1 /* 2 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 3 * Use is subject to license terms. 4 */ 5 6 /* 7 * Cleaned-up and optimized version of MD5, based on the reference 8 * implementation provided in RFC 1321. See RSA Copyright information 9 * below. 10 */ 11 12 /* 13 * MD5C.C - RSA Data Security, Inc., MD5 message-digest algorithm 14 */ 15 16 /* 17 * Copyright (C) 1991-2, RSA Data Security, Inc. Created 1991. All 18 * rights reserved. 19 * 20 * License to copy and use this software is granted provided that it 21 * is identified as the "RSA Data Security, Inc. MD5 Message-Digest 22 * Algorithm" in all material mentioning or referencing this software 23 * or this function. 24 * 25 * License is also granted to make and use derivative works provided 26 * that such works are identified as "derived from the RSA Data 27 * Security, Inc. MD5 Message-Digest Algorithm" in all material 28 * mentioning or referencing the derived work. 29 * 30 * RSA Data Security, Inc. makes no representations concerning either 31 * the merchantability of this software or the suitability of this 32 * software for any particular purpose. It is provided "as is" 33 * without express or implied warranty of any kind. 34 * 35 * These notices must be retained in any copies of any part of this 36 * documentation and/or software. 37 */ 38 39 #ifndef _KERNEL 40 #include <stdint.h> 41 #endif /* _KERNEL */ 42 43 #include <sys/types.h> 44 #include <sys/md5.h> 45 #include <sys/md5_consts.h> /* MD5_CONST() optimization */ 46 #include "md5_byteswap.h" 47 #if !defined(_KERNEL) || defined(_BOOT) 48 #include <strings.h> 49 #endif /* !_KERNEL || _BOOT */ 50 51 #ifdef _KERNEL 52 #include <sys/systm.h> 53 #endif /* _KERNEL */ 54 55 static void Encode(uint8_t *, const uint32_t *, size_t); 56 57 #if !defined(__amd64) 58 static void MD5Transform(uint32_t, uint32_t, uint32_t, uint32_t, MD5_CTX *, 59 const uint8_t [64]); 60 #else 61 void md5_block_asm_host_order(MD5_CTX *ctx, const void *inpp, 62 unsigned int input_length_in_blocks); 63 #endif /* !defined(__amd64) */ 64 65 static uint8_t PADDING[64] = { 0x80, /* all zeros */ }; 66 67 /* 68 * F, G, H and I are the basic MD5 functions. 69 */ 70 #define F(b, c, d) (((b) & (c)) | ((~b) & (d))) 71 #define G(b, c, d) (((b) & (d)) | ((c) & (~d))) 72 #define H(b, c, d) ((b) ^ (c) ^ (d)) 73 #define I(b, c, d) ((c) ^ ((b) | (~d))) 74 75 /* 76 * ROTATE_LEFT rotates x left n bits. 77 */ 78 #define ROTATE_LEFT(x, n) \ 79 (((x) << (n)) | ((x) >> ((sizeof (x) << 3) - (n)))) 80 81 /* 82 * FF, GG, HH, and II transformations for rounds 1, 2, 3, and 4. 83 * Rotation is separate from addition to prevent recomputation. 84 */ 85 86 #define FF(a, b, c, d, x, s, ac) { \ 87 (a) += F((b), (c), (d)) + (x) + ((unsigned long long)(ac)); \ 88 (a) = ROTATE_LEFT((a), (s)); \ 89 (a) += (b); \ 90 } 91 92 #define GG(a, b, c, d, x, s, ac) { \ 93 (a) += G((b), (c), (d)) + (x) + ((unsigned long long)(ac)); \ 94 (a) = ROTATE_LEFT((a), (s)); \ 95 (a) += (b); \ 96 } 97 98 #define HH(a, b, c, d, x, s, ac) { \ 99 (a) += H((b), (c), (d)) + (x) + ((unsigned long long)(ac)); \ 100 (a) = ROTATE_LEFT((a), (s)); \ 101 (a) += (b); \ 102 } 103 104 #define II(a, b, c, d, x, s, ac) { \ 105 (a) += I((b), (c), (d)) + (x) + ((unsigned long long)(ac)); \ 106 (a) = ROTATE_LEFT((a), (s)); \ 107 (a) += (b); \ 108 } 109 110 /* 111 * Loading 32-bit constants on a RISC is expensive since it involves both a 112 * `sethi' and an `or'. thus, we instead have the compiler generate `ld's to 113 * load the constants from an array called `md5_consts'. however, on intel 114 * (and other CISC processors), it is cheaper to load the constant 115 * directly. thus, the c code in MD5Transform() uses the macro MD5_CONST() 116 * which either expands to a constant or an array reference, depending on the 117 * architecture the code is being compiled for. 118 * 119 * Right now, i386 and amd64 are the CISC exceptions. 120 * If we get another CISC ISA, we'll have to change the ifdef. 121 */ 122 123 #if defined(__i386) || defined(__amd64) 124 125 #define MD5_CONST(x) (MD5_CONST_ ## x) 126 #define MD5_CONST_e(x) MD5_CONST(x) 127 #define MD5_CONST_o(x) MD5_CONST(x) 128 129 #else 130 /* 131 * sparc/RISC optimization: 132 * 133 * while it is somewhat counter-intuitive, on sparc (and presumably other RISC 134 * machines), it is more efficient to place all the constants used in this 135 * function in an array and load the values out of the array than to manually 136 * load the constants. this is because setting a register to a 32-bit value 137 * takes two ops in most cases: a `sethi' and an `or', but loading a 32-bit 138 * value from memory only takes one `ld' (or `lduw' on v9). while this 139 * increases memory usage, the compiler can find enough other things to do 140 * while waiting to keep the pipeline does not stall. additionally, it is 141 * likely that many of these constants are cached so that later accesses do 142 * not even go out to the bus. 143 * 144 * this array is declared `static' to keep the compiler from having to 145 * bcopy() this array onto the stack frame of MD5Transform() each time it is 146 * called -- which is unacceptably expensive. 147 * 148 * the `const' is to ensure that callers are good citizens and do not try to 149 * munge the array. since these routines are going to be called from inside 150 * multithreaded kernelland, this is a good safety check. -- `constants' will 151 * end up in .rodata. 152 * 153 * unfortunately, loading from an array in this manner hurts performance under 154 * intel (and presumably other CISC machines). so, there is a macro, 155 * MD5_CONST(), used in MD5Transform(), that either expands to a reference to 156 * this array, or to the actual constant, depending on what platform this code 157 * is compiled for. 158 */ 159 160 #ifdef sun4v 161 162 /* 163 * Going to load these consts in 8B chunks, so need to enforce 8B alignment 164 */ 165 166 /* CSTYLED */ 167 #pragma align 64 (md5_consts) 168 #define _MD5_CHECK_ALIGNMENT 169 170 #endif /* sun4v */ 171 172 static const uint32_t md5_consts[] = { 173 MD5_CONST_0, MD5_CONST_1, MD5_CONST_2, MD5_CONST_3, 174 MD5_CONST_4, MD5_CONST_5, MD5_CONST_6, MD5_CONST_7, 175 MD5_CONST_8, MD5_CONST_9, MD5_CONST_10, MD5_CONST_11, 176 MD5_CONST_12, MD5_CONST_13, MD5_CONST_14, MD5_CONST_15, 177 MD5_CONST_16, MD5_CONST_17, MD5_CONST_18, MD5_CONST_19, 178 MD5_CONST_20, MD5_CONST_21, MD5_CONST_22, MD5_CONST_23, 179 MD5_CONST_24, MD5_CONST_25, MD5_CONST_26, MD5_CONST_27, 180 MD5_CONST_28, MD5_CONST_29, MD5_CONST_30, MD5_CONST_31, 181 MD5_CONST_32, MD5_CONST_33, MD5_CONST_34, MD5_CONST_35, 182 MD5_CONST_36, MD5_CONST_37, MD5_CONST_38, MD5_CONST_39, 183 MD5_CONST_40, MD5_CONST_41, MD5_CONST_42, MD5_CONST_43, 184 MD5_CONST_44, MD5_CONST_45, MD5_CONST_46, MD5_CONST_47, 185 MD5_CONST_48, MD5_CONST_49, MD5_CONST_50, MD5_CONST_51, 186 MD5_CONST_52, MD5_CONST_53, MD5_CONST_54, MD5_CONST_55, 187 MD5_CONST_56, MD5_CONST_57, MD5_CONST_58, MD5_CONST_59, 188 MD5_CONST_60, MD5_CONST_61, MD5_CONST_62, MD5_CONST_63 189 }; 190 191 192 #ifdef sun4v 193 /* 194 * To reduce the number of loads, load consts in 64-bit 195 * chunks and then split. 196 * 197 * No need to mask upper 32-bits, as just interested in 198 * low 32-bits (saves an & operation and means that this 199 * optimization doesn't increases the icount. 200 */ 201 #define MD5_CONST_e(x) (md5_consts64[x/2] >> 32) 202 #define MD5_CONST_o(x) (md5_consts64[x/2]) 203 204 #else 205 206 #define MD5_CONST_e(x) (md5_consts[x]) 207 #define MD5_CONST_o(x) (md5_consts[x]) 208 209 #endif /* sun4v */ 210 211 #endif 212 213 /* 214 * MD5Init() 215 * 216 * purpose: initializes the md5 context and begins and md5 digest operation 217 * input: MD5_CTX * : the context to initialize. 218 * output: void 219 */ 220 221 void 222 MD5Init(MD5_CTX *ctx) 223 { 224 ctx->count[0] = ctx->count[1] = 0; 225 226 /* load magic initialization constants */ 227 ctx->state[0] = MD5_INIT_CONST_1; 228 ctx->state[1] = MD5_INIT_CONST_2; 229 ctx->state[2] = MD5_INIT_CONST_3; 230 ctx->state[3] = MD5_INIT_CONST_4; 231 } 232 233 /* 234 * MD5Update() 235 * 236 * purpose: continues an md5 digest operation, using the message block 237 * to update the context. 238 * input: MD5_CTX * : the context to update 239 * uint8_t * : the message block 240 * uint32_t : the length of the message block in bytes 241 * output: void 242 * 243 * MD5 crunches in 64-byte blocks. All numeric constants here are related to 244 * that property of MD5. 245 */ 246 247 void 248 MD5Update(MD5_CTX *ctx, const void *inpp, unsigned int input_len) 249 { 250 uint32_t i, buf_index, buf_len; 251 #ifdef sun4v 252 uint32_t old_asi; 253 #endif /* sun4v */ 254 #if defined(__amd64) 255 uint32_t block_count; 256 #endif /* !defined(__amd64) */ 257 const unsigned char *input = (const unsigned char *)inpp; 258 259 /* compute (number of bytes computed so far) mod 64 */ 260 buf_index = (ctx->count[0] >> 3) & 0x3F; 261 262 /* update number of bits hashed into this MD5 computation so far */ 263 if ((ctx->count[0] += (input_len << 3)) < (input_len << 3)) 264 ctx->count[1]++; 265 ctx->count[1] += (input_len >> 29); 266 267 buf_len = 64 - buf_index; 268 269 /* transform as many times as possible */ 270 i = 0; 271 if (input_len >= buf_len) { 272 273 /* 274 * general optimization: 275 * 276 * only do initial bcopy() and MD5Transform() if 277 * buf_index != 0. if buf_index == 0, we're just 278 * wasting our time doing the bcopy() since there 279 * wasn't any data left over from a previous call to 280 * MD5Update(). 281 */ 282 283 #ifdef sun4v 284 /* 285 * For N1 use %asi register. However, costly to repeatedly set 286 * in MD5Transform. Therefore, set once here. 287 * Should probably restore the old value afterwards... 288 */ 289 old_asi = get_little(); 290 set_little(0x88); 291 #endif /* sun4v */ 292 293 if (buf_index) { 294 bcopy(input, &ctx->buf_un.buf8[buf_index], buf_len); 295 296 #if !defined(__amd64) 297 MD5Transform(ctx->state[0], ctx->state[1], 298 ctx->state[2], ctx->state[3], ctx, 299 ctx->buf_un.buf8); 300 #else 301 md5_block_asm_host_order(ctx, ctx->buf_un.buf8, 1); 302 #endif /* !defined(__amd64) */ 303 304 i = buf_len; 305 } 306 307 #if !defined(__amd64) 308 for (; i + 63 < input_len; i += 64) 309 MD5Transform(ctx->state[0], ctx->state[1], 310 ctx->state[2], ctx->state[3], ctx, &input[i]); 311 312 #else 313 block_count = (input_len - i) >> 6; 314 if (block_count > 0) { 315 md5_block_asm_host_order(ctx, &input[i], block_count); 316 i += block_count << 6; 317 } 318 #endif /* !defined(__amd64) */ 319 320 321 #ifdef sun4v 322 /* 323 * Restore old %ASI value 324 */ 325 set_little(old_asi); 326 #endif /* sun4v */ 327 328 /* 329 * general optimization: 330 * 331 * if i and input_len are the same, return now instead 332 * of calling bcopy(), since the bcopy() in this 333 * case will be an expensive nop. 334 */ 335 336 if (input_len == i) 337 return; 338 339 buf_index = 0; 340 } 341 342 /* buffer remaining input */ 343 bcopy(&input[i], &ctx->buf_un.buf8[buf_index], input_len - i); 344 } 345 346 /* 347 * MD5Final() 348 * 349 * purpose: ends an md5 digest operation, finalizing the message digest and 350 * zeroing the context. 351 * input: uchar_t * : a buffer to store the digest in 352 * : The function actually uses void* because many 353 * : callers pass things other than uchar_t here. 354 * MD5_CTX * : the context to finalize, save, and zero 355 * output: void 356 */ 357 358 void 359 MD5Final(void *digest, MD5_CTX *ctx) 360 { 361 uint8_t bitcount_le[sizeof (ctx->count)]; 362 uint32_t index = (ctx->count[0] >> 3) & 0x3f; 363 364 /* store bit count, little endian */ 365 Encode(bitcount_le, ctx->count, sizeof (bitcount_le)); 366 367 /* pad out to 56 mod 64 */ 368 MD5Update(ctx, PADDING, ((index < 56) ? 56 : 120) - index); 369 370 /* append length (before padding) */ 371 MD5Update(ctx, bitcount_le, sizeof (bitcount_le)); 372 373 /* store state in digest */ 374 Encode(digest, ctx->state, sizeof (ctx->state)); 375 376 /* zeroize sensitive information */ 377 bzero(ctx, sizeof (*ctx)); 378 } 379 380 #ifndef _KERNEL 381 382 void 383 md5_calc(unsigned char *output, unsigned char *input, unsigned int inlen) 384 { 385 MD5_CTX context; 386 387 MD5Init(&context); 388 MD5Update(&context, input, inlen); 389 MD5Final(output, &context); 390 } 391 392 #endif /* !_KERNEL */ 393 394 #if !defined(__amd64) 395 /* 396 * sparc register window optimization: 397 * 398 * `a', `b', `c', and `d' are passed into MD5Transform explicitly 399 * since it increases the number of registers available to the 400 * compiler. under this scheme, these variables can be held in 401 * %i0 - %i3, which leaves more local and out registers available. 402 */ 403 404 /* 405 * MD5Transform() 406 * 407 * purpose: md5 transformation -- updates the digest based on `block' 408 * input: uint32_t : bytes 1 - 4 of the digest 409 * uint32_t : bytes 5 - 8 of the digest 410 * uint32_t : bytes 9 - 12 of the digest 411 * uint32_t : bytes 12 - 16 of the digest 412 * MD5_CTX * : the context to update 413 * uint8_t [64]: the block to use to update the digest 414 * output: void 415 */ 416 417 static void 418 MD5Transform(uint32_t a, uint32_t b, uint32_t c, uint32_t d, 419 MD5_CTX *ctx, const uint8_t block[64]) 420 { 421 /* 422 * general optimization: 423 * 424 * use individual integers instead of using an array. this is a 425 * win, although the amount it wins by seems to vary quite a bit. 426 */ 427 428 register uint32_t x_0, x_1, x_2, x_3, x_4, x_5, x_6, x_7; 429 register uint32_t x_8, x_9, x_10, x_11, x_12, x_13, x_14, x_15; 430 #ifdef sun4v 431 unsigned long long *md5_consts64; 432 433 /* LINTED E_BAD_PTR_CAST_ALIGN */ 434 md5_consts64 = (unsigned long long *) md5_consts; 435 #endif /* sun4v */ 436 437 /* 438 * general optimization: 439 * 440 * the compiler (at least SC4.2/5.x) generates better code if 441 * variable use is localized. in this case, swapping the integers in 442 * this order allows `x_0 'to be swapped nearest to its first use in 443 * FF(), and likewise for `x_1' and up. note that the compiler 444 * prefers this to doing each swap right before the FF() that 445 * uses it. 446 */ 447 448 /* 449 * sparc v9/v8plus optimization: 450 * 451 * if `block' is already aligned on a 4-byte boundary, use the 452 * optimized load_little_32() directly. otherwise, bcopy() 453 * into a buffer that *is* aligned on a 4-byte boundary and 454 * then do the load_little_32() on that buffer. benchmarks 455 * have shown that using the bcopy() is better than loading 456 * the bytes individually and doing the endian-swap by hand. 457 * 458 * even though it's quite tempting to assign to do: 459 * 460 * blk = bcopy(blk, ctx->buf_un.buf32, sizeof (ctx->buf_un.buf32)); 461 * 462 * and only have one set of LOAD_LITTLE_32()'s, the compiler (at least 463 * SC4.2/5.x) *does not* like that, so please resist the urge. 464 */ 465 466 #ifdef _MD5_CHECK_ALIGNMENT 467 if ((uintptr_t)block & 0x3) { /* not 4-byte aligned? */ 468 bcopy(block, ctx->buf_un.buf32, sizeof (ctx->buf_un.buf32)); 469 470 #ifdef sun4v 471 x_15 = LOAD_LITTLE_32_f(ctx->buf_un.buf32); 472 x_14 = LOAD_LITTLE_32_e(ctx->buf_un.buf32); 473 x_13 = LOAD_LITTLE_32_d(ctx->buf_un.buf32); 474 x_12 = LOAD_LITTLE_32_c(ctx->buf_un.buf32); 475 x_11 = LOAD_LITTLE_32_b(ctx->buf_un.buf32); 476 x_10 = LOAD_LITTLE_32_a(ctx->buf_un.buf32); 477 x_9 = LOAD_LITTLE_32_9(ctx->buf_un.buf32); 478 x_8 = LOAD_LITTLE_32_8(ctx->buf_un.buf32); 479 x_7 = LOAD_LITTLE_32_7(ctx->buf_un.buf32); 480 x_6 = LOAD_LITTLE_32_6(ctx->buf_un.buf32); 481 x_5 = LOAD_LITTLE_32_5(ctx->buf_un.buf32); 482 x_4 = LOAD_LITTLE_32_4(ctx->buf_un.buf32); 483 x_3 = LOAD_LITTLE_32_3(ctx->buf_un.buf32); 484 x_2 = LOAD_LITTLE_32_2(ctx->buf_un.buf32); 485 x_1 = LOAD_LITTLE_32_1(ctx->buf_un.buf32); 486 x_0 = LOAD_LITTLE_32_0(ctx->buf_un.buf32); 487 #else 488 x_15 = LOAD_LITTLE_32(ctx->buf_un.buf32 + 15); 489 x_14 = LOAD_LITTLE_32(ctx->buf_un.buf32 + 14); 490 x_13 = LOAD_LITTLE_32(ctx->buf_un.buf32 + 13); 491 x_12 = LOAD_LITTLE_32(ctx->buf_un.buf32 + 12); 492 x_11 = LOAD_LITTLE_32(ctx->buf_un.buf32 + 11); 493 x_10 = LOAD_LITTLE_32(ctx->buf_un.buf32 + 10); 494 x_9 = LOAD_LITTLE_32(ctx->buf_un.buf32 + 9); 495 x_8 = LOAD_LITTLE_32(ctx->buf_un.buf32 + 8); 496 x_7 = LOAD_LITTLE_32(ctx->buf_un.buf32 + 7); 497 x_6 = LOAD_LITTLE_32(ctx->buf_un.buf32 + 6); 498 x_5 = LOAD_LITTLE_32(ctx->buf_un.buf32 + 5); 499 x_4 = LOAD_LITTLE_32(ctx->buf_un.buf32 + 4); 500 x_3 = LOAD_LITTLE_32(ctx->buf_un.buf32 + 3); 501 x_2 = LOAD_LITTLE_32(ctx->buf_un.buf32 + 2); 502 x_1 = LOAD_LITTLE_32(ctx->buf_un.buf32 + 1); 503 x_0 = LOAD_LITTLE_32(ctx->buf_un.buf32 + 0); 504 #endif /* sun4v */ 505 } else 506 #endif 507 { 508 509 #ifdef sun4v 510 /* LINTED E_BAD_PTR_CAST_ALIGN */ 511 x_15 = LOAD_LITTLE_32_f(block); 512 /* LINTED E_BAD_PTR_CAST_ALIGN */ 513 x_14 = LOAD_LITTLE_32_e(block); 514 /* LINTED E_BAD_PTR_CAST_ALIGN */ 515 x_13 = LOAD_LITTLE_32_d(block); 516 /* LINTED E_BAD_PTR_CAST_ALIGN */ 517 x_12 = LOAD_LITTLE_32_c(block); 518 /* LINTED E_BAD_PTR_CAST_ALIGN */ 519 x_11 = LOAD_LITTLE_32_b(block); 520 /* LINTED E_BAD_PTR_CAST_ALIGN */ 521 x_10 = LOAD_LITTLE_32_a(block); 522 /* LINTED E_BAD_PTR_CAST_ALIGN */ 523 x_9 = LOAD_LITTLE_32_9(block); 524 /* LINTED E_BAD_PTR_CAST_ALIGN */ 525 x_8 = LOAD_LITTLE_32_8(block); 526 /* LINTED E_BAD_PTR_CAST_ALIGN */ 527 x_7 = LOAD_LITTLE_32_7(block); 528 /* LINTED E_BAD_PTR_CAST_ALIGN */ 529 x_6 = LOAD_LITTLE_32_6(block); 530 /* LINTED E_BAD_PTR_CAST_ALIGN */ 531 x_5 = LOAD_LITTLE_32_5(block); 532 /* LINTED E_BAD_PTR_CAST_ALIGN */ 533 x_4 = LOAD_LITTLE_32_4(block); 534 /* LINTED E_BAD_PTR_CAST_ALIGN */ 535 x_3 = LOAD_LITTLE_32_3(block); 536 /* LINTED E_BAD_PTR_CAST_ALIGN */ 537 x_2 = LOAD_LITTLE_32_2(block); 538 /* LINTED E_BAD_PTR_CAST_ALIGN */ 539 x_1 = LOAD_LITTLE_32_1(block); 540 /* LINTED E_BAD_PTR_CAST_ALIGN */ 541 x_0 = LOAD_LITTLE_32_0(block); 542 #else 543 x_15 = LOAD_LITTLE_32(block + 60); 544 x_14 = LOAD_LITTLE_32(block + 56); 545 x_13 = LOAD_LITTLE_32(block + 52); 546 x_12 = LOAD_LITTLE_32(block + 48); 547 x_11 = LOAD_LITTLE_32(block + 44); 548 x_10 = LOAD_LITTLE_32(block + 40); 549 x_9 = LOAD_LITTLE_32(block + 36); 550 x_8 = LOAD_LITTLE_32(block + 32); 551 x_7 = LOAD_LITTLE_32(block + 28); 552 x_6 = LOAD_LITTLE_32(block + 24); 553 x_5 = LOAD_LITTLE_32(block + 20); 554 x_4 = LOAD_LITTLE_32(block + 16); 555 x_3 = LOAD_LITTLE_32(block + 12); 556 x_2 = LOAD_LITTLE_32(block + 8); 557 x_1 = LOAD_LITTLE_32(block + 4); 558 x_0 = LOAD_LITTLE_32(block + 0); 559 #endif /* sun4v */ 560 } 561 562 /* round 1 */ 563 FF(a, b, c, d, x_0, MD5_SHIFT_11, MD5_CONST_e(0)); /* 1 */ 564 FF(d, a, b, c, x_1, MD5_SHIFT_12, MD5_CONST_o(1)); /* 2 */ 565 FF(c, d, a, b, x_2, MD5_SHIFT_13, MD5_CONST_e(2)); /* 3 */ 566 FF(b, c, d, a, x_3, MD5_SHIFT_14, MD5_CONST_o(3)); /* 4 */ 567 FF(a, b, c, d, x_4, MD5_SHIFT_11, MD5_CONST_e(4)); /* 5 */ 568 FF(d, a, b, c, x_5, MD5_SHIFT_12, MD5_CONST_o(5)); /* 6 */ 569 FF(c, d, a, b, x_6, MD5_SHIFT_13, MD5_CONST_e(6)); /* 7 */ 570 FF(b, c, d, a, x_7, MD5_SHIFT_14, MD5_CONST_o(7)); /* 8 */ 571 FF(a, b, c, d, x_8, MD5_SHIFT_11, MD5_CONST_e(8)); /* 9 */ 572 FF(d, a, b, c, x_9, MD5_SHIFT_12, MD5_CONST_o(9)); /* 10 */ 573 FF(c, d, a, b, x_10, MD5_SHIFT_13, MD5_CONST_e(10)); /* 11 */ 574 FF(b, c, d, a, x_11, MD5_SHIFT_14, MD5_CONST_o(11)); /* 12 */ 575 FF(a, b, c, d, x_12, MD5_SHIFT_11, MD5_CONST_e(12)); /* 13 */ 576 FF(d, a, b, c, x_13, MD5_SHIFT_12, MD5_CONST_o(13)); /* 14 */ 577 FF(c, d, a, b, x_14, MD5_SHIFT_13, MD5_CONST_e(14)); /* 15 */ 578 FF(b, c, d, a, x_15, MD5_SHIFT_14, MD5_CONST_o(15)); /* 16 */ 579 580 /* round 2 */ 581 GG(a, b, c, d, x_1, MD5_SHIFT_21, MD5_CONST_e(16)); /* 17 */ 582 GG(d, a, b, c, x_6, MD5_SHIFT_22, MD5_CONST_o(17)); /* 18 */ 583 GG(c, d, a, b, x_11, MD5_SHIFT_23, MD5_CONST_e(18)); /* 19 */ 584 GG(b, c, d, a, x_0, MD5_SHIFT_24, MD5_CONST_o(19)); /* 20 */ 585 GG(a, b, c, d, x_5, MD5_SHIFT_21, MD5_CONST_e(20)); /* 21 */ 586 GG(d, a, b, c, x_10, MD5_SHIFT_22, MD5_CONST_o(21)); /* 22 */ 587 GG(c, d, a, b, x_15, MD5_SHIFT_23, MD5_CONST_e(22)); /* 23 */ 588 GG(b, c, d, a, x_4, MD5_SHIFT_24, MD5_CONST_o(23)); /* 24 */ 589 GG(a, b, c, d, x_9, MD5_SHIFT_21, MD5_CONST_e(24)); /* 25 */ 590 GG(d, a, b, c, x_14, MD5_SHIFT_22, MD5_CONST_o(25)); /* 26 */ 591 GG(c, d, a, b, x_3, MD5_SHIFT_23, MD5_CONST_e(26)); /* 27 */ 592 GG(b, c, d, a, x_8, MD5_SHIFT_24, MD5_CONST_o(27)); /* 28 */ 593 GG(a, b, c, d, x_13, MD5_SHIFT_21, MD5_CONST_e(28)); /* 29 */ 594 GG(d, a, b, c, x_2, MD5_SHIFT_22, MD5_CONST_o(29)); /* 30 */ 595 GG(c, d, a, b, x_7, MD5_SHIFT_23, MD5_CONST_e(30)); /* 31 */ 596 GG(b, c, d, a, x_12, MD5_SHIFT_24, MD5_CONST_o(31)); /* 32 */ 597 598 /* round 3 */ 599 HH(a, b, c, d, x_5, MD5_SHIFT_31, MD5_CONST_e(32)); /* 33 */ 600 HH(d, a, b, c, x_8, MD5_SHIFT_32, MD5_CONST_o(33)); /* 34 */ 601 HH(c, d, a, b, x_11, MD5_SHIFT_33, MD5_CONST_e(34)); /* 35 */ 602 HH(b, c, d, a, x_14, MD5_SHIFT_34, MD5_CONST_o(35)); /* 36 */ 603 HH(a, b, c, d, x_1, MD5_SHIFT_31, MD5_CONST_e(36)); /* 37 */ 604 HH(d, a, b, c, x_4, MD5_SHIFT_32, MD5_CONST_o(37)); /* 38 */ 605 HH(c, d, a, b, x_7, MD5_SHIFT_33, MD5_CONST_e(38)); /* 39 */ 606 HH(b, c, d, a, x_10, MD5_SHIFT_34, MD5_CONST_o(39)); /* 40 */ 607 HH(a, b, c, d, x_13, MD5_SHIFT_31, MD5_CONST_e(40)); /* 41 */ 608 HH(d, a, b, c, x_0, MD5_SHIFT_32, MD5_CONST_o(41)); /* 42 */ 609 HH(c, d, a, b, x_3, MD5_SHIFT_33, MD5_CONST_e(42)); /* 43 */ 610 HH(b, c, d, a, x_6, MD5_SHIFT_34, MD5_CONST_o(43)); /* 44 */ 611 HH(a, b, c, d, x_9, MD5_SHIFT_31, MD5_CONST_e(44)); /* 45 */ 612 HH(d, a, b, c, x_12, MD5_SHIFT_32, MD5_CONST_o(45)); /* 46 */ 613 HH(c, d, a, b, x_15, MD5_SHIFT_33, MD5_CONST_e(46)); /* 47 */ 614 HH(b, c, d, a, x_2, MD5_SHIFT_34, MD5_CONST_o(47)); /* 48 */ 615 616 /* round 4 */ 617 II(a, b, c, d, x_0, MD5_SHIFT_41, MD5_CONST_e(48)); /* 49 */ 618 II(d, a, b, c, x_7, MD5_SHIFT_42, MD5_CONST_o(49)); /* 50 */ 619 II(c, d, a, b, x_14, MD5_SHIFT_43, MD5_CONST_e(50)); /* 51 */ 620 II(b, c, d, a, x_5, MD5_SHIFT_44, MD5_CONST_o(51)); /* 52 */ 621 II(a, b, c, d, x_12, MD5_SHIFT_41, MD5_CONST_e(52)); /* 53 */ 622 II(d, a, b, c, x_3, MD5_SHIFT_42, MD5_CONST_o(53)); /* 54 */ 623 II(c, d, a, b, x_10, MD5_SHIFT_43, MD5_CONST_e(54)); /* 55 */ 624 II(b, c, d, a, x_1, MD5_SHIFT_44, MD5_CONST_o(55)); /* 56 */ 625 II(a, b, c, d, x_8, MD5_SHIFT_41, MD5_CONST_e(56)); /* 57 */ 626 II(d, a, b, c, x_15, MD5_SHIFT_42, MD5_CONST_o(57)); /* 58 */ 627 II(c, d, a, b, x_6, MD5_SHIFT_43, MD5_CONST_e(58)); /* 59 */ 628 II(b, c, d, a, x_13, MD5_SHIFT_44, MD5_CONST_o(59)); /* 60 */ 629 II(a, b, c, d, x_4, MD5_SHIFT_41, MD5_CONST_e(60)); /* 61 */ 630 II(d, a, b, c, x_11, MD5_SHIFT_42, MD5_CONST_o(61)); /* 62 */ 631 II(c, d, a, b, x_2, MD5_SHIFT_43, MD5_CONST_e(62)); /* 63 */ 632 II(b, c, d, a, x_9, MD5_SHIFT_44, MD5_CONST_o(63)); /* 64 */ 633 634 ctx->state[0] += a; 635 ctx->state[1] += b; 636 ctx->state[2] += c; 637 ctx->state[3] += d; 638 639 /* 640 * zeroize sensitive information -- compiler will optimize 641 * this out if everything is kept in registers 642 */ 643 644 x_0 = x_1 = x_2 = x_3 = x_4 = x_5 = x_6 = x_7 = x_8 = 0; 645 x_9 = x_10 = x_11 = x_12 = x_13 = x_14 = x_15 = 0; 646 } 647 #endif /* !defined(__amd64) */ 648 649 /* 650 * Encode() 651 * 652 * purpose: to convert a list of numbers from big endian to little endian 653 * input: uint8_t * : place to store the converted little endian numbers 654 * uint32_t * : place to get numbers to convert from 655 * size_t : the length of the input in bytes 656 * output: void 657 */ 658 659 static void 660 Encode(uint8_t *_RESTRICT_KYWD output, const uint32_t *_RESTRICT_KYWD input, 661 size_t input_len) 662 { 663 size_t i, j; 664 665 for (i = 0, j = 0; j < input_len; i++, j += sizeof (uint32_t)) { 666 667 #ifdef _LITTLE_ENDIAN 668 669 #ifdef _MD5_CHECK_ALIGNMENT 670 if ((uintptr_t)output & 0x3) /* Not 4-byte aligned */ 671 bcopy(input + i, output + j, 4); 672 else *(uint32_t *)(output + j) = input[i]; 673 #else 674 /*LINTED E_BAD_PTR_CAST_ALIGN*/ 675 *(uint32_t *)(output + j) = input[i]; 676 #endif /* _MD5_CHECK_ALIGNMENT */ 677 678 #else /* big endian -- will work on little endian, but slowly */ 679 680 output[j] = input[i] & 0xff; 681 output[j + 1] = (input[i] >> 8) & 0xff; 682 output[j + 2] = (input[i] >> 16) & 0xff; 683 output[j + 3] = (input[i] >> 24) & 0xff; 684 #endif 685 } 686 } 687