1 /* 2 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 3 * Use is subject to license terms. 4 */ 5 6 /* 7 * The basic framework for this code came from the reference 8 * implementation for MD5. That implementation is Copyright (C) 9 * 1991-2, RSA Data Security, Inc. Created 1991. All rights reserved. 10 * 11 * License to copy and use this software is granted provided that it 12 * is identified as the "RSA Data Security, Inc. MD5 Message-Digest 13 * Algorithm" in all material mentioning or referencing this software 14 * or this function. 15 * 16 * License is also granted to make and use derivative works provided 17 * that such works are identified as "derived from the RSA Data 18 * Security, Inc. MD5 Message-Digest Algorithm" in all material 19 * mentioning or referencing the derived work. 20 * 21 * RSA Data Security, Inc. makes no representations concerning either 22 * the merchantability of this software or the suitability of this 23 * software for any particular purpose. It is provided "as is" 24 * without express or implied warranty of any kind. 25 * 26 * These notices must be retained in any copies of any part of this 27 * documentation and/or software. 28 * 29 * NOTE: Cleaned-up and optimized, version of SHA1, based on the FIPS 180-1 30 * standard, available at http://www.itl.nist.gov/fipspubs/fip180-1.htm 31 * Not as fast as one would like -- further optimizations are encouraged 32 * and appreciated. 33 */ 34 35 #include <sys/types.h> 36 #include <sys/param.h> 37 #include <sys/systm.h> 38 #include <sys/sysmacros.h> 39 #include <sys/sha1.h> 40 #include <sys/sha1_consts.h> 41 42 #ifndef _KERNEL 43 #include <strings.h> 44 #include <stdlib.h> 45 #include <errno.h> 46 #include <sys/systeminfo.h> 47 #endif /* !_KERNEL */ 48 49 #ifdef _LITTLE_ENDIAN 50 #include <sys/byteorder.h> 51 #define HAVE_HTONL 52 #endif 53 54 static void Encode(uint8_t *, const uint32_t *, size_t); 55 56 #if defined(__sparc) 57 58 #define SHA1_TRANSFORM(ctx, in) \ 59 SHA1Transform((ctx)->state[0], (ctx)->state[1], (ctx)->state[2], \ 60 (ctx)->state[3], (ctx)->state[4], (ctx), (in)) 61 62 static void SHA1Transform(uint32_t, uint32_t, uint32_t, uint32_t, uint32_t, 63 SHA1_CTX *, const uint8_t *); 64 65 #elif defined(__amd64) 66 67 #define SHA1_TRANSFORM(ctx, in) sha1_block_data_order((ctx), (in), 1) 68 #define SHA1_TRANSFORM_BLOCKS(ctx, in, num) sha1_block_data_order((ctx), \ 69 (in), (num)) 70 71 void sha1_block_data_order(SHA1_CTX *ctx, const void *inpp, size_t num_blocks); 72 73 #else 74 75 #define SHA1_TRANSFORM(ctx, in) SHA1Transform((ctx), (in)) 76 77 static void SHA1Transform(SHA1_CTX *, const uint8_t *); 78 79 #endif 80 81 82 static uint8_t PADDING[64] = { 0x80, /* all zeros */ }; 83 84 /* 85 * F, G, and H are the basic SHA1 functions. 86 */ 87 #define F(b, c, d) (((b) & (c)) | ((~b) & (d))) 88 #define G(b, c, d) ((b) ^ (c) ^ (d)) 89 #define H(b, c, d) (((b) & (c)) | (((b)|(c)) & (d))) 90 91 /* 92 * ROTATE_LEFT rotates x left n bits. 93 */ 94 95 #if defined(__GNUC__) && defined(_LP64) 96 static __inline__ uint64_t 97 ROTATE_LEFT(uint64_t value, uint32_t n) 98 { 99 uint32_t t32; 100 101 t32 = (uint32_t)value; 102 return ((t32 << n) | (t32 >> (32 - n))); 103 } 104 105 #else 106 107 #define ROTATE_LEFT(x, n) \ 108 (((x) << (n)) | ((x) >> ((sizeof (x) * NBBY)-(n)))) 109 110 #endif 111 112 113 /* 114 * SHA1Init() 115 * 116 * purpose: initializes the sha1 context and begins and sha1 digest operation 117 * input: SHA1_CTX * : the context to initializes. 118 * output: void 119 */ 120 121 void 122 SHA1Init(SHA1_CTX *ctx) 123 { 124 ctx->count[0] = ctx->count[1] = 0; 125 126 /* 127 * load magic initialization constants. Tell lint 128 * that these constants are unsigned by using U. 129 */ 130 131 ctx->state[0] = 0x67452301U; 132 ctx->state[1] = 0xefcdab89U; 133 ctx->state[2] = 0x98badcfeU; 134 ctx->state[3] = 0x10325476U; 135 ctx->state[4] = 0xc3d2e1f0U; 136 } 137 138 #ifdef VIS_SHA1 139 #ifdef _KERNEL 140 141 #include <sys/regset.h> 142 #include <sys/vis.h> 143 #include <sys/fpu/fpusystm.h> 144 145 /* the alignment for block stores to save fp registers */ 146 #define VIS_ALIGN (64) 147 148 extern int sha1_savefp(kfpu_t *, int); 149 extern void sha1_restorefp(kfpu_t *); 150 151 uint32_t vis_sha1_svfp_threshold = 128; 152 153 #endif /* _KERNEL */ 154 155 /* 156 * VIS SHA-1 consts. 157 */ 158 static uint64_t VIS[] = { 159 0x8000000080000000ULL, 160 0x0002000200020002ULL, 161 0x5a8279996ed9eba1ULL, 162 0x8f1bbcdcca62c1d6ULL, 163 0x012389ab456789abULL}; 164 165 extern void SHA1TransformVIS(uint64_t *, uint32_t *, uint32_t *, uint64_t *); 166 167 168 /* 169 * SHA1Update() 170 * 171 * purpose: continues an sha1 digest operation, using the message block 172 * to update the context. 173 * input: SHA1_CTX * : the context to update 174 * void * : the message block 175 * size_t : the length of the message block in bytes 176 * output: void 177 */ 178 179 void 180 SHA1Update(SHA1_CTX *ctx, const void *inptr, size_t input_len) 181 { 182 uint32_t i, buf_index, buf_len; 183 uint64_t X0[40], input64[8]; 184 const uint8_t *input = inptr; 185 #ifdef _KERNEL 186 int usevis = 0; 187 #else 188 int usevis = 1; 189 #endif /* _KERNEL */ 190 191 /* check for noop */ 192 if (input_len == 0) 193 return; 194 195 /* compute number of bytes mod 64 */ 196 buf_index = (ctx->count[1] >> 3) & 0x3F; 197 198 /* update number of bits */ 199 if ((ctx->count[1] += (input_len << 3)) < (input_len << 3)) 200 ctx->count[0]++; 201 202 ctx->count[0] += (input_len >> 29); 203 204 buf_len = 64 - buf_index; 205 206 /* transform as many times as possible */ 207 i = 0; 208 if (input_len >= buf_len) { 209 #ifdef _KERNEL 210 kfpu_t *fpu; 211 if (fpu_exists) { 212 uint8_t fpua[sizeof (kfpu_t) + GSR_SIZE + VIS_ALIGN]; 213 uint32_t len = (input_len + buf_index) & ~0x3f; 214 int svfp_ok; 215 216 fpu = (kfpu_t *)P2ROUNDUP((uintptr_t)fpua, 64); 217 svfp_ok = ((len >= vis_sha1_svfp_threshold) ? 1 : 0); 218 usevis = fpu_exists && sha1_savefp(fpu, svfp_ok); 219 } else { 220 usevis = 0; 221 } 222 #endif /* _KERNEL */ 223 224 /* 225 * general optimization: 226 * 227 * only do initial bcopy() and SHA1Transform() if 228 * buf_index != 0. if buf_index == 0, we're just 229 * wasting our time doing the bcopy() since there 230 * wasn't any data left over from a previous call to 231 * SHA1Update(). 232 */ 233 234 if (buf_index) { 235 bcopy(input, &ctx->buf_un.buf8[buf_index], buf_len); 236 if (usevis) { 237 SHA1TransformVIS(X0, 238 ctx->buf_un.buf32, 239 &ctx->state[0], VIS); 240 } else { 241 SHA1_TRANSFORM(ctx, ctx->buf_un.buf8); 242 } 243 i = buf_len; 244 } 245 246 /* 247 * VIS SHA-1: uses the VIS 1.0 instructions to accelerate 248 * SHA-1 processing. This is achieved by "offloading" the 249 * computation of the message schedule (MS) to the VIS units. 250 * This allows the VIS computation of the message schedule 251 * to be performed in parallel with the standard integer 252 * processing of the remainder of the SHA-1 computation. 253 * performance by up to around 1.37X, compared to an optimized 254 * integer-only implementation. 255 * 256 * The VIS implementation of SHA1Transform has a different API 257 * to the standard integer version: 258 * 259 * void SHA1TransformVIS( 260 * uint64_t *, // Pointer to MS for ith block 261 * uint32_t *, // Pointer to ith block of message data 262 * uint32_t *, // Pointer to SHA state i.e ctx->state 263 * uint64_t *, // Pointer to various VIS constants 264 * ) 265 * 266 * Note: the message data must by 4-byte aligned. 267 * 268 * Function requires VIS 1.0 support. 269 * 270 * Handling is provided to deal with arbitrary byte alingment 271 * of the input data but the performance gains are reduced 272 * for alignments other than 4-bytes. 273 */ 274 if (usevis) { 275 if (!IS_P2ALIGNED(&input[i], sizeof (uint32_t))) { 276 /* 277 * Main processing loop - input misaligned 278 */ 279 for (; i + 63 < input_len; i += 64) { 280 bcopy(&input[i], input64, 64); 281 SHA1TransformVIS(X0, 282 (uint32_t *)input64, 283 &ctx->state[0], VIS); 284 } 285 } else { 286 /* 287 * Main processing loop - input 8-byte aligned 288 */ 289 for (; i + 63 < input_len; i += 64) { 290 SHA1TransformVIS(X0, 291 /* LINTED E_BAD_PTR_CAST_ALIGN */ 292 (uint32_t *)&input[i], /* CSTYLED */ 293 &ctx->state[0], VIS); 294 } 295 296 } 297 #ifdef _KERNEL 298 sha1_restorefp(fpu); 299 #endif /* _KERNEL */ 300 } else { 301 for (; i + 63 < input_len; i += 64) { 302 SHA1_TRANSFORM(ctx, &input[i]); 303 } 304 } 305 306 /* 307 * general optimization: 308 * 309 * if i and input_len are the same, return now instead 310 * of calling bcopy(), since the bcopy() in this case 311 * will be an expensive nop. 312 */ 313 314 if (input_len == i) 315 return; 316 317 buf_index = 0; 318 } 319 320 /* buffer remaining input */ 321 bcopy(&input[i], &ctx->buf_un.buf8[buf_index], input_len - i); 322 } 323 324 #else /* VIS_SHA1 */ 325 326 void 327 SHA1Update(SHA1_CTX *ctx, const void *inptr, size_t input_len) 328 { 329 uint32_t i, buf_index, buf_len; 330 const uint8_t *input = inptr; 331 #if defined(__amd64) 332 uint32_t block_count; 333 #endif /* __amd64 */ 334 335 /* check for noop */ 336 if (input_len == 0) 337 return; 338 339 /* compute number of bytes mod 64 */ 340 buf_index = (ctx->count[1] >> 3) & 0x3F; 341 342 /* update number of bits */ 343 if ((ctx->count[1] += (input_len << 3)) < (input_len << 3)) 344 ctx->count[0]++; 345 346 ctx->count[0] += (input_len >> 29); 347 348 buf_len = 64 - buf_index; 349 350 /* transform as many times as possible */ 351 i = 0; 352 if (input_len >= buf_len) { 353 354 /* 355 * general optimization: 356 * 357 * only do initial bcopy() and SHA1Transform() if 358 * buf_index != 0. if buf_index == 0, we're just 359 * wasting our time doing the bcopy() since there 360 * wasn't any data left over from a previous call to 361 * SHA1Update(). 362 */ 363 364 if (buf_index) { 365 bcopy(input, &ctx->buf_un.buf8[buf_index], buf_len); 366 SHA1_TRANSFORM(ctx, ctx->buf_un.buf8); 367 i = buf_len; 368 } 369 370 #if !defined(__amd64) 371 for (; i + 63 < input_len; i += 64) 372 SHA1_TRANSFORM(ctx, &input[i]); 373 #else 374 block_count = (input_len - i) >> 6; 375 if (block_count > 0) { 376 SHA1_TRANSFORM_BLOCKS(ctx, &input[i], block_count); 377 i += block_count << 6; 378 } 379 #endif /* !__amd64 */ 380 381 /* 382 * general optimization: 383 * 384 * if i and input_len are the same, return now instead 385 * of calling bcopy(), since the bcopy() in this case 386 * will be an expensive nop. 387 */ 388 389 if (input_len == i) 390 return; 391 392 buf_index = 0; 393 } 394 395 /* buffer remaining input */ 396 bcopy(&input[i], &ctx->buf_un.buf8[buf_index], input_len - i); 397 } 398 399 #endif /* VIS_SHA1 */ 400 401 /* 402 * SHA1Final() 403 * 404 * purpose: ends an sha1 digest operation, finalizing the message digest and 405 * zeroing the context. 406 * input: uchar_t * : A buffer to store the digest. 407 * : The function actually uses void* because many 408 * : callers pass things other than uchar_t here. 409 * SHA1_CTX * : the context to finalize, save, and zero 410 * output: void 411 */ 412 413 void 414 SHA1Final(void *digest, SHA1_CTX *ctx) 415 { 416 uint8_t bitcount_be[sizeof (ctx->count)]; 417 uint32_t index = (ctx->count[1] >> 3) & 0x3f; 418 419 /* store bit count, big endian */ 420 Encode(bitcount_be, ctx->count, sizeof (bitcount_be)); 421 422 /* pad out to 56 mod 64 */ 423 SHA1Update(ctx, PADDING, ((index < 56) ? 56 : 120) - index); 424 425 /* append length (before padding) */ 426 SHA1Update(ctx, bitcount_be, sizeof (bitcount_be)); 427 428 /* store state in digest */ 429 Encode(digest, ctx->state, sizeof (ctx->state)); 430 431 /* zeroize sensitive information */ 432 bzero(ctx, sizeof (*ctx)); 433 } 434 435 436 #if !defined(__amd64) 437 438 typedef uint32_t sha1word; 439 440 /* 441 * sparc optimization: 442 * 443 * on the sparc, we can load big endian 32-bit data easily. note that 444 * special care must be taken to ensure the address is 32-bit aligned. 445 * in the interest of speed, we don't check to make sure, since 446 * careful programming can guarantee this for us. 447 */ 448 449 #if defined(_BIG_ENDIAN) 450 #define LOAD_BIG_32(addr) (*(uint32_t *)(addr)) 451 452 #elif defined(HAVE_HTONL) 453 #define LOAD_BIG_32(addr) htonl(*((uint32_t *)(addr))) 454 455 #else 456 /* little endian -- will work on big endian, but slowly */ 457 #define LOAD_BIG_32(addr) \ 458 (((addr)[0] << 24) | ((addr)[1] << 16) | ((addr)[2] << 8) | (addr)[3]) 459 #endif /* _BIG_ENDIAN */ 460 461 /* 462 * SHA1Transform() 463 */ 464 #if defined(W_ARRAY) 465 #define W(n) w[n] 466 #else /* !defined(W_ARRAY) */ 467 #define W(n) w_ ## n 468 #endif /* !defined(W_ARRAY) */ 469 470 471 #if defined(__sparc) 472 473 /* 474 * sparc register window optimization: 475 * 476 * `a', `b', `c', `d', and `e' are passed into SHA1Transform 477 * explicitly since it increases the number of registers available to 478 * the compiler. under this scheme, these variables can be held in 479 * %i0 - %i4, which leaves more local and out registers available. 480 * 481 * purpose: sha1 transformation -- updates the digest based on `block' 482 * input: uint32_t : bytes 1 - 4 of the digest 483 * uint32_t : bytes 5 - 8 of the digest 484 * uint32_t : bytes 9 - 12 of the digest 485 * uint32_t : bytes 12 - 16 of the digest 486 * uint32_t : bytes 16 - 20 of the digest 487 * SHA1_CTX * : the context to update 488 * uint8_t [64]: the block to use to update the digest 489 * output: void 490 */ 491 492 void 493 SHA1Transform(uint32_t a, uint32_t b, uint32_t c, uint32_t d, uint32_t e, 494 SHA1_CTX *ctx, const uint8_t blk[64]) 495 { 496 /* 497 * sparc optimization: 498 * 499 * while it is somewhat counter-intuitive, on sparc, it is 500 * more efficient to place all the constants used in this 501 * function in an array and load the values out of the array 502 * than to manually load the constants. this is because 503 * setting a register to a 32-bit value takes two ops in most 504 * cases: a `sethi' and an `or', but loading a 32-bit value 505 * from memory only takes one `ld' (or `lduw' on v9). while 506 * this increases memory usage, the compiler can find enough 507 * other things to do while waiting to keep the pipeline does 508 * not stall. additionally, it is likely that many of these 509 * constants are cached so that later accesses do not even go 510 * out to the bus. 511 * 512 * this array is declared `static' to keep the compiler from 513 * having to bcopy() this array onto the stack frame of 514 * SHA1Transform() each time it is called -- which is 515 * unacceptably expensive. 516 * 517 * the `const' is to ensure that callers are good citizens and 518 * do not try to munge the array. since these routines are 519 * going to be called from inside multithreaded kernelland, 520 * this is a good safety check. -- `sha1_consts' will end up in 521 * .rodata. 522 * 523 * unfortunately, loading from an array in this manner hurts 524 * performance under Intel. So, there is a macro, 525 * SHA1_CONST(), used in SHA1Transform(), that either expands to 526 * a reference to this array, or to the actual constant, 527 * depending on what platform this code is compiled for. 528 */ 529 530 static const uint32_t sha1_consts[] = { 531 SHA1_CONST_0, SHA1_CONST_1, SHA1_CONST_2, SHA1_CONST_3 532 }; 533 534 /* 535 * general optimization: 536 * 537 * use individual integers instead of using an array. this is a 538 * win, although the amount it wins by seems to vary quite a bit. 539 */ 540 541 uint32_t w_0, w_1, w_2, w_3, w_4, w_5, w_6, w_7; 542 uint32_t w_8, w_9, w_10, w_11, w_12, w_13, w_14, w_15; 543 544 /* 545 * sparc optimization: 546 * 547 * if `block' is already aligned on a 4-byte boundary, use 548 * LOAD_BIG_32() directly. otherwise, bcopy() into a 549 * buffer that *is* aligned on a 4-byte boundary and then do 550 * the LOAD_BIG_32() on that buffer. benchmarks have shown 551 * that using the bcopy() is better than loading the bytes 552 * individually and doing the endian-swap by hand. 553 * 554 * even though it's quite tempting to assign to do: 555 * 556 * blk = bcopy(ctx->buf_un.buf32, blk, sizeof (ctx->buf_un.buf32)); 557 * 558 * and only have one set of LOAD_BIG_32()'s, the compiler 559 * *does not* like that, so please resist the urge. 560 */ 561 562 if ((uintptr_t)blk & 0x3) { /* not 4-byte aligned? */ 563 bcopy(blk, ctx->buf_un.buf32, sizeof (ctx->buf_un.buf32)); 564 w_15 = LOAD_BIG_32(ctx->buf_un.buf32 + 15); 565 w_14 = LOAD_BIG_32(ctx->buf_un.buf32 + 14); 566 w_13 = LOAD_BIG_32(ctx->buf_un.buf32 + 13); 567 w_12 = LOAD_BIG_32(ctx->buf_un.buf32 + 12); 568 w_11 = LOAD_BIG_32(ctx->buf_un.buf32 + 11); 569 w_10 = LOAD_BIG_32(ctx->buf_un.buf32 + 10); 570 w_9 = LOAD_BIG_32(ctx->buf_un.buf32 + 9); 571 w_8 = LOAD_BIG_32(ctx->buf_un.buf32 + 8); 572 w_7 = LOAD_BIG_32(ctx->buf_un.buf32 + 7); 573 w_6 = LOAD_BIG_32(ctx->buf_un.buf32 + 6); 574 w_5 = LOAD_BIG_32(ctx->buf_un.buf32 + 5); 575 w_4 = LOAD_BIG_32(ctx->buf_un.buf32 + 4); 576 w_3 = LOAD_BIG_32(ctx->buf_un.buf32 + 3); 577 w_2 = LOAD_BIG_32(ctx->buf_un.buf32 + 2); 578 w_1 = LOAD_BIG_32(ctx->buf_un.buf32 + 1); 579 w_0 = LOAD_BIG_32(ctx->buf_un.buf32 + 0); 580 } else { 581 /*LINTED*/ 582 w_15 = LOAD_BIG_32(blk + 60); 583 /*LINTED*/ 584 w_14 = LOAD_BIG_32(blk + 56); 585 /*LINTED*/ 586 w_13 = LOAD_BIG_32(blk + 52); 587 /*LINTED*/ 588 w_12 = LOAD_BIG_32(blk + 48); 589 /*LINTED*/ 590 w_11 = LOAD_BIG_32(blk + 44); 591 /*LINTED*/ 592 w_10 = LOAD_BIG_32(blk + 40); 593 /*LINTED*/ 594 w_9 = LOAD_BIG_32(blk + 36); 595 /*LINTED*/ 596 w_8 = LOAD_BIG_32(blk + 32); 597 /*LINTED*/ 598 w_7 = LOAD_BIG_32(blk + 28); 599 /*LINTED*/ 600 w_6 = LOAD_BIG_32(blk + 24); 601 /*LINTED*/ 602 w_5 = LOAD_BIG_32(blk + 20); 603 /*LINTED*/ 604 w_4 = LOAD_BIG_32(blk + 16); 605 /*LINTED*/ 606 w_3 = LOAD_BIG_32(blk + 12); 607 /*LINTED*/ 608 w_2 = LOAD_BIG_32(blk + 8); 609 /*LINTED*/ 610 w_1 = LOAD_BIG_32(blk + 4); 611 /*LINTED*/ 612 w_0 = LOAD_BIG_32(blk + 0); 613 } 614 #else /* !defined(__sparc) */ 615 616 void /* CSTYLED */ 617 SHA1Transform(SHA1_CTX *ctx, const uint8_t blk[64]) 618 { 619 /* CSTYLED */ 620 sha1word a = ctx->state[0]; 621 sha1word b = ctx->state[1]; 622 sha1word c = ctx->state[2]; 623 sha1word d = ctx->state[3]; 624 sha1word e = ctx->state[4]; 625 626 #if defined(W_ARRAY) 627 sha1word w[16]; 628 #else /* !defined(W_ARRAY) */ 629 sha1word w_0, w_1, w_2, w_3, w_4, w_5, w_6, w_7; 630 sha1word w_8, w_9, w_10, w_11, w_12, w_13, w_14, w_15; 631 #endif /* !defined(W_ARRAY) */ 632 633 W(0) = LOAD_BIG_32((void *)(blk + 0)); 634 W(1) = LOAD_BIG_32((void *)(blk + 4)); 635 W(2) = LOAD_BIG_32((void *)(blk + 8)); 636 W(3) = LOAD_BIG_32((void *)(blk + 12)); 637 W(4) = LOAD_BIG_32((void *)(blk + 16)); 638 W(5) = LOAD_BIG_32((void *)(blk + 20)); 639 W(6) = LOAD_BIG_32((void *)(blk + 24)); 640 W(7) = LOAD_BIG_32((void *)(blk + 28)); 641 W(8) = LOAD_BIG_32((void *)(blk + 32)); 642 W(9) = LOAD_BIG_32((void *)(blk + 36)); 643 W(10) = LOAD_BIG_32((void *)(blk + 40)); 644 W(11) = LOAD_BIG_32((void *)(blk + 44)); 645 W(12) = LOAD_BIG_32((void *)(blk + 48)); 646 W(13) = LOAD_BIG_32((void *)(blk + 52)); 647 W(14) = LOAD_BIG_32((void *)(blk + 56)); 648 W(15) = LOAD_BIG_32((void *)(blk + 60)); 649 650 #endif /* !defined(__sparc) */ 651 652 /* 653 * general optimization: 654 * 655 * even though this approach is described in the standard as 656 * being slower algorithmically, it is 30-40% faster than the 657 * "faster" version under SPARC, because this version has more 658 * of the constraints specified at compile-time and uses fewer 659 * variables (and therefore has better register utilization) 660 * than its "speedier" brother. (i've tried both, trust me) 661 * 662 * for either method given in the spec, there is an "assignment" 663 * phase where the following takes place: 664 * 665 * tmp = (main_computation); 666 * e = d; d = c; c = rotate_left(b, 30); b = a; a = tmp; 667 * 668 * we can make the algorithm go faster by not doing this work, 669 * but just pretending that `d' is now `e', etc. this works 670 * really well and obviates the need for a temporary variable. 671 * however, we still explicitly perform the rotate action, 672 * since it is cheaper on SPARC to do it once than to have to 673 * do it over and over again. 674 */ 675 676 /* round 1 */ 677 e = ROTATE_LEFT(a, 5) + F(b, c, d) + e + W(0) + SHA1_CONST(0); /* 0 */ 678 b = ROTATE_LEFT(b, 30); 679 680 d = ROTATE_LEFT(e, 5) + F(a, b, c) + d + W(1) + SHA1_CONST(0); /* 1 */ 681 a = ROTATE_LEFT(a, 30); 682 683 c = ROTATE_LEFT(d, 5) + F(e, a, b) + c + W(2) + SHA1_CONST(0); /* 2 */ 684 e = ROTATE_LEFT(e, 30); 685 686 b = ROTATE_LEFT(c, 5) + F(d, e, a) + b + W(3) + SHA1_CONST(0); /* 3 */ 687 d = ROTATE_LEFT(d, 30); 688 689 a = ROTATE_LEFT(b, 5) + F(c, d, e) + a + W(4) + SHA1_CONST(0); /* 4 */ 690 c = ROTATE_LEFT(c, 30); 691 692 e = ROTATE_LEFT(a, 5) + F(b, c, d) + e + W(5) + SHA1_CONST(0); /* 5 */ 693 b = ROTATE_LEFT(b, 30); 694 695 d = ROTATE_LEFT(e, 5) + F(a, b, c) + d + W(6) + SHA1_CONST(0); /* 6 */ 696 a = ROTATE_LEFT(a, 30); 697 698 c = ROTATE_LEFT(d, 5) + F(e, a, b) + c + W(7) + SHA1_CONST(0); /* 7 */ 699 e = ROTATE_LEFT(e, 30); 700 701 b = ROTATE_LEFT(c, 5) + F(d, e, a) + b + W(8) + SHA1_CONST(0); /* 8 */ 702 d = ROTATE_LEFT(d, 30); 703 704 a = ROTATE_LEFT(b, 5) + F(c, d, e) + a + W(9) + SHA1_CONST(0); /* 9 */ 705 c = ROTATE_LEFT(c, 30); 706 707 e = ROTATE_LEFT(a, 5) + F(b, c, d) + e + W(10) + SHA1_CONST(0); /* 10 */ 708 b = ROTATE_LEFT(b, 30); 709 710 d = ROTATE_LEFT(e, 5) + F(a, b, c) + d + W(11) + SHA1_CONST(0); /* 11 */ 711 a = ROTATE_LEFT(a, 30); 712 713 c = ROTATE_LEFT(d, 5) + F(e, a, b) + c + W(12) + SHA1_CONST(0); /* 12 */ 714 e = ROTATE_LEFT(e, 30); 715 716 b = ROTATE_LEFT(c, 5) + F(d, e, a) + b + W(13) + SHA1_CONST(0); /* 13 */ 717 d = ROTATE_LEFT(d, 30); 718 719 a = ROTATE_LEFT(b, 5) + F(c, d, e) + a + W(14) + SHA1_CONST(0); /* 14 */ 720 c = ROTATE_LEFT(c, 30); 721 722 e = ROTATE_LEFT(a, 5) + F(b, c, d) + e + W(15) + SHA1_CONST(0); /* 15 */ 723 b = ROTATE_LEFT(b, 30); 724 725 W(0) = ROTATE_LEFT((W(13) ^ W(8) ^ W(2) ^ W(0)), 1); /* 16 */ 726 d = ROTATE_LEFT(e, 5) + F(a, b, c) + d + W(0) + SHA1_CONST(0); 727 a = ROTATE_LEFT(a, 30); 728 729 W(1) = ROTATE_LEFT((W(14) ^ W(9) ^ W(3) ^ W(1)), 1); /* 17 */ 730 c = ROTATE_LEFT(d, 5) + F(e, a, b) + c + W(1) + SHA1_CONST(0); 731 e = ROTATE_LEFT(e, 30); 732 733 W(2) = ROTATE_LEFT((W(15) ^ W(10) ^ W(4) ^ W(2)), 1); /* 18 */ 734 b = ROTATE_LEFT(c, 5) + F(d, e, a) + b + W(2) + SHA1_CONST(0); 735 d = ROTATE_LEFT(d, 30); 736 737 W(3) = ROTATE_LEFT((W(0) ^ W(11) ^ W(5) ^ W(3)), 1); /* 19 */ 738 a = ROTATE_LEFT(b, 5) + F(c, d, e) + a + W(3) + SHA1_CONST(0); 739 c = ROTATE_LEFT(c, 30); 740 741 /* round 2 */ 742 W(4) = ROTATE_LEFT((W(1) ^ W(12) ^ W(6) ^ W(4)), 1); /* 20 */ 743 e = ROTATE_LEFT(a, 5) + G(b, c, d) + e + W(4) + SHA1_CONST(1); 744 b = ROTATE_LEFT(b, 30); 745 746 W(5) = ROTATE_LEFT((W(2) ^ W(13) ^ W(7) ^ W(5)), 1); /* 21 */ 747 d = ROTATE_LEFT(e, 5) + G(a, b, c) + d + W(5) + SHA1_CONST(1); 748 a = ROTATE_LEFT(a, 30); 749 750 W(6) = ROTATE_LEFT((W(3) ^ W(14) ^ W(8) ^ W(6)), 1); /* 22 */ 751 c = ROTATE_LEFT(d, 5) + G(e, a, b) + c + W(6) + SHA1_CONST(1); 752 e = ROTATE_LEFT(e, 30); 753 754 W(7) = ROTATE_LEFT((W(4) ^ W(15) ^ W(9) ^ W(7)), 1); /* 23 */ 755 b = ROTATE_LEFT(c, 5) + G(d, e, a) + b + W(7) + SHA1_CONST(1); 756 d = ROTATE_LEFT(d, 30); 757 758 W(8) = ROTATE_LEFT((W(5) ^ W(0) ^ W(10) ^ W(8)), 1); /* 24 */ 759 a = ROTATE_LEFT(b, 5) + G(c, d, e) + a + W(8) + SHA1_CONST(1); 760 c = ROTATE_LEFT(c, 30); 761 762 W(9) = ROTATE_LEFT((W(6) ^ W(1) ^ W(11) ^ W(9)), 1); /* 25 */ 763 e = ROTATE_LEFT(a, 5) + G(b, c, d) + e + W(9) + SHA1_CONST(1); 764 b = ROTATE_LEFT(b, 30); 765 766 W(10) = ROTATE_LEFT((W(7) ^ W(2) ^ W(12) ^ W(10)), 1); /* 26 */ 767 d = ROTATE_LEFT(e, 5) + G(a, b, c) + d + W(10) + SHA1_CONST(1); 768 a = ROTATE_LEFT(a, 30); 769 770 W(11) = ROTATE_LEFT((W(8) ^ W(3) ^ W(13) ^ W(11)), 1); /* 27 */ 771 c = ROTATE_LEFT(d, 5) + G(e, a, b) + c + W(11) + SHA1_CONST(1); 772 e = ROTATE_LEFT(e, 30); 773 774 W(12) = ROTATE_LEFT((W(9) ^ W(4) ^ W(14) ^ W(12)), 1); /* 28 */ 775 b = ROTATE_LEFT(c, 5) + G(d, e, a) + b + W(12) + SHA1_CONST(1); 776 d = ROTATE_LEFT(d, 30); 777 778 W(13) = ROTATE_LEFT((W(10) ^ W(5) ^ W(15) ^ W(13)), 1); /* 29 */ 779 a = ROTATE_LEFT(b, 5) + G(c, d, e) + a + W(13) + SHA1_CONST(1); 780 c = ROTATE_LEFT(c, 30); 781 782 W(14) = ROTATE_LEFT((W(11) ^ W(6) ^ W(0) ^ W(14)), 1); /* 30 */ 783 e = ROTATE_LEFT(a, 5) + G(b, c, d) + e + W(14) + SHA1_CONST(1); 784 b = ROTATE_LEFT(b, 30); 785 786 W(15) = ROTATE_LEFT((W(12) ^ W(7) ^ W(1) ^ W(15)), 1); /* 31 */ 787 d = ROTATE_LEFT(e, 5) + G(a, b, c) + d + W(15) + SHA1_CONST(1); 788 a = ROTATE_LEFT(a, 30); 789 790 W(0) = ROTATE_LEFT((W(13) ^ W(8) ^ W(2) ^ W(0)), 1); /* 32 */ 791 c = ROTATE_LEFT(d, 5) + G(e, a, b) + c + W(0) + SHA1_CONST(1); 792 e = ROTATE_LEFT(e, 30); 793 794 W(1) = ROTATE_LEFT((W(14) ^ W(9) ^ W(3) ^ W(1)), 1); /* 33 */ 795 b = ROTATE_LEFT(c, 5) + G(d, e, a) + b + W(1) + SHA1_CONST(1); 796 d = ROTATE_LEFT(d, 30); 797 798 W(2) = ROTATE_LEFT((W(15) ^ W(10) ^ W(4) ^ W(2)), 1); /* 34 */ 799 a = ROTATE_LEFT(b, 5) + G(c, d, e) + a + W(2) + SHA1_CONST(1); 800 c = ROTATE_LEFT(c, 30); 801 802 W(3) = ROTATE_LEFT((W(0) ^ W(11) ^ W(5) ^ W(3)), 1); /* 35 */ 803 e = ROTATE_LEFT(a, 5) + G(b, c, d) + e + W(3) + SHA1_CONST(1); 804 b = ROTATE_LEFT(b, 30); 805 806 W(4) = ROTATE_LEFT((W(1) ^ W(12) ^ W(6) ^ W(4)), 1); /* 36 */ 807 d = ROTATE_LEFT(e, 5) + G(a, b, c) + d + W(4) + SHA1_CONST(1); 808 a = ROTATE_LEFT(a, 30); 809 810 W(5) = ROTATE_LEFT((W(2) ^ W(13) ^ W(7) ^ W(5)), 1); /* 37 */ 811 c = ROTATE_LEFT(d, 5) + G(e, a, b) + c + W(5) + SHA1_CONST(1); 812 e = ROTATE_LEFT(e, 30); 813 814 W(6) = ROTATE_LEFT((W(3) ^ W(14) ^ W(8) ^ W(6)), 1); /* 38 */ 815 b = ROTATE_LEFT(c, 5) + G(d, e, a) + b + W(6) + SHA1_CONST(1); 816 d = ROTATE_LEFT(d, 30); 817 818 W(7) = ROTATE_LEFT((W(4) ^ W(15) ^ W(9) ^ W(7)), 1); /* 39 */ 819 a = ROTATE_LEFT(b, 5) + G(c, d, e) + a + W(7) + SHA1_CONST(1); 820 c = ROTATE_LEFT(c, 30); 821 822 /* round 3 */ 823 W(8) = ROTATE_LEFT((W(5) ^ W(0) ^ W(10) ^ W(8)), 1); /* 40 */ 824 e = ROTATE_LEFT(a, 5) + H(b, c, d) + e + W(8) + SHA1_CONST(2); 825 b = ROTATE_LEFT(b, 30); 826 827 W(9) = ROTATE_LEFT((W(6) ^ W(1) ^ W(11) ^ W(9)), 1); /* 41 */ 828 d = ROTATE_LEFT(e, 5) + H(a, b, c) + d + W(9) + SHA1_CONST(2); 829 a = ROTATE_LEFT(a, 30); 830 831 W(10) = ROTATE_LEFT((W(7) ^ W(2) ^ W(12) ^ W(10)), 1); /* 42 */ 832 c = ROTATE_LEFT(d, 5) + H(e, a, b) + c + W(10) + SHA1_CONST(2); 833 e = ROTATE_LEFT(e, 30); 834 835 W(11) = ROTATE_LEFT((W(8) ^ W(3) ^ W(13) ^ W(11)), 1); /* 43 */ 836 b = ROTATE_LEFT(c, 5) + H(d, e, a) + b + W(11) + SHA1_CONST(2); 837 d = ROTATE_LEFT(d, 30); 838 839 W(12) = ROTATE_LEFT((W(9) ^ W(4) ^ W(14) ^ W(12)), 1); /* 44 */ 840 a = ROTATE_LEFT(b, 5) + H(c, d, e) + a + W(12) + SHA1_CONST(2); 841 c = ROTATE_LEFT(c, 30); 842 843 W(13) = ROTATE_LEFT((W(10) ^ W(5) ^ W(15) ^ W(13)), 1); /* 45 */ 844 e = ROTATE_LEFT(a, 5) + H(b, c, d) + e + W(13) + SHA1_CONST(2); 845 b = ROTATE_LEFT(b, 30); 846 847 W(14) = ROTATE_LEFT((W(11) ^ W(6) ^ W(0) ^ W(14)), 1); /* 46 */ 848 d = ROTATE_LEFT(e, 5) + H(a, b, c) + d + W(14) + SHA1_CONST(2); 849 a = ROTATE_LEFT(a, 30); 850 851 W(15) = ROTATE_LEFT((W(12) ^ W(7) ^ W(1) ^ W(15)), 1); /* 47 */ 852 c = ROTATE_LEFT(d, 5) + H(e, a, b) + c + W(15) + SHA1_CONST(2); 853 e = ROTATE_LEFT(e, 30); 854 855 W(0) = ROTATE_LEFT((W(13) ^ W(8) ^ W(2) ^ W(0)), 1); /* 48 */ 856 b = ROTATE_LEFT(c, 5) + H(d, e, a) + b + W(0) + SHA1_CONST(2); 857 d = ROTATE_LEFT(d, 30); 858 859 W(1) = ROTATE_LEFT((W(14) ^ W(9) ^ W(3) ^ W(1)), 1); /* 49 */ 860 a = ROTATE_LEFT(b, 5) + H(c, d, e) + a + W(1) + SHA1_CONST(2); 861 c = ROTATE_LEFT(c, 30); 862 863 W(2) = ROTATE_LEFT((W(15) ^ W(10) ^ W(4) ^ W(2)), 1); /* 50 */ 864 e = ROTATE_LEFT(a, 5) + H(b, c, d) + e + W(2) + SHA1_CONST(2); 865 b = ROTATE_LEFT(b, 30); 866 867 W(3) = ROTATE_LEFT((W(0) ^ W(11) ^ W(5) ^ W(3)), 1); /* 51 */ 868 d = ROTATE_LEFT(e, 5) + H(a, b, c) + d + W(3) + SHA1_CONST(2); 869 a = ROTATE_LEFT(a, 30); 870 871 W(4) = ROTATE_LEFT((W(1) ^ W(12) ^ W(6) ^ W(4)), 1); /* 52 */ 872 c = ROTATE_LEFT(d, 5) + H(e, a, b) + c + W(4) + SHA1_CONST(2); 873 e = ROTATE_LEFT(e, 30); 874 875 W(5) = ROTATE_LEFT((W(2) ^ W(13) ^ W(7) ^ W(5)), 1); /* 53 */ 876 b = ROTATE_LEFT(c, 5) + H(d, e, a) + b + W(5) + SHA1_CONST(2); 877 d = ROTATE_LEFT(d, 30); 878 879 W(6) = ROTATE_LEFT((W(3) ^ W(14) ^ W(8) ^ W(6)), 1); /* 54 */ 880 a = ROTATE_LEFT(b, 5) + H(c, d, e) + a + W(6) + SHA1_CONST(2); 881 c = ROTATE_LEFT(c, 30); 882 883 W(7) = ROTATE_LEFT((W(4) ^ W(15) ^ W(9) ^ W(7)), 1); /* 55 */ 884 e = ROTATE_LEFT(a, 5) + H(b, c, d) + e + W(7) + SHA1_CONST(2); 885 b = ROTATE_LEFT(b, 30); 886 887 W(8) = ROTATE_LEFT((W(5) ^ W(0) ^ W(10) ^ W(8)), 1); /* 56 */ 888 d = ROTATE_LEFT(e, 5) + H(a, b, c) + d + W(8) + SHA1_CONST(2); 889 a = ROTATE_LEFT(a, 30); 890 891 W(9) = ROTATE_LEFT((W(6) ^ W(1) ^ W(11) ^ W(9)), 1); /* 57 */ 892 c = ROTATE_LEFT(d, 5) + H(e, a, b) + c + W(9) + SHA1_CONST(2); 893 e = ROTATE_LEFT(e, 30); 894 895 W(10) = ROTATE_LEFT((W(7) ^ W(2) ^ W(12) ^ W(10)), 1); /* 58 */ 896 b = ROTATE_LEFT(c, 5) + H(d, e, a) + b + W(10) + SHA1_CONST(2); 897 d = ROTATE_LEFT(d, 30); 898 899 W(11) = ROTATE_LEFT((W(8) ^ W(3) ^ W(13) ^ W(11)), 1); /* 59 */ 900 a = ROTATE_LEFT(b, 5) + H(c, d, e) + a + W(11) + SHA1_CONST(2); 901 c = ROTATE_LEFT(c, 30); 902 903 /* round 4 */ 904 W(12) = ROTATE_LEFT((W(9) ^ W(4) ^ W(14) ^ W(12)), 1); /* 60 */ 905 e = ROTATE_LEFT(a, 5) + G(b, c, d) + e + W(12) + SHA1_CONST(3); 906 b = ROTATE_LEFT(b, 30); 907 908 W(13) = ROTATE_LEFT((W(10) ^ W(5) ^ W(15) ^ W(13)), 1); /* 61 */ 909 d = ROTATE_LEFT(e, 5) + G(a, b, c) + d + W(13) + SHA1_CONST(3); 910 a = ROTATE_LEFT(a, 30); 911 912 W(14) = ROTATE_LEFT((W(11) ^ W(6) ^ W(0) ^ W(14)), 1); /* 62 */ 913 c = ROTATE_LEFT(d, 5) + G(e, a, b) + c + W(14) + SHA1_CONST(3); 914 e = ROTATE_LEFT(e, 30); 915 916 W(15) = ROTATE_LEFT((W(12) ^ W(7) ^ W(1) ^ W(15)), 1); /* 63 */ 917 b = ROTATE_LEFT(c, 5) + G(d, e, a) + b + W(15) + SHA1_CONST(3); 918 d = ROTATE_LEFT(d, 30); 919 920 W(0) = ROTATE_LEFT((W(13) ^ W(8) ^ W(2) ^ W(0)), 1); /* 64 */ 921 a = ROTATE_LEFT(b, 5) + G(c, d, e) + a + W(0) + SHA1_CONST(3); 922 c = ROTATE_LEFT(c, 30); 923 924 W(1) = ROTATE_LEFT((W(14) ^ W(9) ^ W(3) ^ W(1)), 1); /* 65 */ 925 e = ROTATE_LEFT(a, 5) + G(b, c, d) + e + W(1) + SHA1_CONST(3); 926 b = ROTATE_LEFT(b, 30); 927 928 W(2) = ROTATE_LEFT((W(15) ^ W(10) ^ W(4) ^ W(2)), 1); /* 66 */ 929 d = ROTATE_LEFT(e, 5) + G(a, b, c) + d + W(2) + SHA1_CONST(3); 930 a = ROTATE_LEFT(a, 30); 931 932 W(3) = ROTATE_LEFT((W(0) ^ W(11) ^ W(5) ^ W(3)), 1); /* 67 */ 933 c = ROTATE_LEFT(d, 5) + G(e, a, b) + c + W(3) + SHA1_CONST(3); 934 e = ROTATE_LEFT(e, 30); 935 936 W(4) = ROTATE_LEFT((W(1) ^ W(12) ^ W(6) ^ W(4)), 1); /* 68 */ 937 b = ROTATE_LEFT(c, 5) + G(d, e, a) + b + W(4) + SHA1_CONST(3); 938 d = ROTATE_LEFT(d, 30); 939 940 W(5) = ROTATE_LEFT((W(2) ^ W(13) ^ W(7) ^ W(5)), 1); /* 69 */ 941 a = ROTATE_LEFT(b, 5) + G(c, d, e) + a + W(5) + SHA1_CONST(3); 942 c = ROTATE_LEFT(c, 30); 943 944 W(6) = ROTATE_LEFT((W(3) ^ W(14) ^ W(8) ^ W(6)), 1); /* 70 */ 945 e = ROTATE_LEFT(a, 5) + G(b, c, d) + e + W(6) + SHA1_CONST(3); 946 b = ROTATE_LEFT(b, 30); 947 948 W(7) = ROTATE_LEFT((W(4) ^ W(15) ^ W(9) ^ W(7)), 1); /* 71 */ 949 d = ROTATE_LEFT(e, 5) + G(a, b, c) + d + W(7) + SHA1_CONST(3); 950 a = ROTATE_LEFT(a, 30); 951 952 W(8) = ROTATE_LEFT((W(5) ^ W(0) ^ W(10) ^ W(8)), 1); /* 72 */ 953 c = ROTATE_LEFT(d, 5) + G(e, a, b) + c + W(8) + SHA1_CONST(3); 954 e = ROTATE_LEFT(e, 30); 955 956 W(9) = ROTATE_LEFT((W(6) ^ W(1) ^ W(11) ^ W(9)), 1); /* 73 */ 957 b = ROTATE_LEFT(c, 5) + G(d, e, a) + b + W(9) + SHA1_CONST(3); 958 d = ROTATE_LEFT(d, 30); 959 960 W(10) = ROTATE_LEFT((W(7) ^ W(2) ^ W(12) ^ W(10)), 1); /* 74 */ 961 a = ROTATE_LEFT(b, 5) + G(c, d, e) + a + W(10) + SHA1_CONST(3); 962 c = ROTATE_LEFT(c, 30); 963 964 W(11) = ROTATE_LEFT((W(8) ^ W(3) ^ W(13) ^ W(11)), 1); /* 75 */ 965 e = ROTATE_LEFT(a, 5) + G(b, c, d) + e + W(11) + SHA1_CONST(3); 966 b = ROTATE_LEFT(b, 30); 967 968 W(12) = ROTATE_LEFT((W(9) ^ W(4) ^ W(14) ^ W(12)), 1); /* 76 */ 969 d = ROTATE_LEFT(e, 5) + G(a, b, c) + d + W(12) + SHA1_CONST(3); 970 a = ROTATE_LEFT(a, 30); 971 972 W(13) = ROTATE_LEFT((W(10) ^ W(5) ^ W(15) ^ W(13)), 1); /* 77 */ 973 c = ROTATE_LEFT(d, 5) + G(e, a, b) + c + W(13) + SHA1_CONST(3); 974 e = ROTATE_LEFT(e, 30); 975 976 W(14) = ROTATE_LEFT((W(11) ^ W(6) ^ W(0) ^ W(14)), 1); /* 78 */ 977 b = ROTATE_LEFT(c, 5) + G(d, e, a) + b + W(14) + SHA1_CONST(3); 978 d = ROTATE_LEFT(d, 30); 979 980 W(15) = ROTATE_LEFT((W(12) ^ W(7) ^ W(1) ^ W(15)), 1); /* 79 */ 981 982 ctx->state[0] += ROTATE_LEFT(b, 5) + G(c, d, e) + a + W(15) + 983 SHA1_CONST(3); 984 ctx->state[1] += b; 985 ctx->state[2] += ROTATE_LEFT(c, 30); 986 ctx->state[3] += d; 987 ctx->state[4] += e; 988 989 /* zeroize sensitive information */ 990 W(0) = W(1) = W(2) = W(3) = W(4) = W(5) = W(6) = W(7) = W(8) = 0; 991 W(9) = W(10) = W(11) = W(12) = W(13) = W(14) = W(15) = 0; 992 } 993 #endif /* !__amd64 */ 994 995 996 /* 997 * Encode() 998 * 999 * purpose: to convert a list of numbers from little endian to big endian 1000 * input: uint8_t * : place to store the converted big endian numbers 1001 * uint32_t * : place to get numbers to convert from 1002 * size_t : the length of the input in bytes 1003 * output: void 1004 */ 1005 1006 static void 1007 Encode(uint8_t *_RESTRICT_KYWD output, const uint32_t *_RESTRICT_KYWD input, 1008 size_t len) 1009 { 1010 size_t i, j; 1011 1012 #if defined(__sparc) 1013 if (IS_P2ALIGNED(output, sizeof (uint32_t))) { 1014 for (i = 0, j = 0; j < len; i++, j += 4) { 1015 /* LINTED: pointer alignment */ 1016 *((uint32_t *)(output + j)) = input[i]; 1017 } 1018 } else { 1019 #endif /* little endian -- will work on big endian, but slowly */ 1020 for (i = 0, j = 0; j < len; i++, j += 4) { 1021 output[j] = (input[i] >> 24) & 0xff; 1022 output[j + 1] = (input[i] >> 16) & 0xff; 1023 output[j + 2] = (input[i] >> 8) & 0xff; 1024 output[j + 3] = input[i] & 0xff; 1025 } 1026 #if defined(__sparc) 1027 } 1028 #endif 1029 } 1030