1 /* 2 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 3 * Use is subject to license terms. 4 */ 5 6 #pragma ident "%Z%%M% %I% %E% SMI" 7 8 /* 9 * The basic framework for this code came from the reference 10 * implementation for MD5. That implementation is Copyright (C) 11 * 1991-2, RSA Data Security, Inc. Created 1991. All rights reserved. 12 * 13 * License to copy and use this software is granted provided that it 14 * is identified as the "RSA Data Security, Inc. MD5 Message-Digest 15 * Algorithm" in all material mentioning or referencing this software 16 * or this function. 17 * 18 * License is also granted to make and use derivative works provided 19 * that such works are identified as "derived from the RSA Data 20 * Security, Inc. MD5 Message-Digest Algorithm" in all material 21 * mentioning or referencing the derived work. 22 * 23 * RSA Data Security, Inc. makes no representations concerning either 24 * the merchantability of this software or the suitability of this 25 * software for any particular purpose. It is provided "as is" 26 * without express or implied warranty of any kind. 27 * 28 * These notices must be retained in any copies of any part of this 29 * documentation and/or software. 30 * 31 * NOTE: Cleaned-up and optimized, version of SHA1, based on the FIPS 180-1 32 * standard, available at http://www.itl.nist.gov/div897/pubs/fip180-1.htm 33 * Not as fast as one would like -- further optimizations are encouraged 34 * and appreciated. 35 */ 36 37 #include <sys/types.h> 38 #include <sys/param.h> 39 #include <sys/systm.h> 40 #include <sys/sysmacros.h> 41 #include <sys/sha1.h> 42 #include <sys/sha1_consts.h> 43 44 #ifndef _KERNEL 45 #include <strings.h> 46 #include <stdlib.h> 47 #include <errno.h> 48 #include <sys/systeminfo.h> 49 #endif /* !_KERNEL */ 50 51 static void Encode(uint8_t *, const uint32_t *, size_t); 52 53 #if defined(__sparc) 54 55 #define SHA1_TRANSFORM(ctx, in) \ 56 SHA1Transform((ctx)->state[0], (ctx)->state[1], (ctx)->state[2], \ 57 (ctx)->state[3], (ctx)->state[4], (ctx), (in)) 58 59 static void SHA1Transform(uint32_t, uint32_t, uint32_t, uint32_t, uint32_t, 60 SHA1_CTX *, const uint8_t *); 61 62 #elif defined(__amd64) 63 64 #define SHA1_TRANSFORM(ctx, in) sha1_block_data_order((ctx), (in), 1) 65 #define SHA1_TRANSFORM_BLOCKS(ctx, in, num) sha1_block_data_order((ctx), \ 66 (in), (num)) 67 68 void sha1_block_data_order(SHA1_CTX *ctx, const void *inpp, size_t num_blocks); 69 70 #else 71 72 #define SHA1_TRANSFORM(ctx, in) SHA1Transform((ctx), (in)) 73 74 static void SHA1Transform(SHA1_CTX *, const uint8_t *); 75 76 #endif 77 78 79 static uint8_t PADDING[64] = { 0x80, /* all zeros */ }; 80 81 /* 82 * F, G, and H are the basic SHA1 functions. 83 */ 84 #define F(b, c, d) (((b) & (c)) | ((~b) & (d))) 85 #define G(b, c, d) ((b) ^ (c) ^ (d)) 86 #define H(b, c, d) (((b) & (c)) | (((b)|(c)) & (d))) 87 88 /* 89 * ROTATE_LEFT rotates x left n bits. 90 */ 91 92 #if defined(__GNUC__) && defined(_LP64) 93 static __inline__ uint64_t 94 ROTATE_LEFT(uint64_t value, uint32_t n) 95 { 96 uint32_t t32; 97 98 t32 = (uint32_t)value; 99 return ((t32 << n) | (t32 >> (32 - n))); 100 } 101 102 #else 103 104 #define ROTATE_LEFT(x, n) \ 105 (((x) << (n)) | ((x) >> ((sizeof (x) * NBBY)-(n)))) 106 107 #endif 108 109 #if defined(__GNUC__) && (defined(__i386) || defined(__amd64)) 110 111 #define HAVE_BSWAP 112 113 extern __inline__ uint32_t bswap(uint32_t value) 114 { 115 __asm__("bswap %0" : "+r" (value)); 116 return (value); 117 } 118 119 #endif 120 121 /* 122 * SHA1Init() 123 * 124 * purpose: initializes the sha1 context and begins and sha1 digest operation 125 * input: SHA1_CTX * : the context to initializes. 126 * output: void 127 */ 128 129 void 130 SHA1Init(SHA1_CTX *ctx) 131 { 132 ctx->count[0] = ctx->count[1] = 0; 133 134 /* 135 * load magic initialization constants. Tell lint 136 * that these constants are unsigned by using U. 137 */ 138 139 ctx->state[0] = 0x67452301U; 140 ctx->state[1] = 0xefcdab89U; 141 ctx->state[2] = 0x98badcfeU; 142 ctx->state[3] = 0x10325476U; 143 ctx->state[4] = 0xc3d2e1f0U; 144 } 145 146 #ifdef VIS_SHA1 147 #ifdef _KERNEL 148 149 #include <sys/regset.h> 150 #include <sys/vis.h> 151 #include <sys/fpu/fpusystm.h> 152 153 /* the alignment for block stores to save fp registers */ 154 #define VIS_ALIGN (64) 155 156 extern int sha1_savefp(kfpu_t *, int); 157 extern void sha1_restorefp(kfpu_t *); 158 159 uint32_t vis_sha1_svfp_threshold = 128; 160 161 #endif /* _KERNEL */ 162 163 /* 164 * VIS SHA-1 consts. 165 */ 166 static uint64_t VIS[] = { 167 0x8000000080000000ULL, 168 0x0002000200020002ULL, 169 0x5a8279996ed9eba1ULL, 170 0x8f1bbcdcca62c1d6ULL, 171 0x012389ab456789abULL}; 172 173 extern void SHA1TransformVIS(uint64_t *, uint32_t *, uint32_t *, uint64_t *); 174 175 176 /* 177 * SHA1Update() 178 * 179 * purpose: continues an sha1 digest operation, using the message block 180 * to update the context. 181 * input: SHA1_CTX * : the context to update 182 * void * : the message block 183 * size_t : the length of the message block in bytes 184 * output: void 185 */ 186 187 void 188 SHA1Update(SHA1_CTX *ctx, const void *inptr, size_t input_len) 189 { 190 uint32_t i, buf_index, buf_len; 191 uint64_t X0[40], input64[8]; 192 const uint8_t *input = inptr; 193 #ifdef _KERNEL 194 int usevis = 0; 195 #else 196 int usevis = 1; 197 #endif /* _KERNEL */ 198 199 /* check for noop */ 200 if (input_len == 0) 201 return; 202 203 /* compute number of bytes mod 64 */ 204 buf_index = (ctx->count[1] >> 3) & 0x3F; 205 206 /* update number of bits */ 207 if ((ctx->count[1] += (input_len << 3)) < (input_len << 3)) 208 ctx->count[0]++; 209 210 ctx->count[0] += (input_len >> 29); 211 212 buf_len = 64 - buf_index; 213 214 /* transform as many times as possible */ 215 i = 0; 216 if (input_len >= buf_len) { 217 #ifdef _KERNEL 218 kfpu_t *fpu; 219 if (fpu_exists) { 220 uint8_t fpua[sizeof (kfpu_t) + GSR_SIZE + VIS_ALIGN]; 221 uint32_t len = (input_len + buf_index) & ~0x3f; 222 int svfp_ok; 223 224 fpu = (kfpu_t *)P2ROUNDUP((uintptr_t)fpua, 64); 225 svfp_ok = ((len >= vis_sha1_svfp_threshold) ? 1 : 0); 226 usevis = fpu_exists && sha1_savefp(fpu, svfp_ok); 227 } else { 228 usevis = 0; 229 } 230 #endif /* _KERNEL */ 231 232 /* 233 * general optimization: 234 * 235 * only do initial bcopy() and SHA1Transform() if 236 * buf_index != 0. if buf_index == 0, we're just 237 * wasting our time doing the bcopy() since there 238 * wasn't any data left over from a previous call to 239 * SHA1Update(). 240 */ 241 242 if (buf_index) { 243 bcopy(input, &ctx->buf_un.buf8[buf_index], buf_len); 244 if (usevis) { 245 SHA1TransformVIS(X0, 246 ctx->buf_un.buf32, 247 &ctx->state[0], VIS); 248 } else { 249 SHA1_TRANSFORM(ctx, ctx->buf_un.buf8); 250 } 251 i = buf_len; 252 } 253 254 /* 255 * VIS SHA-1: uses the VIS 1.0 instructions to accelerate 256 * SHA-1 processing. This is achieved by "offloading" the 257 * computation of the message schedule (MS) to the VIS units. 258 * This allows the VIS computation of the message schedule 259 * to be performed in parallel with the standard integer 260 * processing of the remainder of the SHA-1 computation. 261 * performance by up to around 1.37X, compared to an optimized 262 * integer-only implementation. 263 * 264 * The VIS implementation of SHA1Transform has a different API 265 * to the standard integer version: 266 * 267 * void SHA1TransformVIS( 268 * uint64_t *, // Pointer to MS for ith block 269 * uint32_t *, // Pointer to ith block of message data 270 * uint32_t *, // Pointer to SHA state i.e ctx->state 271 * uint64_t *, // Pointer to various VIS constants 272 * ) 273 * 274 * Note: the message data must by 4-byte aligned. 275 * 276 * Function requires VIS 1.0 support. 277 * 278 * Handling is provided to deal with arbitrary byte alingment 279 * of the input data but the performance gains are reduced 280 * for alignments other than 4-bytes. 281 */ 282 if (usevis) { 283 if (!IS_P2ALIGNED(&input[i], sizeof (uint32_t))) { 284 /* 285 * Main processing loop - input misaligned 286 */ 287 for (; i + 63 < input_len; i += 64) { 288 bcopy(&input[i], input64, 64); 289 SHA1TransformVIS(X0, 290 (uint32_t *)input64, 291 &ctx->state[0], VIS); 292 } 293 } else { 294 /* 295 * Main processing loop - input 8-byte aligned 296 */ 297 for (; i + 63 < input_len; i += 64) { 298 SHA1TransformVIS(X0, 299 /* LINTED E_BAD_PTR_CAST_ALIGN */ 300 (uint32_t *)&input[i], 301 &ctx->state[0], VIS); 302 } 303 304 } 305 #ifdef _KERNEL 306 sha1_restorefp(fpu); 307 #endif /* _KERNEL */ 308 } else { 309 for (; i + 63 < input_len; i += 64) { 310 SHA1_TRANSFORM(ctx, &input[i]); 311 } 312 } 313 314 /* 315 * general optimization: 316 * 317 * if i and input_len are the same, return now instead 318 * of calling bcopy(), since the bcopy() in this case 319 * will be an expensive nop. 320 */ 321 322 if (input_len == i) 323 return; 324 325 buf_index = 0; 326 } 327 328 /* buffer remaining input */ 329 bcopy(&input[i], &ctx->buf_un.buf8[buf_index], input_len - i); 330 } 331 332 #else /* VIS_SHA1 */ 333 334 void 335 SHA1Update(SHA1_CTX *ctx, const void *inptr, size_t input_len) 336 { 337 uint32_t i, buf_index, buf_len; 338 const uint8_t *input = inptr; 339 #if defined(__amd64) 340 uint32_t block_count; 341 #endif /* __amd64 */ 342 343 /* check for noop */ 344 if (input_len == 0) 345 return; 346 347 /* compute number of bytes mod 64 */ 348 buf_index = (ctx->count[1] >> 3) & 0x3F; 349 350 /* update number of bits */ 351 if ((ctx->count[1] += (input_len << 3)) < (input_len << 3)) 352 ctx->count[0]++; 353 354 ctx->count[0] += (input_len >> 29); 355 356 buf_len = 64 - buf_index; 357 358 /* transform as many times as possible */ 359 i = 0; 360 if (input_len >= buf_len) { 361 362 /* 363 * general optimization: 364 * 365 * only do initial bcopy() and SHA1Transform() if 366 * buf_index != 0. if buf_index == 0, we're just 367 * wasting our time doing the bcopy() since there 368 * wasn't any data left over from a previous call to 369 * SHA1Update(). 370 */ 371 372 if (buf_index) { 373 bcopy(input, &ctx->buf_un.buf8[buf_index], buf_len); 374 SHA1_TRANSFORM(ctx, ctx->buf_un.buf8); 375 i = buf_len; 376 } 377 378 #if !defined(__amd64) 379 for (; i + 63 < input_len; i += 64) 380 SHA1_TRANSFORM(ctx, &input[i]); 381 #else 382 block_count = (input_len - i) >> 6; 383 if (block_count > 0) { 384 SHA1_TRANSFORM_BLOCKS(ctx, &input[i], block_count); 385 i += block_count << 6; 386 } 387 #endif /* !__amd64 */ 388 389 /* 390 * general optimization: 391 * 392 * if i and input_len are the same, return now instead 393 * of calling bcopy(), since the bcopy() in this case 394 * will be an expensive nop. 395 */ 396 397 if (input_len == i) 398 return; 399 400 buf_index = 0; 401 } 402 403 /* buffer remaining input */ 404 bcopy(&input[i], &ctx->buf_un.buf8[buf_index], input_len - i); 405 } 406 407 #endif /* VIS_SHA1 */ 408 409 /* 410 * SHA1Final() 411 * 412 * purpose: ends an sha1 digest operation, finalizing the message digest and 413 * zeroing the context. 414 * input: uchar_t * : A buffer to store the digest. 415 * : The function actually uses void* because many 416 * : callers pass things other than uchar_t here. 417 * SHA1_CTX * : the context to finalize, save, and zero 418 * output: void 419 */ 420 421 void 422 SHA1Final(void *digest, SHA1_CTX *ctx) 423 { 424 uint8_t bitcount_be[sizeof (ctx->count)]; 425 uint32_t index = (ctx->count[1] >> 3) & 0x3f; 426 427 /* store bit count, big endian */ 428 Encode(bitcount_be, ctx->count, sizeof (bitcount_be)); 429 430 /* pad out to 56 mod 64 */ 431 SHA1Update(ctx, PADDING, ((index < 56) ? 56 : 120) - index); 432 433 /* append length (before padding) */ 434 SHA1Update(ctx, bitcount_be, sizeof (bitcount_be)); 435 436 /* store state in digest */ 437 Encode(digest, ctx->state, sizeof (ctx->state)); 438 439 /* zeroize sensitive information */ 440 bzero(ctx, sizeof (*ctx)); 441 } 442 443 444 #if !defined(__amd64) 445 446 typedef uint32_t sha1word; 447 448 /* 449 * sparc optimization: 450 * 451 * on the sparc, we can load big endian 32-bit data easily. note that 452 * special care must be taken to ensure the address is 32-bit aligned. 453 * in the interest of speed, we don't check to make sure, since 454 * careful programming can guarantee this for us. 455 */ 456 457 #if defined(_BIG_ENDIAN) 458 459 #define LOAD_BIG_32(addr) (*(uint32_t *)(addr)) 460 461 #else /* !defined(_BIG_ENDIAN) */ 462 463 #if defined(HAVE_BSWAP) 464 465 #define LOAD_BIG_32(addr) bswap(*((uint32_t *)(addr))) 466 467 #else /* !defined(HAVE_BSWAP) */ 468 469 /* little endian -- will work on big endian, but slowly */ 470 #define LOAD_BIG_32(addr) \ 471 (((addr)[0] << 24) | ((addr)[1] << 16) | ((addr)[2] << 8) | (addr)[3]) 472 473 #endif /* !defined(HAVE_BSWAP) */ 474 475 #endif /* !defined(_BIG_ENDIAN) */ 476 477 /* 478 * SHA1Transform() 479 */ 480 #if defined(W_ARRAY) 481 #define W(n) w[n] 482 #else /* !defined(W_ARRAY) */ 483 #define W(n) w_ ## n 484 #endif /* !defined(W_ARRAY) */ 485 486 487 #if defined(__sparc) 488 489 /* 490 * sparc register window optimization: 491 * 492 * `a', `b', `c', `d', and `e' are passed into SHA1Transform 493 * explicitly since it increases the number of registers available to 494 * the compiler. under this scheme, these variables can be held in 495 * %i0 - %i4, which leaves more local and out registers available. 496 * 497 * purpose: sha1 transformation -- updates the digest based on `block' 498 * input: uint32_t : bytes 1 - 4 of the digest 499 * uint32_t : bytes 5 - 8 of the digest 500 * uint32_t : bytes 9 - 12 of the digest 501 * uint32_t : bytes 12 - 16 of the digest 502 * uint32_t : bytes 16 - 20 of the digest 503 * SHA1_CTX * : the context to update 504 * uint8_t [64]: the block to use to update the digest 505 * output: void 506 */ 507 508 void 509 SHA1Transform(uint32_t a, uint32_t b, uint32_t c, uint32_t d, uint32_t e, 510 SHA1_CTX *ctx, const uint8_t blk[64]) 511 { 512 /* 513 * sparc optimization: 514 * 515 * while it is somewhat counter-intuitive, on sparc, it is 516 * more efficient to place all the constants used in this 517 * function in an array and load the values out of the array 518 * than to manually load the constants. this is because 519 * setting a register to a 32-bit value takes two ops in most 520 * cases: a `sethi' and an `or', but loading a 32-bit value 521 * from memory only takes one `ld' (or `lduw' on v9). while 522 * this increases memory usage, the compiler can find enough 523 * other things to do while waiting to keep the pipeline does 524 * not stall. additionally, it is likely that many of these 525 * constants are cached so that later accesses do not even go 526 * out to the bus. 527 * 528 * this array is declared `static' to keep the compiler from 529 * having to bcopy() this array onto the stack frame of 530 * SHA1Transform() each time it is called -- which is 531 * unacceptably expensive. 532 * 533 * the `const' is to ensure that callers are good citizens and 534 * do not try to munge the array. since these routines are 535 * going to be called from inside multithreaded kernelland, 536 * this is a good safety check. -- `sha1_consts' will end up in 537 * .rodata. 538 * 539 * unfortunately, loading from an array in this manner hurts 540 * performance under intel. so, there is a macro, 541 * SHA1_CONST(), used in SHA1Transform(), that either expands to 542 * a reference to this array, or to the actual constant, 543 * depending on what platform this code is compiled for. 544 */ 545 546 static const uint32_t sha1_consts[] = { 547 SHA1_CONST_0, SHA1_CONST_1, SHA1_CONST_2, SHA1_CONST_3, 548 }; 549 550 /* 551 * general optimization: 552 * 553 * use individual integers instead of using an array. this is a 554 * win, although the amount it wins by seems to vary quite a bit. 555 */ 556 557 uint32_t w_0, w_1, w_2, w_3, w_4, w_5, w_6, w_7; 558 uint32_t w_8, w_9, w_10, w_11, w_12, w_13, w_14, w_15; 559 560 /* 561 * sparc optimization: 562 * 563 * if `block' is already aligned on a 4-byte boundary, use 564 * LOAD_BIG_32() directly. otherwise, bcopy() into a 565 * buffer that *is* aligned on a 4-byte boundary and then do 566 * the LOAD_BIG_32() on that buffer. benchmarks have shown 567 * that using the bcopy() is better than loading the bytes 568 * individually and doing the endian-swap by hand. 569 * 570 * even though it's quite tempting to assign to do: 571 * 572 * blk = bcopy(ctx->buf_un.buf32, blk, sizeof (ctx->buf_un.buf32)); 573 * 574 * and only have one set of LOAD_BIG_32()'s, the compiler 575 * *does not* like that, so please resist the urge. 576 */ 577 578 if ((uintptr_t)blk & 0x3) { /* not 4-byte aligned? */ 579 bcopy(blk, ctx->buf_un.buf32, sizeof (ctx->buf_un.buf32)); 580 w_15 = LOAD_BIG_32(ctx->buf_un.buf32 + 15); 581 w_14 = LOAD_BIG_32(ctx->buf_un.buf32 + 14); 582 w_13 = LOAD_BIG_32(ctx->buf_un.buf32 + 13); 583 w_12 = LOAD_BIG_32(ctx->buf_un.buf32 + 12); 584 w_11 = LOAD_BIG_32(ctx->buf_un.buf32 + 11); 585 w_10 = LOAD_BIG_32(ctx->buf_un.buf32 + 10); 586 w_9 = LOAD_BIG_32(ctx->buf_un.buf32 + 9); 587 w_8 = LOAD_BIG_32(ctx->buf_un.buf32 + 8); 588 w_7 = LOAD_BIG_32(ctx->buf_un.buf32 + 7); 589 w_6 = LOAD_BIG_32(ctx->buf_un.buf32 + 6); 590 w_5 = LOAD_BIG_32(ctx->buf_un.buf32 + 5); 591 w_4 = LOAD_BIG_32(ctx->buf_un.buf32 + 4); 592 w_3 = LOAD_BIG_32(ctx->buf_un.buf32 + 3); 593 w_2 = LOAD_BIG_32(ctx->buf_un.buf32 + 2); 594 w_1 = LOAD_BIG_32(ctx->buf_un.buf32 + 1); 595 w_0 = LOAD_BIG_32(ctx->buf_un.buf32 + 0); 596 } else { 597 /*LINTED*/ 598 w_15 = LOAD_BIG_32(blk + 60); 599 /*LINTED*/ 600 w_14 = LOAD_BIG_32(blk + 56); 601 /*LINTED*/ 602 w_13 = LOAD_BIG_32(blk + 52); 603 /*LINTED*/ 604 w_12 = LOAD_BIG_32(blk + 48); 605 /*LINTED*/ 606 w_11 = LOAD_BIG_32(blk + 44); 607 /*LINTED*/ 608 w_10 = LOAD_BIG_32(blk + 40); 609 /*LINTED*/ 610 w_9 = LOAD_BIG_32(blk + 36); 611 /*LINTED*/ 612 w_8 = LOAD_BIG_32(blk + 32); 613 /*LINTED*/ 614 w_7 = LOAD_BIG_32(blk + 28); 615 /*LINTED*/ 616 w_6 = LOAD_BIG_32(blk + 24); 617 /*LINTED*/ 618 w_5 = LOAD_BIG_32(blk + 20); 619 /*LINTED*/ 620 w_4 = LOAD_BIG_32(blk + 16); 621 /*LINTED*/ 622 w_3 = LOAD_BIG_32(blk + 12); 623 /*LINTED*/ 624 w_2 = LOAD_BIG_32(blk + 8); 625 /*LINTED*/ 626 w_1 = LOAD_BIG_32(blk + 4); 627 /*LINTED*/ 628 w_0 = LOAD_BIG_32(blk + 0); 629 } 630 #else /* !defined(__sparc) */ 631 632 void 633 SHA1Transform(SHA1_CTX *ctx, const uint8_t blk[64]) 634 { 635 sha1word a = ctx->state[0]; 636 sha1word b = ctx->state[1]; 637 sha1word c = ctx->state[2]; 638 sha1word d = ctx->state[3]; 639 sha1word e = ctx->state[4]; 640 641 #if defined(W_ARRAY) 642 sha1word w[16]; 643 #else /* !defined(W_ARRAY) */ 644 sha1word w_0, w_1, w_2, w_3, w_4, w_5, w_6, w_7; 645 sha1word w_8, w_9, w_10, w_11, w_12, w_13, w_14, w_15; 646 #endif /* !defined(W_ARRAY) */ 647 648 W(0) = LOAD_BIG_32(blk + 0); 649 W(1) = LOAD_BIG_32(blk + 4); 650 W(2) = LOAD_BIG_32(blk + 8); 651 W(3) = LOAD_BIG_32(blk + 12); 652 W(4) = LOAD_BIG_32(blk + 16); 653 W(5) = LOAD_BIG_32(blk + 20); 654 W(6) = LOAD_BIG_32(blk + 24); 655 W(7) = LOAD_BIG_32(blk + 28); 656 W(8) = LOAD_BIG_32(blk + 32); 657 W(9) = LOAD_BIG_32(blk + 36); 658 W(10) = LOAD_BIG_32(blk + 40); 659 W(11) = LOAD_BIG_32(blk + 44); 660 W(12) = LOAD_BIG_32(blk + 48); 661 W(13) = LOAD_BIG_32(blk + 52); 662 W(14) = LOAD_BIG_32(blk + 56); 663 W(15) = LOAD_BIG_32(blk + 60); 664 665 #endif /* !defined(__sparc) */ 666 667 /* 668 * general optimization: 669 * 670 * even though this approach is described in the standard as 671 * being slower algorithmically, it is 30-40% faster than the 672 * "faster" version under SPARC, because this version has more 673 * of the constraints specified at compile-time and uses fewer 674 * variables (and therefore has better register utilization) 675 * than its "speedier" brother. (i've tried both, trust me) 676 * 677 * for either method given in the spec, there is an "assignment" 678 * phase where the following takes place: 679 * 680 * tmp = (main_computation); 681 * e = d; d = c; c = rotate_left(b, 30); b = a; a = tmp; 682 * 683 * we can make the algorithm go faster by not doing this work, 684 * but just pretending that `d' is now `e', etc. this works 685 * really well and obviates the need for a temporary variable. 686 * however, we still explicitly perform the rotate action, 687 * since it is cheaper on SPARC to do it once than to have to 688 * do it over and over again. 689 */ 690 691 /* round 1 */ 692 e = ROTATE_LEFT(a, 5) + F(b, c, d) + e + W(0) + SHA1_CONST(0); /* 0 */ 693 b = ROTATE_LEFT(b, 30); 694 695 d = ROTATE_LEFT(e, 5) + F(a, b, c) + d + W(1) + SHA1_CONST(0); /* 1 */ 696 a = ROTATE_LEFT(a, 30); 697 698 c = ROTATE_LEFT(d, 5) + F(e, a, b) + c + W(2) + SHA1_CONST(0); /* 2 */ 699 e = ROTATE_LEFT(e, 30); 700 701 b = ROTATE_LEFT(c, 5) + F(d, e, a) + b + W(3) + SHA1_CONST(0); /* 3 */ 702 d = ROTATE_LEFT(d, 30); 703 704 a = ROTATE_LEFT(b, 5) + F(c, d, e) + a + W(4) + SHA1_CONST(0); /* 4 */ 705 c = ROTATE_LEFT(c, 30); 706 707 e = ROTATE_LEFT(a, 5) + F(b, c, d) + e + W(5) + SHA1_CONST(0); /* 5 */ 708 b = ROTATE_LEFT(b, 30); 709 710 d = ROTATE_LEFT(e, 5) + F(a, b, c) + d + W(6) + SHA1_CONST(0); /* 6 */ 711 a = ROTATE_LEFT(a, 30); 712 713 c = ROTATE_LEFT(d, 5) + F(e, a, b) + c + W(7) + SHA1_CONST(0); /* 7 */ 714 e = ROTATE_LEFT(e, 30); 715 716 b = ROTATE_LEFT(c, 5) + F(d, e, a) + b + W(8) + SHA1_CONST(0); /* 8 */ 717 d = ROTATE_LEFT(d, 30); 718 719 a = ROTATE_LEFT(b, 5) + F(c, d, e) + a + W(9) + SHA1_CONST(0); /* 9 */ 720 c = ROTATE_LEFT(c, 30); 721 722 e = ROTATE_LEFT(a, 5) + F(b, c, d) + e + W(10) + SHA1_CONST(0); /* 10 */ 723 b = ROTATE_LEFT(b, 30); 724 725 d = ROTATE_LEFT(e, 5) + F(a, b, c) + d + W(11) + SHA1_CONST(0); /* 11 */ 726 a = ROTATE_LEFT(a, 30); 727 728 c = ROTATE_LEFT(d, 5) + F(e, a, b) + c + W(12) + SHA1_CONST(0); /* 12 */ 729 e = ROTATE_LEFT(e, 30); 730 731 b = ROTATE_LEFT(c, 5) + F(d, e, a) + b + W(13) + SHA1_CONST(0); /* 13 */ 732 d = ROTATE_LEFT(d, 30); 733 734 a = ROTATE_LEFT(b, 5) + F(c, d, e) + a + W(14) + SHA1_CONST(0); /* 14 */ 735 c = ROTATE_LEFT(c, 30); 736 737 e = ROTATE_LEFT(a, 5) + F(b, c, d) + e + W(15) + SHA1_CONST(0); /* 15 */ 738 b = ROTATE_LEFT(b, 30); 739 740 W(0) = ROTATE_LEFT((W(13) ^ W(8) ^ W(2) ^ W(0)), 1); /* 16 */ 741 d = ROTATE_LEFT(e, 5) + F(a, b, c) + d + W(0) + SHA1_CONST(0); 742 a = ROTATE_LEFT(a, 30); 743 744 W(1) = ROTATE_LEFT((W(14) ^ W(9) ^ W(3) ^ W(1)), 1); /* 17 */ 745 c = ROTATE_LEFT(d, 5) + F(e, a, b) + c + W(1) + SHA1_CONST(0); 746 e = ROTATE_LEFT(e, 30); 747 748 W(2) = ROTATE_LEFT((W(15) ^ W(10) ^ W(4) ^ W(2)), 1); /* 18 */ 749 b = ROTATE_LEFT(c, 5) + F(d, e, a) + b + W(2) + SHA1_CONST(0); 750 d = ROTATE_LEFT(d, 30); 751 752 W(3) = ROTATE_LEFT((W(0) ^ W(11) ^ W(5) ^ W(3)), 1); /* 19 */ 753 a = ROTATE_LEFT(b, 5) + F(c, d, e) + a + W(3) + SHA1_CONST(0); 754 c = ROTATE_LEFT(c, 30); 755 756 /* round 2 */ 757 W(4) = ROTATE_LEFT((W(1) ^ W(12) ^ W(6) ^ W(4)), 1); /* 20 */ 758 e = ROTATE_LEFT(a, 5) + G(b, c, d) + e + W(4) + SHA1_CONST(1); 759 b = ROTATE_LEFT(b, 30); 760 761 W(5) = ROTATE_LEFT((W(2) ^ W(13) ^ W(7) ^ W(5)), 1); /* 21 */ 762 d = ROTATE_LEFT(e, 5) + G(a, b, c) + d + W(5) + SHA1_CONST(1); 763 a = ROTATE_LEFT(a, 30); 764 765 W(6) = ROTATE_LEFT((W(3) ^ W(14) ^ W(8) ^ W(6)), 1); /* 22 */ 766 c = ROTATE_LEFT(d, 5) + G(e, a, b) + c + W(6) + SHA1_CONST(1); 767 e = ROTATE_LEFT(e, 30); 768 769 W(7) = ROTATE_LEFT((W(4) ^ W(15) ^ W(9) ^ W(7)), 1); /* 23 */ 770 b = ROTATE_LEFT(c, 5) + G(d, e, a) + b + W(7) + SHA1_CONST(1); 771 d = ROTATE_LEFT(d, 30); 772 773 W(8) = ROTATE_LEFT((W(5) ^ W(0) ^ W(10) ^ W(8)), 1); /* 24 */ 774 a = ROTATE_LEFT(b, 5) + G(c, d, e) + a + W(8) + SHA1_CONST(1); 775 c = ROTATE_LEFT(c, 30); 776 777 W(9) = ROTATE_LEFT((W(6) ^ W(1) ^ W(11) ^ W(9)), 1); /* 25 */ 778 e = ROTATE_LEFT(a, 5) + G(b, c, d) + e + W(9) + SHA1_CONST(1); 779 b = ROTATE_LEFT(b, 30); 780 781 W(10) = ROTATE_LEFT((W(7) ^ W(2) ^ W(12) ^ W(10)), 1); /* 26 */ 782 d = ROTATE_LEFT(e, 5) + G(a, b, c) + d + W(10) + SHA1_CONST(1); 783 a = ROTATE_LEFT(a, 30); 784 785 W(11) = ROTATE_LEFT((W(8) ^ W(3) ^ W(13) ^ W(11)), 1); /* 27 */ 786 c = ROTATE_LEFT(d, 5) + G(e, a, b) + c + W(11) + SHA1_CONST(1); 787 e = ROTATE_LEFT(e, 30); 788 789 W(12) = ROTATE_LEFT((W(9) ^ W(4) ^ W(14) ^ W(12)), 1); /* 28 */ 790 b = ROTATE_LEFT(c, 5) + G(d, e, a) + b + W(12) + SHA1_CONST(1); 791 d = ROTATE_LEFT(d, 30); 792 793 W(13) = ROTATE_LEFT((W(10) ^ W(5) ^ W(15) ^ W(13)), 1); /* 29 */ 794 a = ROTATE_LEFT(b, 5) + G(c, d, e) + a + W(13) + SHA1_CONST(1); 795 c = ROTATE_LEFT(c, 30); 796 797 W(14) = ROTATE_LEFT((W(11) ^ W(6) ^ W(0) ^ W(14)), 1); /* 30 */ 798 e = ROTATE_LEFT(a, 5) + G(b, c, d) + e + W(14) + SHA1_CONST(1); 799 b = ROTATE_LEFT(b, 30); 800 801 W(15) = ROTATE_LEFT((W(12) ^ W(7) ^ W(1) ^ W(15)), 1); /* 31 */ 802 d = ROTATE_LEFT(e, 5) + G(a, b, c) + d + W(15) + SHA1_CONST(1); 803 a = ROTATE_LEFT(a, 30); 804 805 W(0) = ROTATE_LEFT((W(13) ^ W(8) ^ W(2) ^ W(0)), 1); /* 32 */ 806 c = ROTATE_LEFT(d, 5) + G(e, a, b) + c + W(0) + SHA1_CONST(1); 807 e = ROTATE_LEFT(e, 30); 808 809 W(1) = ROTATE_LEFT((W(14) ^ W(9) ^ W(3) ^ W(1)), 1); /* 33 */ 810 b = ROTATE_LEFT(c, 5) + G(d, e, a) + b + W(1) + SHA1_CONST(1); 811 d = ROTATE_LEFT(d, 30); 812 813 W(2) = ROTATE_LEFT((W(15) ^ W(10) ^ W(4) ^ W(2)), 1); /* 34 */ 814 a = ROTATE_LEFT(b, 5) + G(c, d, e) + a + W(2) + SHA1_CONST(1); 815 c = ROTATE_LEFT(c, 30); 816 817 W(3) = ROTATE_LEFT((W(0) ^ W(11) ^ W(5) ^ W(3)), 1); /* 35 */ 818 e = ROTATE_LEFT(a, 5) + G(b, c, d) + e + W(3) + SHA1_CONST(1); 819 b = ROTATE_LEFT(b, 30); 820 821 W(4) = ROTATE_LEFT((W(1) ^ W(12) ^ W(6) ^ W(4)), 1); /* 36 */ 822 d = ROTATE_LEFT(e, 5) + G(a, b, c) + d + W(4) + SHA1_CONST(1); 823 a = ROTATE_LEFT(a, 30); 824 825 W(5) = ROTATE_LEFT((W(2) ^ W(13) ^ W(7) ^ W(5)), 1); /* 37 */ 826 c = ROTATE_LEFT(d, 5) + G(e, a, b) + c + W(5) + SHA1_CONST(1); 827 e = ROTATE_LEFT(e, 30); 828 829 W(6) = ROTATE_LEFT((W(3) ^ W(14) ^ W(8) ^ W(6)), 1); /* 38 */ 830 b = ROTATE_LEFT(c, 5) + G(d, e, a) + b + W(6) + SHA1_CONST(1); 831 d = ROTATE_LEFT(d, 30); 832 833 W(7) = ROTATE_LEFT((W(4) ^ W(15) ^ W(9) ^ W(7)), 1); /* 39 */ 834 a = ROTATE_LEFT(b, 5) + G(c, d, e) + a + W(7) + SHA1_CONST(1); 835 c = ROTATE_LEFT(c, 30); 836 837 /* round 3 */ 838 W(8) = ROTATE_LEFT((W(5) ^ W(0) ^ W(10) ^ W(8)), 1); /* 40 */ 839 e = ROTATE_LEFT(a, 5) + H(b, c, d) + e + W(8) + SHA1_CONST(2); 840 b = ROTATE_LEFT(b, 30); 841 842 W(9) = ROTATE_LEFT((W(6) ^ W(1) ^ W(11) ^ W(9)), 1); /* 41 */ 843 d = ROTATE_LEFT(e, 5) + H(a, b, c) + d + W(9) + SHA1_CONST(2); 844 a = ROTATE_LEFT(a, 30); 845 846 W(10) = ROTATE_LEFT((W(7) ^ W(2) ^ W(12) ^ W(10)), 1); /* 42 */ 847 c = ROTATE_LEFT(d, 5) + H(e, a, b) + c + W(10) + SHA1_CONST(2); 848 e = ROTATE_LEFT(e, 30); 849 850 W(11) = ROTATE_LEFT((W(8) ^ W(3) ^ W(13) ^ W(11)), 1); /* 43 */ 851 b = ROTATE_LEFT(c, 5) + H(d, e, a) + b + W(11) + SHA1_CONST(2); 852 d = ROTATE_LEFT(d, 30); 853 854 W(12) = ROTATE_LEFT((W(9) ^ W(4) ^ W(14) ^ W(12)), 1); /* 44 */ 855 a = ROTATE_LEFT(b, 5) + H(c, d, e) + a + W(12) + SHA1_CONST(2); 856 c = ROTATE_LEFT(c, 30); 857 858 W(13) = ROTATE_LEFT((W(10) ^ W(5) ^ W(15) ^ W(13)), 1); /* 45 */ 859 e = ROTATE_LEFT(a, 5) + H(b, c, d) + e + W(13) + SHA1_CONST(2); 860 b = ROTATE_LEFT(b, 30); 861 862 W(14) = ROTATE_LEFT((W(11) ^ W(6) ^ W(0) ^ W(14)), 1); /* 46 */ 863 d = ROTATE_LEFT(e, 5) + H(a, b, c) + d + W(14) + SHA1_CONST(2); 864 a = ROTATE_LEFT(a, 30); 865 866 W(15) = ROTATE_LEFT((W(12) ^ W(7) ^ W(1) ^ W(15)), 1); /* 47 */ 867 c = ROTATE_LEFT(d, 5) + H(e, a, b) + c + W(15) + SHA1_CONST(2); 868 e = ROTATE_LEFT(e, 30); 869 870 W(0) = ROTATE_LEFT((W(13) ^ W(8) ^ W(2) ^ W(0)), 1); /* 48 */ 871 b = ROTATE_LEFT(c, 5) + H(d, e, a) + b + W(0) + SHA1_CONST(2); 872 d = ROTATE_LEFT(d, 30); 873 874 W(1) = ROTATE_LEFT((W(14) ^ W(9) ^ W(3) ^ W(1)), 1); /* 49 */ 875 a = ROTATE_LEFT(b, 5) + H(c, d, e) + a + W(1) + SHA1_CONST(2); 876 c = ROTATE_LEFT(c, 30); 877 878 W(2) = ROTATE_LEFT((W(15) ^ W(10) ^ W(4) ^ W(2)), 1); /* 50 */ 879 e = ROTATE_LEFT(a, 5) + H(b, c, d) + e + W(2) + SHA1_CONST(2); 880 b = ROTATE_LEFT(b, 30); 881 882 W(3) = ROTATE_LEFT((W(0) ^ W(11) ^ W(5) ^ W(3)), 1); /* 51 */ 883 d = ROTATE_LEFT(e, 5) + H(a, b, c) + d + W(3) + SHA1_CONST(2); 884 a = ROTATE_LEFT(a, 30); 885 886 W(4) = ROTATE_LEFT((W(1) ^ W(12) ^ W(6) ^ W(4)), 1); /* 52 */ 887 c = ROTATE_LEFT(d, 5) + H(e, a, b) + c + W(4) + SHA1_CONST(2); 888 e = ROTATE_LEFT(e, 30); 889 890 W(5) = ROTATE_LEFT((W(2) ^ W(13) ^ W(7) ^ W(5)), 1); /* 53 */ 891 b = ROTATE_LEFT(c, 5) + H(d, e, a) + b + W(5) + SHA1_CONST(2); 892 d = ROTATE_LEFT(d, 30); 893 894 W(6) = ROTATE_LEFT((W(3) ^ W(14) ^ W(8) ^ W(6)), 1); /* 54 */ 895 a = ROTATE_LEFT(b, 5) + H(c, d, e) + a + W(6) + SHA1_CONST(2); 896 c = ROTATE_LEFT(c, 30); 897 898 W(7) = ROTATE_LEFT((W(4) ^ W(15) ^ W(9) ^ W(7)), 1); /* 55 */ 899 e = ROTATE_LEFT(a, 5) + H(b, c, d) + e + W(7) + SHA1_CONST(2); 900 b = ROTATE_LEFT(b, 30); 901 902 W(8) = ROTATE_LEFT((W(5) ^ W(0) ^ W(10) ^ W(8)), 1); /* 56 */ 903 d = ROTATE_LEFT(e, 5) + H(a, b, c) + d + W(8) + SHA1_CONST(2); 904 a = ROTATE_LEFT(a, 30); 905 906 W(9) = ROTATE_LEFT((W(6) ^ W(1) ^ W(11) ^ W(9)), 1); /* 57 */ 907 c = ROTATE_LEFT(d, 5) + H(e, a, b) + c + W(9) + SHA1_CONST(2); 908 e = ROTATE_LEFT(e, 30); 909 910 W(10) = ROTATE_LEFT((W(7) ^ W(2) ^ W(12) ^ W(10)), 1); /* 58 */ 911 b = ROTATE_LEFT(c, 5) + H(d, e, a) + b + W(10) + SHA1_CONST(2); 912 d = ROTATE_LEFT(d, 30); 913 914 W(11) = ROTATE_LEFT((W(8) ^ W(3) ^ W(13) ^ W(11)), 1); /* 59 */ 915 a = ROTATE_LEFT(b, 5) + H(c, d, e) + a + W(11) + SHA1_CONST(2); 916 c = ROTATE_LEFT(c, 30); 917 918 /* round 4 */ 919 W(12) = ROTATE_LEFT((W(9) ^ W(4) ^ W(14) ^ W(12)), 1); /* 60 */ 920 e = ROTATE_LEFT(a, 5) + G(b, c, d) + e + W(12) + SHA1_CONST(3); 921 b = ROTATE_LEFT(b, 30); 922 923 W(13) = ROTATE_LEFT((W(10) ^ W(5) ^ W(15) ^ W(13)), 1); /* 61 */ 924 d = ROTATE_LEFT(e, 5) + G(a, b, c) + d + W(13) + SHA1_CONST(3); 925 a = ROTATE_LEFT(a, 30); 926 927 W(14) = ROTATE_LEFT((W(11) ^ W(6) ^ W(0) ^ W(14)), 1); /* 62 */ 928 c = ROTATE_LEFT(d, 5) + G(e, a, b) + c + W(14) + SHA1_CONST(3); 929 e = ROTATE_LEFT(e, 30); 930 931 W(15) = ROTATE_LEFT((W(12) ^ W(7) ^ W(1) ^ W(15)), 1); /* 63 */ 932 b = ROTATE_LEFT(c, 5) + G(d, e, a) + b + W(15) + SHA1_CONST(3); 933 d = ROTATE_LEFT(d, 30); 934 935 W(0) = ROTATE_LEFT((W(13) ^ W(8) ^ W(2) ^ W(0)), 1); /* 64 */ 936 a = ROTATE_LEFT(b, 5) + G(c, d, e) + a + W(0) + SHA1_CONST(3); 937 c = ROTATE_LEFT(c, 30); 938 939 W(1) = ROTATE_LEFT((W(14) ^ W(9) ^ W(3) ^ W(1)), 1); /* 65 */ 940 e = ROTATE_LEFT(a, 5) + G(b, c, d) + e + W(1) + SHA1_CONST(3); 941 b = ROTATE_LEFT(b, 30); 942 943 W(2) = ROTATE_LEFT((W(15) ^ W(10) ^ W(4) ^ W(2)), 1); /* 66 */ 944 d = ROTATE_LEFT(e, 5) + G(a, b, c) + d + W(2) + SHA1_CONST(3); 945 a = ROTATE_LEFT(a, 30); 946 947 W(3) = ROTATE_LEFT((W(0) ^ W(11) ^ W(5) ^ W(3)), 1); /* 67 */ 948 c = ROTATE_LEFT(d, 5) + G(e, a, b) + c + W(3) + SHA1_CONST(3); 949 e = ROTATE_LEFT(e, 30); 950 951 W(4) = ROTATE_LEFT((W(1) ^ W(12) ^ W(6) ^ W(4)), 1); /* 68 */ 952 b = ROTATE_LEFT(c, 5) + G(d, e, a) + b + W(4) + SHA1_CONST(3); 953 d = ROTATE_LEFT(d, 30); 954 955 W(5) = ROTATE_LEFT((W(2) ^ W(13) ^ W(7) ^ W(5)), 1); /* 69 */ 956 a = ROTATE_LEFT(b, 5) + G(c, d, e) + a + W(5) + SHA1_CONST(3); 957 c = ROTATE_LEFT(c, 30); 958 959 W(6) = ROTATE_LEFT((W(3) ^ W(14) ^ W(8) ^ W(6)), 1); /* 70 */ 960 e = ROTATE_LEFT(a, 5) + G(b, c, d) + e + W(6) + SHA1_CONST(3); 961 b = ROTATE_LEFT(b, 30); 962 963 W(7) = ROTATE_LEFT((W(4) ^ W(15) ^ W(9) ^ W(7)), 1); /* 71 */ 964 d = ROTATE_LEFT(e, 5) + G(a, b, c) + d + W(7) + SHA1_CONST(3); 965 a = ROTATE_LEFT(a, 30); 966 967 W(8) = ROTATE_LEFT((W(5) ^ W(0) ^ W(10) ^ W(8)), 1); /* 72 */ 968 c = ROTATE_LEFT(d, 5) + G(e, a, b) + c + W(8) + SHA1_CONST(3); 969 e = ROTATE_LEFT(e, 30); 970 971 W(9) = ROTATE_LEFT((W(6) ^ W(1) ^ W(11) ^ W(9)), 1); /* 73 */ 972 b = ROTATE_LEFT(c, 5) + G(d, e, a) + b + W(9) + SHA1_CONST(3); 973 d = ROTATE_LEFT(d, 30); 974 975 W(10) = ROTATE_LEFT((W(7) ^ W(2) ^ W(12) ^ W(10)), 1); /* 74 */ 976 a = ROTATE_LEFT(b, 5) + G(c, d, e) + a + W(10) + SHA1_CONST(3); 977 c = ROTATE_LEFT(c, 30); 978 979 W(11) = ROTATE_LEFT((W(8) ^ W(3) ^ W(13) ^ W(11)), 1); /* 75 */ 980 e = ROTATE_LEFT(a, 5) + G(b, c, d) + e + W(11) + SHA1_CONST(3); 981 b = ROTATE_LEFT(b, 30); 982 983 W(12) = ROTATE_LEFT((W(9) ^ W(4) ^ W(14) ^ W(12)), 1); /* 76 */ 984 d = ROTATE_LEFT(e, 5) + G(a, b, c) + d + W(12) + SHA1_CONST(3); 985 a = ROTATE_LEFT(a, 30); 986 987 W(13) = ROTATE_LEFT((W(10) ^ W(5) ^ W(15) ^ W(13)), 1); /* 77 */ 988 c = ROTATE_LEFT(d, 5) + G(e, a, b) + c + W(13) + SHA1_CONST(3); 989 e = ROTATE_LEFT(e, 30); 990 991 W(14) = ROTATE_LEFT((W(11) ^ W(6) ^ W(0) ^ W(14)), 1); /* 78 */ 992 b = ROTATE_LEFT(c, 5) + G(d, e, a) + b + W(14) + SHA1_CONST(3); 993 d = ROTATE_LEFT(d, 30); 994 995 W(15) = ROTATE_LEFT((W(12) ^ W(7) ^ W(1) ^ W(15)), 1); /* 79 */ 996 997 ctx->state[0] += ROTATE_LEFT(b, 5) + G(c, d, e) + a + W(15) + 998 SHA1_CONST(3); 999 ctx->state[1] += b; 1000 ctx->state[2] += ROTATE_LEFT(c, 30); 1001 ctx->state[3] += d; 1002 ctx->state[4] += e; 1003 1004 /* zeroize sensitive information */ 1005 W(0) = W(1) = W(2) = W(3) = W(4) = W(5) = W(6) = W(7) = W(8) = 0; 1006 W(9) = W(10) = W(11) = W(12) = W(13) = W(14) = W(15) = 0; 1007 } 1008 #endif /* !__amd64 */ 1009 1010 1011 /* 1012 * Encode() 1013 * 1014 * purpose: to convert a list of numbers from little endian to big endian 1015 * input: uint8_t * : place to store the converted big endian numbers 1016 * uint32_t * : place to get numbers to convert from 1017 * size_t : the length of the input in bytes 1018 * output: void 1019 */ 1020 1021 static void 1022 Encode(uint8_t *_RESTRICT_KYWD output, const uint32_t *_RESTRICT_KYWD input, 1023 size_t len) 1024 { 1025 size_t i, j; 1026 1027 #if defined(__sparc) 1028 if (IS_P2ALIGNED(output, sizeof (uint32_t))) { 1029 for (i = 0, j = 0; j < len; i++, j += 4) { 1030 /* LINTED: pointer alignment */ 1031 *((uint32_t *)(output + j)) = input[i]; 1032 } 1033 } else { 1034 #endif /* little endian -- will work on big endian, but slowly */ 1035 for (i = 0, j = 0; j < len; i++, j += 4) { 1036 output[j] = (input[i] >> 24) & 0xff; 1037 output[j + 1] = (input[i] >> 16) & 0xff; 1038 output[j + 2] = (input[i] >> 8) & 0xff; 1039 output[j + 3] = input[i] & 0xff; 1040 } 1041 #if defined(__sparc) 1042 } 1043 #endif 1044 } 1045