1 /* 2 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 3 * Use is subject to license terms. 4 */ 5 6 /* 7 * Cleaned-up and optimized version of MD5, based on the reference 8 * implementation provided in RFC 1321. See RSA Copyright information 9 * below. 10 */ 11 12 #pragma ident "%Z%%M% %I% %E% SMI" 13 14 /* 15 * MD5C.C - RSA Data Security, Inc., MD5 message-digest algorithm 16 */ 17 18 /* 19 * Copyright (C) 1991-2, RSA Data Security, Inc. Created 1991. All 20 * rights reserved. 21 * 22 * License to copy and use this software is granted provided that it 23 * is identified as the "RSA Data Security, Inc. MD5 Message-Digest 24 * Algorithm" in all material mentioning or referencing this software 25 * or this function. 26 * 27 * License is also granted to make and use derivative works provided 28 * that such works are identified as "derived from the RSA Data 29 * Security, Inc. MD5 Message-Digest Algorithm" in all material 30 * mentioning or referencing the derived work. 31 * 32 * RSA Data Security, Inc. makes no representations concerning either 33 * the merchantability of this software or the suitability of this 34 * software for any particular purpose. It is provided "as is" 35 * without express or implied warranty of any kind. 36 * 37 * These notices must be retained in any copies of any part of this 38 * documentation and/or software. 39 */ 40 41 #include <sys/types.h> 42 #include <sys/md5.h> 43 #include <sys/md5_consts.h> /* MD5_CONST() optimization */ 44 #include "md5_byteswap.h" 45 #if !defined(_KERNEL) || defined(_BOOT) 46 #include <strings.h> 47 #endif /* !_KERNEL || _BOOT */ 48 49 #ifdef _KERNEL 50 #include <sys/systm.h> 51 #endif /* _KERNEL */ 52 53 static void Encode(uint8_t *, const uint32_t *, size_t); 54 static void MD5Transform(uint32_t, uint32_t, uint32_t, uint32_t, MD5_CTX *, 55 const uint8_t [64]); 56 57 static uint8_t PADDING[64] = { 0x80, /* all zeros */ }; 58 59 /* 60 * F, G, H and I are the basic MD5 functions. 61 */ 62 #define F(b, c, d) (((b) & (c)) | ((~b) & (d))) 63 #define G(b, c, d) (((b) & (d)) | ((c) & (~d))) 64 #define H(b, c, d) ((b) ^ (c) ^ (d)) 65 #define I(b, c, d) ((c) ^ ((b) | (~d))) 66 67 /* 68 * ROTATE_LEFT rotates x left n bits. 69 */ 70 #define ROTATE_LEFT(x, n) \ 71 (((x) << (n)) | ((x) >> ((sizeof (x) << 3) - (n)))) 72 73 /* 74 * FF, GG, HH, and II transformations for rounds 1, 2, 3, and 4. 75 * Rotation is separate from addition to prevent recomputation. 76 */ 77 78 #define FF(a, b, c, d, x, s, ac) { \ 79 (a) += F((b), (c), (d)) + (x) + ((unsigned long long)(ac)); \ 80 (a) = ROTATE_LEFT((a), (s)); \ 81 (a) += (b); \ 82 } 83 84 #define GG(a, b, c, d, x, s, ac) { \ 85 (a) += G((b), (c), (d)) + (x) + ((unsigned long long)(ac)); \ 86 (a) = ROTATE_LEFT((a), (s)); \ 87 (a) += (b); \ 88 } 89 90 #define HH(a, b, c, d, x, s, ac) { \ 91 (a) += H((b), (c), (d)) + (x) + ((unsigned long long)(ac)); \ 92 (a) = ROTATE_LEFT((a), (s)); \ 93 (a) += (b); \ 94 } 95 96 #define II(a, b, c, d, x, s, ac) { \ 97 (a) += I((b), (c), (d)) + (x) + ((unsigned long long)(ac)); \ 98 (a) = ROTATE_LEFT((a), (s)); \ 99 (a) += (b); \ 100 } 101 102 /* 103 * Loading 32-bit constants on a RISC is expensive since it involves both a 104 * `sethi' and an `or'. thus, we instead have the compiler generate `ld's to 105 * load the constants from an array called `md5_consts'. however, on intel 106 * (and other CISC processors), it is cheaper to load the constant 107 * directly. thus, the c code in MD5Transform() uses the macro MD5_CONST() 108 * which either expands to a constant or an array reference, depending on the 109 * architecture the code is being compiled for. 110 * 111 * Right now, i386 and amd64 are the CISC exceptions. 112 * If we get another CISC ISA, we'll have to change the ifdef. 113 */ 114 115 #if defined(__i386) || defined(__amd64) 116 117 #define MD5_CONST(x) (MD5_CONST_ ## x) 118 #define MD5_CONST_e(x) MD5_CONST(x) 119 #define MD5_CONST_o(x) MD5_CONST(x) 120 121 #else 122 /* 123 * sparc/RISC optimization: 124 * 125 * while it is somewhat counter-intuitive, on sparc (and presumably other RISC 126 * machines), it is more efficient to place all the constants used in this 127 * function in an array and load the values out of the array than to manually 128 * load the constants. this is because setting a register to a 32-bit value 129 * takes two ops in most cases: a `sethi' and an `or', but loading a 32-bit 130 * value from memory only takes one `ld' (or `lduw' on v9). while this 131 * increases memory usage, the compiler can find enough other things to do 132 * while waiting to keep the pipeline does not stall. additionally, it is 133 * likely that many of these constants are cached so that later accesses do 134 * not even go out to the bus. 135 * 136 * this array is declared `static' to keep the compiler from having to 137 * bcopy() this array onto the stack frame of MD5Transform() each time it is 138 * called -- which is unacceptably expensive. 139 * 140 * the `const' is to ensure that callers are good citizens and do not try to 141 * munge the array. since these routines are going to be called from inside 142 * multithreaded kernelland, this is a good safety check. -- `constants' will 143 * end up in .rodata. 144 * 145 * unfortunately, loading from an array in this manner hurts performance under 146 * intel (and presumably other CISC machines). so, there is a macro, 147 * MD5_CONST(), used in MD5Transform(), that either expands to a reference to 148 * this array, or to the actual constant, depending on what platform this code 149 * is compiled for. 150 */ 151 152 #ifdef sun4v 153 154 /* 155 * Going to load these consts in 8B chunks, so need to enforce 8B alignment 156 */ 157 158 /* CSTYLED */ 159 #pragma align 64 (md5_consts) 160 #define _MD5_CHECK_ALIGNMENT 161 162 #endif /* sun4v */ 163 164 static const uint32_t md5_consts[] = { 165 MD5_CONST_0, MD5_CONST_1, MD5_CONST_2, MD5_CONST_3, 166 MD5_CONST_4, MD5_CONST_5, MD5_CONST_6, MD5_CONST_7, 167 MD5_CONST_8, MD5_CONST_9, MD5_CONST_10, MD5_CONST_11, 168 MD5_CONST_12, MD5_CONST_13, MD5_CONST_14, MD5_CONST_15, 169 MD5_CONST_16, MD5_CONST_17, MD5_CONST_18, MD5_CONST_19, 170 MD5_CONST_20, MD5_CONST_21, MD5_CONST_22, MD5_CONST_23, 171 MD5_CONST_24, MD5_CONST_25, MD5_CONST_26, MD5_CONST_27, 172 MD5_CONST_28, MD5_CONST_29, MD5_CONST_30, MD5_CONST_31, 173 MD5_CONST_32, MD5_CONST_33, MD5_CONST_34, MD5_CONST_35, 174 MD5_CONST_36, MD5_CONST_37, MD5_CONST_38, MD5_CONST_39, 175 MD5_CONST_40, MD5_CONST_41, MD5_CONST_42, MD5_CONST_43, 176 MD5_CONST_44, MD5_CONST_45, MD5_CONST_46, MD5_CONST_47, 177 MD5_CONST_48, MD5_CONST_49, MD5_CONST_50, MD5_CONST_51, 178 MD5_CONST_52, MD5_CONST_53, MD5_CONST_54, MD5_CONST_55, 179 MD5_CONST_56, MD5_CONST_57, MD5_CONST_58, MD5_CONST_59, 180 MD5_CONST_60, MD5_CONST_61, MD5_CONST_62, MD5_CONST_63 181 }; 182 183 184 #ifdef sun4v 185 /* 186 * To reduce the number of loads, load consts in 64-bit 187 * chunks and then split. 188 * 189 * No need to mask upper 32-bits, as just interested in 190 * low 32-bits (saves an & operation and means that this 191 * optimization doesn't increases the icount. 192 */ 193 #define MD5_CONST_e(x) (md5_consts64[x/2] >> 32) 194 #define MD5_CONST_o(x) (md5_consts64[x/2]) 195 196 #else 197 198 #define MD5_CONST_e(x) (md5_consts[x]) 199 #define MD5_CONST_o(x) (md5_consts[x]) 200 201 #endif /* sun4v */ 202 203 #endif 204 205 /* 206 * MD5Init() 207 * 208 * purpose: initializes the md5 context and begins and md5 digest operation 209 * input: MD5_CTX * : the context to initialize. 210 * output: void 211 */ 212 213 void 214 MD5Init(MD5_CTX *ctx) 215 { 216 ctx->count[0] = ctx->count[1] = 0; 217 218 /* load magic initialization constants */ 219 ctx->state[0] = MD5_INIT_CONST_1; 220 ctx->state[1] = MD5_INIT_CONST_2; 221 ctx->state[2] = MD5_INIT_CONST_3; 222 ctx->state[3] = MD5_INIT_CONST_4; 223 } 224 225 /* 226 * MD5Update() 227 * 228 * purpose: continues an md5 digest operation, using the message block 229 * to update the context. 230 * input: MD5_CTX * : the context to update 231 * uint8_t * : the message block 232 * uint32_t : the length of the message block in bytes 233 * output: void 234 * 235 * MD5 crunches in 64-byte blocks. All numeric constants here are related to 236 * that property of MD5. 237 */ 238 239 void 240 MD5Update(MD5_CTX *ctx, const void *inpp, unsigned int input_len) 241 { 242 uint32_t i, buf_index, buf_len; 243 #ifdef sun4v 244 uint32_t old_asi; 245 #endif /* sun4v */ 246 const unsigned char *input = (const unsigned char *)inpp; 247 248 /* compute (number of bytes computed so far) mod 64 */ 249 buf_index = (ctx->count[0] >> 3) & 0x3F; 250 251 /* update number of bits hashed into this MD5 computation so far */ 252 if ((ctx->count[0] += (input_len << 3)) < (input_len << 3)) 253 ctx->count[1]++; 254 ctx->count[1] += (input_len >> 29); 255 256 buf_len = 64 - buf_index; 257 258 /* transform as many times as possible */ 259 i = 0; 260 if (input_len >= buf_len) { 261 262 /* 263 * general optimization: 264 * 265 * only do initial bcopy() and MD5Transform() if 266 * buf_index != 0. if buf_index == 0, we're just 267 * wasting our time doing the bcopy() since there 268 * wasn't any data left over from a previous call to 269 * MD5Update(). 270 */ 271 272 #ifdef sun4v 273 /* 274 * For N1 use %asi register. However, costly to repeatedly set 275 * in MD5Transform. Therefore, set once here. 276 * Should probably restore the old value afterwards... 277 */ 278 old_asi = get_little(); 279 set_little(0x88); 280 #endif /* sun4v */ 281 282 if (buf_index) { 283 bcopy(input, &ctx->buf_un.buf8[buf_index], buf_len); 284 285 MD5Transform(ctx->state[0], ctx->state[1], 286 ctx->state[2], ctx->state[3], ctx, 287 ctx->buf_un.buf8); 288 289 i = buf_len; 290 } 291 292 for (; i + 63 < input_len; i += 64) 293 MD5Transform(ctx->state[0], ctx->state[1], 294 ctx->state[2], ctx->state[3], ctx, &input[i]); 295 296 297 #ifdef sun4v 298 /* 299 * Restore old %ASI value 300 */ 301 set_little(old_asi); 302 #endif /* sun4v */ 303 304 /* 305 * general optimization: 306 * 307 * if i and input_len are the same, return now instead 308 * of calling bcopy(), since the bcopy() in this 309 * case will be an expensive nop. 310 */ 311 312 if (input_len == i) 313 return; 314 315 buf_index = 0; 316 } 317 318 /* buffer remaining input */ 319 bcopy(&input[i], &ctx->buf_un.buf8[buf_index], input_len - i); 320 } 321 322 /* 323 * MD5Final() 324 * 325 * purpose: ends an md5 digest operation, finalizing the message digest and 326 * zeroing the context. 327 * input: uchar_t * : a buffer to store the digest in 328 * : The function actually uses void* because many 329 * : callers pass things other than uchar_t here. 330 * MD5_CTX * : the context to finalize, save, and zero 331 * output: void 332 */ 333 334 void 335 MD5Final(void *digest, MD5_CTX *ctx) 336 { 337 uint8_t bitcount_le[sizeof (ctx->count)]; 338 uint32_t index = (ctx->count[0] >> 3) & 0x3f; 339 340 /* store bit count, little endian */ 341 Encode(bitcount_le, ctx->count, sizeof (bitcount_le)); 342 343 /* pad out to 56 mod 64 */ 344 MD5Update(ctx, PADDING, ((index < 56) ? 56 : 120) - index); 345 346 /* append length (before padding) */ 347 MD5Update(ctx, bitcount_le, sizeof (bitcount_le)); 348 349 /* store state in digest */ 350 Encode(digest, ctx->state, sizeof (ctx->state)); 351 352 /* zeroize sensitive information */ 353 bzero(ctx, sizeof (*ctx)); 354 } 355 356 #ifndef _KERNEL 357 358 void 359 md5_calc(unsigned char *output, unsigned char *input, unsigned int inlen) 360 { 361 MD5_CTX context; 362 363 MD5Init(&context); 364 MD5Update(&context, input, inlen); 365 MD5Final(output, &context); 366 } 367 368 #endif /* !_KERNEL */ 369 370 /* 371 * sparc register window optimization: 372 * 373 * `a', `b', `c', and `d' are passed into MD5Transform explicitly 374 * since it increases the number of registers available to the 375 * compiler. under this scheme, these variables can be held in 376 * %i0 - %i3, which leaves more local and out registers available. 377 */ 378 379 /* 380 * MD5Transform() 381 * 382 * purpose: md5 transformation -- updates the digest based on `block' 383 * input: uint32_t : bytes 1 - 4 of the digest 384 * uint32_t : bytes 5 - 8 of the digest 385 * uint32_t : bytes 9 - 12 of the digest 386 * uint32_t : bytes 12 - 16 of the digest 387 * MD5_CTX * : the context to update 388 * uint8_t [64]: the block to use to update the digest 389 * output: void 390 */ 391 392 static void 393 MD5Transform(uint32_t a, uint32_t b, uint32_t c, uint32_t d, 394 MD5_CTX *ctx, const uint8_t block[64]) 395 { 396 /* 397 * general optimization: 398 * 399 * use individual integers instead of using an array. this is a 400 * win, although the amount it wins by seems to vary quite a bit. 401 */ 402 403 register uint32_t x_0, x_1, x_2, x_3, x_4, x_5, x_6, x_7; 404 register uint32_t x_8, x_9, x_10, x_11, x_12, x_13, x_14, x_15; 405 #ifdef sun4v 406 unsigned long long *md5_consts64; 407 408 /* LINTED E_BAD_PTR_CAST_ALIGN */ 409 md5_consts64 = (unsigned long long *) md5_consts; 410 #endif /* sun4v */ 411 412 /* 413 * general optimization: 414 * 415 * the compiler (at least SC4.2/5.x) generates better code if 416 * variable use is localized. in this case, swapping the integers in 417 * this order allows `x_0 'to be swapped nearest to its first use in 418 * FF(), and likewise for `x_1' and up. note that the compiler 419 * prefers this to doing each swap right before the FF() that 420 * uses it. 421 */ 422 423 /* 424 * sparc v9/v8plus optimization: 425 * 426 * if `block' is already aligned on a 4-byte boundary, use the 427 * optimized load_little_32() directly. otherwise, bcopy() 428 * into a buffer that *is* aligned on a 4-byte boundary and 429 * then do the load_little_32() on that buffer. benchmarks 430 * have shown that using the bcopy() is better than loading 431 * the bytes individually and doing the endian-swap by hand. 432 * 433 * even though it's quite tempting to assign to do: 434 * 435 * blk = bcopy(blk, ctx->buf_un.buf32, sizeof (ctx->buf_un.buf32)); 436 * 437 * and only have one set of LOAD_LITTLE_32()'s, the compiler (at least 438 * SC4.2/5.x) *does not* like that, so please resist the urge. 439 */ 440 441 #ifdef _MD5_CHECK_ALIGNMENT 442 if ((uintptr_t)block & 0x3) { /* not 4-byte aligned? */ 443 bcopy(block, ctx->buf_un.buf32, sizeof (ctx->buf_un.buf32)); 444 445 #ifdef sun4v 446 x_15 = LOAD_LITTLE_32_f(ctx->buf_un.buf32); 447 x_14 = LOAD_LITTLE_32_e(ctx->buf_un.buf32); 448 x_13 = LOAD_LITTLE_32_d(ctx->buf_un.buf32); 449 x_12 = LOAD_LITTLE_32_c(ctx->buf_un.buf32); 450 x_11 = LOAD_LITTLE_32_b(ctx->buf_un.buf32); 451 x_10 = LOAD_LITTLE_32_a(ctx->buf_un.buf32); 452 x_9 = LOAD_LITTLE_32_9(ctx->buf_un.buf32); 453 x_8 = LOAD_LITTLE_32_8(ctx->buf_un.buf32); 454 x_7 = LOAD_LITTLE_32_7(ctx->buf_un.buf32); 455 x_6 = LOAD_LITTLE_32_6(ctx->buf_un.buf32); 456 x_5 = LOAD_LITTLE_32_5(ctx->buf_un.buf32); 457 x_4 = LOAD_LITTLE_32_4(ctx->buf_un.buf32); 458 x_3 = LOAD_LITTLE_32_3(ctx->buf_un.buf32); 459 x_2 = LOAD_LITTLE_32_2(ctx->buf_un.buf32); 460 x_1 = LOAD_LITTLE_32_1(ctx->buf_un.buf32); 461 x_0 = LOAD_LITTLE_32_0(ctx->buf_un.buf32); 462 #else 463 x_15 = LOAD_LITTLE_32(ctx->buf_un.buf32 + 15); 464 x_14 = LOAD_LITTLE_32(ctx->buf_un.buf32 + 14); 465 x_13 = LOAD_LITTLE_32(ctx->buf_un.buf32 + 13); 466 x_12 = LOAD_LITTLE_32(ctx->buf_un.buf32 + 12); 467 x_11 = LOAD_LITTLE_32(ctx->buf_un.buf32 + 11); 468 x_10 = LOAD_LITTLE_32(ctx->buf_un.buf32 + 10); 469 x_9 = LOAD_LITTLE_32(ctx->buf_un.buf32 + 9); 470 x_8 = LOAD_LITTLE_32(ctx->buf_un.buf32 + 8); 471 x_7 = LOAD_LITTLE_32(ctx->buf_un.buf32 + 7); 472 x_6 = LOAD_LITTLE_32(ctx->buf_un.buf32 + 6); 473 x_5 = LOAD_LITTLE_32(ctx->buf_un.buf32 + 5); 474 x_4 = LOAD_LITTLE_32(ctx->buf_un.buf32 + 4); 475 x_3 = LOAD_LITTLE_32(ctx->buf_un.buf32 + 3); 476 x_2 = LOAD_LITTLE_32(ctx->buf_un.buf32 + 2); 477 x_1 = LOAD_LITTLE_32(ctx->buf_un.buf32 + 1); 478 x_0 = LOAD_LITTLE_32(ctx->buf_un.buf32 + 0); 479 #endif /* sun4v */ 480 } else 481 #endif 482 { 483 484 #ifdef sun4v 485 /* LINTED E_BAD_PTR_CAST_ALIGN */ 486 x_15 = LOAD_LITTLE_32_f(block); 487 /* LINTED E_BAD_PTR_CAST_ALIGN */ 488 x_14 = LOAD_LITTLE_32_e(block); 489 /* LINTED E_BAD_PTR_CAST_ALIGN */ 490 x_13 = LOAD_LITTLE_32_d(block); 491 /* LINTED E_BAD_PTR_CAST_ALIGN */ 492 x_12 = LOAD_LITTLE_32_c(block); 493 /* LINTED E_BAD_PTR_CAST_ALIGN */ 494 x_11 = LOAD_LITTLE_32_b(block); 495 /* LINTED E_BAD_PTR_CAST_ALIGN */ 496 x_10 = LOAD_LITTLE_32_a(block); 497 /* LINTED E_BAD_PTR_CAST_ALIGN */ 498 x_9 = LOAD_LITTLE_32_9(block); 499 /* LINTED E_BAD_PTR_CAST_ALIGN */ 500 x_8 = LOAD_LITTLE_32_8(block); 501 /* LINTED E_BAD_PTR_CAST_ALIGN */ 502 x_7 = LOAD_LITTLE_32_7(block); 503 /* LINTED E_BAD_PTR_CAST_ALIGN */ 504 x_6 = LOAD_LITTLE_32_6(block); 505 /* LINTED E_BAD_PTR_CAST_ALIGN */ 506 x_5 = LOAD_LITTLE_32_5(block); 507 /* LINTED E_BAD_PTR_CAST_ALIGN */ 508 x_4 = LOAD_LITTLE_32_4(block); 509 /* LINTED E_BAD_PTR_CAST_ALIGN */ 510 x_3 = LOAD_LITTLE_32_3(block); 511 /* LINTED E_BAD_PTR_CAST_ALIGN */ 512 x_2 = LOAD_LITTLE_32_2(block); 513 /* LINTED E_BAD_PTR_CAST_ALIGN */ 514 x_1 = LOAD_LITTLE_32_1(block); 515 /* LINTED E_BAD_PTR_CAST_ALIGN */ 516 x_0 = LOAD_LITTLE_32_0(block); 517 #else 518 /* LINTED E_BAD_PTR_CAST_ALIGN */ 519 x_15 = LOAD_LITTLE_32(block + 60); 520 /* LINTED E_BAD_PTR_CAST_ALIGN */ 521 x_14 = LOAD_LITTLE_32(block + 56); 522 /* LINTED E_BAD_PTR_CAST_ALIGN */ 523 x_13 = LOAD_LITTLE_32(block + 52); 524 /* LINTED E_BAD_PTR_CAST_ALIGN */ 525 x_12 = LOAD_LITTLE_32(block + 48); 526 /* LINTED E_BAD_PTR_CAST_ALIGN */ 527 x_11 = LOAD_LITTLE_32(block + 44); 528 /* LINTED E_BAD_PTR_CAST_ALIGN */ 529 x_10 = LOAD_LITTLE_32(block + 40); 530 /* LINTED E_BAD_PTR_CAST_ALIGN */ 531 x_9 = LOAD_LITTLE_32(block + 36); 532 /* LINTED E_BAD_PTR_CAST_ALIGN */ 533 x_8 = LOAD_LITTLE_32(block + 32); 534 /* LINTED E_BAD_PTR_CAST_ALIGN */ 535 x_7 = LOAD_LITTLE_32(block + 28); 536 /* LINTED E_BAD_PTR_CAST_ALIGN */ 537 x_6 = LOAD_LITTLE_32(block + 24); 538 /* LINTED E_BAD_PTR_CAST_ALIGN */ 539 x_5 = LOAD_LITTLE_32(block + 20); 540 /* LINTED E_BAD_PTR_CAST_ALIGN */ 541 x_4 = LOAD_LITTLE_32(block + 16); 542 /* LINTED E_BAD_PTR_CAST_ALIGN */ 543 x_3 = LOAD_LITTLE_32(block + 12); 544 /* LINTED E_BAD_PTR_CAST_ALIGN */ 545 x_2 = LOAD_LITTLE_32(block + 8); 546 /* LINTED E_BAD_PTR_CAST_ALIGN */ 547 x_1 = LOAD_LITTLE_32(block + 4); 548 /* LINTED E_BAD_PTR_CAST_ALIGN */ 549 x_0 = LOAD_LITTLE_32(block + 0); 550 #endif /* sun4v */ 551 } 552 553 /* round 1 */ 554 FF(a, b, c, d, x_0, MD5_SHIFT_11, MD5_CONST_e(0)); /* 1 */ 555 FF(d, a, b, c, x_1, MD5_SHIFT_12, MD5_CONST_o(1)); /* 2 */ 556 FF(c, d, a, b, x_2, MD5_SHIFT_13, MD5_CONST_e(2)); /* 3 */ 557 FF(b, c, d, a, x_3, MD5_SHIFT_14, MD5_CONST_o(3)); /* 4 */ 558 FF(a, b, c, d, x_4, MD5_SHIFT_11, MD5_CONST_e(4)); /* 5 */ 559 FF(d, a, b, c, x_5, MD5_SHIFT_12, MD5_CONST_o(5)); /* 6 */ 560 FF(c, d, a, b, x_6, MD5_SHIFT_13, MD5_CONST_e(6)); /* 7 */ 561 FF(b, c, d, a, x_7, MD5_SHIFT_14, MD5_CONST_o(7)); /* 8 */ 562 FF(a, b, c, d, x_8, MD5_SHIFT_11, MD5_CONST_e(8)); /* 9 */ 563 FF(d, a, b, c, x_9, MD5_SHIFT_12, MD5_CONST_o(9)); /* 10 */ 564 FF(c, d, a, b, x_10, MD5_SHIFT_13, MD5_CONST_e(10)); /* 11 */ 565 FF(b, c, d, a, x_11, MD5_SHIFT_14, MD5_CONST_o(11)); /* 12 */ 566 FF(a, b, c, d, x_12, MD5_SHIFT_11, MD5_CONST_e(12)); /* 13 */ 567 FF(d, a, b, c, x_13, MD5_SHIFT_12, MD5_CONST_o(13)); /* 14 */ 568 FF(c, d, a, b, x_14, MD5_SHIFT_13, MD5_CONST_e(14)); /* 15 */ 569 FF(b, c, d, a, x_15, MD5_SHIFT_14, MD5_CONST_o(15)); /* 16 */ 570 571 /* round 2 */ 572 GG(a, b, c, d, x_1, MD5_SHIFT_21, MD5_CONST_e(16)); /* 17 */ 573 GG(d, a, b, c, x_6, MD5_SHIFT_22, MD5_CONST_o(17)); /* 18 */ 574 GG(c, d, a, b, x_11, MD5_SHIFT_23, MD5_CONST_e(18)); /* 19 */ 575 GG(b, c, d, a, x_0, MD5_SHIFT_24, MD5_CONST_o(19)); /* 20 */ 576 GG(a, b, c, d, x_5, MD5_SHIFT_21, MD5_CONST_e(20)); /* 21 */ 577 GG(d, a, b, c, x_10, MD5_SHIFT_22, MD5_CONST_o(21)); /* 22 */ 578 GG(c, d, a, b, x_15, MD5_SHIFT_23, MD5_CONST_e(22)); /* 23 */ 579 GG(b, c, d, a, x_4, MD5_SHIFT_24, MD5_CONST_o(23)); /* 24 */ 580 GG(a, b, c, d, x_9, MD5_SHIFT_21, MD5_CONST_e(24)); /* 25 */ 581 GG(d, a, b, c, x_14, MD5_SHIFT_22, MD5_CONST_o(25)); /* 26 */ 582 GG(c, d, a, b, x_3, MD5_SHIFT_23, MD5_CONST_e(26)); /* 27 */ 583 GG(b, c, d, a, x_8, MD5_SHIFT_24, MD5_CONST_o(27)); /* 28 */ 584 GG(a, b, c, d, x_13, MD5_SHIFT_21, MD5_CONST_e(28)); /* 29 */ 585 GG(d, a, b, c, x_2, MD5_SHIFT_22, MD5_CONST_o(29)); /* 30 */ 586 GG(c, d, a, b, x_7, MD5_SHIFT_23, MD5_CONST_e(30)); /* 31 */ 587 GG(b, c, d, a, x_12, MD5_SHIFT_24, MD5_CONST_o(31)); /* 32 */ 588 589 /* round 3 */ 590 HH(a, b, c, d, x_5, MD5_SHIFT_31, MD5_CONST_e(32)); /* 33 */ 591 HH(d, a, b, c, x_8, MD5_SHIFT_32, MD5_CONST_o(33)); /* 34 */ 592 HH(c, d, a, b, x_11, MD5_SHIFT_33, MD5_CONST_e(34)); /* 35 */ 593 HH(b, c, d, a, x_14, MD5_SHIFT_34, MD5_CONST_o(35)); /* 36 */ 594 HH(a, b, c, d, x_1, MD5_SHIFT_31, MD5_CONST_e(36)); /* 37 */ 595 HH(d, a, b, c, x_4, MD5_SHIFT_32, MD5_CONST_o(37)); /* 38 */ 596 HH(c, d, a, b, x_7, MD5_SHIFT_33, MD5_CONST_e(38)); /* 39 */ 597 HH(b, c, d, a, x_10, MD5_SHIFT_34, MD5_CONST_o(39)); /* 40 */ 598 HH(a, b, c, d, x_13, MD5_SHIFT_31, MD5_CONST_e(40)); /* 41 */ 599 HH(d, a, b, c, x_0, MD5_SHIFT_32, MD5_CONST_o(41)); /* 42 */ 600 HH(c, d, a, b, x_3, MD5_SHIFT_33, MD5_CONST_e(42)); /* 43 */ 601 HH(b, c, d, a, x_6, MD5_SHIFT_34, MD5_CONST_o(43)); /* 44 */ 602 HH(a, b, c, d, x_9, MD5_SHIFT_31, MD5_CONST_e(44)); /* 45 */ 603 HH(d, a, b, c, x_12, MD5_SHIFT_32, MD5_CONST_o(45)); /* 46 */ 604 HH(c, d, a, b, x_15, MD5_SHIFT_33, MD5_CONST_e(46)); /* 47 */ 605 HH(b, c, d, a, x_2, MD5_SHIFT_34, MD5_CONST_o(47)); /* 48 */ 606 607 /* round 4 */ 608 II(a, b, c, d, x_0, MD5_SHIFT_41, MD5_CONST_e(48)); /* 49 */ 609 II(d, a, b, c, x_7, MD5_SHIFT_42, MD5_CONST_o(49)); /* 50 */ 610 II(c, d, a, b, x_14, MD5_SHIFT_43, MD5_CONST_e(50)); /* 51 */ 611 II(b, c, d, a, x_5, MD5_SHIFT_44, MD5_CONST_o(51)); /* 52 */ 612 II(a, b, c, d, x_12, MD5_SHIFT_41, MD5_CONST_e(52)); /* 53 */ 613 II(d, a, b, c, x_3, MD5_SHIFT_42, MD5_CONST_o(53)); /* 54 */ 614 II(c, d, a, b, x_10, MD5_SHIFT_43, MD5_CONST_e(54)); /* 55 */ 615 II(b, c, d, a, x_1, MD5_SHIFT_44, MD5_CONST_o(55)); /* 56 */ 616 II(a, b, c, d, x_8, MD5_SHIFT_41, MD5_CONST_e(56)); /* 57 */ 617 II(d, a, b, c, x_15, MD5_SHIFT_42, MD5_CONST_o(57)); /* 58 */ 618 II(c, d, a, b, x_6, MD5_SHIFT_43, MD5_CONST_e(58)); /* 59 */ 619 II(b, c, d, a, x_13, MD5_SHIFT_44, MD5_CONST_o(59)); /* 60 */ 620 II(a, b, c, d, x_4, MD5_SHIFT_41, MD5_CONST_e(60)); /* 61 */ 621 II(d, a, b, c, x_11, MD5_SHIFT_42, MD5_CONST_o(61)); /* 62 */ 622 II(c, d, a, b, x_2, MD5_SHIFT_43, MD5_CONST_e(62)); /* 63 */ 623 II(b, c, d, a, x_9, MD5_SHIFT_44, MD5_CONST_o(63)); /* 64 */ 624 625 ctx->state[0] += a; 626 ctx->state[1] += b; 627 ctx->state[2] += c; 628 ctx->state[3] += d; 629 630 /* 631 * zeroize sensitive information -- compiler will optimize 632 * this out if everything is kept in registers 633 */ 634 635 x_0 = x_1 = x_2 = x_3 = x_4 = x_5 = x_6 = x_7 = x_8 = 0; 636 x_9 = x_10 = x_11 = x_12 = x_13 = x_14 = x_15 = 0; 637 } 638 639 /* 640 * Encode() 641 * 642 * purpose: to convert a list of numbers from big endian to little endian 643 * input: uint8_t * : place to store the converted little endian numbers 644 * uint32_t * : place to get numbers to convert from 645 * size_t : the length of the input in bytes 646 * output: void 647 */ 648 649 static void 650 Encode(uint8_t *_RESTRICT_KYWD output, const uint32_t *_RESTRICT_KYWD input, 651 size_t input_len) 652 { 653 size_t i, j; 654 655 for (i = 0, j = 0; j < input_len; i++, j += sizeof (uint32_t)) { 656 657 #ifdef _LITTLE_ENDIAN 658 659 #ifdef _MD5_CHECK_ALIGNMENT 660 if ((uintptr_t)output & 0x3) /* Not 4-byte aligned */ 661 bcopy(input + i, output + j, 4); 662 else *(uint32_t *)(output + j) = input[i]; 663 #else 664 /*LINTED E_BAD_PTR_CAST_ALIGN*/ 665 *(uint32_t *)(output + j) = input[i]; 666 #endif /* _MD5_CHECK_ALIGNMENT */ 667 668 #else /* big endian -- will work on little endian, but slowly */ 669 670 output[j] = input[i] & 0xff; 671 output[j + 1] = (input[i] >> 8) & 0xff; 672 output[j + 2] = (input[i] >> 16) & 0xff; 673 output[j + 3] = (input[i] >> 24) & 0xff; 674 #endif 675 } 676 } 677