xref: /titanic_41/usr/src/common/crypto/modes/ccm.c (revision 2dea4eed7ad1c66ae4770263aa2911815a8b86eb)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2010 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #ifndef _KERNEL
27 #include <strings.h>
28 #include <limits.h>
29 #include <assert.h>
30 #include <security/cryptoki.h>
31 #endif
32 
33 #include <sys/types.h>
34 #include <sys/kmem.h>
35 #include <modes/modes.h>
36 #include <sys/crypto/common.h>
37 #include <sys/crypto/impl.h>
38 #include <sys/byteorder.h>
39 
40 #if defined(__i386) || defined(__amd64)
41 #define	UNALIGNED_POINTERS_PERMITTED
42 #endif
43 
44 /*
45  * Encrypt multiple blocks of data in CCM mode.  Decrypt for CCM mode
46  * is done in another function.
47  */
48 int
49 ccm_mode_encrypt_contiguous_blocks(ccm_ctx_t *ctx, char *data, size_t length,
50     crypto_data_t *out, size_t block_size,
51     int (*encrypt_block)(const void *, const uint8_t *, uint8_t *),
52     void (*copy_block)(uint8_t *, uint8_t *),
53     void (*xor_block)(uint8_t *, uint8_t *))
54 {
55 	size_t remainder = length;
56 	size_t need;
57 	uint8_t *datap = (uint8_t *)data;
58 	uint8_t *blockp;
59 	uint8_t *lastp;
60 	void *iov_or_mp;
61 	offset_t offset;
62 	uint8_t *out_data_1;
63 	uint8_t *out_data_2;
64 	size_t out_data_1_len;
65 	uint64_t counter;
66 	uint8_t *mac_buf;
67 
68 	if (length + ctx->ccm_remainder_len < block_size) {
69 		/* accumulate bytes here and return */
70 		bcopy(datap,
71 		    (uint8_t *)ctx->ccm_remainder + ctx->ccm_remainder_len,
72 		    length);
73 		ctx->ccm_remainder_len += length;
74 		ctx->ccm_copy_to = datap;
75 		return (CRYPTO_SUCCESS);
76 	}
77 
78 	lastp = (uint8_t *)ctx->ccm_cb;
79 	if (out != NULL)
80 		crypto_init_ptrs(out, &iov_or_mp, &offset);
81 
82 	mac_buf = (uint8_t *)ctx->ccm_mac_buf;
83 
84 	do {
85 		/* Unprocessed data from last call. */
86 		if (ctx->ccm_remainder_len > 0) {
87 			need = block_size - ctx->ccm_remainder_len;
88 
89 			if (need > remainder)
90 				return (CRYPTO_DATA_LEN_RANGE);
91 
92 			bcopy(datap, &((uint8_t *)ctx->ccm_remainder)
93 			    [ctx->ccm_remainder_len], need);
94 
95 			blockp = (uint8_t *)ctx->ccm_remainder;
96 		} else {
97 			blockp = datap;
98 		}
99 
100 		/*
101 		 * do CBC MAC
102 		 *
103 		 * XOR the previous cipher block current clear block.
104 		 * mac_buf always contain previous cipher block.
105 		 */
106 		xor_block(blockp, mac_buf);
107 		encrypt_block(ctx->ccm_keysched, mac_buf, mac_buf);
108 
109 		/* ccm_cb is the counter block */
110 		encrypt_block(ctx->ccm_keysched, (uint8_t *)ctx->ccm_cb,
111 		    (uint8_t *)ctx->ccm_tmp);
112 
113 		lastp = (uint8_t *)ctx->ccm_tmp;
114 
115 		/*
116 		 * Increment counter. Counter bits are confined
117 		 * to the bottom 64 bits of the counter block.
118 		 */
119 		counter = ntohll(ctx->ccm_cb[1] & ctx->ccm_counter_mask);
120 		counter = htonll(counter + 1);
121 		counter &= ctx->ccm_counter_mask;
122 		ctx->ccm_cb[1] =
123 		    (ctx->ccm_cb[1] & ~(ctx->ccm_counter_mask)) | counter;
124 
125 		/*
126 		 * XOR encrypted counter block with the current clear block.
127 		 */
128 		xor_block(blockp, lastp);
129 
130 		ctx->ccm_processed_data_len += block_size;
131 
132 		if (out == NULL) {
133 			if (ctx->ccm_remainder_len > 0) {
134 				bcopy(blockp, ctx->ccm_copy_to,
135 				    ctx->ccm_remainder_len);
136 				bcopy(blockp + ctx->ccm_remainder_len, datap,
137 				    need);
138 			}
139 		} else {
140 			crypto_get_ptrs(out, &iov_or_mp, &offset, &out_data_1,
141 			    &out_data_1_len, &out_data_2, block_size);
142 
143 			/* copy block to where it belongs */
144 			if (out_data_1_len == block_size) {
145 				copy_block(lastp, out_data_1);
146 			} else {
147 				bcopy(lastp, out_data_1, out_data_1_len);
148 				if (out_data_2 != NULL) {
149 					bcopy(lastp + out_data_1_len,
150 					    out_data_2,
151 					    block_size - out_data_1_len);
152 				}
153 			}
154 			/* update offset */
155 			out->cd_offset += block_size;
156 		}
157 
158 		/* Update pointer to next block of data to be processed. */
159 		if (ctx->ccm_remainder_len != 0) {
160 			datap += need;
161 			ctx->ccm_remainder_len = 0;
162 		} else {
163 			datap += block_size;
164 		}
165 
166 		remainder = (size_t)&data[length] - (size_t)datap;
167 
168 		/* Incomplete last block. */
169 		if (remainder > 0 && remainder < block_size) {
170 			bcopy(datap, ctx->ccm_remainder, remainder);
171 			ctx->ccm_remainder_len = remainder;
172 			ctx->ccm_copy_to = datap;
173 			goto out;
174 		}
175 		ctx->ccm_copy_to = NULL;
176 
177 	} while (remainder > 0);
178 
179 out:
180 	return (CRYPTO_SUCCESS);
181 }
182 
183 void
184 calculate_ccm_mac(ccm_ctx_t *ctx, uint8_t *ccm_mac,
185     int (*encrypt_block)(const void *, const uint8_t *, uint8_t *))
186 {
187 	uint64_t counter;
188 	uint8_t *counterp, *mac_buf;
189 	int i;
190 
191 	mac_buf = (uint8_t *)ctx->ccm_mac_buf;
192 
193 	/* first counter block start with index 0 */
194 	counter = 0;
195 	ctx->ccm_cb[1] = (ctx->ccm_cb[1] & ~(ctx->ccm_counter_mask)) | counter;
196 
197 	counterp = (uint8_t *)ctx->ccm_tmp;
198 	encrypt_block(ctx->ccm_keysched, (uint8_t *)ctx->ccm_cb, counterp);
199 
200 	/* calculate XOR of MAC with first counter block */
201 	for (i = 0; i < ctx->ccm_mac_len; i++) {
202 		ccm_mac[i] = mac_buf[i] ^ counterp[i];
203 	}
204 }
205 
206 /* ARGSUSED */
207 int
208 ccm_encrypt_final(ccm_ctx_t *ctx, crypto_data_t *out, size_t block_size,
209     int (*encrypt_block)(const void *, const uint8_t *, uint8_t *),
210     void (*xor_block)(uint8_t *, uint8_t *))
211 {
212 	uint8_t *lastp, *mac_buf, *ccm_mac_p, *macp;
213 	void *iov_or_mp;
214 	offset_t offset;
215 	uint8_t *out_data_1;
216 	uint8_t *out_data_2;
217 	size_t out_data_1_len;
218 	int i;
219 
220 	if (out->cd_length < (ctx->ccm_remainder_len + ctx->ccm_mac_len)) {
221 		return (CRYPTO_DATA_LEN_RANGE);
222 	}
223 
224 	/*
225 	 * When we get here, the number of bytes of payload processed
226 	 * plus whatever data remains, if any,
227 	 * should be the same as the number of bytes that's being
228 	 * passed in the argument during init time.
229 	 */
230 	if ((ctx->ccm_processed_data_len + ctx->ccm_remainder_len)
231 	    != (ctx->ccm_data_len)) {
232 		return (CRYPTO_DATA_LEN_RANGE);
233 	}
234 
235 	mac_buf = (uint8_t *)ctx->ccm_mac_buf;
236 
237 	if (ctx->ccm_remainder_len > 0) {
238 
239 		/* ccm_mac_input_buf is not used for encryption */
240 		macp = (uint8_t *)ctx->ccm_mac_input_buf;
241 		bzero(macp, block_size);
242 
243 		/* copy remainder to temporary buffer */
244 		bcopy(ctx->ccm_remainder, macp, ctx->ccm_remainder_len);
245 
246 		/* calculate the CBC MAC */
247 		xor_block(macp, mac_buf);
248 		encrypt_block(ctx->ccm_keysched, mac_buf, mac_buf);
249 
250 		/* calculate the counter mode */
251 		lastp = (uint8_t *)ctx->ccm_tmp;
252 		encrypt_block(ctx->ccm_keysched, (uint8_t *)ctx->ccm_cb, lastp);
253 
254 		/* XOR with counter block */
255 		for (i = 0; i < ctx->ccm_remainder_len; i++) {
256 			macp[i] ^= lastp[i];
257 		}
258 		ctx->ccm_processed_data_len += ctx->ccm_remainder_len;
259 	}
260 
261 	/* Calculate the CCM MAC */
262 	ccm_mac_p = (uint8_t *)ctx->ccm_tmp;
263 	calculate_ccm_mac(ctx, ccm_mac_p, encrypt_block);
264 
265 	crypto_init_ptrs(out, &iov_or_mp, &offset);
266 	crypto_get_ptrs(out, &iov_or_mp, &offset, &out_data_1,
267 	    &out_data_1_len, &out_data_2,
268 	    ctx->ccm_remainder_len + ctx->ccm_mac_len);
269 
270 	if (ctx->ccm_remainder_len > 0) {
271 
272 		/* copy temporary block to where it belongs */
273 		if (out_data_2 == NULL) {
274 			/* everything will fit in out_data_1 */
275 			bcopy(macp, out_data_1, ctx->ccm_remainder_len);
276 			bcopy(ccm_mac_p, out_data_1 + ctx->ccm_remainder_len,
277 			    ctx->ccm_mac_len);
278 		} else {
279 
280 			if (out_data_1_len < ctx->ccm_remainder_len) {
281 
282 				size_t data_2_len_used;
283 
284 				bcopy(macp, out_data_1, out_data_1_len);
285 
286 				data_2_len_used = ctx->ccm_remainder_len
287 				    - out_data_1_len;
288 
289 				bcopy((uint8_t *)macp + out_data_1_len,
290 				    out_data_2, data_2_len_used);
291 				bcopy(ccm_mac_p, out_data_2 + data_2_len_used,
292 				    ctx->ccm_mac_len);
293 			} else {
294 				bcopy(macp, out_data_1, out_data_1_len);
295 				if (out_data_1_len == ctx->ccm_remainder_len) {
296 					/* mac will be in out_data_2 */
297 					bcopy(ccm_mac_p, out_data_2,
298 					    ctx->ccm_mac_len);
299 				} else {
300 					size_t len_not_used = out_data_1_len -
301 					    ctx->ccm_remainder_len;
302 					/*
303 					 * part of mac in will be in
304 					 * out_data_1, part of the mac will be
305 					 * in out_data_2
306 					 */
307 					bcopy(ccm_mac_p,
308 					    out_data_1 + ctx->ccm_remainder_len,
309 					    len_not_used);
310 					bcopy(ccm_mac_p + len_not_used,
311 					    out_data_2,
312 					    ctx->ccm_mac_len - len_not_used);
313 
314 				}
315 			}
316 		}
317 	} else {
318 		/* copy block to where it belongs */
319 		bcopy(ccm_mac_p, out_data_1, out_data_1_len);
320 		if (out_data_2 != NULL) {
321 			bcopy(ccm_mac_p + out_data_1_len, out_data_2,
322 			    block_size - out_data_1_len);
323 		}
324 	}
325 	out->cd_offset += ctx->ccm_remainder_len + ctx->ccm_mac_len;
326 	ctx->ccm_remainder_len = 0;
327 	return (CRYPTO_SUCCESS);
328 }
329 
330 /*
331  * This will only deal with decrypting the last block of the input that
332  * might not be a multiple of block length.
333  */
334 void
335 ccm_decrypt_incomplete_block(ccm_ctx_t *ctx,
336     int (*encrypt_block)(const void *, const uint8_t *, uint8_t *))
337 {
338 	uint8_t *datap, *outp, *counterp;
339 	int i;
340 
341 	datap = (uint8_t *)ctx->ccm_remainder;
342 	outp = &((ctx->ccm_pt_buf)[ctx->ccm_processed_data_len]);
343 
344 	counterp = (uint8_t *)ctx->ccm_tmp;
345 	encrypt_block(ctx->ccm_keysched, (uint8_t *)ctx->ccm_cb, counterp);
346 
347 	/* XOR with counter block */
348 	for (i = 0; i < ctx->ccm_remainder_len; i++) {
349 		outp[i] = datap[i] ^ counterp[i];
350 	}
351 }
352 
353 /*
354  * This will decrypt the cipher text.  However, the plaintext won't be
355  * returned to the caller.  It will be returned when decrypt_final() is
356  * called if the MAC matches
357  */
358 /* ARGSUSED */
359 int
360 ccm_mode_decrypt_contiguous_blocks(ccm_ctx_t *ctx, char *data, size_t length,
361     crypto_data_t *out, size_t block_size,
362     int (*encrypt_block)(const void *, const uint8_t *, uint8_t *),
363     void (*copy_block)(uint8_t *, uint8_t *),
364     void (*xor_block)(uint8_t *, uint8_t *))
365 {
366 	size_t remainder = length;
367 	size_t need;
368 	uint8_t *datap = (uint8_t *)data;
369 	uint8_t *blockp;
370 	uint8_t *cbp;
371 	uint64_t counter;
372 	size_t pt_len, total_decrypted_len, mac_len, pm_len, pd_len;
373 	uint8_t *resultp;
374 
375 
376 	pm_len = ctx->ccm_processed_mac_len;
377 
378 	if (pm_len > 0) {
379 		uint8_t *tmp;
380 		/*
381 		 * all ciphertext has been processed, just waiting for
382 		 * part of the value of the mac
383 		 */
384 		if ((pm_len + length) > ctx->ccm_mac_len) {
385 			return (CRYPTO_ENCRYPTED_DATA_LEN_RANGE);
386 		}
387 		tmp = (uint8_t *)ctx->ccm_mac_input_buf;
388 
389 		bcopy(datap, tmp + pm_len, length);
390 
391 		ctx->ccm_processed_mac_len += length;
392 		return (CRYPTO_SUCCESS);
393 	}
394 
395 	/*
396 	 * If we decrypt the given data, what total amount of data would
397 	 * have been decrypted?
398 	 */
399 	pd_len = ctx->ccm_processed_data_len;
400 	total_decrypted_len = pd_len + length + ctx->ccm_remainder_len;
401 
402 	if (total_decrypted_len >
403 	    (ctx->ccm_data_len + ctx->ccm_mac_len)) {
404 		return (CRYPTO_ENCRYPTED_DATA_LEN_RANGE);
405 	}
406 
407 	pt_len = ctx->ccm_data_len;
408 
409 	if (total_decrypted_len > pt_len) {
410 		/*
411 		 * part of the input will be the MAC, need to isolate that
412 		 * to be dealt with later.  The left-over data in
413 		 * ccm_remainder_len from last time will not be part of the
414 		 * MAC.  Otherwise, it would have already been taken out
415 		 * when this call is made last time.
416 		 */
417 		size_t pt_part = pt_len - pd_len - ctx->ccm_remainder_len;
418 
419 		mac_len = length - pt_part;
420 
421 		ctx->ccm_processed_mac_len = mac_len;
422 		bcopy(data + pt_part, ctx->ccm_mac_input_buf, mac_len);
423 
424 		if (pt_part + ctx->ccm_remainder_len < block_size) {
425 			/*
426 			 * since this is last of the ciphertext, will
427 			 * just decrypt with it here
428 			 */
429 			bcopy(datap, &((uint8_t *)ctx->ccm_remainder)
430 			    [ctx->ccm_remainder_len], pt_part);
431 			ctx->ccm_remainder_len += pt_part;
432 			ccm_decrypt_incomplete_block(ctx, encrypt_block);
433 			ctx->ccm_remainder_len = 0;
434 			ctx->ccm_processed_data_len += pt_part;
435 			return (CRYPTO_SUCCESS);
436 		} else {
437 			/* let rest of the code handle this */
438 			length = pt_part;
439 		}
440 	} else if (length + ctx->ccm_remainder_len < block_size) {
441 			/* accumulate bytes here and return */
442 		bcopy(datap,
443 		    (uint8_t *)ctx->ccm_remainder + ctx->ccm_remainder_len,
444 		    length);
445 		ctx->ccm_remainder_len += length;
446 		ctx->ccm_copy_to = datap;
447 		return (CRYPTO_SUCCESS);
448 	}
449 
450 	do {
451 		/* Unprocessed data from last call. */
452 		if (ctx->ccm_remainder_len > 0) {
453 			need = block_size - ctx->ccm_remainder_len;
454 
455 			if (need > remainder)
456 				return (CRYPTO_ENCRYPTED_DATA_LEN_RANGE);
457 
458 			bcopy(datap, &((uint8_t *)ctx->ccm_remainder)
459 			    [ctx->ccm_remainder_len], need);
460 
461 			blockp = (uint8_t *)ctx->ccm_remainder;
462 		} else {
463 			blockp = datap;
464 		}
465 
466 		/* Calculate the counter mode, ccm_cb is the counter block */
467 		cbp = (uint8_t *)ctx->ccm_tmp;
468 		encrypt_block(ctx->ccm_keysched, (uint8_t *)ctx->ccm_cb, cbp);
469 
470 		/*
471 		 * Increment counter.
472 		 * Counter bits are confined to the bottom 64 bits
473 		 */
474 		counter = ntohll(ctx->ccm_cb[1] & ctx->ccm_counter_mask);
475 		counter = htonll(counter + 1);
476 		counter &= ctx->ccm_counter_mask;
477 		ctx->ccm_cb[1] =
478 		    (ctx->ccm_cb[1] & ~(ctx->ccm_counter_mask)) | counter;
479 
480 		/* XOR with the ciphertext */
481 		xor_block(blockp, cbp);
482 
483 		/* Copy the plaintext to the "holding buffer" */
484 		resultp = (uint8_t *)ctx->ccm_pt_buf +
485 		    ctx->ccm_processed_data_len;
486 		copy_block(cbp, resultp);
487 
488 		ctx->ccm_processed_data_len += block_size;
489 
490 		ctx->ccm_lastp = blockp;
491 
492 		/* Update pointer to next block of data to be processed. */
493 		if (ctx->ccm_remainder_len != 0) {
494 			datap += need;
495 			ctx->ccm_remainder_len = 0;
496 		} else {
497 			datap += block_size;
498 		}
499 
500 		remainder = (size_t)&data[length] - (size_t)datap;
501 
502 		/* Incomplete last block */
503 		if (remainder > 0 && remainder < block_size) {
504 			bcopy(datap, ctx->ccm_remainder, remainder);
505 			ctx->ccm_remainder_len = remainder;
506 			ctx->ccm_copy_to = datap;
507 			if (ctx->ccm_processed_mac_len > 0) {
508 				/*
509 				 * not expecting anymore ciphertext, just
510 				 * compute plaintext for the remaining input
511 				 */
512 				ccm_decrypt_incomplete_block(ctx,
513 				    encrypt_block);
514 				ctx->ccm_processed_data_len += remainder;
515 				ctx->ccm_remainder_len = 0;
516 			}
517 			goto out;
518 		}
519 		ctx->ccm_copy_to = NULL;
520 
521 	} while (remainder > 0);
522 
523 out:
524 	return (CRYPTO_SUCCESS);
525 }
526 
527 int
528 ccm_decrypt_final(ccm_ctx_t *ctx, crypto_data_t *out, size_t block_size,
529     int (*encrypt_block)(const void *, const uint8_t *, uint8_t *),
530     void (*copy_block)(uint8_t *, uint8_t *),
531     void (*xor_block)(uint8_t *, uint8_t *))
532 {
533 	size_t mac_remain, pt_len;
534 	uint8_t *pt, *mac_buf, *macp, *ccm_mac_p;
535 	int rv;
536 
537 	pt_len = ctx->ccm_data_len;
538 
539 	/* Make sure output buffer can fit all of the plaintext */
540 	if (out->cd_length < pt_len) {
541 		return (CRYPTO_DATA_LEN_RANGE);
542 	}
543 
544 	pt = ctx->ccm_pt_buf;
545 	mac_remain = ctx->ccm_processed_data_len;
546 	mac_buf = (uint8_t *)ctx->ccm_mac_buf;
547 
548 	macp = (uint8_t *)ctx->ccm_tmp;
549 
550 	while (mac_remain > 0) {
551 
552 		if (mac_remain < block_size) {
553 			bzero(macp, block_size);
554 			bcopy(pt, macp, mac_remain);
555 			mac_remain = 0;
556 		} else {
557 			copy_block(pt, macp);
558 			mac_remain -= block_size;
559 			pt += block_size;
560 		}
561 
562 		/* calculate the CBC MAC */
563 		xor_block(macp, mac_buf);
564 		encrypt_block(ctx->ccm_keysched, mac_buf, mac_buf);
565 	}
566 
567 	/* Calculate the CCM MAC */
568 	ccm_mac_p = (uint8_t *)ctx->ccm_tmp;
569 	calculate_ccm_mac((ccm_ctx_t *)ctx, ccm_mac_p, encrypt_block);
570 
571 	/* compare the input CCM MAC value with what we calculated */
572 	if (bcmp(ctx->ccm_mac_input_buf, ccm_mac_p, ctx->ccm_mac_len)) {
573 		/* They don't match */
574 		return (CRYPTO_INVALID_MAC);
575 	} else {
576 		rv = crypto_put_output_data(ctx->ccm_pt_buf, out, pt_len);
577 		if (rv != CRYPTO_SUCCESS)
578 			return (rv);
579 		out->cd_offset += pt_len;
580 	}
581 	return (CRYPTO_SUCCESS);
582 }
583 
584 int
585 ccm_validate_args(CK_AES_CCM_PARAMS *ccm_param, boolean_t is_encrypt_init)
586 {
587 	size_t macSize, nonceSize;
588 	uint8_t q;
589 	uint64_t maxValue;
590 
591 	/*
592 	 * Check the length of the MAC.  The only valid
593 	 * lengths for the MAC are: 4, 6, 8, 10, 12, 14, 16
594 	 */
595 	macSize = ccm_param->ulMACSize;
596 	if ((macSize < 4) || (macSize > 16) || ((macSize % 2) != 0)) {
597 		return (CRYPTO_MECHANISM_PARAM_INVALID);
598 	}
599 
600 	/* Check the nonce length.  Valid values are 7, 8, 9, 10, 11, 12, 13 */
601 	nonceSize = ccm_param->ulNonceSize;
602 	if ((nonceSize < 7) || (nonceSize > 13)) {
603 		return (CRYPTO_MECHANISM_PARAM_INVALID);
604 	}
605 
606 	/* q is the length of the field storing the length, in bytes */
607 	q = (uint8_t)((15 - nonceSize) & 0xFF);
608 
609 
610 	/*
611 	 * If it is decrypt, need to make sure size of ciphertext is at least
612 	 * bigger than MAC len
613 	 */
614 	if ((!is_encrypt_init) && (ccm_param->ulDataSize < macSize)) {
615 		return (CRYPTO_MECHANISM_PARAM_INVALID);
616 	}
617 
618 	/*
619 	 * Check to make sure the length of the payload is within the
620 	 * range of values allowed by q
621 	 */
622 	if (q < 8) {
623 		maxValue = (1ULL << (q * 8)) - 1;
624 	} else {
625 		maxValue = ULONG_MAX;
626 	}
627 
628 	if (ccm_param->ulDataSize > maxValue) {
629 		return (CRYPTO_MECHANISM_PARAM_INVALID);
630 	}
631 	return (CRYPTO_SUCCESS);
632 }
633 
634 /*
635  * Format the first block used in CBC-MAC (B0) and the initial counter
636  * block based on formatting functions and counter generation functions
637  * specified in RFC 3610 and NIST publication 800-38C, appendix A
638  *
639  * b0 is the first block used in CBC-MAC
640  * cb0 is the first counter block
641  *
642  * It's assumed that the arguments b0 and cb0 are preallocated AES blocks
643  *
644  */
645 static void
646 ccm_format_initial_blocks(uchar_t *nonce, ulong_t nonceSize,
647     ulong_t authDataSize, uint8_t *b0, ccm_ctx_t *aes_ctx)
648 {
649 	uint64_t payloadSize;
650 	uint8_t t, q, have_adata = 0;
651 	size_t limit;
652 	int i, j, k;
653 	uint64_t mask = 0;
654 	uint8_t *cb;
655 
656 	q = (uint8_t)((15 - nonceSize) & 0xFF);
657 	t = (uint8_t)((aes_ctx->ccm_mac_len) & 0xFF);
658 
659 	/* Construct the first octet of b0 */
660 	if (authDataSize > 0) {
661 		have_adata = 1;
662 	}
663 	b0[0] = (have_adata << 6) | (((t - 2)  / 2) << 3) | (q - 1);
664 
665 	/* copy the nonce value into b0 */
666 	bcopy(nonce, &(b0[1]), nonceSize);
667 
668 	/* store the length of the payload into b0 */
669 	bzero(&(b0[1+nonceSize]), q);
670 
671 	payloadSize = aes_ctx->ccm_data_len;
672 	limit = 8 < q ? 8 : q;
673 
674 	for (i = 0, j = 0, k = 15; i < limit; i++, j += 8, k--) {
675 		b0[k] = (uint8_t)((payloadSize >> j) & 0xFF);
676 	}
677 
678 	/* format the counter block */
679 
680 	cb = (uint8_t *)aes_ctx->ccm_cb;
681 
682 	cb[0] = 0x07 & (q-1); /* first byte */
683 
684 	/* copy the nonce value into the counter block */
685 	bcopy(nonce, &(cb[1]), nonceSize);
686 
687 	bzero(&(cb[1+nonceSize]), q);
688 
689 	/* Create the mask for the counter field based on the size of nonce */
690 	q <<= 3;
691 	while (q-- > 0) {
692 		mask |= (1ULL << q);
693 	}
694 
695 	aes_ctx->ccm_counter_mask = htonll(mask);
696 
697 	/*
698 	 * During calculation, we start using counter block 1, we will
699 	 * set it up right here.
700 	 * We can just set the last byte to have the value 1, because
701 	 * even with the biggest nonce of 13, the last byte of the
702 	 * counter block will be used for the counter value.
703 	 */
704 	cb[15] = 0x01;
705 }
706 
707 /*
708  * Encode the length of the associated data as
709  * specified in RFC 3610 and NIST publication 800-38C, appendix A
710  */
711 static void
712 encode_adata_len(ulong_t auth_data_len, uint8_t *encoded, size_t *encoded_len)
713 {
714 #ifdef UNALIGNED_POINTERS_PERMITTED
715 	uint32_t	*lencoded_ptr;
716 #ifdef _LP64
717 	uint64_t	*llencoded_ptr;
718 #endif
719 #endif	/* UNALIGNED_POINTERS_PERMITTED */
720 
721 	if (auth_data_len < ((1ULL<<16) - (1ULL<<8))) {
722 		/* 0 < a < (2^16-2^8) */
723 		*encoded_len = 2;
724 		encoded[0] = (auth_data_len & 0xff00) >> 8;
725 		encoded[1] = auth_data_len & 0xff;
726 
727 	} else if ((auth_data_len >= ((1ULL<<16) - (1ULL<<8))) &&
728 	    (auth_data_len < (1ULL << 31))) {
729 		/* (2^16-2^8) <= a < 2^32 */
730 		*encoded_len = 6;
731 		encoded[0] = 0xff;
732 		encoded[1] = 0xfe;
733 #ifdef UNALIGNED_POINTERS_PERMITTED
734 		lencoded_ptr = (uint32_t *)(void *)&encoded[2];
735 		*lencoded_ptr = htonl(auth_data_len);
736 #else
737 		encoded[2] = (auth_data_len & 0xff000000) >> 24;
738 		encoded[3] = (auth_data_len & 0xff0000) >> 16;
739 		encoded[4] = (auth_data_len & 0xff00) >> 8;
740 		encoded[5] = auth_data_len & 0xff;
741 #endif	/* UNALIGNED_POINTERS_PERMITTED */
742 
743 #ifdef _LP64
744 	} else {
745 		/* 2^32 <= a < 2^64 */
746 		*encoded_len = 10;
747 		encoded[0] = 0xff;
748 		encoded[1] = 0xff;
749 #ifdef UNALIGNED_POINTERS_PERMITTED
750 		llencoded_ptr = (uint64_t *)(void *)&encoded[2];
751 		*llencoded_ptr = htonl(auth_data_len);
752 #else
753 		encoded[2] = (auth_data_len & 0xff00000000000000) >> 56;
754 		encoded[3] = (auth_data_len & 0xff000000000000) >> 48;
755 		encoded[4] = (auth_data_len & 0xff0000000000) >> 40;
756 		encoded[5] = (auth_data_len & 0xff00000000) >> 32;
757 		encoded[6] = (auth_data_len & 0xff000000) >> 24;
758 		encoded[7] = (auth_data_len & 0xff0000) >> 16;
759 		encoded[8] = (auth_data_len & 0xff00) >> 8;
760 		encoded[9] = auth_data_len & 0xff;
761 #endif	/* UNALIGNED_POINTERS_PERMITTED */
762 #endif	/* _LP64 */
763 	}
764 }
765 
766 /*
767  * The following function should be call at encrypt or decrypt init time
768  * for AES CCM mode.
769  */
770 int
771 ccm_init(ccm_ctx_t *ctx, unsigned char *nonce, size_t nonce_len,
772     unsigned char *auth_data, size_t auth_data_len, size_t block_size,
773     int (*encrypt_block)(const void *, const uint8_t *, uint8_t *),
774     void (*xor_block)(uint8_t *, uint8_t *))
775 {
776 	uint8_t *mac_buf, *datap, *ivp, *authp;
777 	size_t remainder, processed;
778 	uint8_t encoded_a[10]; /* max encoded auth data length is 10 octets */
779 	size_t encoded_a_len = 0;
780 
781 	mac_buf = (uint8_t *)&(ctx->ccm_mac_buf);
782 
783 	/*
784 	 * Format the 1st block for CBC-MAC and construct the
785 	 * 1st counter block.
786 	 *
787 	 * aes_ctx->ccm_iv is used for storing the counter block
788 	 * mac_buf will store b0 at this time.
789 	 */
790 	ccm_format_initial_blocks(nonce, nonce_len,
791 	    auth_data_len, mac_buf, ctx);
792 
793 	/* The IV for CBC MAC for AES CCM mode is always zero */
794 	ivp = (uint8_t *)ctx->ccm_tmp;
795 	bzero(ivp, block_size);
796 
797 	xor_block(ivp, mac_buf);
798 
799 	/* encrypt the nonce */
800 	encrypt_block(ctx->ccm_keysched, mac_buf, mac_buf);
801 
802 	/* take care of the associated data, if any */
803 	if (auth_data_len == 0) {
804 		return (CRYPTO_SUCCESS);
805 	}
806 
807 	encode_adata_len(auth_data_len, encoded_a, &encoded_a_len);
808 
809 	remainder = auth_data_len;
810 
811 	/* 1st block: it contains encoded associated data, and some data */
812 	authp = (uint8_t *)ctx->ccm_tmp;
813 	bzero(authp, block_size);
814 	bcopy(encoded_a, authp, encoded_a_len);
815 	processed = block_size - encoded_a_len;
816 	if (processed > auth_data_len) {
817 		/* in case auth_data is very small */
818 		processed = auth_data_len;
819 	}
820 	bcopy(auth_data, authp+encoded_a_len, processed);
821 	/* xor with previous buffer */
822 	xor_block(authp, mac_buf);
823 	encrypt_block(ctx->ccm_keysched, mac_buf, mac_buf);
824 	remainder -= processed;
825 	if (remainder == 0) {
826 		/* a small amount of associated data, it's all done now */
827 		return (CRYPTO_SUCCESS);
828 	}
829 
830 	do {
831 		if (remainder < block_size) {
832 			/*
833 			 * There's not a block full of data, pad rest of
834 			 * buffer with zero
835 			 */
836 			bzero(authp, block_size);
837 			bcopy(&(auth_data[processed]), authp, remainder);
838 			datap = (uint8_t *)authp;
839 			remainder = 0;
840 		} else {
841 			datap = (uint8_t *)(&(auth_data[processed]));
842 			processed += block_size;
843 			remainder -= block_size;
844 		}
845 
846 		xor_block(datap, mac_buf);
847 		encrypt_block(ctx->ccm_keysched, mac_buf, mac_buf);
848 
849 	} while (remainder > 0);
850 
851 	return (CRYPTO_SUCCESS);
852 }
853 
854 int
855 ccm_init_ctx(ccm_ctx_t *ccm_ctx, char *param, int kmflag,
856     boolean_t is_encrypt_init, size_t block_size,
857     int (*encrypt_block)(const void *, const uint8_t *, uint8_t *),
858     void (*xor_block)(uint8_t *, uint8_t *))
859 {
860 	int rv;
861 	CK_AES_CCM_PARAMS *ccm_param;
862 
863 	if (param != NULL) {
864 		ccm_param = (CK_AES_CCM_PARAMS *)(void *)param;
865 
866 		if ((rv = ccm_validate_args(ccm_param,
867 		    is_encrypt_init)) != 0) {
868 			return (rv);
869 		}
870 
871 		ccm_ctx->ccm_mac_len = ccm_param->ulMACSize;
872 		if (is_encrypt_init) {
873 			ccm_ctx->ccm_data_len = ccm_param->ulDataSize;
874 		} else {
875 			ccm_ctx->ccm_data_len =
876 			    ccm_param->ulDataSize - ccm_ctx->ccm_mac_len;
877 			ccm_ctx->ccm_processed_mac_len = 0;
878 		}
879 		ccm_ctx->ccm_processed_data_len = 0;
880 
881 		ccm_ctx->ccm_flags |= CCM_MODE;
882 	} else {
883 		rv = CRYPTO_MECHANISM_PARAM_INVALID;
884 		goto out;
885 	}
886 
887 	if (ccm_init(ccm_ctx, ccm_param->nonce, ccm_param->ulNonceSize,
888 	    ccm_param->authData, ccm_param->ulAuthDataSize, block_size,
889 	    encrypt_block, xor_block) != 0) {
890 		rv = CRYPTO_MECHANISM_PARAM_INVALID;
891 		goto out;
892 	}
893 	if (!is_encrypt_init) {
894 		/* allocate buffer for storing decrypted plaintext */
895 #ifdef _KERNEL
896 		ccm_ctx->ccm_pt_buf = kmem_alloc(ccm_ctx->ccm_data_len,
897 		    kmflag);
898 #else
899 		ccm_ctx->ccm_pt_buf = malloc(ccm_ctx->ccm_data_len);
900 #endif
901 		if (ccm_ctx->ccm_pt_buf == NULL) {
902 			rv = CRYPTO_HOST_MEMORY;
903 		}
904 	}
905 out:
906 	return (rv);
907 }
908 
909 void *
910 ccm_alloc_ctx(int kmflag)
911 {
912 	ccm_ctx_t *ccm_ctx;
913 
914 #ifdef _KERNEL
915 	if ((ccm_ctx = kmem_zalloc(sizeof (ccm_ctx_t), kmflag)) == NULL)
916 #else
917 	if ((ccm_ctx = calloc(1, sizeof (ccm_ctx_t))) == NULL)
918 #endif
919 		return (NULL);
920 
921 	ccm_ctx->ccm_flags = CCM_MODE;
922 	return (ccm_ctx);
923 }
924