1 /* 2 * ***** BEGIN LICENSE BLOCK ***** 3 * Version: MPL 1.1/GPL 2.0/LGPL 2.1 4 * 5 * The contents of this file are subject to the Mozilla Public License Version 6 * 1.1 (the "License"); you may not use this file except in compliance with 7 * the License. You may obtain a copy of the License at 8 * http://www.mozilla.org/MPL/ 9 * 10 * Software distributed under the License is distributed on an "AS IS" basis, 11 * WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License 12 * for the specific language governing rights and limitations under the 13 * License. 14 * 15 * The Original Code is the elliptic curve math library for binary polynomial field curves. 16 * 17 * The Initial Developer of the Original Code is 18 * Sun Microsystems, Inc. 19 * Portions created by the Initial Developer are Copyright (C) 2003 20 * the Initial Developer. All Rights Reserved. 21 * 22 * Contributor(s): 23 * Douglas Stebila <douglas@stebila.ca>, Sun Microsystems Laboratories 24 * 25 * Alternatively, the contents of this file may be used under the terms of 26 * either the GNU General Public License Version 2 or later (the "GPL"), or 27 * the GNU Lesser General Public License Version 2.1 or later (the "LGPL"), 28 * in which case the provisions of the GPL or the LGPL are applicable instead 29 * of those above. If you wish to allow use of your version of this file only 30 * under the terms of either the GPL or the LGPL, and not to allow others to 31 * use your version of this file under the terms of the MPL, indicate your 32 * decision by deleting the provisions above and replace them with the notice 33 * and other provisions required by the GPL or the LGPL. If you do not delete 34 * the provisions above, a recipient may use your version of this file under 35 * the terms of any one of the MPL, the GPL or the LGPL. 36 * 37 * ***** END LICENSE BLOCK ***** */ 38 /* 39 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 40 * Use is subject to license terms. 41 * 42 * Sun elects to use this software under the MPL license. 43 */ 44 45 #ifndef _EC2_H 46 #define _EC2_H 47 48 #pragma ident "%Z%%M% %I% %E% SMI" 49 50 #include "ecl-priv.h" 51 52 /* Checks if point P(px, py) is at infinity. Uses affine coordinates. */ 53 mp_err ec_GF2m_pt_is_inf_aff(const mp_int *px, const mp_int *py); 54 55 /* Sets P(px, py) to be the point at infinity. Uses affine coordinates. */ 56 mp_err ec_GF2m_pt_set_inf_aff(mp_int *px, mp_int *py); 57 58 /* Computes R = P + Q where R is (rx, ry), P is (px, py) and Q is (qx, 59 * qy). Uses affine coordinates. */ 60 mp_err ec_GF2m_pt_add_aff(const mp_int *px, const mp_int *py, 61 const mp_int *qx, const mp_int *qy, mp_int *rx, 62 mp_int *ry, const ECGroup *group); 63 64 /* Computes R = P - Q. Uses affine coordinates. */ 65 mp_err ec_GF2m_pt_sub_aff(const mp_int *px, const mp_int *py, 66 const mp_int *qx, const mp_int *qy, mp_int *rx, 67 mp_int *ry, const ECGroup *group); 68 69 /* Computes R = 2P. Uses affine coordinates. */ 70 mp_err ec_GF2m_pt_dbl_aff(const mp_int *px, const mp_int *py, mp_int *rx, 71 mp_int *ry, const ECGroup *group); 72 73 /* Validates a point on a GF2m curve. */ 74 mp_err ec_GF2m_validate_point(const mp_int *px, const mp_int *py, const ECGroup *group); 75 76 /* by default, this routine is unused and thus doesn't need to be compiled */ 77 #ifdef ECL_ENABLE_GF2M_PT_MUL_AFF 78 /* Computes R = nP where R is (rx, ry) and P is (px, py). The parameters 79 * a, b and p are the elliptic curve coefficients and the irreducible that 80 * determines the field GF2m. Uses affine coordinates. */ 81 mp_err ec_GF2m_pt_mul_aff(const mp_int *n, const mp_int *px, 82 const mp_int *py, mp_int *rx, mp_int *ry, 83 const ECGroup *group); 84 #endif 85 86 /* Computes R = nP where R is (rx, ry) and P is (px, py). The parameters 87 * a, b and p are the elliptic curve coefficients and the irreducible that 88 * determines the field GF2m. Uses Montgomery projective coordinates. */ 89 mp_err ec_GF2m_pt_mul_mont(const mp_int *n, const mp_int *px, 90 const mp_int *py, mp_int *rx, mp_int *ry, 91 const ECGroup *group); 92 93 #ifdef ECL_ENABLE_GF2M_PROJ 94 /* Converts a point P(px, py) from affine coordinates to projective 95 * coordinates R(rx, ry, rz). */ 96 mp_err ec_GF2m_pt_aff2proj(const mp_int *px, const mp_int *py, mp_int *rx, 97 mp_int *ry, mp_int *rz, const ECGroup *group); 98 99 /* Converts a point P(px, py, pz) from projective coordinates to affine 100 * coordinates R(rx, ry). */ 101 mp_err ec_GF2m_pt_proj2aff(const mp_int *px, const mp_int *py, 102 const mp_int *pz, mp_int *rx, mp_int *ry, 103 const ECGroup *group); 104 105 /* Checks if point P(px, py, pz) is at infinity. Uses projective 106 * coordinates. */ 107 mp_err ec_GF2m_pt_is_inf_proj(const mp_int *px, const mp_int *py, 108 const mp_int *pz); 109 110 /* Sets P(px, py, pz) to be the point at infinity. Uses projective 111 * coordinates. */ 112 mp_err ec_GF2m_pt_set_inf_proj(mp_int *px, mp_int *py, mp_int *pz); 113 114 /* Computes R = P + Q where R is (rx, ry, rz), P is (px, py, pz) and Q is 115 * (qx, qy, qz). Uses projective coordinates. */ 116 mp_err ec_GF2m_pt_add_proj(const mp_int *px, const mp_int *py, 117 const mp_int *pz, const mp_int *qx, 118 const mp_int *qy, mp_int *rx, mp_int *ry, 119 mp_int *rz, const ECGroup *group); 120 121 /* Computes R = 2P. Uses projective coordinates. */ 122 mp_err ec_GF2m_pt_dbl_proj(const mp_int *px, const mp_int *py, 123 const mp_int *pz, mp_int *rx, mp_int *ry, 124 mp_int *rz, const ECGroup *group); 125 126 /* Computes R = nP where R is (rx, ry) and P is (px, py). The parameters 127 * a, b and p are the elliptic curve coefficients and the prime that 128 * determines the field GF2m. Uses projective coordinates. */ 129 mp_err ec_GF2m_pt_mul_proj(const mp_int *n, const mp_int *px, 130 const mp_int *py, mp_int *rx, mp_int *ry, 131 const ECGroup *group); 132 #endif 133 134 #endif /* _EC2_H */ 135