SIGMA1(w4) + w15 + SIGMA0(w7) + w6; 537 SHA512ROUND(c, d, e, f, g, h, a, b, 54, w6); 538 w7 = SIGMA1(w5) + w0 + SIGMA0(w8) + w7; 539 SHA512ROUND(b, c, d, e, f, g, h, a, 55, w7); 540 w8 = SIGMA1(w6) + w1 + SIGMA0(w9) + w8; 541 SHA512ROUND(a, b, c, d, e, f, g, h, 56, w8); 542 w9 = SIGMA1(w7) + w2 + SIGMA0(w10) + w9; 543 SHA512ROUND(h, a, b, c, d, e, f, g, 57, w9); 544 w10 = SIGMA1(w8) + w3 + SIGMA0(w11) + w10; 545 SHA512ROUND(g, h, a, b, c, d, e, f, 58, w10); 546 w11 = SIGMA1(w9) + w4 + SIGMA0(w12) + w11; 547 SHA512ROUND(f, g, h, a, b, c, d, e, 59, w11); 548 w12 = SIGMA1(w10) + w5 + SIGMA0(w13) + w12; 549 SHA512ROUND(e, f, g, h, a, b, c, d, 60, w12); 550 w13 = SIGMA1(w11) + w6 + SIGMA0(w14) + w13; 551 SHA512ROUND(d, e, f, g, h, a, b, c, 61, w13); 552 w14 = SIGMA1(w12) + w7 + SIGMA0(w15) + w14; 553 SHA512ROUND(c, d, e, f, g, h, a, b, 62, w14); 554 w15 = SIGMA1(w13) + w8 + SIGMA0(w0) + w15; 555 SHA512ROUND(b, c, d, e, f, g, h, a, 63, w15); 556 557 w0 = SIGMA1(w14) + w9 + SIGMA0(w1) + w0; 558 SHA512ROUND(a, b, c, d, e, f, g, h, 64, w0); 559 w1 = SIGMA1(w15) + w10 + SIGMA0(w2) + w1; 560 SHA512ROUND(h, a, b, c, d, e, f, g, 65, w1); 561 w2 = SIGMA1(w0) + w11 + SIGMA0(w3) + w2; 562 SHA512ROUND(g, h, a, b, c, d, e, f, 66, w2); 563 w3 = SIGMA1(w1) + w12 + SIGMA0(w4) + w3; 564 SHA512ROUND(f, g, h, a, b, c, d, e, 67, w3); 565 w4 = SIGMA1(w2) + w13 + SIGMA0(w5) + w4; 566 SHA512ROUND(e, f, g, h, a, b, c, d, 68, w4); 567 w5 = SIGMA1(w3) + w14 + SIGMA0(w6) + w5; 568 SHA512ROUND(d, e, f, g, h, a, b, c, 69, w5); 569 w6 = SIGMA1(w4) + w15 + SIGMA0(w7) + w6; 570 SHA512ROUND(c, d, e, f, g, h, a, b, 70, w6); 571 w7 = SIGMA1(w5) + w0 + SIGMA0(w8) + w7; 572 SHA512ROUND(b, c, d, e, f, g, h, a, 71, w7); 573 w8 = SIGMA1(w6) + w1 + SIGMA0(w9) + w8; 574 SHA512ROUND(a, b, c, d, e, f, g, h, 72, w8); 575 w9 = SIGMA1(w7) + w2 + SIGMA0(w10) + w9; 576 SHA512ROUND(h, a, b, c, d, e, f, g, 73, w9); 577 w10 = SIGMA1(w8) + w3 + SIGMA0(w11) + w10; 578 SHA512ROUND(g, h, a, b, c, d, e, f, 74, w10); 579 w11 = SIGMA1(w9) + w4 + SIGMA0(w12) + w11; 580 SHA512ROUND(f, g, h, a, b, c, d, e, 75, w11); 581 w12 = SIGMA1(w10) + w5 + SIGMA0(w13) + w12; 582 SHA512ROUND(e, f, g, h, a, b, c, d, 76, w12); 583 w13 = SIGMA1(w11) + w6 + SIGMA0(w14) + w13; 584 SHA512ROUND(d, e, f, g, h, a, b, c, 77, w13); 585 w14 = SIGMA1(w12) + w7 + SIGMA0(w15) + w14; 586 SHA512ROUND(c, d, e, f, g, h, a, b, 78, w14); 587 w15 = SIGMA1(w13) + w8 + SIGMA0(w0) + w15; 588 SHA512ROUND(b, c, d, e, f, g, h, a, 79, w15); 589 590 ctx->state.s64[0] += a; 591 ctx->state.s64[1] += b; 592 ctx->state.s64[2] += c; 593 ctx->state.s64[3] += d; 594 ctx->state.s64[4] += e; 595 ctx->state.s64[5] += f; 596 ctx->state.s64[6] += g; 597 ctx->state.s64[7] += h; 598 599 } 600 601 602 /* 603 * Encode() 604 * 605 * purpose: to convert a list of numbers from little endian to big endian 606 * input: uint8_t * : place to store the converted big endian numbers 607 * uint32_t * : place to get numbers to convert from 608 * size_t : the length of the input in bytes 609 * output: void 610 */ 611 612 static void 613 Encode(uint8_t *_RESTRICT_KYWD output, uint32_t *_RESTRICT_KYWD input, 614 size_t len) 615 { 616 size_t i, j; 617 618 #if defined(__sparc) 619 if (IS_P2ALIGNED(output, sizeof (uint32_t))) { 620 for (i = 0, j = 0; j < len; i++, j += 4) { 621 /* LINTED: pointer alignment */ 622 *((uint32_t *)(output + j)) = input[i]; 623 } 624 } else { 625 #endif /* little endian -- will work on big endian, but slowly */ 626 for (i = 0, j = 0; j < len; i++, j += 4) { 627 output[j] = (input[i] >> 24) & 0xff; 628 output[j + 1] = (input[i] >> 16) & 0xff; 629 output[j + 2] = (input[i] >> 8) & 0xff; 630 output[j + 3] = input[i] & 0xff; 631 } 632 #if defined(__sparc) 633 } 634 #endif 635 } 636 637 static void 638 Encode64(uint8_t *_RESTRICT_KYWD output, uint64_t *_RESTRICT_KYWD input, 639 size_t len) 640 { 641 size_t i, j; 642 643 #if defined(__sparc) 644 if (IS_P2ALIGNED(output, sizeof (uint64_t))) { 645 for (i = 0, j = 0; j < len; i++, j += 8) { 646 /* LINTED: pointer alignment */ 647 *((uint64_t *)(output + j)) = input[i]; 648 } 649 } else { 650 #endif /* little endian -- will work on big endian, but slowly */ 651 for (i = 0, j = 0; j < len; i++, j += 8) { 652 653 output[j] = (input[i] >> 56) & 0xff; 654 output[j + 1] = (input[i] >> 48) & 0xff; 655 output[j + 2] = (input[i] >> 40) & 0xff; 656 output[j + 3] = (input[i] >> 32) & 0xff; 657 output[j + 4] = (input[i] >> 24) & 0xff; 658 output[j + 5] = (input[i] >> 16) & 0xff; 659 output[j + 6] = (input[i] >> 8) & 0xff; 660 output[j + 7] = input[i] & 0xff; 661 } 662 #if defined(__sparc) 663 } 664 #endif 665 } 666 667 668 void 669 SHA2Init(uint64_t mech, SHA2_CTX *ctx) 670 { 671 672 switch (mech) { 673 case SHA256_MECH_INFO_TYPE: 674 case SHA256_HMAC_MECH_INFO_TYPE: 675 case SHA256_HMAC_GEN_MECH_INFO_TYPE: 676 ctx->state.s32[0] = 0x6a09e667U; 677 ctx->state.s32[1] = 0xbb67ae85U; 678 ctx->state.s32[2] = 0x3c6ef372U; 679 ctx->state.s32[3] = 0xa54ff53aU; 680 ctx->state.s32[4] = 0x510e527fU; 681 ctx->state.s32[5] = 0x9b05688cU; 682 ctx->state.s32[6] = 0x1f83d9abU; 683 ctx->state.s32[7] = 0x5be0cd19U; 684 break; 685 case SHA384_MECH_INFO_TYPE: 686 case SHA384_HMAC_MECH_INFO_TYPE: 687 case SHA384_HMAC_GEN_MECH_INFO_TYPE: 688 ctx->state.s64[0] = 0xcbbb9d5dc1059ed8ULL; 689 ctx->state.s64[1] = 0x629a292a367cd507ULL; 690 ctx->state.s64[2] = 0x9159015a3070dd17ULL; 691 ctx->state.s64[3] = 0x152fecd8f70e5939ULL; 692 ctx->state.s64[4] = 0x67332667ffc00b31ULL; 693 ctx->state.s64[5] = 0x8eb44a8768581511ULL; 694 ctx->state.s64[6] = 0xdb0c2e0d64f98fa7ULL; 695 ctx->state.s64[7] = 0x47b5481dbefa4fa4ULL; 696 break; 697 case SHA512_MECH_INFO_TYPE: 698 case SHA512_HMAC_MECH_INFO_TYPE: 699 case SHA512_HMAC_GEN_MECH_INFO_TYPE: 700 ctx->state.s64[0] = 0x6a09e667f3bcc908ULL; 701 ctx->state.s64[1] = 0xbb67ae8584caa73bULL; 702 ctx->state.s64[2] = 0x3c6ef372fe94f82bULL; 703 ctx->state.s64[3] = 0xa54ff53a5f1d36f1ULL; 704 ctx->state.s64[4] = 0x510e527fade682d1ULL; 705 ctx->state.s64[5] = 0x9b05688c2b3e6c1fULL; 706 ctx->state.s64[6] = 0x1f83d9abfb41bd6bULL; 707 ctx->state.s64[7] = 0x5be0cd19137e2179ULL; 708 break; 709 #ifdef _KERNEL 710 default: 711 cmn_err(CE_PANIC, "sha2_init: " 712 "failed to find a supported algorithm: 0x%x", 713 (uint32_t)mech); 714 715 #endif /* _KERNEL */ 716 } 717 718 ctx->algotype = mech; 719 ctx->count.c64[0] = ctx->count.c64[1] = 0; 720 } 721 722 #ifndef _KERNEL 723 724 #pragma inline(SHA256Init, SHA384Init, SHA512Init) 725 void 726 SHA256Init(SHA256_CTX *ctx) 727 { 728 SHA2Init(SHA256, ctx); 729 } 730 731 void 732 SHA384Init(SHA384_CTX *ctx) 733 { 734 SHA2Init(SHA384, ctx); 735 } 736 737 void 738 SHA512Init(SHA512_CTX *ctx) 739 { 740 SHA2Init(SHA512, ctx); 741 } 742 743 #endif /* _KERNEL */ 744 745 /* 746 * SHA2Update() 747 * 748 * purpose: continues an sha2 digest operation, using the message block 749 * to update the context. 750 * input: SHA2_CTX * : the context to update 751 * void * : the message block 752 * size_t : the length of the message block in bytes 753 * output: void 754 */ 755 756 void 757 SHA2Update(SHA2_CTX *ctx, const void *inptr, size_t input_len) 758 { 759 uint32_t i, buf_index, buf_len, buf_limit; 760 const uint8_t *input = inptr; 761 762 /* check for noop */ 763 if (input_len == 0) 764 return; 765 766 if (ctx->algotype <= SHA256_HMAC_GEN_MECH_INFO_TYPE) { 767 buf_limit = 64; 768 769 /* compute number of bytes mod 64 */ 770 buf_index = (ctx->count.c32[1] >> 3) & 0x3F; 771 772 /* update number of bits */ 773 if ((ctx->count.c32[1] += (input_len << 3)) < (input_len << 3)) 774 ctx->count.c32[0]++; 775 776 ctx->count.c32[0] += (input_len >> 29); 777 778 } else { 779 buf_limit = 128; 780 781 /* compute number of bytes mod 128 */ 782 buf_index = (ctx->count.c64[1] >> 3) & 0x7F; 783 784 /* update number of bits */ 785 if ((ctx->count.c64[1] += (input_len << 3)) < (input_len << 3)) 786 ctx->count.c64[0]++; 787 788 ctx->count.c64[0] += (input_len >> 29); 789 } 790 791 buf_len = buf_limit - buf_index; 792 793 /* transform as many times as possible */ 794 i = 0; 795 if (input_len >= buf_len) { 796 797 /* 798 * general optimization: 799 * 800 * only do initial bcopy() and SHA2Transform() if 801 * buf_index != 0. if buf_index == 0, we're just 802 * wasting our time doing the bcopy() since there 803 * wasn't any data left over from a previous call to 804 * SHA2Update(). 805 */ 806 if (buf_index) { 807 bcopy(input, &ctx->buf_un.buf8[buf_index], buf_len); 808 if (ctx->algotype <= SHA256_HMAC_GEN_MECH_INFO_TYPE) 809 SHA256Transform(ctx, ctx->buf_un.buf8); 810 else 811 SHA512Transform(ctx, ctx->buf_un.buf8); 812 813 i = buf_len; 814 } 815 816 817 for (; i + buf_limit - 1 < input_len; i += buf_limit) { 818 if (ctx->algotype <= SHA256_HMAC_GEN_MECH_INFO_TYPE) 819 SHA256Transform(ctx, &input[i]); 820 else 821 SHA512Transform(ctx, &input[i]); 822 } 823 824 /* 825 * general optimization: 826 * 827 * if i and input_len are the same, return now instead 828 * of calling bcopy(), since the bcopy() in this case 829 * will be an expensive nop. 830 */ 831 832 if (input_len == i) 833 return; 834 835 buf_index = 0; 836 } 837 838 /* buffer remaining input */ 839 bcopy(&input[i], &ctx->buf_un.buf8[buf_index], input_len - i); 840 } 841 842 843 /* 844 * SHA2Final() 845 * 846 * purpose: ends an sha2 digest operation, finalizing the message digest and 847 * zeroing the context. 848 * input: uchar_t * : a buffer to store the digest in 849 * : The function actually uses void* because many 850 * : callers pass things other than uchar_t here. 851 * SHA2_CTX * : the context to finalize, save, and zero 852 * output: void 853 */ 854 855 void 856 SHA2Final(void *digest, SHA2_CTX *ctx) 857 { 858 uint8_t bitcount_be[sizeof (ctx->count.c32)]; 859 uint8_t bitcount_be64[sizeof (ctx->count.c64)]; 860 uint32_t index; 861 862 863 if (ctx->algotype <= SHA256_HMAC_GEN_MECH_INFO_TYPE) { 864 index = (ctx->count.c32[1] >> 3) & 0x3f; 865 Encode(bitcount_be, ctx->count.c32, sizeof (bitcount_be)); 866 SHA2Update(ctx, PADDING, ((index < 56) ? 56 : 120) - index); 867 SHA2Update(ctx, bitcount_be, sizeof (bitcount_be)); 868 Encode(digest, ctx->state.s32, sizeof (ctx->state.s32)); 869 870 } else { 871 index = (ctx->count.c64[1] >> 3) & 0x7f; 872 Encode64(bitcount_be64, ctx->count.c64, 873 sizeof (bitcount_be64)); 874 SHA2Update(ctx, PADDING, ((index < 112) ? 112 : 240) - index); 875 SHA2Update(ctx, bitcount_be64, sizeof (bitcount_be64)); 876 if (ctx->algotype <= SHA384_HMAC_GEN_MECH_INFO_TYPE) { 877 ctx->state.s64[6] = ctx->state.s64[7] = 0; 878 Encode64(digest, ctx->state.s64, 879 sizeof (uint64_t) * 6); 880 } else 881 Encode64(digest, ctx->state.s64, 882 sizeof (ctx->state.s64)); 883 } 884 885 /* zeroize sensitive information */ 886 bzero(ctx, sizeof (*ctx)); 887 } 888