1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* 27 * AVL - generic AVL tree implementation for kernel use 28 * 29 * A complete description of AVL trees can be found in many CS textbooks. 30 * 31 * Here is a very brief overview. An AVL tree is a binary search tree that is 32 * almost perfectly balanced. By "almost" perfectly balanced, we mean that at 33 * any given node, the left and right subtrees are allowed to differ in height 34 * by at most 1 level. 35 * 36 * This relaxation from a perfectly balanced binary tree allows doing 37 * insertion and deletion relatively efficiently. Searching the tree is 38 * still a fast operation, roughly O(log(N)). 39 * 40 * The key to insertion and deletion is a set of tree maniuplations called 41 * rotations, which bring unbalanced subtrees back into the semi-balanced state. 42 * 43 * This implementation of AVL trees has the following peculiarities: 44 * 45 * - The AVL specific data structures are physically embedded as fields 46 * in the "using" data structures. To maintain generality the code 47 * must constantly translate between "avl_node_t *" and containing 48 * data structure "void *"s by adding/subracting the avl_offset. 49 * 50 * - Since the AVL data is always embedded in other structures, there is 51 * no locking or memory allocation in the AVL routines. This must be 52 * provided for by the enclosing data structure's semantics. Typically, 53 * avl_insert()/_add()/_remove()/avl_insert_here() require some kind of 54 * exclusive write lock. Other operations require a read lock. 55 * 56 * - The implementation uses iteration instead of explicit recursion, 57 * since it is intended to run on limited size kernel stacks. Since 58 * there is no recursion stack present to move "up" in the tree, 59 * there is an explicit "parent" link in the avl_node_t. 60 * 61 * - The left/right children pointers of a node are in an array. 62 * In the code, variables (instead of constants) are used to represent 63 * left and right indices. The implementation is written as if it only 64 * dealt with left handed manipulations. By changing the value assigned 65 * to "left", the code also works for right handed trees. The 66 * following variables/terms are frequently used: 67 * 68 * int left; // 0 when dealing with left children, 69 * // 1 for dealing with right children 70 * 71 * int left_heavy; // -1 when left subtree is taller at some node, 72 * // +1 when right subtree is taller 73 * 74 * int right; // will be the opposite of left (0 or 1) 75 * int right_heavy;// will be the opposite of left_heavy (-1 or 1) 76 * 77 * int direction; // 0 for "<" (ie. left child); 1 for ">" (right) 78 * 79 * Though it is a little more confusing to read the code, the approach 80 * allows using half as much code (and hence cache footprint) for tree 81 * manipulations and eliminates many conditional branches. 82 * 83 * - The avl_index_t is an opaque "cookie" used to find nodes at or 84 * adjacent to where a new value would be inserted in the tree. The value 85 * is a modified "avl_node_t *". The bottom bit (normally 0 for a 86 * pointer) is set to indicate if that the new node has a value greater 87 * than the value of the indicated "avl_node_t *". 88 */ 89 90 #include <sys/types.h> 91 #include <sys/param.h> 92 #include <sys/debug.h> 93 #include <sys/avl.h> 94 #include <sys/cmn_err.h> 95 96 /* 97 * Small arrays to translate between balance (or diff) values and child indeces. 98 * 99 * Code that deals with binary tree data structures will randomly use 100 * left and right children when examining a tree. C "if()" statements 101 * which evaluate randomly suffer from very poor hardware branch prediction. 102 * In this code we avoid some of the branch mispredictions by using the 103 * following translation arrays. They replace random branches with an 104 * additional memory reference. Since the translation arrays are both very 105 * small the data should remain efficiently in cache. 106 */ 107 static const int avl_child2balance[2] = {-1, 1}; 108 static const int avl_balance2child[] = {0, 0, 1}; 109 110 111 /* 112 * Walk from one node to the previous valued node (ie. an infix walk 113 * towards the left). At any given node we do one of 2 things: 114 * 115 * - If there is a left child, go to it, then to it's rightmost descendant. 116 * 117 * - otherwise we return thru parent nodes until we've come from a right child. 118 * 119 * Return Value: 120 * NULL - if at the end of the nodes 121 * otherwise next node 122 */ 123 void * 124 avl_walk(avl_tree_t *tree, void *oldnode, int left) 125 { 126 size_t off = tree->avl_offset; 127 avl_node_t *node = AVL_DATA2NODE(oldnode, off); 128 int right = 1 - left; 129 int was_child; 130 131 132 /* 133 * nowhere to walk to if tree is empty 134 */ 135 if (node == NULL) 136 return (NULL); 137 138 /* 139 * Visit the previous valued node. There are two possibilities: 140 * 141 * If this node has a left child, go down one left, then all 142 * the way right. 143 */ 144 if (node->avl_child[left] != NULL) { 145 for (node = node->avl_child[left]; 146 node->avl_child[right] != NULL; 147 node = node->avl_child[right]) 148 ; 149 /* 150 * Otherwise, return thru left children as far as we can. 151 */ 152 } else { 153 for (;;) { 154 was_child = AVL_XCHILD(node); 155 node = AVL_XPARENT(node); 156 if (node == NULL) 157 return (NULL); 158 if (was_child == right) 159 break; 160 } 161 } 162 163 return (AVL_NODE2DATA(node, off)); 164 } 165 166 /* 167 * Return the lowest valued node in a tree or NULL. 168 * (leftmost child from root of tree) 169 */ 170 void * 171 avl_first(avl_tree_t *tree) 172 { 173 avl_node_t *node; 174 avl_node_t *prev = NULL; 175 size_t off = tree->avl_offset; 176 177 for (node = tree->avl_root; node != NULL; node = node->avl_child[0]) 178 prev = node; 179 180 if (prev != NULL) 181 return (AVL_NODE2DATA(prev, off)); 182 return (NULL); 183 } 184 185 /* 186 * Return the highest valued node in a tree or NULL. 187 * (rightmost child from root of tree) 188 */ 189 void * 190 avl_last(avl_tree_t *tree) 191 { 192 avl_node_t *node; 193 avl_node_t *prev = NULL; 194 size_t off = tree->avl_offset; 195 196 for (node = tree->avl_root; node != NULL; node = node->avl_child[1]) 197 prev = node; 198 199 if (prev != NULL) 200 return (AVL_NODE2DATA(prev, off)); 201 return (NULL); 202 } 203 204 /* 205 * Access the node immediately before or after an insertion point. 206 * 207 * "avl_index_t" is a (avl_node_t *) with the bottom bit indicating a child 208 * 209 * Return value: 210 * NULL: no node in the given direction 211 * "void *" of the found tree node 212 */ 213 void * 214 avl_nearest(avl_tree_t *tree, avl_index_t where, int direction) 215 { 216 int child = AVL_INDEX2CHILD(where); 217 avl_node_t *node = AVL_INDEX2NODE(where); 218 void *data; 219 size_t off = tree->avl_offset; 220 221 if (node == NULL) { 222 ASSERT(tree->avl_root == NULL); 223 return (NULL); 224 } 225 data = AVL_NODE2DATA(node, off); 226 if (child != direction) 227 return (data); 228 229 return (avl_walk(tree, data, direction)); 230 } 231 232 233 /* 234 * Search for the node which contains "value". The algorithm is a 235 * simple binary tree search. 236 * 237 * return value: 238 * NULL: the value is not in the AVL tree 239 * *where (if not NULL) is set to indicate the insertion point 240 * "void *" of the found tree node 241 */ 242 void * 243 avl_find(avl_tree_t *tree, const void *value, avl_index_t *where) 244 { 245 avl_node_t *node; 246 avl_node_t *prev = NULL; 247 int child = 0; 248 int diff; 249 size_t off = tree->avl_offset; 250 251 for (node = tree->avl_root; node != NULL; 252 node = node->avl_child[child]) { 253 254 prev = node; 255 256 diff = tree->avl_compar(value, AVL_NODE2DATA(node, off)); 257 ASSERT(-1 <= diff && diff <= 1); 258 if (diff == 0) { 259 #ifdef DEBUG 260 if (where != NULL) 261 *where = 0; 262 #endif 263 return (AVL_NODE2DATA(node, off)); 264 } 265 child = avl_balance2child[1 + diff]; 266 267 } 268 269 if (where != NULL) 270 *where = AVL_MKINDEX(prev, child); 271 272 return (NULL); 273 } 274 275 276 /* 277 * Perform a rotation to restore balance at the subtree given by depth. 278 * 279 * This routine is used by both insertion and deletion. The return value 280 * indicates: 281 * 0 : subtree did not change height 282 * !0 : subtree was reduced in height 283 * 284 * The code is written as if handling left rotations, right rotations are 285 * symmetric and handled by swapping values of variables right/left[_heavy] 286 * 287 * On input balance is the "new" balance at "node". This value is either 288 * -2 or +2. 289 */ 290 static int 291 avl_rotation(avl_tree_t *tree, avl_node_t *node, int balance) 292 { 293 int left = !(balance < 0); /* when balance = -2, left will be 0 */ 294 int right = 1 - left; 295 int left_heavy = balance >> 1; 296 int right_heavy = -left_heavy; 297 avl_node_t *parent = AVL_XPARENT(node); 298 avl_node_t *child = node->avl_child[left]; 299 avl_node_t *cright; 300 avl_node_t *gchild; 301 avl_node_t *gright; 302 avl_node_t *gleft; 303 int which_child = AVL_XCHILD(node); 304 int child_bal = AVL_XBALANCE(child); 305 306 /* BEGIN CSTYLED */ 307 /* 308 * case 1 : node is overly left heavy, the left child is balanced or 309 * also left heavy. This requires the following rotation. 310 * 311 * (node bal:-2) 312 * / \ 313 * / \ 314 * (child bal:0 or -1) 315 * / \ 316 * / \ 317 * cright 318 * 319 * becomes: 320 * 321 * (child bal:1 or 0) 322 * / \ 323 * / \ 324 * (node bal:-1 or 0) 325 * / \ 326 * / \ 327 * cright 328 * 329 * we detect this situation by noting that child's balance is not 330 * right_heavy. 331 */ 332 /* END CSTYLED */ 333 if (child_bal != right_heavy) { 334 335 /* 336 * compute new balance of nodes 337 * 338 * If child used to be left heavy (now balanced) we reduced 339 * the height of this sub-tree -- used in "return...;" below 340 */ 341 child_bal += right_heavy; /* adjust towards right */ 342 343 /* 344 * move "cright" to be node's left child 345 */ 346 cright = child->avl_child[right]; 347 node->avl_child[left] = cright; 348 if (cright != NULL) { 349 AVL_SETPARENT(cright, node); 350 AVL_SETCHILD(cright, left); 351 } 352 353 /* 354 * move node to be child's right child 355 */ 356 child->avl_child[right] = node; 357 AVL_SETBALANCE(node, -child_bal); 358 AVL_SETCHILD(node, right); 359 AVL_SETPARENT(node, child); 360 361 /* 362 * update the pointer into this subtree 363 */ 364 AVL_SETBALANCE(child, child_bal); 365 AVL_SETCHILD(child, which_child); 366 AVL_SETPARENT(child, parent); 367 if (parent != NULL) 368 parent->avl_child[which_child] = child; 369 else 370 tree->avl_root = child; 371 372 return (child_bal == 0); 373 } 374 375 /* BEGIN CSTYLED */ 376 /* 377 * case 2 : When node is left heavy, but child is right heavy we use 378 * a different rotation. 379 * 380 * (node b:-2) 381 * / \ 382 * / \ 383 * / \ 384 * (child b:+1) 385 * / \ 386 * / \ 387 * (gchild b: != 0) 388 * / \ 389 * / \ 390 * gleft gright 391 * 392 * becomes: 393 * 394 * (gchild b:0) 395 * / \ 396 * / \ 397 * / \ 398 * (child b:?) (node b:?) 399 * / \ / \ 400 * / \ / \ 401 * gleft gright 402 * 403 * computing the new balances is more complicated. As an example: 404 * if gchild was right_heavy, then child is now left heavy 405 * else it is balanced 406 */ 407 /* END CSTYLED */ 408 gchild = child->avl_child[right]; 409 gleft = gchild->avl_child[left]; 410 gright = gchild->avl_child[right]; 411 412 /* 413 * move gright to left child of node and 414 * 415 * move gleft to right child of node 416 */ 417 node->avl_child[left] = gright; 418 if (gright != NULL) { 419 AVL_SETPARENT(gright, node); 420 AVL_SETCHILD(gright, left); 421 } 422 423 child->avl_child[right] = gleft; 424 if (gleft != NULL) { 425 AVL_SETPARENT(gleft, child); 426 AVL_SETCHILD(gleft, right); 427 } 428 429 /* 430 * move child to left child of gchild and 431 * 432 * move node to right child of gchild and 433 * 434 * fixup parent of all this to point to gchild 435 */ 436 balance = AVL_XBALANCE(gchild); 437 gchild->avl_child[left] = child; 438 AVL_SETBALANCE(child, (balance == right_heavy ? left_heavy : 0)); 439 AVL_SETPARENT(child, gchild); 440 AVL_SETCHILD(child, left); 441 442 gchild->avl_child[right] = node; 443 AVL_SETBALANCE(node, (balance == left_heavy ? right_heavy : 0)); 444 AVL_SETPARENT(node, gchild); 445 AVL_SETCHILD(node, right); 446 447 AVL_SETBALANCE(gchild, 0); 448 AVL_SETPARENT(gchild, parent); 449 AVL_SETCHILD(gchild, which_child); 450 if (parent != NULL) 451 parent->avl_child[which_child] = gchild; 452 else 453 tree->avl_root = gchild; 454 455 return (1); /* the new tree is always shorter */ 456 } 457 458 459 /* 460 * Insert a new node into an AVL tree at the specified (from avl_find()) place. 461 * 462 * Newly inserted nodes are always leaf nodes in the tree, since avl_find() 463 * searches out to the leaf positions. The avl_index_t indicates the node 464 * which will be the parent of the new node. 465 * 466 * After the node is inserted, a single rotation further up the tree may 467 * be necessary to maintain an acceptable AVL balance. 468 */ 469 void 470 avl_insert(avl_tree_t *tree, void *new_data, avl_index_t where) 471 { 472 avl_node_t *node; 473 avl_node_t *parent = AVL_INDEX2NODE(where); 474 int old_balance; 475 int new_balance; 476 int which_child = AVL_INDEX2CHILD(where); 477 size_t off = tree->avl_offset; 478 479 ASSERT(tree); 480 #ifdef _LP64 481 ASSERT(((uintptr_t)new_data & 0x7) == 0); 482 #endif 483 484 node = AVL_DATA2NODE(new_data, off); 485 486 /* 487 * First, add the node to the tree at the indicated position. 488 */ 489 ++tree->avl_numnodes; 490 491 node->avl_child[0] = NULL; 492 node->avl_child[1] = NULL; 493 494 AVL_SETCHILD(node, which_child); 495 AVL_SETBALANCE(node, 0); 496 AVL_SETPARENT(node, parent); 497 if (parent != NULL) { 498 ASSERT(parent->avl_child[which_child] == NULL); 499 parent->avl_child[which_child] = node; 500 } else { 501 ASSERT(tree->avl_root == NULL); 502 tree->avl_root = node; 503 } 504 /* 505 * Now, back up the tree modifying the balance of all nodes above the 506 * insertion point. If we get to a highly unbalanced ancestor, we 507 * need to do a rotation. If we back out of the tree we are done. 508 * If we brought any subtree into perfect balance (0), we are also done. 509 */ 510 for (;;) { 511 node = parent; 512 if (node == NULL) 513 return; 514 515 /* 516 * Compute the new balance 517 */ 518 old_balance = AVL_XBALANCE(node); 519 new_balance = old_balance + avl_child2balance[which_child]; 520 521 /* 522 * If we introduced equal balance, then we are done immediately 523 */ 524 if (new_balance == 0) { 525 AVL_SETBALANCE(node, 0); 526 return; 527 } 528 529 /* 530 * If both old and new are not zero we went 531 * from -1 to -2 balance, do a rotation. 532 */ 533 if (old_balance != 0) 534 break; 535 536 AVL_SETBALANCE(node, new_balance); 537 parent = AVL_XPARENT(node); 538 which_child = AVL_XCHILD(node); 539 } 540 541 /* 542 * perform a rotation to fix the tree and return 543 */ 544 (void) avl_rotation(tree, node, new_balance); 545 } 546 547 /* 548 * Insert "new_data" in "tree" in the given "direction" either after or 549 * before (AVL_AFTER, AVL_BEFORE) the data "here". 550 * 551 * Insertions can only be done at empty leaf points in the tree, therefore 552 * if the given child of the node is already present we move to either 553 * the AVL_PREV or AVL_NEXT and reverse the insertion direction. Since 554 * every other node in the tree is a leaf, this always works. 555 * 556 * To help developers using this interface, we assert that the new node 557 * is correctly ordered at every step of the way in DEBUG kernels. 558 */ 559 void 560 avl_insert_here( 561 avl_tree_t *tree, 562 void *new_data, 563 void *here, 564 int direction) 565 { 566 avl_node_t *node; 567 int child = direction; /* rely on AVL_BEFORE == 0, AVL_AFTER == 1 */ 568 #ifdef DEBUG 569 int diff; 570 #endif 571 572 ASSERT(tree != NULL); 573 ASSERT(new_data != NULL); 574 ASSERT(here != NULL); 575 ASSERT(direction == AVL_BEFORE || direction == AVL_AFTER); 576 577 /* 578 * If corresponding child of node is not NULL, go to the neighboring 579 * node and reverse the insertion direction. 580 */ 581 node = AVL_DATA2NODE(here, tree->avl_offset); 582 583 #ifdef DEBUG 584 diff = tree->avl_compar(new_data, here); 585 ASSERT(-1 <= diff && diff <= 1); 586 ASSERT(diff != 0); 587 ASSERT(diff > 0 ? child == 1 : child == 0); 588 #endif 589 590 if (node->avl_child[child] != NULL) { 591 node = node->avl_child[child]; 592 child = 1 - child; 593 while (node->avl_child[child] != NULL) { 594 #ifdef DEBUG 595 diff = tree->avl_compar(new_data, 596 AVL_NODE2DATA(node, tree->avl_offset)); 597 ASSERT(-1 <= diff && diff <= 1); 598 ASSERT(diff != 0); 599 ASSERT(diff > 0 ? child == 1 : child == 0); 600 #endif 601 node = node->avl_child[child]; 602 } 603 #ifdef DEBUG 604 diff = tree->avl_compar(new_data, 605 AVL_NODE2DATA(node, tree->avl_offset)); 606 ASSERT(-1 <= diff && diff <= 1); 607 ASSERT(diff != 0); 608 ASSERT(diff > 0 ? child == 1 : child == 0); 609 #endif 610 } 611 ASSERT(node->avl_child[child] == NULL); 612 613 avl_insert(tree, new_data, AVL_MKINDEX(node, child)); 614 } 615 616 /* 617 * Add a new node to an AVL tree. 618 */ 619 void 620 avl_add(avl_tree_t *tree, void *new_node) 621 { 622 avl_index_t where; 623 624 /* 625 * This is unfortunate. We want to call panic() here, even for 626 * non-DEBUG kernels. In userland, however, we can't depend on anything 627 * in libc or else the rtld build process gets confused. So, all we can 628 * do in userland is resort to a normal ASSERT(). 629 */ 630 if (avl_find(tree, new_node, &where) != NULL) 631 #ifdef _KERNEL 632 panic("avl_find() succeeded inside avl_add()"); 633 #else 634 ASSERT(0); 635 #endif 636 avl_insert(tree, new_node, where); 637 } 638 639 /* 640 * Delete a node from the AVL tree. Deletion is similar to insertion, but 641 * with 2 complications. 642 * 643 * First, we may be deleting an interior node. Consider the following subtree: 644 * 645 * d c c 646 * / \ / \ / \ 647 * b e b e b e 648 * / \ / \ / 649 * a c a a 650 * 651 * When we are deleting node (d), we find and bring up an adjacent valued leaf 652 * node, say (c), to take the interior node's place. In the code this is 653 * handled by temporarily swapping (d) and (c) in the tree and then using 654 * common code to delete (d) from the leaf position. 655 * 656 * Secondly, an interior deletion from a deep tree may require more than one 657 * rotation to fix the balance. This is handled by moving up the tree through 658 * parents and applying rotations as needed. The return value from 659 * avl_rotation() is used to detect when a subtree did not change overall 660 * height due to a rotation. 661 */ 662 void 663 avl_remove(avl_tree_t *tree, void *data) 664 { 665 avl_node_t *delete; 666 avl_node_t *parent; 667 avl_node_t *node; 668 avl_node_t tmp; 669 int old_balance; 670 int new_balance; 671 int left; 672 int right; 673 int which_child; 674 size_t off = tree->avl_offset; 675 676 ASSERT(tree); 677 678 delete = AVL_DATA2NODE(data, off); 679 680 /* 681 * Deletion is easiest with a node that has at most 1 child. 682 * We swap a node with 2 children with a sequentially valued 683 * neighbor node. That node will have at most 1 child. Note this 684 * has no effect on the ordering of the remaining nodes. 685 * 686 * As an optimization, we choose the greater neighbor if the tree 687 * is right heavy, otherwise the left neighbor. This reduces the 688 * number of rotations needed. 689 */ 690 if (delete->avl_child[0] != NULL && delete->avl_child[1] != NULL) { 691 692 /* 693 * choose node to swap from whichever side is taller 694 */ 695 old_balance = AVL_XBALANCE(delete); 696 left = avl_balance2child[old_balance + 1]; 697 right = 1 - left; 698 699 /* 700 * get to the previous value'd node 701 * (down 1 left, as far as possible right) 702 */ 703 for (node = delete->avl_child[left]; 704 node->avl_child[right] != NULL; 705 node = node->avl_child[right]) 706 ; 707 708 /* 709 * create a temp placeholder for 'node' 710 * move 'node' to delete's spot in the tree 711 */ 712 tmp = *node; 713 714 *node = *delete; 715 if (node->avl_child[left] == node) 716 node->avl_child[left] = &tmp; 717 718 parent = AVL_XPARENT(node); 719 if (parent != NULL) 720 parent->avl_child[AVL_XCHILD(node)] = node; 721 else 722 tree->avl_root = node; 723 AVL_SETPARENT(node->avl_child[left], node); 724 AVL_SETPARENT(node->avl_child[right], node); 725 726 /* 727 * Put tmp where node used to be (just temporary). 728 * It always has a parent and at most 1 child. 729 */ 730 delete = &tmp; 731 parent = AVL_XPARENT(delete); 732 parent->avl_child[AVL_XCHILD(delete)] = delete; 733 which_child = (delete->avl_child[1] != 0); 734 if (delete->avl_child[which_child] != NULL) 735 AVL_SETPARENT(delete->avl_child[which_child], delete); 736 } 737 738 739 /* 740 * Here we know "delete" is at least partially a leaf node. It can 741 * be easily removed from the tree. 742 */ 743 ASSERT(tree->avl_numnodes > 0); 744 --tree->avl_numnodes; 745 parent = AVL_XPARENT(delete); 746 which_child = AVL_XCHILD(delete); 747 if (delete->avl_child[0] != NULL) 748 node = delete->avl_child[0]; 749 else 750 node = delete->avl_child[1]; 751 752 /* 753 * Connect parent directly to node (leaving out delete). 754 */ 755 if (node != NULL) { 756 AVL_SETPARENT(node, parent); 757 AVL_SETCHILD(node, which_child); 758 } 759 if (parent == NULL) { 760 tree->avl_root = node; 761 return; 762 } 763 parent->avl_child[which_child] = node; 764 765 766 /* 767 * Since the subtree is now shorter, begin adjusting parent balances 768 * and performing any needed rotations. 769 */ 770 do { 771 772 /* 773 * Move up the tree and adjust the balance 774 * 775 * Capture the parent and which_child values for the next 776 * iteration before any rotations occur. 777 */ 778 node = parent; 779 old_balance = AVL_XBALANCE(node); 780 new_balance = old_balance - avl_child2balance[which_child]; 781 parent = AVL_XPARENT(node); 782 which_child = AVL_XCHILD(node); 783 784 /* 785 * If a node was in perfect balance but isn't anymore then 786 * we can stop, since the height didn't change above this point 787 * due to a deletion. 788 */ 789 if (old_balance == 0) { 790 AVL_SETBALANCE(node, new_balance); 791 break; 792 } 793 794 /* 795 * If the new balance is zero, we don't need to rotate 796 * else 797 * need a rotation to fix the balance. 798 * If the rotation doesn't change the height 799 * of the sub-tree we have finished adjusting. 800 */ 801 if (new_balance == 0) 802 AVL_SETBALANCE(node, new_balance); 803 else if (!avl_rotation(tree, node, new_balance)) 804 break; 805 } while (parent != NULL); 806 } 807 808 #define AVL_REINSERT(tree, obj) \ 809 avl_remove((tree), (obj)); \ 810 avl_add((tree), (obj)) 811 812 boolean_t 813 avl_update_lt(avl_tree_t *t, void *obj) 814 { 815 void *neighbor; 816 817 ASSERT(((neighbor = AVL_NEXT(t, obj)) == NULL) || 818 (t->avl_compar(obj, neighbor) <= 0)); 819 820 neighbor = AVL_PREV(t, obj); 821 if ((neighbor != NULL) && (t->avl_compar(obj, neighbor) < 0)) { 822 AVL_REINSERT(t, obj); 823 return (B_TRUE); 824 } 825 826 return (B_FALSE); 827 } 828 829 boolean_t 830 avl_update_gt(avl_tree_t *t, void *obj) 831 { 832 void *neighbor; 833 834 ASSERT(((neighbor = AVL_PREV(t, obj)) == NULL) || 835 (t->avl_compar(obj, neighbor) >= 0)); 836 837 neighbor = AVL_NEXT(t, obj); 838 if ((neighbor != NULL) && (t->avl_compar(obj, neighbor) > 0)) { 839 AVL_REINSERT(t, obj); 840 return (B_TRUE); 841 } 842 843 return (B_FALSE); 844 } 845 846 boolean_t 847 avl_update(avl_tree_t *t, void *obj) 848 { 849 void *neighbor; 850 851 neighbor = AVL_PREV(t, obj); 852 if ((neighbor != NULL) && (t->avl_compar(obj, neighbor) < 0)) { 853 AVL_REINSERT(t, obj); 854 return (B_TRUE); 855 } 856 857 neighbor = AVL_NEXT(t, obj); 858 if ((neighbor != NULL) && (t->avl_compar(obj, neighbor) > 0)) { 859 AVL_REINSERT(t, obj); 860 return (B_TRUE); 861 } 862 863 return (B_FALSE); 864 } 865 866 /* 867 * initialize a new AVL tree 868 */ 869 void 870 avl_create(avl_tree_t *tree, int (*compar) (const void *, const void *), 871 size_t size, size_t offset) 872 { 873 ASSERT(tree); 874 ASSERT(compar); 875 ASSERT(size > 0); 876 ASSERT(size >= offset + sizeof (avl_node_t)); 877 #ifdef _LP64 878 ASSERT((offset & 0x7) == 0); 879 #endif 880 881 tree->avl_compar = compar; 882 tree->avl_root = NULL; 883 tree->avl_numnodes = 0; 884 tree->avl_size = size; 885 tree->avl_offset = offset; 886 } 887 888 /* 889 * Delete a tree. 890 */ 891 /* ARGSUSED */ 892 void 893 avl_destroy(avl_tree_t *tree) 894 { 895 ASSERT(tree); 896 ASSERT(tree->avl_numnodes == 0); 897 ASSERT(tree->avl_root == NULL); 898 } 899 900 901 /* 902 * Return the number of nodes in an AVL tree. 903 */ 904 ulong_t 905 avl_numnodes(avl_tree_t *tree) 906 { 907 ASSERT(tree); 908 return (tree->avl_numnodes); 909 } 910 911 boolean_t 912 avl_is_empty(avl_tree_t *tree) 913 { 914 ASSERT(tree); 915 return (tree->avl_numnodes == 0); 916 } 917 918 #define CHILDBIT (1L) 919 920 /* 921 * Post-order tree walk used to visit all tree nodes and destroy the tree 922 * in post order. This is used for destroying a tree w/o paying any cost 923 * for rebalancing it. 924 * 925 * example: 926 * 927 * void *cookie = NULL; 928 * my_data_t *node; 929 * 930 * while ((node = avl_destroy_nodes(tree, &cookie)) != NULL) 931 * free(node); 932 * avl_destroy(tree); 933 * 934 * The cookie is really an avl_node_t to the current node's parent and 935 * an indication of which child you looked at last. 936 * 937 * On input, a cookie value of CHILDBIT indicates the tree is done. 938 */ 939 void * 940 avl_destroy_nodes(avl_tree_t *tree, void **cookie) 941 { 942 avl_node_t *node; 943 avl_node_t *parent; 944 int child; 945 void *first; 946 size_t off = tree->avl_offset; 947 948 /* 949 * Initial calls go to the first node or it's right descendant. 950 */ 951 if (*cookie == NULL) { 952 first = avl_first(tree); 953 954 /* 955 * deal with an empty tree 956 */ 957 if (first == NULL) { 958 *cookie = (void *)CHILDBIT; 959 return (NULL); 960 } 961 962 node = AVL_DATA2NODE(first, off); 963 parent = AVL_XPARENT(node); 964 goto check_right_side; 965 } 966 967 /* 968 * If there is no parent to return to we are done. 969 */ 970 parent = (avl_node_t *)((uintptr_t)(*cookie) & ~CHILDBIT); 971 if (parent == NULL) { 972 if (tree->avl_root != NULL) { 973 ASSERT(tree->avl_numnodes == 1); 974 tree->avl_root = NULL; 975 tree->avl_numnodes = 0; 976 } 977 return (NULL); 978 } 979 980 /* 981 * Remove the child pointer we just visited from the parent and tree. 982 */ 983 child = (uintptr_t)(*cookie) & CHILDBIT; 984 parent->avl_child[child] = NULL; 985 ASSERT(tree->avl_numnodes > 1); 986 --tree->avl_numnodes; 987 988 /* 989 * If we just did a right child or there isn't one, go up to parent. 990 */ 991 if (child == 1 || parent->avl_child[1] == NULL) { 992 node = parent; 993 parent = AVL_XPARENT(parent); 994 goto done; 995 } 996 997 /* 998 * Do parent's right child, then leftmost descendent. 999 */ 1000 node = parent->avl_child[1]; 1001 while (node->avl_child[0] != NULL) { 1002 parent = node; 1003 node = node->avl_child[0]; 1004 } 1005 1006 /* 1007 * If here, we moved to a left child. It may have one 1008 * child on the right (when balance == +1). 1009 */ 1010 check_right_side: 1011 if (node->avl_child[1] != NULL) { 1012 ASSERT(AVL_XBALANCE(node) == 1); 1013 parent = node; 1014 node = node->avl_child[1]; 1015 ASSERT(node->avl_child[0] == NULL && 1016 node->avl_child[1] == NULL); 1017 } else { 1018 ASSERT(AVL_XBALANCE(node) <= 0); 1019 } 1020 1021 done: 1022 if (parent == NULL) { 1023 *cookie = (void *)CHILDBIT; 1024 ASSERT(node == tree->avl_root); 1025 } else { 1026 *cookie = (void *)((uintptr_t)parent | AVL_XCHILD(node)); 1027 } 1028 1029 return (AVL_NODE2DATA(node, off)); 1030 } 1031