xref: /titanic_41/usr/src/common/crypto/ecc/ec2_193.c (revision ed5289f91b9bf164dccd6c75398362be77a4478d)
1 /*
2  * ***** BEGIN LICENSE BLOCK *****
3  * Version: MPL 1.1/GPL 2.0/LGPL 2.1
4  *
5  * The contents of this file are subject to the Mozilla Public License Version
6  * 1.1 (the "License"); you may not use this file except in compliance with
7  * the License. You may obtain a copy of the License at
8  * http://www.mozilla.org/MPL/
9  *
10  * Software distributed under the License is distributed on an "AS IS" basis,
11  * WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
12  * for the specific language governing rights and limitations under the
13  * License.
14  *
15  * The Original Code is the elliptic curve math library for binary polynomial field curves.
16  *
17  * The Initial Developer of the Original Code is
18  * Sun Microsystems, Inc.
19  * Portions created by the Initial Developer are Copyright (C) 2003
20  * the Initial Developer. All Rights Reserved.
21  *
22  * Contributor(s):
23  *   Sheueling Chang-Shantz <sheueling.chang@sun.com>,
24  *   Stephen Fung <fungstep@hotmail.com>, and
25  *   Douglas Stebila <douglas@stebila.ca>, Sun Microsystems Laboratories.
26  *
27  * Alternatively, the contents of this file may be used under the terms of
28  * either the GNU General Public License Version 2 or later (the "GPL"), or
29  * the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
30  * in which case the provisions of the GPL or the LGPL are applicable instead
31  * of those above. If you wish to allow use of your version of this file only
32  * under the terms of either the GPL or the LGPL, and not to allow others to
33  * use your version of this file under the terms of the MPL, indicate your
34  * decision by deleting the provisions above and replace them with the notice
35  * and other provisions required by the GPL or the LGPL. If you do not delete
36  * the provisions above, a recipient may use your version of this file under
37  * the terms of any one of the MPL, the GPL or the LGPL.
38  *
39  * ***** END LICENSE BLOCK ***** */
40 /*
41  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
42  * Use is subject to license terms.
43  *
44  * Sun elects to use this software under the MPL license.
45  */
46 
47 #pragma ident	"%Z%%M%	%I%	%E% SMI"
48 
49 #include "ec2.h"
50 #include "mp_gf2m.h"
51 #include "mp_gf2m-priv.h"
52 #include "mpi.h"
53 #include "mpi-priv.h"
54 #ifndef _KERNEL
55 #include <stdlib.h>
56 #endif
57 
58 /* Fast reduction for polynomials over a 193-bit curve. Assumes reduction
59  * polynomial with terms {193, 15, 0}. */
60 mp_err
61 ec_GF2m_193_mod(const mp_int *a, mp_int *r, const GFMethod *meth)
62 {
63 	mp_err res = MP_OKAY;
64 	mp_digit *u, z;
65 
66 	if (a != r) {
67 		MP_CHECKOK(mp_copy(a, r));
68 	}
69 #ifdef ECL_SIXTY_FOUR_BIT
70 	if (MP_USED(r) < 7) {
71 		MP_CHECKOK(s_mp_pad(r, 7));
72 	}
73 	u = MP_DIGITS(r);
74 	MP_USED(r) = 7;
75 
76 	/* u[6] only has 2 significant bits */
77 	z = u[6];
78 	u[3] ^= (z << 14) ^ (z >> 1);
79 	u[2] ^= (z << 63);
80 	z = u[5];
81 	u[3] ^= (z >> 50);
82 	u[2] ^= (z << 14) ^ (z >> 1);
83 	u[1] ^= (z << 63);
84 	z = u[4];
85 	u[2] ^= (z >> 50);
86 	u[1] ^= (z << 14) ^ (z >> 1);
87 	u[0] ^= (z << 63);
88 	z = u[3] >> 1;				/* z only has 63 significant bits */
89 	u[1] ^= (z >> 49);
90 	u[0] ^= (z << 15) ^ z;
91 	/* clear bits above 193 */
92 	u[6] = u[5] = u[4] = 0;
93 	u[3] ^= z << 1;
94 #else
95 	if (MP_USED(r) < 13) {
96 		MP_CHECKOK(s_mp_pad(r, 13));
97 	}
98 	u = MP_DIGITS(r);
99 	MP_USED(r) = 13;
100 
101 	/* u[12] only has 2 significant bits */
102 	z = u[12];
103 	u[6] ^= (z << 14) ^ (z >> 1);
104 	u[5] ^= (z << 31);
105 	z = u[11];
106 	u[6] ^= (z >> 18);
107 	u[5] ^= (z << 14) ^ (z >> 1);
108 	u[4] ^= (z << 31);
109 	z = u[10];
110 	u[5] ^= (z >> 18);
111 	u[4] ^= (z << 14) ^ (z >> 1);
112 	u[3] ^= (z << 31);
113 	z = u[9];
114 	u[4] ^= (z >> 18);
115 	u[3] ^= (z << 14) ^ (z >> 1);
116 	u[2] ^= (z << 31);
117 	z = u[8];
118 	u[3] ^= (z >> 18);
119 	u[2] ^= (z << 14) ^ (z >> 1);
120 	u[1] ^= (z << 31);
121 	z = u[7];
122 	u[2] ^= (z >> 18);
123 	u[1] ^= (z << 14) ^ (z >> 1);
124 	u[0] ^= (z << 31);
125 	z = u[6] >> 1;				/* z only has 31 significant bits */
126 	u[1] ^= (z >> 17);
127 	u[0] ^= (z << 15) ^ z;
128 	/* clear bits above 193 */
129 	u[12] = u[11] = u[10] = u[9] = u[8] = u[7] = 0;
130 	u[6] ^= z << 1;
131 #endif
132 	s_mp_clamp(r);
133 
134   CLEANUP:
135 	return res;
136 }
137 
138 /* Fast squaring for polynomials over a 193-bit curve. Assumes reduction
139  * polynomial with terms {193, 15, 0}. */
140 mp_err
141 ec_GF2m_193_sqr(const mp_int *a, mp_int *r, const GFMethod *meth)
142 {
143 	mp_err res = MP_OKAY;
144 	mp_digit *u, *v;
145 
146 	v = MP_DIGITS(a);
147 
148 #ifdef ECL_SIXTY_FOUR_BIT
149 	if (MP_USED(a) < 4) {
150 		return mp_bsqrmod(a, meth->irr_arr, r);
151 	}
152 	if (MP_USED(r) < 7) {
153 		MP_CHECKOK(s_mp_pad(r, 7));
154 	}
155 	MP_USED(r) = 7;
156 #else
157 	if (MP_USED(a) < 7) {
158 		return mp_bsqrmod(a, meth->irr_arr, r);
159 	}
160 	if (MP_USED(r) < 13) {
161 		MP_CHECKOK(s_mp_pad(r, 13));
162 	}
163 	MP_USED(r) = 13;
164 #endif
165 	u = MP_DIGITS(r);
166 
167 #ifdef ECL_THIRTY_TWO_BIT
168 	u[12] = gf2m_SQR0(v[6]);
169 	u[11] = gf2m_SQR1(v[5]);
170 	u[10] = gf2m_SQR0(v[5]);
171 	u[9] = gf2m_SQR1(v[4]);
172 	u[8] = gf2m_SQR0(v[4]);
173 	u[7] = gf2m_SQR1(v[3]);
174 #endif
175 	u[6] = gf2m_SQR0(v[3]);
176 	u[5] = gf2m_SQR1(v[2]);
177 	u[4] = gf2m_SQR0(v[2]);
178 	u[3] = gf2m_SQR1(v[1]);
179 	u[2] = gf2m_SQR0(v[1]);
180 	u[1] = gf2m_SQR1(v[0]);
181 	u[0] = gf2m_SQR0(v[0]);
182 	return ec_GF2m_193_mod(r, r, meth);
183 
184   CLEANUP:
185 	return res;
186 }
187 
188 /* Fast multiplication for polynomials over a 193-bit curve. Assumes
189  * reduction polynomial with terms {193, 15, 0}. */
190 mp_err
191 ec_GF2m_193_mul(const mp_int *a, const mp_int *b, mp_int *r,
192 				const GFMethod *meth)
193 {
194 	mp_err res = MP_OKAY;
195 	mp_digit a3 = 0, a2 = 0, a1 = 0, a0, b3 = 0, b2 = 0, b1 = 0, b0;
196 
197 #ifdef ECL_THIRTY_TWO_BIT
198 	mp_digit a6 = 0, a5 = 0, a4 = 0, b6 = 0, b5 = 0, b4 = 0;
199 	mp_digit rm[8];
200 #endif
201 
202 	if (a == b) {
203 		return ec_GF2m_193_sqr(a, r, meth);
204 	} else {
205 		switch (MP_USED(a)) {
206 #ifdef ECL_THIRTY_TWO_BIT
207 		case 7:
208 			a6 = MP_DIGIT(a, 6);
209 		case 6:
210 			a5 = MP_DIGIT(a, 5);
211 		case 5:
212 			a4 = MP_DIGIT(a, 4);
213 #endif
214 		case 4:
215 			a3 = MP_DIGIT(a, 3);
216 		case 3:
217 			a2 = MP_DIGIT(a, 2);
218 		case 2:
219 			a1 = MP_DIGIT(a, 1);
220 		default:
221 			a0 = MP_DIGIT(a, 0);
222 		}
223 		switch (MP_USED(b)) {
224 #ifdef ECL_THIRTY_TWO_BIT
225 		case 7:
226 			b6 = MP_DIGIT(b, 6);
227 		case 6:
228 			b5 = MP_DIGIT(b, 5);
229 		case 5:
230 			b4 = MP_DIGIT(b, 4);
231 #endif
232 		case 4:
233 			b3 = MP_DIGIT(b, 3);
234 		case 3:
235 			b2 = MP_DIGIT(b, 2);
236 		case 2:
237 			b1 = MP_DIGIT(b, 1);
238 		default:
239 			b0 = MP_DIGIT(b, 0);
240 		}
241 #ifdef ECL_SIXTY_FOUR_BIT
242 		MP_CHECKOK(s_mp_pad(r, 8));
243 		s_bmul_4x4(MP_DIGITS(r), a3, a2, a1, a0, b3, b2, b1, b0);
244 		MP_USED(r) = 8;
245 		s_mp_clamp(r);
246 #else
247 		MP_CHECKOK(s_mp_pad(r, 14));
248 		s_bmul_3x3(MP_DIGITS(r) + 8, a6, a5, a4, b6, b5, b4);
249 		s_bmul_4x4(MP_DIGITS(r), a3, a2, a1, a0, b3, b2, b1, b0);
250 		s_bmul_4x4(rm, a3, a6 ^ a2, a5 ^ a1, a4 ^ a0, b3, b6 ^ b2, b5 ^ b1,
251 				   b4 ^ b0);
252 		rm[7] ^= MP_DIGIT(r, 7);
253 		rm[6] ^= MP_DIGIT(r, 6);
254 		rm[5] ^= MP_DIGIT(r, 5) ^ MP_DIGIT(r, 13);
255 		rm[4] ^= MP_DIGIT(r, 4) ^ MP_DIGIT(r, 12);
256 		rm[3] ^= MP_DIGIT(r, 3) ^ MP_DIGIT(r, 11);
257 		rm[2] ^= MP_DIGIT(r, 2) ^ MP_DIGIT(r, 10);
258 		rm[1] ^= MP_DIGIT(r, 1) ^ MP_DIGIT(r, 9);
259 		rm[0] ^= MP_DIGIT(r, 0) ^ MP_DIGIT(r, 8);
260 		MP_DIGIT(r, 11) ^= rm[7];
261 		MP_DIGIT(r, 10) ^= rm[6];
262 		MP_DIGIT(r, 9) ^= rm[5];
263 		MP_DIGIT(r, 8) ^= rm[4];
264 		MP_DIGIT(r, 7) ^= rm[3];
265 		MP_DIGIT(r, 6) ^= rm[2];
266 		MP_DIGIT(r, 5) ^= rm[1];
267 		MP_DIGIT(r, 4) ^= rm[0];
268 		MP_USED(r) = 14;
269 		s_mp_clamp(r);
270 #endif
271 		return ec_GF2m_193_mod(r, r, meth);
272 	}
273 
274   CLEANUP:
275 	return res;
276 }
277 
278 /* Wire in fast field arithmetic for 193-bit curves. */
279 mp_err
280 ec_group_set_gf2m193(ECGroup *group, ECCurveName name)
281 {
282 	group->meth->field_mod = &ec_GF2m_193_mod;
283 	group->meth->field_mul = &ec_GF2m_193_mul;
284 	group->meth->field_sqr = &ec_GF2m_193_sqr;
285 	return MP_OKAY;
286 }
287