1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2011, 2014 by Delphix. All rights reserved. 24 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 25 * Copyright (c) 2013 Steven Hartland. All rights reserved. 26 */ 27 28 /* 29 * The objective of this program is to provide a DMU/ZAP/SPA stress test 30 * that runs entirely in userland, is easy to use, and easy to extend. 31 * 32 * The overall design of the ztest program is as follows: 33 * 34 * (1) For each major functional area (e.g. adding vdevs to a pool, 35 * creating and destroying datasets, reading and writing objects, etc) 36 * we have a simple routine to test that functionality. These 37 * individual routines do not have to do anything "stressful". 38 * 39 * (2) We turn these simple functionality tests into a stress test by 40 * running them all in parallel, with as many threads as desired, 41 * and spread across as many datasets, objects, and vdevs as desired. 42 * 43 * (3) While all this is happening, we inject faults into the pool to 44 * verify that self-healing data really works. 45 * 46 * (4) Every time we open a dataset, we change its checksum and compression 47 * functions. Thus even individual objects vary from block to block 48 * in which checksum they use and whether they're compressed. 49 * 50 * (5) To verify that we never lose on-disk consistency after a crash, 51 * we run the entire test in a child of the main process. 52 * At random times, the child self-immolates with a SIGKILL. 53 * This is the software equivalent of pulling the power cord. 54 * The parent then runs the test again, using the existing 55 * storage pool, as many times as desired. If backwards compatibility 56 * testing is enabled ztest will sometimes run the "older" version 57 * of ztest after a SIGKILL. 58 * 59 * (6) To verify that we don't have future leaks or temporal incursions, 60 * many of the functional tests record the transaction group number 61 * as part of their data. When reading old data, they verify that 62 * the transaction group number is less than the current, open txg. 63 * If you add a new test, please do this if applicable. 64 * 65 * When run with no arguments, ztest runs for about five minutes and 66 * produces no output if successful. To get a little bit of information, 67 * specify -V. To get more information, specify -VV, and so on. 68 * 69 * To turn this into an overnight stress test, use -T to specify run time. 70 * 71 * You can ask more more vdevs [-v], datasets [-d], or threads [-t] 72 * to increase the pool capacity, fanout, and overall stress level. 73 * 74 * Use the -k option to set the desired frequency of kills. 75 * 76 * When ztest invokes itself it passes all relevant information through a 77 * temporary file which is mmap-ed in the child process. This allows shared 78 * memory to survive the exec syscall. The ztest_shared_hdr_t struct is always 79 * stored at offset 0 of this file and contains information on the size and 80 * number of shared structures in the file. The information stored in this file 81 * must remain backwards compatible with older versions of ztest so that 82 * ztest can invoke them during backwards compatibility testing (-B). 83 */ 84 85 #include <sys/zfs_context.h> 86 #include <sys/spa.h> 87 #include <sys/dmu.h> 88 #include <sys/txg.h> 89 #include <sys/dbuf.h> 90 #include <sys/zap.h> 91 #include <sys/dmu_objset.h> 92 #include <sys/poll.h> 93 #include <sys/stat.h> 94 #include <sys/time.h> 95 #include <sys/wait.h> 96 #include <sys/mman.h> 97 #include <sys/resource.h> 98 #include <sys/zio.h> 99 #include <sys/zil.h> 100 #include <sys/zil_impl.h> 101 #include <sys/vdev_impl.h> 102 #include <sys/vdev_file.h> 103 #include <sys/spa_impl.h> 104 #include <sys/metaslab_impl.h> 105 #include <sys/dsl_prop.h> 106 #include <sys/dsl_dataset.h> 107 #include <sys/dsl_destroy.h> 108 #include <sys/dsl_scan.h> 109 #include <sys/zio_checksum.h> 110 #include <sys/refcount.h> 111 #include <sys/zfeature.h> 112 #include <sys/dsl_userhold.h> 113 #include <stdio.h> 114 #include <stdio_ext.h> 115 #include <stdlib.h> 116 #include <unistd.h> 117 #include <signal.h> 118 #include <umem.h> 119 #include <dlfcn.h> 120 #include <ctype.h> 121 #include <math.h> 122 #include <sys/fs/zfs.h> 123 #include <libnvpair.h> 124 125 static int ztest_fd_data = -1; 126 static int ztest_fd_rand = -1; 127 128 typedef struct ztest_shared_hdr { 129 uint64_t zh_hdr_size; 130 uint64_t zh_opts_size; 131 uint64_t zh_size; 132 uint64_t zh_stats_size; 133 uint64_t zh_stats_count; 134 uint64_t zh_ds_size; 135 uint64_t zh_ds_count; 136 } ztest_shared_hdr_t; 137 138 static ztest_shared_hdr_t *ztest_shared_hdr; 139 140 typedef struct ztest_shared_opts { 141 char zo_pool[MAXNAMELEN]; 142 char zo_dir[MAXNAMELEN]; 143 char zo_alt_ztest[MAXNAMELEN]; 144 char zo_alt_libpath[MAXNAMELEN]; 145 uint64_t zo_vdevs; 146 uint64_t zo_vdevtime; 147 size_t zo_vdev_size; 148 int zo_ashift; 149 int zo_mirrors; 150 int zo_raidz; 151 int zo_raidz_parity; 152 int zo_datasets; 153 int zo_threads; 154 uint64_t zo_passtime; 155 uint64_t zo_killrate; 156 int zo_verbose; 157 int zo_init; 158 uint64_t zo_time; 159 uint64_t zo_maxloops; 160 uint64_t zo_metaslab_gang_bang; 161 } ztest_shared_opts_t; 162 163 static const ztest_shared_opts_t ztest_opts_defaults = { 164 .zo_pool = { 'z', 't', 'e', 's', 't', '\0' }, 165 .zo_dir = { '/', 't', 'm', 'p', '\0' }, 166 .zo_alt_ztest = { '\0' }, 167 .zo_alt_libpath = { '\0' }, 168 .zo_vdevs = 5, 169 .zo_ashift = SPA_MINBLOCKSHIFT, 170 .zo_mirrors = 2, 171 .zo_raidz = 4, 172 .zo_raidz_parity = 1, 173 .zo_vdev_size = SPA_MINDEVSIZE * 2, 174 .zo_datasets = 7, 175 .zo_threads = 23, 176 .zo_passtime = 60, /* 60 seconds */ 177 .zo_killrate = 70, /* 70% kill rate */ 178 .zo_verbose = 0, 179 .zo_init = 1, 180 .zo_time = 300, /* 5 minutes */ 181 .zo_maxloops = 50, /* max loops during spa_freeze() */ 182 .zo_metaslab_gang_bang = 32 << 10 183 }; 184 185 extern uint64_t metaslab_gang_bang; 186 extern uint64_t metaslab_df_alloc_threshold; 187 extern uint64_t zfs_deadman_synctime_ms; 188 extern int metaslab_preload_limit; 189 190 static ztest_shared_opts_t *ztest_shared_opts; 191 static ztest_shared_opts_t ztest_opts; 192 193 typedef struct ztest_shared_ds { 194 uint64_t zd_seq; 195 } ztest_shared_ds_t; 196 197 static ztest_shared_ds_t *ztest_shared_ds; 198 #define ZTEST_GET_SHARED_DS(d) (&ztest_shared_ds[d]) 199 200 #define BT_MAGIC 0x123456789abcdefULL 201 #define MAXFAULTS() \ 202 (MAX(zs->zs_mirrors, 1) * (ztest_opts.zo_raidz_parity + 1) - 1) 203 204 enum ztest_io_type { 205 ZTEST_IO_WRITE_TAG, 206 ZTEST_IO_WRITE_PATTERN, 207 ZTEST_IO_WRITE_ZEROES, 208 ZTEST_IO_TRUNCATE, 209 ZTEST_IO_SETATTR, 210 ZTEST_IO_REWRITE, 211 ZTEST_IO_TYPES 212 }; 213 214 typedef struct ztest_block_tag { 215 uint64_t bt_magic; 216 uint64_t bt_objset; 217 uint64_t bt_object; 218 uint64_t bt_offset; 219 uint64_t bt_gen; 220 uint64_t bt_txg; 221 uint64_t bt_crtxg; 222 } ztest_block_tag_t; 223 224 typedef struct bufwad { 225 uint64_t bw_index; 226 uint64_t bw_txg; 227 uint64_t bw_data; 228 } bufwad_t; 229 230 /* 231 * XXX -- fix zfs range locks to be generic so we can use them here. 232 */ 233 typedef enum { 234 RL_READER, 235 RL_WRITER, 236 RL_APPEND 237 } rl_type_t; 238 239 typedef struct rll { 240 void *rll_writer; 241 int rll_readers; 242 mutex_t rll_lock; 243 cond_t rll_cv; 244 } rll_t; 245 246 typedef struct rl { 247 uint64_t rl_object; 248 uint64_t rl_offset; 249 uint64_t rl_size; 250 rll_t *rl_lock; 251 } rl_t; 252 253 #define ZTEST_RANGE_LOCKS 64 254 #define ZTEST_OBJECT_LOCKS 64 255 256 /* 257 * Object descriptor. Used as a template for object lookup/create/remove. 258 */ 259 typedef struct ztest_od { 260 uint64_t od_dir; 261 uint64_t od_object; 262 dmu_object_type_t od_type; 263 dmu_object_type_t od_crtype; 264 uint64_t od_blocksize; 265 uint64_t od_crblocksize; 266 uint64_t od_gen; 267 uint64_t od_crgen; 268 char od_name[MAXNAMELEN]; 269 } ztest_od_t; 270 271 /* 272 * Per-dataset state. 273 */ 274 typedef struct ztest_ds { 275 ztest_shared_ds_t *zd_shared; 276 objset_t *zd_os; 277 rwlock_t zd_zilog_lock; 278 zilog_t *zd_zilog; 279 ztest_od_t *zd_od; /* debugging aid */ 280 char zd_name[MAXNAMELEN]; 281 mutex_t zd_dirobj_lock; 282 rll_t zd_object_lock[ZTEST_OBJECT_LOCKS]; 283 rll_t zd_range_lock[ZTEST_RANGE_LOCKS]; 284 } ztest_ds_t; 285 286 /* 287 * Per-iteration state. 288 */ 289 typedef void ztest_func_t(ztest_ds_t *zd, uint64_t id); 290 291 typedef struct ztest_info { 292 ztest_func_t *zi_func; /* test function */ 293 uint64_t zi_iters; /* iterations per execution */ 294 uint64_t *zi_interval; /* execute every <interval> seconds */ 295 } ztest_info_t; 296 297 typedef struct ztest_shared_callstate { 298 uint64_t zc_count; /* per-pass count */ 299 uint64_t zc_time; /* per-pass time */ 300 uint64_t zc_next; /* next time to call this function */ 301 } ztest_shared_callstate_t; 302 303 static ztest_shared_callstate_t *ztest_shared_callstate; 304 #define ZTEST_GET_SHARED_CALLSTATE(c) (&ztest_shared_callstate[c]) 305 306 /* 307 * Note: these aren't static because we want dladdr() to work. 308 */ 309 ztest_func_t ztest_dmu_read_write; 310 ztest_func_t ztest_dmu_write_parallel; 311 ztest_func_t ztest_dmu_object_alloc_free; 312 ztest_func_t ztest_dmu_commit_callbacks; 313 ztest_func_t ztest_zap; 314 ztest_func_t ztest_zap_parallel; 315 ztest_func_t ztest_zil_commit; 316 ztest_func_t ztest_zil_remount; 317 ztest_func_t ztest_dmu_read_write_zcopy; 318 ztest_func_t ztest_dmu_objset_create_destroy; 319 ztest_func_t ztest_dmu_prealloc; 320 ztest_func_t ztest_fzap; 321 ztest_func_t ztest_dmu_snapshot_create_destroy; 322 ztest_func_t ztest_dsl_prop_get_set; 323 ztest_func_t ztest_spa_prop_get_set; 324 ztest_func_t ztest_spa_create_destroy; 325 ztest_func_t ztest_fault_inject; 326 ztest_func_t ztest_ddt_repair; 327 ztest_func_t ztest_dmu_snapshot_hold; 328 ztest_func_t ztest_spa_rename; 329 ztest_func_t ztest_scrub; 330 ztest_func_t ztest_dsl_dataset_promote_busy; 331 ztest_func_t ztest_vdev_attach_detach; 332 ztest_func_t ztest_vdev_LUN_growth; 333 ztest_func_t ztest_vdev_add_remove; 334 ztest_func_t ztest_vdev_aux_add_remove; 335 ztest_func_t ztest_split_pool; 336 ztest_func_t ztest_reguid; 337 ztest_func_t ztest_spa_upgrade; 338 339 uint64_t zopt_always = 0ULL * NANOSEC; /* all the time */ 340 uint64_t zopt_incessant = 1ULL * NANOSEC / 10; /* every 1/10 second */ 341 uint64_t zopt_often = 1ULL * NANOSEC; /* every second */ 342 uint64_t zopt_sometimes = 10ULL * NANOSEC; /* every 10 seconds */ 343 uint64_t zopt_rarely = 60ULL * NANOSEC; /* every 60 seconds */ 344 345 ztest_info_t ztest_info[] = { 346 { ztest_dmu_read_write, 1, &zopt_always }, 347 { ztest_dmu_write_parallel, 10, &zopt_always }, 348 { ztest_dmu_object_alloc_free, 1, &zopt_always }, 349 { ztest_dmu_commit_callbacks, 1, &zopt_always }, 350 { ztest_zap, 30, &zopt_always }, 351 { ztest_zap_parallel, 100, &zopt_always }, 352 { ztest_split_pool, 1, &zopt_always }, 353 { ztest_zil_commit, 1, &zopt_incessant }, 354 { ztest_zil_remount, 1, &zopt_sometimes }, 355 { ztest_dmu_read_write_zcopy, 1, &zopt_often }, 356 { ztest_dmu_objset_create_destroy, 1, &zopt_often }, 357 { ztest_dsl_prop_get_set, 1, &zopt_often }, 358 { ztest_spa_prop_get_set, 1, &zopt_sometimes }, 359 #if 0 360 { ztest_dmu_prealloc, 1, &zopt_sometimes }, 361 #endif 362 { ztest_fzap, 1, &zopt_sometimes }, 363 { ztest_dmu_snapshot_create_destroy, 1, &zopt_sometimes }, 364 { ztest_spa_create_destroy, 1, &zopt_sometimes }, 365 { ztest_fault_inject, 1, &zopt_sometimes }, 366 { ztest_ddt_repair, 1, &zopt_sometimes }, 367 { ztest_dmu_snapshot_hold, 1, &zopt_sometimes }, 368 { ztest_reguid, 1, &zopt_rarely }, 369 { ztest_spa_rename, 1, &zopt_rarely }, 370 { ztest_scrub, 1, &zopt_rarely }, 371 { ztest_spa_upgrade, 1, &zopt_rarely }, 372 { ztest_dsl_dataset_promote_busy, 1, &zopt_rarely }, 373 { ztest_vdev_attach_detach, 1, &zopt_sometimes }, 374 { ztest_vdev_LUN_growth, 1, &zopt_rarely }, 375 { ztest_vdev_add_remove, 1, 376 &ztest_opts.zo_vdevtime }, 377 { ztest_vdev_aux_add_remove, 1, 378 &ztest_opts.zo_vdevtime }, 379 }; 380 381 #define ZTEST_FUNCS (sizeof (ztest_info) / sizeof (ztest_info_t)) 382 383 /* 384 * The following struct is used to hold a list of uncalled commit callbacks. 385 * The callbacks are ordered by txg number. 386 */ 387 typedef struct ztest_cb_list { 388 mutex_t zcl_callbacks_lock; 389 list_t zcl_callbacks; 390 } ztest_cb_list_t; 391 392 /* 393 * Stuff we need to share writably between parent and child. 394 */ 395 typedef struct ztest_shared { 396 boolean_t zs_do_init; 397 hrtime_t zs_proc_start; 398 hrtime_t zs_proc_stop; 399 hrtime_t zs_thread_start; 400 hrtime_t zs_thread_stop; 401 hrtime_t zs_thread_kill; 402 uint64_t zs_enospc_count; 403 uint64_t zs_vdev_next_leaf; 404 uint64_t zs_vdev_aux; 405 uint64_t zs_alloc; 406 uint64_t zs_space; 407 uint64_t zs_splits; 408 uint64_t zs_mirrors; 409 uint64_t zs_metaslab_sz; 410 uint64_t zs_metaslab_df_alloc_threshold; 411 uint64_t zs_guid; 412 } ztest_shared_t; 413 414 #define ID_PARALLEL -1ULL 415 416 static char ztest_dev_template[] = "%s/%s.%llua"; 417 static char ztest_aux_template[] = "%s/%s.%s.%llu"; 418 ztest_shared_t *ztest_shared; 419 420 static spa_t *ztest_spa = NULL; 421 static ztest_ds_t *ztest_ds; 422 423 static mutex_t ztest_vdev_lock; 424 425 /* 426 * The ztest_name_lock protects the pool and dataset namespace used by 427 * the individual tests. To modify the namespace, consumers must grab 428 * this lock as writer. Grabbing the lock as reader will ensure that the 429 * namespace does not change while the lock is held. 430 */ 431 static rwlock_t ztest_name_lock; 432 433 static boolean_t ztest_dump_core = B_TRUE; 434 static boolean_t ztest_exiting; 435 436 /* Global commit callback list */ 437 static ztest_cb_list_t zcl; 438 439 enum ztest_object { 440 ZTEST_META_DNODE = 0, 441 ZTEST_DIROBJ, 442 ZTEST_OBJECTS 443 }; 444 445 static void usage(boolean_t) __NORETURN; 446 447 /* 448 * These libumem hooks provide a reasonable set of defaults for the allocator's 449 * debugging facilities. 450 */ 451 const char * 452 _umem_debug_init() 453 { 454 return ("default,verbose"); /* $UMEM_DEBUG setting */ 455 } 456 457 const char * 458 _umem_logging_init(void) 459 { 460 return ("fail,contents"); /* $UMEM_LOGGING setting */ 461 } 462 463 #define FATAL_MSG_SZ 1024 464 465 char *fatal_msg; 466 467 static void 468 fatal(int do_perror, char *message, ...) 469 { 470 va_list args; 471 int save_errno = errno; 472 char buf[FATAL_MSG_SZ]; 473 474 (void) fflush(stdout); 475 476 va_start(args, message); 477 (void) sprintf(buf, "ztest: "); 478 /* LINTED */ 479 (void) vsprintf(buf + strlen(buf), message, args); 480 va_end(args); 481 if (do_perror) { 482 (void) snprintf(buf + strlen(buf), FATAL_MSG_SZ - strlen(buf), 483 ": %s", strerror(save_errno)); 484 } 485 (void) fprintf(stderr, "%s\n", buf); 486 fatal_msg = buf; /* to ease debugging */ 487 if (ztest_dump_core) 488 abort(); 489 exit(3); 490 } 491 492 static int 493 str2shift(const char *buf) 494 { 495 const char *ends = "BKMGTPEZ"; 496 int i; 497 498 if (buf[0] == '\0') 499 return (0); 500 for (i = 0; i < strlen(ends); i++) { 501 if (toupper(buf[0]) == ends[i]) 502 break; 503 } 504 if (i == strlen(ends)) { 505 (void) fprintf(stderr, "ztest: invalid bytes suffix: %s\n", 506 buf); 507 usage(B_FALSE); 508 } 509 if (buf[1] == '\0' || (toupper(buf[1]) == 'B' && buf[2] == '\0')) { 510 return (10*i); 511 } 512 (void) fprintf(stderr, "ztest: invalid bytes suffix: %s\n", buf); 513 usage(B_FALSE); 514 /* NOTREACHED */ 515 } 516 517 static uint64_t 518 nicenumtoull(const char *buf) 519 { 520 char *end; 521 uint64_t val; 522 523 val = strtoull(buf, &end, 0); 524 if (end == buf) { 525 (void) fprintf(stderr, "ztest: bad numeric value: %s\n", buf); 526 usage(B_FALSE); 527 } else if (end[0] == '.') { 528 double fval = strtod(buf, &end); 529 fval *= pow(2, str2shift(end)); 530 if (fval > UINT64_MAX) { 531 (void) fprintf(stderr, "ztest: value too large: %s\n", 532 buf); 533 usage(B_FALSE); 534 } 535 val = (uint64_t)fval; 536 } else { 537 int shift = str2shift(end); 538 if (shift >= 64 || (val << shift) >> shift != val) { 539 (void) fprintf(stderr, "ztest: value too large: %s\n", 540 buf); 541 usage(B_FALSE); 542 } 543 val <<= shift; 544 } 545 return (val); 546 } 547 548 static void 549 usage(boolean_t requested) 550 { 551 const ztest_shared_opts_t *zo = &ztest_opts_defaults; 552 553 char nice_vdev_size[10]; 554 char nice_gang_bang[10]; 555 FILE *fp = requested ? stdout : stderr; 556 557 nicenum(zo->zo_vdev_size, nice_vdev_size); 558 nicenum(zo->zo_metaslab_gang_bang, nice_gang_bang); 559 560 (void) fprintf(fp, "Usage: %s\n" 561 "\t[-v vdevs (default: %llu)]\n" 562 "\t[-s size_of_each_vdev (default: %s)]\n" 563 "\t[-a alignment_shift (default: %d)] use 0 for random\n" 564 "\t[-m mirror_copies (default: %d)]\n" 565 "\t[-r raidz_disks (default: %d)]\n" 566 "\t[-R raidz_parity (default: %d)]\n" 567 "\t[-d datasets (default: %d)]\n" 568 "\t[-t threads (default: %d)]\n" 569 "\t[-g gang_block_threshold (default: %s)]\n" 570 "\t[-i init_count (default: %d)] initialize pool i times\n" 571 "\t[-k kill_percentage (default: %llu%%)]\n" 572 "\t[-p pool_name (default: %s)]\n" 573 "\t[-f dir (default: %s)] file directory for vdev files\n" 574 "\t[-V] verbose (use multiple times for ever more blather)\n" 575 "\t[-E] use existing pool instead of creating new one\n" 576 "\t[-T time (default: %llu sec)] total run time\n" 577 "\t[-F freezeloops (default: %llu)] max loops in spa_freeze()\n" 578 "\t[-P passtime (default: %llu sec)] time per pass\n" 579 "\t[-B alt_ztest (default: <none>)] alternate ztest path\n" 580 "\t[-h] (print help)\n" 581 "", 582 zo->zo_pool, 583 (u_longlong_t)zo->zo_vdevs, /* -v */ 584 nice_vdev_size, /* -s */ 585 zo->zo_ashift, /* -a */ 586 zo->zo_mirrors, /* -m */ 587 zo->zo_raidz, /* -r */ 588 zo->zo_raidz_parity, /* -R */ 589 zo->zo_datasets, /* -d */ 590 zo->zo_threads, /* -t */ 591 nice_gang_bang, /* -g */ 592 zo->zo_init, /* -i */ 593 (u_longlong_t)zo->zo_killrate, /* -k */ 594 zo->zo_pool, /* -p */ 595 zo->zo_dir, /* -f */ 596 (u_longlong_t)zo->zo_time, /* -T */ 597 (u_longlong_t)zo->zo_maxloops, /* -F */ 598 (u_longlong_t)zo->zo_passtime); 599 exit(requested ? 0 : 1); 600 } 601 602 static void 603 process_options(int argc, char **argv) 604 { 605 char *path; 606 ztest_shared_opts_t *zo = &ztest_opts; 607 608 int opt; 609 uint64_t value; 610 char altdir[MAXNAMELEN] = { 0 }; 611 612 bcopy(&ztest_opts_defaults, zo, sizeof (*zo)); 613 614 while ((opt = getopt(argc, argv, 615 "v:s:a:m:r:R:d:t:g:i:k:p:f:VET:P:hF:B:")) != EOF) { 616 value = 0; 617 switch (opt) { 618 case 'v': 619 case 's': 620 case 'a': 621 case 'm': 622 case 'r': 623 case 'R': 624 case 'd': 625 case 't': 626 case 'g': 627 case 'i': 628 case 'k': 629 case 'T': 630 case 'P': 631 case 'F': 632 value = nicenumtoull(optarg); 633 } 634 switch (opt) { 635 case 'v': 636 zo->zo_vdevs = value; 637 break; 638 case 's': 639 zo->zo_vdev_size = MAX(SPA_MINDEVSIZE, value); 640 break; 641 case 'a': 642 zo->zo_ashift = value; 643 break; 644 case 'm': 645 zo->zo_mirrors = value; 646 break; 647 case 'r': 648 zo->zo_raidz = MAX(1, value); 649 break; 650 case 'R': 651 zo->zo_raidz_parity = MIN(MAX(value, 1), 3); 652 break; 653 case 'd': 654 zo->zo_datasets = MAX(1, value); 655 break; 656 case 't': 657 zo->zo_threads = MAX(1, value); 658 break; 659 case 'g': 660 zo->zo_metaslab_gang_bang = MAX(SPA_MINBLOCKSIZE << 1, 661 value); 662 break; 663 case 'i': 664 zo->zo_init = value; 665 break; 666 case 'k': 667 zo->zo_killrate = value; 668 break; 669 case 'p': 670 (void) strlcpy(zo->zo_pool, optarg, 671 sizeof (zo->zo_pool)); 672 break; 673 case 'f': 674 path = realpath(optarg, NULL); 675 if (path == NULL) { 676 (void) fprintf(stderr, "error: %s: %s\n", 677 optarg, strerror(errno)); 678 usage(B_FALSE); 679 } else { 680 (void) strlcpy(zo->zo_dir, path, 681 sizeof (zo->zo_dir)); 682 } 683 break; 684 case 'V': 685 zo->zo_verbose++; 686 break; 687 case 'E': 688 zo->zo_init = 0; 689 break; 690 case 'T': 691 zo->zo_time = value; 692 break; 693 case 'P': 694 zo->zo_passtime = MAX(1, value); 695 break; 696 case 'F': 697 zo->zo_maxloops = MAX(1, value); 698 break; 699 case 'B': 700 (void) strlcpy(altdir, optarg, sizeof (altdir)); 701 break; 702 case 'h': 703 usage(B_TRUE); 704 break; 705 case '?': 706 default: 707 usage(B_FALSE); 708 break; 709 } 710 } 711 712 zo->zo_raidz_parity = MIN(zo->zo_raidz_parity, zo->zo_raidz - 1); 713 714 zo->zo_vdevtime = 715 (zo->zo_vdevs > 0 ? zo->zo_time * NANOSEC / zo->zo_vdevs : 716 UINT64_MAX >> 2); 717 718 if (strlen(altdir) > 0) { 719 char *cmd; 720 char *realaltdir; 721 char *bin; 722 char *ztest; 723 char *isa; 724 int isalen; 725 726 cmd = umem_alloc(MAXPATHLEN, UMEM_NOFAIL); 727 realaltdir = umem_alloc(MAXPATHLEN, UMEM_NOFAIL); 728 729 VERIFY(NULL != realpath(getexecname(), cmd)); 730 if (0 != access(altdir, F_OK)) { 731 ztest_dump_core = B_FALSE; 732 fatal(B_TRUE, "invalid alternate ztest path: %s", 733 altdir); 734 } 735 VERIFY(NULL != realpath(altdir, realaltdir)); 736 737 /* 738 * 'cmd' should be of the form "<anything>/usr/bin/<isa>/ztest". 739 * We want to extract <isa> to determine if we should use 740 * 32 or 64 bit binaries. 741 */ 742 bin = strstr(cmd, "/usr/bin/"); 743 ztest = strstr(bin, "/ztest"); 744 isa = bin + 9; 745 isalen = ztest - isa; 746 (void) snprintf(zo->zo_alt_ztest, sizeof (zo->zo_alt_ztest), 747 "%s/usr/bin/%.*s/ztest", realaltdir, isalen, isa); 748 (void) snprintf(zo->zo_alt_libpath, sizeof (zo->zo_alt_libpath), 749 "%s/usr/lib/%.*s", realaltdir, isalen, isa); 750 751 if (0 != access(zo->zo_alt_ztest, X_OK)) { 752 ztest_dump_core = B_FALSE; 753 fatal(B_TRUE, "invalid alternate ztest: %s", 754 zo->zo_alt_ztest); 755 } else if (0 != access(zo->zo_alt_libpath, X_OK)) { 756 ztest_dump_core = B_FALSE; 757 fatal(B_TRUE, "invalid alternate lib directory %s", 758 zo->zo_alt_libpath); 759 } 760 761 umem_free(cmd, MAXPATHLEN); 762 umem_free(realaltdir, MAXPATHLEN); 763 } 764 } 765 766 static void 767 ztest_kill(ztest_shared_t *zs) 768 { 769 zs->zs_alloc = metaslab_class_get_alloc(spa_normal_class(ztest_spa)); 770 zs->zs_space = metaslab_class_get_space(spa_normal_class(ztest_spa)); 771 772 /* 773 * Before we kill off ztest, make sure that the config is updated. 774 * See comment above spa_config_sync(). 775 */ 776 mutex_enter(&spa_namespace_lock); 777 spa_config_sync(ztest_spa, B_FALSE, B_FALSE); 778 mutex_exit(&spa_namespace_lock); 779 780 zfs_dbgmsg_print(FTAG); 781 (void) kill(getpid(), SIGKILL); 782 } 783 784 static uint64_t 785 ztest_random(uint64_t range) 786 { 787 uint64_t r; 788 789 ASSERT3S(ztest_fd_rand, >=, 0); 790 791 if (range == 0) 792 return (0); 793 794 if (read(ztest_fd_rand, &r, sizeof (r)) != sizeof (r)) 795 fatal(1, "short read from /dev/urandom"); 796 797 return (r % range); 798 } 799 800 /* ARGSUSED */ 801 static void 802 ztest_record_enospc(const char *s) 803 { 804 ztest_shared->zs_enospc_count++; 805 } 806 807 static uint64_t 808 ztest_get_ashift(void) 809 { 810 if (ztest_opts.zo_ashift == 0) 811 return (SPA_MINBLOCKSHIFT + ztest_random(5)); 812 return (ztest_opts.zo_ashift); 813 } 814 815 static nvlist_t * 816 make_vdev_file(char *path, char *aux, char *pool, size_t size, uint64_t ashift) 817 { 818 char pathbuf[MAXPATHLEN]; 819 uint64_t vdev; 820 nvlist_t *file; 821 822 if (ashift == 0) 823 ashift = ztest_get_ashift(); 824 825 if (path == NULL) { 826 path = pathbuf; 827 828 if (aux != NULL) { 829 vdev = ztest_shared->zs_vdev_aux; 830 (void) snprintf(path, sizeof (pathbuf), 831 ztest_aux_template, ztest_opts.zo_dir, 832 pool == NULL ? ztest_opts.zo_pool : pool, 833 aux, vdev); 834 } else { 835 vdev = ztest_shared->zs_vdev_next_leaf++; 836 (void) snprintf(path, sizeof (pathbuf), 837 ztest_dev_template, ztest_opts.zo_dir, 838 pool == NULL ? ztest_opts.zo_pool : pool, vdev); 839 } 840 } 841 842 if (size != 0) { 843 int fd = open(path, O_RDWR | O_CREAT | O_TRUNC, 0666); 844 if (fd == -1) 845 fatal(1, "can't open %s", path); 846 if (ftruncate(fd, size) != 0) 847 fatal(1, "can't ftruncate %s", path); 848 (void) close(fd); 849 } 850 851 VERIFY(nvlist_alloc(&file, NV_UNIQUE_NAME, 0) == 0); 852 VERIFY(nvlist_add_string(file, ZPOOL_CONFIG_TYPE, VDEV_TYPE_FILE) == 0); 853 VERIFY(nvlist_add_string(file, ZPOOL_CONFIG_PATH, path) == 0); 854 VERIFY(nvlist_add_uint64(file, ZPOOL_CONFIG_ASHIFT, ashift) == 0); 855 856 return (file); 857 } 858 859 static nvlist_t * 860 make_vdev_raidz(char *path, char *aux, char *pool, size_t size, 861 uint64_t ashift, int r) 862 { 863 nvlist_t *raidz, **child; 864 int c; 865 866 if (r < 2) 867 return (make_vdev_file(path, aux, pool, size, ashift)); 868 child = umem_alloc(r * sizeof (nvlist_t *), UMEM_NOFAIL); 869 870 for (c = 0; c < r; c++) 871 child[c] = make_vdev_file(path, aux, pool, size, ashift); 872 873 VERIFY(nvlist_alloc(&raidz, NV_UNIQUE_NAME, 0) == 0); 874 VERIFY(nvlist_add_string(raidz, ZPOOL_CONFIG_TYPE, 875 VDEV_TYPE_RAIDZ) == 0); 876 VERIFY(nvlist_add_uint64(raidz, ZPOOL_CONFIG_NPARITY, 877 ztest_opts.zo_raidz_parity) == 0); 878 VERIFY(nvlist_add_nvlist_array(raidz, ZPOOL_CONFIG_CHILDREN, 879 child, r) == 0); 880 881 for (c = 0; c < r; c++) 882 nvlist_free(child[c]); 883 884 umem_free(child, r * sizeof (nvlist_t *)); 885 886 return (raidz); 887 } 888 889 static nvlist_t * 890 make_vdev_mirror(char *path, char *aux, char *pool, size_t size, 891 uint64_t ashift, int r, int m) 892 { 893 nvlist_t *mirror, **child; 894 int c; 895 896 if (m < 1) 897 return (make_vdev_raidz(path, aux, pool, size, ashift, r)); 898 899 child = umem_alloc(m * sizeof (nvlist_t *), UMEM_NOFAIL); 900 901 for (c = 0; c < m; c++) 902 child[c] = make_vdev_raidz(path, aux, pool, size, ashift, r); 903 904 VERIFY(nvlist_alloc(&mirror, NV_UNIQUE_NAME, 0) == 0); 905 VERIFY(nvlist_add_string(mirror, ZPOOL_CONFIG_TYPE, 906 VDEV_TYPE_MIRROR) == 0); 907 VERIFY(nvlist_add_nvlist_array(mirror, ZPOOL_CONFIG_CHILDREN, 908 child, m) == 0); 909 910 for (c = 0; c < m; c++) 911 nvlist_free(child[c]); 912 913 umem_free(child, m * sizeof (nvlist_t *)); 914 915 return (mirror); 916 } 917 918 static nvlist_t * 919 make_vdev_root(char *path, char *aux, char *pool, size_t size, uint64_t ashift, 920 int log, int r, int m, int t) 921 { 922 nvlist_t *root, **child; 923 int c; 924 925 ASSERT(t > 0); 926 927 child = umem_alloc(t * sizeof (nvlist_t *), UMEM_NOFAIL); 928 929 for (c = 0; c < t; c++) { 930 child[c] = make_vdev_mirror(path, aux, pool, size, ashift, 931 r, m); 932 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_IS_LOG, 933 log) == 0); 934 } 935 936 VERIFY(nvlist_alloc(&root, NV_UNIQUE_NAME, 0) == 0); 937 VERIFY(nvlist_add_string(root, ZPOOL_CONFIG_TYPE, VDEV_TYPE_ROOT) == 0); 938 VERIFY(nvlist_add_nvlist_array(root, aux ? aux : ZPOOL_CONFIG_CHILDREN, 939 child, t) == 0); 940 941 for (c = 0; c < t; c++) 942 nvlist_free(child[c]); 943 944 umem_free(child, t * sizeof (nvlist_t *)); 945 946 return (root); 947 } 948 949 /* 950 * Find a random spa version. Returns back a random spa version in the 951 * range [initial_version, SPA_VERSION_FEATURES]. 952 */ 953 static uint64_t 954 ztest_random_spa_version(uint64_t initial_version) 955 { 956 uint64_t version = initial_version; 957 958 if (version <= SPA_VERSION_BEFORE_FEATURES) { 959 version = version + 960 ztest_random(SPA_VERSION_BEFORE_FEATURES - version + 1); 961 } 962 963 if (version > SPA_VERSION_BEFORE_FEATURES) 964 version = SPA_VERSION_FEATURES; 965 966 ASSERT(SPA_VERSION_IS_SUPPORTED(version)); 967 return (version); 968 } 969 970 /* 971 * Find the largest ashift used 972 */ 973 static uint64_t 974 ztest_spa_get_ashift() { 975 uint64_t i; 976 uint64_t ashift = SPA_MINBLOCKSHIFT; 977 vdev_t *rvd = ztest_spa->spa_root_vdev; 978 979 for (i = 0; i < rvd->vdev_children; i++) { 980 ashift = MAX(ashift, rvd->vdev_child[i]->vdev_ashift); 981 } 982 return (ashift); 983 } 984 985 static int 986 ztest_random_blocksize(void) 987 { 988 uint64_t block_shift; 989 /* 990 * Choose a block size >= the ashift. 991 * If the SPA supports new MAXBLOCKSIZE, test up to 1MB blocks. 992 */ 993 int maxbs = SPA_OLD_MAXBLOCKSHIFT; 994 if (spa_maxblocksize(ztest_spa) == SPA_MAXBLOCKSIZE) 995 maxbs = 20; 996 block_shift = ztest_random(maxbs - ztest_spa_get_ashift() + 1); 997 return (1 << (SPA_MINBLOCKSHIFT + block_shift)); 998 } 999 1000 static int 1001 ztest_random_ibshift(void) 1002 { 1003 return (DN_MIN_INDBLKSHIFT + 1004 ztest_random(DN_MAX_INDBLKSHIFT - DN_MIN_INDBLKSHIFT + 1)); 1005 } 1006 1007 static uint64_t 1008 ztest_random_vdev_top(spa_t *spa, boolean_t log_ok) 1009 { 1010 uint64_t top; 1011 vdev_t *rvd = spa->spa_root_vdev; 1012 vdev_t *tvd; 1013 1014 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); 1015 1016 do { 1017 top = ztest_random(rvd->vdev_children); 1018 tvd = rvd->vdev_child[top]; 1019 } while (tvd->vdev_ishole || (tvd->vdev_islog && !log_ok) || 1020 tvd->vdev_mg == NULL || tvd->vdev_mg->mg_class == NULL); 1021 1022 return (top); 1023 } 1024 1025 static uint64_t 1026 ztest_random_dsl_prop(zfs_prop_t prop) 1027 { 1028 uint64_t value; 1029 1030 do { 1031 value = zfs_prop_random_value(prop, ztest_random(-1ULL)); 1032 } while (prop == ZFS_PROP_CHECKSUM && value == ZIO_CHECKSUM_OFF); 1033 1034 return (value); 1035 } 1036 1037 static int 1038 ztest_dsl_prop_set_uint64(char *osname, zfs_prop_t prop, uint64_t value, 1039 boolean_t inherit) 1040 { 1041 const char *propname = zfs_prop_to_name(prop); 1042 const char *valname; 1043 char setpoint[MAXPATHLEN]; 1044 uint64_t curval; 1045 int error; 1046 1047 error = dsl_prop_set_int(osname, propname, 1048 (inherit ? ZPROP_SRC_NONE : ZPROP_SRC_LOCAL), value); 1049 1050 if (error == ENOSPC) { 1051 ztest_record_enospc(FTAG); 1052 return (error); 1053 } 1054 ASSERT0(error); 1055 1056 VERIFY0(dsl_prop_get_integer(osname, propname, &curval, setpoint)); 1057 1058 if (ztest_opts.zo_verbose >= 6) { 1059 VERIFY(zfs_prop_index_to_string(prop, curval, &valname) == 0); 1060 (void) printf("%s %s = %s at '%s'\n", 1061 osname, propname, valname, setpoint); 1062 } 1063 1064 return (error); 1065 } 1066 1067 static int 1068 ztest_spa_prop_set_uint64(zpool_prop_t prop, uint64_t value) 1069 { 1070 spa_t *spa = ztest_spa; 1071 nvlist_t *props = NULL; 1072 int error; 1073 1074 VERIFY(nvlist_alloc(&props, NV_UNIQUE_NAME, 0) == 0); 1075 VERIFY(nvlist_add_uint64(props, zpool_prop_to_name(prop), value) == 0); 1076 1077 error = spa_prop_set(spa, props); 1078 1079 nvlist_free(props); 1080 1081 if (error == ENOSPC) { 1082 ztest_record_enospc(FTAG); 1083 return (error); 1084 } 1085 ASSERT0(error); 1086 1087 return (error); 1088 } 1089 1090 static void 1091 ztest_rll_init(rll_t *rll) 1092 { 1093 rll->rll_writer = NULL; 1094 rll->rll_readers = 0; 1095 VERIFY(_mutex_init(&rll->rll_lock, USYNC_THREAD, NULL) == 0); 1096 VERIFY(cond_init(&rll->rll_cv, USYNC_THREAD, NULL) == 0); 1097 } 1098 1099 static void 1100 ztest_rll_destroy(rll_t *rll) 1101 { 1102 ASSERT(rll->rll_writer == NULL); 1103 ASSERT(rll->rll_readers == 0); 1104 VERIFY(_mutex_destroy(&rll->rll_lock) == 0); 1105 VERIFY(cond_destroy(&rll->rll_cv) == 0); 1106 } 1107 1108 static void 1109 ztest_rll_lock(rll_t *rll, rl_type_t type) 1110 { 1111 VERIFY(mutex_lock(&rll->rll_lock) == 0); 1112 1113 if (type == RL_READER) { 1114 while (rll->rll_writer != NULL) 1115 (void) cond_wait(&rll->rll_cv, &rll->rll_lock); 1116 rll->rll_readers++; 1117 } else { 1118 while (rll->rll_writer != NULL || rll->rll_readers) 1119 (void) cond_wait(&rll->rll_cv, &rll->rll_lock); 1120 rll->rll_writer = curthread; 1121 } 1122 1123 VERIFY(mutex_unlock(&rll->rll_lock) == 0); 1124 } 1125 1126 static void 1127 ztest_rll_unlock(rll_t *rll) 1128 { 1129 VERIFY(mutex_lock(&rll->rll_lock) == 0); 1130 1131 if (rll->rll_writer) { 1132 ASSERT(rll->rll_readers == 0); 1133 rll->rll_writer = NULL; 1134 } else { 1135 ASSERT(rll->rll_readers != 0); 1136 ASSERT(rll->rll_writer == NULL); 1137 rll->rll_readers--; 1138 } 1139 1140 if (rll->rll_writer == NULL && rll->rll_readers == 0) 1141 VERIFY(cond_broadcast(&rll->rll_cv) == 0); 1142 1143 VERIFY(mutex_unlock(&rll->rll_lock) == 0); 1144 } 1145 1146 static void 1147 ztest_object_lock(ztest_ds_t *zd, uint64_t object, rl_type_t type) 1148 { 1149 rll_t *rll = &zd->zd_object_lock[object & (ZTEST_OBJECT_LOCKS - 1)]; 1150 1151 ztest_rll_lock(rll, type); 1152 } 1153 1154 static void 1155 ztest_object_unlock(ztest_ds_t *zd, uint64_t object) 1156 { 1157 rll_t *rll = &zd->zd_object_lock[object & (ZTEST_OBJECT_LOCKS - 1)]; 1158 1159 ztest_rll_unlock(rll); 1160 } 1161 1162 static rl_t * 1163 ztest_range_lock(ztest_ds_t *zd, uint64_t object, uint64_t offset, 1164 uint64_t size, rl_type_t type) 1165 { 1166 uint64_t hash = object ^ (offset % (ZTEST_RANGE_LOCKS + 1)); 1167 rll_t *rll = &zd->zd_range_lock[hash & (ZTEST_RANGE_LOCKS - 1)]; 1168 rl_t *rl; 1169 1170 rl = umem_alloc(sizeof (*rl), UMEM_NOFAIL); 1171 rl->rl_object = object; 1172 rl->rl_offset = offset; 1173 rl->rl_size = size; 1174 rl->rl_lock = rll; 1175 1176 ztest_rll_lock(rll, type); 1177 1178 return (rl); 1179 } 1180 1181 static void 1182 ztest_range_unlock(rl_t *rl) 1183 { 1184 rll_t *rll = rl->rl_lock; 1185 1186 ztest_rll_unlock(rll); 1187 1188 umem_free(rl, sizeof (*rl)); 1189 } 1190 1191 static void 1192 ztest_zd_init(ztest_ds_t *zd, ztest_shared_ds_t *szd, objset_t *os) 1193 { 1194 zd->zd_os = os; 1195 zd->zd_zilog = dmu_objset_zil(os); 1196 zd->zd_shared = szd; 1197 dmu_objset_name(os, zd->zd_name); 1198 1199 if (zd->zd_shared != NULL) 1200 zd->zd_shared->zd_seq = 0; 1201 1202 VERIFY(rwlock_init(&zd->zd_zilog_lock, USYNC_THREAD, NULL) == 0); 1203 VERIFY(_mutex_init(&zd->zd_dirobj_lock, USYNC_THREAD, NULL) == 0); 1204 1205 for (int l = 0; l < ZTEST_OBJECT_LOCKS; l++) 1206 ztest_rll_init(&zd->zd_object_lock[l]); 1207 1208 for (int l = 0; l < ZTEST_RANGE_LOCKS; l++) 1209 ztest_rll_init(&zd->zd_range_lock[l]); 1210 } 1211 1212 static void 1213 ztest_zd_fini(ztest_ds_t *zd) 1214 { 1215 VERIFY(_mutex_destroy(&zd->zd_dirobj_lock) == 0); 1216 1217 for (int l = 0; l < ZTEST_OBJECT_LOCKS; l++) 1218 ztest_rll_destroy(&zd->zd_object_lock[l]); 1219 1220 for (int l = 0; l < ZTEST_RANGE_LOCKS; l++) 1221 ztest_rll_destroy(&zd->zd_range_lock[l]); 1222 } 1223 1224 #define TXG_MIGHTWAIT (ztest_random(10) == 0 ? TXG_NOWAIT : TXG_WAIT) 1225 1226 static uint64_t 1227 ztest_tx_assign(dmu_tx_t *tx, uint64_t txg_how, const char *tag) 1228 { 1229 uint64_t txg; 1230 int error; 1231 1232 /* 1233 * Attempt to assign tx to some transaction group. 1234 */ 1235 error = dmu_tx_assign(tx, txg_how); 1236 if (error) { 1237 if (error == ERESTART) { 1238 ASSERT(txg_how == TXG_NOWAIT); 1239 dmu_tx_wait(tx); 1240 } else { 1241 ASSERT3U(error, ==, ENOSPC); 1242 ztest_record_enospc(tag); 1243 } 1244 dmu_tx_abort(tx); 1245 return (0); 1246 } 1247 txg = dmu_tx_get_txg(tx); 1248 ASSERT(txg != 0); 1249 return (txg); 1250 } 1251 1252 static void 1253 ztest_pattern_set(void *buf, uint64_t size, uint64_t value) 1254 { 1255 uint64_t *ip = buf; 1256 uint64_t *ip_end = (uint64_t *)((uintptr_t)buf + (uintptr_t)size); 1257 1258 while (ip < ip_end) 1259 *ip++ = value; 1260 } 1261 1262 static boolean_t 1263 ztest_pattern_match(void *buf, uint64_t size, uint64_t value) 1264 { 1265 uint64_t *ip = buf; 1266 uint64_t *ip_end = (uint64_t *)((uintptr_t)buf + (uintptr_t)size); 1267 uint64_t diff = 0; 1268 1269 while (ip < ip_end) 1270 diff |= (value - *ip++); 1271 1272 return (diff == 0); 1273 } 1274 1275 static void 1276 ztest_bt_generate(ztest_block_tag_t *bt, objset_t *os, uint64_t object, 1277 uint64_t offset, uint64_t gen, uint64_t txg, uint64_t crtxg) 1278 { 1279 bt->bt_magic = BT_MAGIC; 1280 bt->bt_objset = dmu_objset_id(os); 1281 bt->bt_object = object; 1282 bt->bt_offset = offset; 1283 bt->bt_gen = gen; 1284 bt->bt_txg = txg; 1285 bt->bt_crtxg = crtxg; 1286 } 1287 1288 static void 1289 ztest_bt_verify(ztest_block_tag_t *bt, objset_t *os, uint64_t object, 1290 uint64_t offset, uint64_t gen, uint64_t txg, uint64_t crtxg) 1291 { 1292 ASSERT3U(bt->bt_magic, ==, BT_MAGIC); 1293 ASSERT3U(bt->bt_objset, ==, dmu_objset_id(os)); 1294 ASSERT3U(bt->bt_object, ==, object); 1295 ASSERT3U(bt->bt_offset, ==, offset); 1296 ASSERT3U(bt->bt_gen, <=, gen); 1297 ASSERT3U(bt->bt_txg, <=, txg); 1298 ASSERT3U(bt->bt_crtxg, ==, crtxg); 1299 } 1300 1301 static ztest_block_tag_t * 1302 ztest_bt_bonus(dmu_buf_t *db) 1303 { 1304 dmu_object_info_t doi; 1305 ztest_block_tag_t *bt; 1306 1307 dmu_object_info_from_db(db, &doi); 1308 ASSERT3U(doi.doi_bonus_size, <=, db->db_size); 1309 ASSERT3U(doi.doi_bonus_size, >=, sizeof (*bt)); 1310 bt = (void *)((char *)db->db_data + doi.doi_bonus_size - sizeof (*bt)); 1311 1312 return (bt); 1313 } 1314 1315 /* 1316 * ZIL logging ops 1317 */ 1318 1319 #define lrz_type lr_mode 1320 #define lrz_blocksize lr_uid 1321 #define lrz_ibshift lr_gid 1322 #define lrz_bonustype lr_rdev 1323 #define lrz_bonuslen lr_crtime[1] 1324 1325 static void 1326 ztest_log_create(ztest_ds_t *zd, dmu_tx_t *tx, lr_create_t *lr) 1327 { 1328 char *name = (void *)(lr + 1); /* name follows lr */ 1329 size_t namesize = strlen(name) + 1; 1330 itx_t *itx; 1331 1332 if (zil_replaying(zd->zd_zilog, tx)) 1333 return; 1334 1335 itx = zil_itx_create(TX_CREATE, sizeof (*lr) + namesize); 1336 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1, 1337 sizeof (*lr) + namesize - sizeof (lr_t)); 1338 1339 zil_itx_assign(zd->zd_zilog, itx, tx); 1340 } 1341 1342 static void 1343 ztest_log_remove(ztest_ds_t *zd, dmu_tx_t *tx, lr_remove_t *lr, uint64_t object) 1344 { 1345 char *name = (void *)(lr + 1); /* name follows lr */ 1346 size_t namesize = strlen(name) + 1; 1347 itx_t *itx; 1348 1349 if (zil_replaying(zd->zd_zilog, tx)) 1350 return; 1351 1352 itx = zil_itx_create(TX_REMOVE, sizeof (*lr) + namesize); 1353 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1, 1354 sizeof (*lr) + namesize - sizeof (lr_t)); 1355 1356 itx->itx_oid = object; 1357 zil_itx_assign(zd->zd_zilog, itx, tx); 1358 } 1359 1360 static void 1361 ztest_log_write(ztest_ds_t *zd, dmu_tx_t *tx, lr_write_t *lr) 1362 { 1363 itx_t *itx; 1364 itx_wr_state_t write_state = ztest_random(WR_NUM_STATES); 1365 1366 if (zil_replaying(zd->zd_zilog, tx)) 1367 return; 1368 1369 if (lr->lr_length > ZIL_MAX_LOG_DATA) 1370 write_state = WR_INDIRECT; 1371 1372 itx = zil_itx_create(TX_WRITE, 1373 sizeof (*lr) + (write_state == WR_COPIED ? lr->lr_length : 0)); 1374 1375 if (write_state == WR_COPIED && 1376 dmu_read(zd->zd_os, lr->lr_foid, lr->lr_offset, lr->lr_length, 1377 ((lr_write_t *)&itx->itx_lr) + 1, DMU_READ_NO_PREFETCH) != 0) { 1378 zil_itx_destroy(itx); 1379 itx = zil_itx_create(TX_WRITE, sizeof (*lr)); 1380 write_state = WR_NEED_COPY; 1381 } 1382 itx->itx_private = zd; 1383 itx->itx_wr_state = write_state; 1384 itx->itx_sync = (ztest_random(8) == 0); 1385 itx->itx_sod += (write_state == WR_NEED_COPY ? lr->lr_length : 0); 1386 1387 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1, 1388 sizeof (*lr) - sizeof (lr_t)); 1389 1390 zil_itx_assign(zd->zd_zilog, itx, tx); 1391 } 1392 1393 static void 1394 ztest_log_truncate(ztest_ds_t *zd, dmu_tx_t *tx, lr_truncate_t *lr) 1395 { 1396 itx_t *itx; 1397 1398 if (zil_replaying(zd->zd_zilog, tx)) 1399 return; 1400 1401 itx = zil_itx_create(TX_TRUNCATE, sizeof (*lr)); 1402 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1, 1403 sizeof (*lr) - sizeof (lr_t)); 1404 1405 itx->itx_sync = B_FALSE; 1406 zil_itx_assign(zd->zd_zilog, itx, tx); 1407 } 1408 1409 static void 1410 ztest_log_setattr(ztest_ds_t *zd, dmu_tx_t *tx, lr_setattr_t *lr) 1411 { 1412 itx_t *itx; 1413 1414 if (zil_replaying(zd->zd_zilog, tx)) 1415 return; 1416 1417 itx = zil_itx_create(TX_SETATTR, sizeof (*lr)); 1418 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1, 1419 sizeof (*lr) - sizeof (lr_t)); 1420 1421 itx->itx_sync = B_FALSE; 1422 zil_itx_assign(zd->zd_zilog, itx, tx); 1423 } 1424 1425 /* 1426 * ZIL replay ops 1427 */ 1428 static int 1429 ztest_replay_create(ztest_ds_t *zd, lr_create_t *lr, boolean_t byteswap) 1430 { 1431 char *name = (void *)(lr + 1); /* name follows lr */ 1432 objset_t *os = zd->zd_os; 1433 ztest_block_tag_t *bbt; 1434 dmu_buf_t *db; 1435 dmu_tx_t *tx; 1436 uint64_t txg; 1437 int error = 0; 1438 1439 if (byteswap) 1440 byteswap_uint64_array(lr, sizeof (*lr)); 1441 1442 ASSERT(lr->lr_doid == ZTEST_DIROBJ); 1443 ASSERT(name[0] != '\0'); 1444 1445 tx = dmu_tx_create(os); 1446 1447 dmu_tx_hold_zap(tx, lr->lr_doid, B_TRUE, name); 1448 1449 if (lr->lrz_type == DMU_OT_ZAP_OTHER) { 1450 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, B_TRUE, NULL); 1451 } else { 1452 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); 1453 } 1454 1455 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); 1456 if (txg == 0) 1457 return (ENOSPC); 1458 1459 ASSERT(dmu_objset_zil(os)->zl_replay == !!lr->lr_foid); 1460 1461 if (lr->lrz_type == DMU_OT_ZAP_OTHER) { 1462 if (lr->lr_foid == 0) { 1463 lr->lr_foid = zap_create(os, 1464 lr->lrz_type, lr->lrz_bonustype, 1465 lr->lrz_bonuslen, tx); 1466 } else { 1467 error = zap_create_claim(os, lr->lr_foid, 1468 lr->lrz_type, lr->lrz_bonustype, 1469 lr->lrz_bonuslen, tx); 1470 } 1471 } else { 1472 if (lr->lr_foid == 0) { 1473 lr->lr_foid = dmu_object_alloc(os, 1474 lr->lrz_type, 0, lr->lrz_bonustype, 1475 lr->lrz_bonuslen, tx); 1476 } else { 1477 error = dmu_object_claim(os, lr->lr_foid, 1478 lr->lrz_type, 0, lr->lrz_bonustype, 1479 lr->lrz_bonuslen, tx); 1480 } 1481 } 1482 1483 if (error) { 1484 ASSERT3U(error, ==, EEXIST); 1485 ASSERT(zd->zd_zilog->zl_replay); 1486 dmu_tx_commit(tx); 1487 return (error); 1488 } 1489 1490 ASSERT(lr->lr_foid != 0); 1491 1492 if (lr->lrz_type != DMU_OT_ZAP_OTHER) 1493 VERIFY3U(0, ==, dmu_object_set_blocksize(os, lr->lr_foid, 1494 lr->lrz_blocksize, lr->lrz_ibshift, tx)); 1495 1496 VERIFY3U(0, ==, dmu_bonus_hold(os, lr->lr_foid, FTAG, &db)); 1497 bbt = ztest_bt_bonus(db); 1498 dmu_buf_will_dirty(db, tx); 1499 ztest_bt_generate(bbt, os, lr->lr_foid, -1ULL, lr->lr_gen, txg, txg); 1500 dmu_buf_rele(db, FTAG); 1501 1502 VERIFY3U(0, ==, zap_add(os, lr->lr_doid, name, sizeof (uint64_t), 1, 1503 &lr->lr_foid, tx)); 1504 1505 (void) ztest_log_create(zd, tx, lr); 1506 1507 dmu_tx_commit(tx); 1508 1509 return (0); 1510 } 1511 1512 static int 1513 ztest_replay_remove(ztest_ds_t *zd, lr_remove_t *lr, boolean_t byteswap) 1514 { 1515 char *name = (void *)(lr + 1); /* name follows lr */ 1516 objset_t *os = zd->zd_os; 1517 dmu_object_info_t doi; 1518 dmu_tx_t *tx; 1519 uint64_t object, txg; 1520 1521 if (byteswap) 1522 byteswap_uint64_array(lr, sizeof (*lr)); 1523 1524 ASSERT(lr->lr_doid == ZTEST_DIROBJ); 1525 ASSERT(name[0] != '\0'); 1526 1527 VERIFY3U(0, ==, 1528 zap_lookup(os, lr->lr_doid, name, sizeof (object), 1, &object)); 1529 ASSERT(object != 0); 1530 1531 ztest_object_lock(zd, object, RL_WRITER); 1532 1533 VERIFY3U(0, ==, dmu_object_info(os, object, &doi)); 1534 1535 tx = dmu_tx_create(os); 1536 1537 dmu_tx_hold_zap(tx, lr->lr_doid, B_FALSE, name); 1538 dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END); 1539 1540 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); 1541 if (txg == 0) { 1542 ztest_object_unlock(zd, object); 1543 return (ENOSPC); 1544 } 1545 1546 if (doi.doi_type == DMU_OT_ZAP_OTHER) { 1547 VERIFY3U(0, ==, zap_destroy(os, object, tx)); 1548 } else { 1549 VERIFY3U(0, ==, dmu_object_free(os, object, tx)); 1550 } 1551 1552 VERIFY3U(0, ==, zap_remove(os, lr->lr_doid, name, tx)); 1553 1554 (void) ztest_log_remove(zd, tx, lr, object); 1555 1556 dmu_tx_commit(tx); 1557 1558 ztest_object_unlock(zd, object); 1559 1560 return (0); 1561 } 1562 1563 static int 1564 ztest_replay_write(ztest_ds_t *zd, lr_write_t *lr, boolean_t byteswap) 1565 { 1566 objset_t *os = zd->zd_os; 1567 void *data = lr + 1; /* data follows lr */ 1568 uint64_t offset, length; 1569 ztest_block_tag_t *bt = data; 1570 ztest_block_tag_t *bbt; 1571 uint64_t gen, txg, lrtxg, crtxg; 1572 dmu_object_info_t doi; 1573 dmu_tx_t *tx; 1574 dmu_buf_t *db; 1575 arc_buf_t *abuf = NULL; 1576 rl_t *rl; 1577 1578 if (byteswap) 1579 byteswap_uint64_array(lr, sizeof (*lr)); 1580 1581 offset = lr->lr_offset; 1582 length = lr->lr_length; 1583 1584 /* If it's a dmu_sync() block, write the whole block */ 1585 if (lr->lr_common.lrc_reclen == sizeof (lr_write_t)) { 1586 uint64_t blocksize = BP_GET_LSIZE(&lr->lr_blkptr); 1587 if (length < blocksize) { 1588 offset -= offset % blocksize; 1589 length = blocksize; 1590 } 1591 } 1592 1593 if (bt->bt_magic == BSWAP_64(BT_MAGIC)) 1594 byteswap_uint64_array(bt, sizeof (*bt)); 1595 1596 if (bt->bt_magic != BT_MAGIC) 1597 bt = NULL; 1598 1599 ztest_object_lock(zd, lr->lr_foid, RL_READER); 1600 rl = ztest_range_lock(zd, lr->lr_foid, offset, length, RL_WRITER); 1601 1602 VERIFY3U(0, ==, dmu_bonus_hold(os, lr->lr_foid, FTAG, &db)); 1603 1604 dmu_object_info_from_db(db, &doi); 1605 1606 bbt = ztest_bt_bonus(db); 1607 ASSERT3U(bbt->bt_magic, ==, BT_MAGIC); 1608 gen = bbt->bt_gen; 1609 crtxg = bbt->bt_crtxg; 1610 lrtxg = lr->lr_common.lrc_txg; 1611 1612 tx = dmu_tx_create(os); 1613 1614 dmu_tx_hold_write(tx, lr->lr_foid, offset, length); 1615 1616 if (ztest_random(8) == 0 && length == doi.doi_data_block_size && 1617 P2PHASE(offset, length) == 0) 1618 abuf = dmu_request_arcbuf(db, length); 1619 1620 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); 1621 if (txg == 0) { 1622 if (abuf != NULL) 1623 dmu_return_arcbuf(abuf); 1624 dmu_buf_rele(db, FTAG); 1625 ztest_range_unlock(rl); 1626 ztest_object_unlock(zd, lr->lr_foid); 1627 return (ENOSPC); 1628 } 1629 1630 if (bt != NULL) { 1631 /* 1632 * Usually, verify the old data before writing new data -- 1633 * but not always, because we also want to verify correct 1634 * behavior when the data was not recently read into cache. 1635 */ 1636 ASSERT(offset % doi.doi_data_block_size == 0); 1637 if (ztest_random(4) != 0) { 1638 int prefetch = ztest_random(2) ? 1639 DMU_READ_PREFETCH : DMU_READ_NO_PREFETCH; 1640 ztest_block_tag_t rbt; 1641 1642 VERIFY(dmu_read(os, lr->lr_foid, offset, 1643 sizeof (rbt), &rbt, prefetch) == 0); 1644 if (rbt.bt_magic == BT_MAGIC) { 1645 ztest_bt_verify(&rbt, os, lr->lr_foid, 1646 offset, gen, txg, crtxg); 1647 } 1648 } 1649 1650 /* 1651 * Writes can appear to be newer than the bonus buffer because 1652 * the ztest_get_data() callback does a dmu_read() of the 1653 * open-context data, which may be different than the data 1654 * as it was when the write was generated. 1655 */ 1656 if (zd->zd_zilog->zl_replay) { 1657 ztest_bt_verify(bt, os, lr->lr_foid, offset, 1658 MAX(gen, bt->bt_gen), MAX(txg, lrtxg), 1659 bt->bt_crtxg); 1660 } 1661 1662 /* 1663 * Set the bt's gen/txg to the bonus buffer's gen/txg 1664 * so that all of the usual ASSERTs will work. 1665 */ 1666 ztest_bt_generate(bt, os, lr->lr_foid, offset, gen, txg, crtxg); 1667 } 1668 1669 if (abuf == NULL) { 1670 dmu_write(os, lr->lr_foid, offset, length, data, tx); 1671 } else { 1672 bcopy(data, abuf->b_data, length); 1673 dmu_assign_arcbuf(db, offset, abuf, tx); 1674 } 1675 1676 (void) ztest_log_write(zd, tx, lr); 1677 1678 dmu_buf_rele(db, FTAG); 1679 1680 dmu_tx_commit(tx); 1681 1682 ztest_range_unlock(rl); 1683 ztest_object_unlock(zd, lr->lr_foid); 1684 1685 return (0); 1686 } 1687 1688 static int 1689 ztest_replay_truncate(ztest_ds_t *zd, lr_truncate_t *lr, boolean_t byteswap) 1690 { 1691 objset_t *os = zd->zd_os; 1692 dmu_tx_t *tx; 1693 uint64_t txg; 1694 rl_t *rl; 1695 1696 if (byteswap) 1697 byteswap_uint64_array(lr, sizeof (*lr)); 1698 1699 ztest_object_lock(zd, lr->lr_foid, RL_READER); 1700 rl = ztest_range_lock(zd, lr->lr_foid, lr->lr_offset, lr->lr_length, 1701 RL_WRITER); 1702 1703 tx = dmu_tx_create(os); 1704 1705 dmu_tx_hold_free(tx, lr->lr_foid, lr->lr_offset, lr->lr_length); 1706 1707 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); 1708 if (txg == 0) { 1709 ztest_range_unlock(rl); 1710 ztest_object_unlock(zd, lr->lr_foid); 1711 return (ENOSPC); 1712 } 1713 1714 VERIFY(dmu_free_range(os, lr->lr_foid, lr->lr_offset, 1715 lr->lr_length, tx) == 0); 1716 1717 (void) ztest_log_truncate(zd, tx, lr); 1718 1719 dmu_tx_commit(tx); 1720 1721 ztest_range_unlock(rl); 1722 ztest_object_unlock(zd, lr->lr_foid); 1723 1724 return (0); 1725 } 1726 1727 static int 1728 ztest_replay_setattr(ztest_ds_t *zd, lr_setattr_t *lr, boolean_t byteswap) 1729 { 1730 objset_t *os = zd->zd_os; 1731 dmu_tx_t *tx; 1732 dmu_buf_t *db; 1733 ztest_block_tag_t *bbt; 1734 uint64_t txg, lrtxg, crtxg; 1735 1736 if (byteswap) 1737 byteswap_uint64_array(lr, sizeof (*lr)); 1738 1739 ztest_object_lock(zd, lr->lr_foid, RL_WRITER); 1740 1741 VERIFY3U(0, ==, dmu_bonus_hold(os, lr->lr_foid, FTAG, &db)); 1742 1743 tx = dmu_tx_create(os); 1744 dmu_tx_hold_bonus(tx, lr->lr_foid); 1745 1746 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); 1747 if (txg == 0) { 1748 dmu_buf_rele(db, FTAG); 1749 ztest_object_unlock(zd, lr->lr_foid); 1750 return (ENOSPC); 1751 } 1752 1753 bbt = ztest_bt_bonus(db); 1754 ASSERT3U(bbt->bt_magic, ==, BT_MAGIC); 1755 crtxg = bbt->bt_crtxg; 1756 lrtxg = lr->lr_common.lrc_txg; 1757 1758 if (zd->zd_zilog->zl_replay) { 1759 ASSERT(lr->lr_size != 0); 1760 ASSERT(lr->lr_mode != 0); 1761 ASSERT(lrtxg != 0); 1762 } else { 1763 /* 1764 * Randomly change the size and increment the generation. 1765 */ 1766 lr->lr_size = (ztest_random(db->db_size / sizeof (*bbt)) + 1) * 1767 sizeof (*bbt); 1768 lr->lr_mode = bbt->bt_gen + 1; 1769 ASSERT(lrtxg == 0); 1770 } 1771 1772 /* 1773 * Verify that the current bonus buffer is not newer than our txg. 1774 */ 1775 ztest_bt_verify(bbt, os, lr->lr_foid, -1ULL, lr->lr_mode, 1776 MAX(txg, lrtxg), crtxg); 1777 1778 dmu_buf_will_dirty(db, tx); 1779 1780 ASSERT3U(lr->lr_size, >=, sizeof (*bbt)); 1781 ASSERT3U(lr->lr_size, <=, db->db_size); 1782 VERIFY0(dmu_set_bonus(db, lr->lr_size, tx)); 1783 bbt = ztest_bt_bonus(db); 1784 1785 ztest_bt_generate(bbt, os, lr->lr_foid, -1ULL, lr->lr_mode, txg, crtxg); 1786 1787 dmu_buf_rele(db, FTAG); 1788 1789 (void) ztest_log_setattr(zd, tx, lr); 1790 1791 dmu_tx_commit(tx); 1792 1793 ztest_object_unlock(zd, lr->lr_foid); 1794 1795 return (0); 1796 } 1797 1798 zil_replay_func_t *ztest_replay_vector[TX_MAX_TYPE] = { 1799 NULL, /* 0 no such transaction type */ 1800 ztest_replay_create, /* TX_CREATE */ 1801 NULL, /* TX_MKDIR */ 1802 NULL, /* TX_MKXATTR */ 1803 NULL, /* TX_SYMLINK */ 1804 ztest_replay_remove, /* TX_REMOVE */ 1805 NULL, /* TX_RMDIR */ 1806 NULL, /* TX_LINK */ 1807 NULL, /* TX_RENAME */ 1808 ztest_replay_write, /* TX_WRITE */ 1809 ztest_replay_truncate, /* TX_TRUNCATE */ 1810 ztest_replay_setattr, /* TX_SETATTR */ 1811 NULL, /* TX_ACL */ 1812 NULL, /* TX_CREATE_ACL */ 1813 NULL, /* TX_CREATE_ATTR */ 1814 NULL, /* TX_CREATE_ACL_ATTR */ 1815 NULL, /* TX_MKDIR_ACL */ 1816 NULL, /* TX_MKDIR_ATTR */ 1817 NULL, /* TX_MKDIR_ACL_ATTR */ 1818 NULL, /* TX_WRITE2 */ 1819 }; 1820 1821 /* 1822 * ZIL get_data callbacks 1823 */ 1824 1825 static void 1826 ztest_get_done(zgd_t *zgd, int error) 1827 { 1828 ztest_ds_t *zd = zgd->zgd_private; 1829 uint64_t object = zgd->zgd_rl->rl_object; 1830 1831 if (zgd->zgd_db) 1832 dmu_buf_rele(zgd->zgd_db, zgd); 1833 1834 ztest_range_unlock(zgd->zgd_rl); 1835 ztest_object_unlock(zd, object); 1836 1837 if (error == 0 && zgd->zgd_bp) 1838 zil_add_block(zgd->zgd_zilog, zgd->zgd_bp); 1839 1840 umem_free(zgd, sizeof (*zgd)); 1841 } 1842 1843 static int 1844 ztest_get_data(void *arg, lr_write_t *lr, char *buf, zio_t *zio) 1845 { 1846 ztest_ds_t *zd = arg; 1847 objset_t *os = zd->zd_os; 1848 uint64_t object = lr->lr_foid; 1849 uint64_t offset = lr->lr_offset; 1850 uint64_t size = lr->lr_length; 1851 blkptr_t *bp = &lr->lr_blkptr; 1852 uint64_t txg = lr->lr_common.lrc_txg; 1853 uint64_t crtxg; 1854 dmu_object_info_t doi; 1855 dmu_buf_t *db; 1856 zgd_t *zgd; 1857 int error; 1858 1859 ztest_object_lock(zd, object, RL_READER); 1860 error = dmu_bonus_hold(os, object, FTAG, &db); 1861 if (error) { 1862 ztest_object_unlock(zd, object); 1863 return (error); 1864 } 1865 1866 crtxg = ztest_bt_bonus(db)->bt_crtxg; 1867 1868 if (crtxg == 0 || crtxg > txg) { 1869 dmu_buf_rele(db, FTAG); 1870 ztest_object_unlock(zd, object); 1871 return (ENOENT); 1872 } 1873 1874 dmu_object_info_from_db(db, &doi); 1875 dmu_buf_rele(db, FTAG); 1876 db = NULL; 1877 1878 zgd = umem_zalloc(sizeof (*zgd), UMEM_NOFAIL); 1879 zgd->zgd_zilog = zd->zd_zilog; 1880 zgd->zgd_private = zd; 1881 1882 if (buf != NULL) { /* immediate write */ 1883 zgd->zgd_rl = ztest_range_lock(zd, object, offset, size, 1884 RL_READER); 1885 1886 error = dmu_read(os, object, offset, size, buf, 1887 DMU_READ_NO_PREFETCH); 1888 ASSERT(error == 0); 1889 } else { 1890 size = doi.doi_data_block_size; 1891 if (ISP2(size)) { 1892 offset = P2ALIGN(offset, size); 1893 } else { 1894 ASSERT(offset < size); 1895 offset = 0; 1896 } 1897 1898 zgd->zgd_rl = ztest_range_lock(zd, object, offset, size, 1899 RL_READER); 1900 1901 error = dmu_buf_hold(os, object, offset, zgd, &db, 1902 DMU_READ_NO_PREFETCH); 1903 1904 if (error == 0) { 1905 blkptr_t *obp = dmu_buf_get_blkptr(db); 1906 if (obp) { 1907 ASSERT(BP_IS_HOLE(bp)); 1908 *bp = *obp; 1909 } 1910 1911 zgd->zgd_db = db; 1912 zgd->zgd_bp = bp; 1913 1914 ASSERT(db->db_offset == offset); 1915 ASSERT(db->db_size == size); 1916 1917 error = dmu_sync(zio, lr->lr_common.lrc_txg, 1918 ztest_get_done, zgd); 1919 1920 if (error == 0) 1921 return (0); 1922 } 1923 } 1924 1925 ztest_get_done(zgd, error); 1926 1927 return (error); 1928 } 1929 1930 static void * 1931 ztest_lr_alloc(size_t lrsize, char *name) 1932 { 1933 char *lr; 1934 size_t namesize = name ? strlen(name) + 1 : 0; 1935 1936 lr = umem_zalloc(lrsize + namesize, UMEM_NOFAIL); 1937 1938 if (name) 1939 bcopy(name, lr + lrsize, namesize); 1940 1941 return (lr); 1942 } 1943 1944 void 1945 ztest_lr_free(void *lr, size_t lrsize, char *name) 1946 { 1947 size_t namesize = name ? strlen(name) + 1 : 0; 1948 1949 umem_free(lr, lrsize + namesize); 1950 } 1951 1952 /* 1953 * Lookup a bunch of objects. Returns the number of objects not found. 1954 */ 1955 static int 1956 ztest_lookup(ztest_ds_t *zd, ztest_od_t *od, int count) 1957 { 1958 int missing = 0; 1959 int error; 1960 1961 ASSERT(_mutex_held(&zd->zd_dirobj_lock)); 1962 1963 for (int i = 0; i < count; i++, od++) { 1964 od->od_object = 0; 1965 error = zap_lookup(zd->zd_os, od->od_dir, od->od_name, 1966 sizeof (uint64_t), 1, &od->od_object); 1967 if (error) { 1968 ASSERT(error == ENOENT); 1969 ASSERT(od->od_object == 0); 1970 missing++; 1971 } else { 1972 dmu_buf_t *db; 1973 ztest_block_tag_t *bbt; 1974 dmu_object_info_t doi; 1975 1976 ASSERT(od->od_object != 0); 1977 ASSERT(missing == 0); /* there should be no gaps */ 1978 1979 ztest_object_lock(zd, od->od_object, RL_READER); 1980 VERIFY3U(0, ==, dmu_bonus_hold(zd->zd_os, 1981 od->od_object, FTAG, &db)); 1982 dmu_object_info_from_db(db, &doi); 1983 bbt = ztest_bt_bonus(db); 1984 ASSERT3U(bbt->bt_magic, ==, BT_MAGIC); 1985 od->od_type = doi.doi_type; 1986 od->od_blocksize = doi.doi_data_block_size; 1987 od->od_gen = bbt->bt_gen; 1988 dmu_buf_rele(db, FTAG); 1989 ztest_object_unlock(zd, od->od_object); 1990 } 1991 } 1992 1993 return (missing); 1994 } 1995 1996 static int 1997 ztest_create(ztest_ds_t *zd, ztest_od_t *od, int count) 1998 { 1999 int missing = 0; 2000 2001 ASSERT(_mutex_held(&zd->zd_dirobj_lock)); 2002 2003 for (int i = 0; i < count; i++, od++) { 2004 if (missing) { 2005 od->od_object = 0; 2006 missing++; 2007 continue; 2008 } 2009 2010 lr_create_t *lr = ztest_lr_alloc(sizeof (*lr), od->od_name); 2011 2012 lr->lr_doid = od->od_dir; 2013 lr->lr_foid = 0; /* 0 to allocate, > 0 to claim */ 2014 lr->lrz_type = od->od_crtype; 2015 lr->lrz_blocksize = od->od_crblocksize; 2016 lr->lrz_ibshift = ztest_random_ibshift(); 2017 lr->lrz_bonustype = DMU_OT_UINT64_OTHER; 2018 lr->lrz_bonuslen = dmu_bonus_max(); 2019 lr->lr_gen = od->od_crgen; 2020 lr->lr_crtime[0] = time(NULL); 2021 2022 if (ztest_replay_create(zd, lr, B_FALSE) != 0) { 2023 ASSERT(missing == 0); 2024 od->od_object = 0; 2025 missing++; 2026 } else { 2027 od->od_object = lr->lr_foid; 2028 od->od_type = od->od_crtype; 2029 od->od_blocksize = od->od_crblocksize; 2030 od->od_gen = od->od_crgen; 2031 ASSERT(od->od_object != 0); 2032 } 2033 2034 ztest_lr_free(lr, sizeof (*lr), od->od_name); 2035 } 2036 2037 return (missing); 2038 } 2039 2040 static int 2041 ztest_remove(ztest_ds_t *zd, ztest_od_t *od, int count) 2042 { 2043 int missing = 0; 2044 int error; 2045 2046 ASSERT(_mutex_held(&zd->zd_dirobj_lock)); 2047 2048 od += count - 1; 2049 2050 for (int i = count - 1; i >= 0; i--, od--) { 2051 if (missing) { 2052 missing++; 2053 continue; 2054 } 2055 2056 /* 2057 * No object was found. 2058 */ 2059 if (od->od_object == 0) 2060 continue; 2061 2062 lr_remove_t *lr = ztest_lr_alloc(sizeof (*lr), od->od_name); 2063 2064 lr->lr_doid = od->od_dir; 2065 2066 if ((error = ztest_replay_remove(zd, lr, B_FALSE)) != 0) { 2067 ASSERT3U(error, ==, ENOSPC); 2068 missing++; 2069 } else { 2070 od->od_object = 0; 2071 } 2072 ztest_lr_free(lr, sizeof (*lr), od->od_name); 2073 } 2074 2075 return (missing); 2076 } 2077 2078 static int 2079 ztest_write(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size, 2080 void *data) 2081 { 2082 lr_write_t *lr; 2083 int error; 2084 2085 lr = ztest_lr_alloc(sizeof (*lr) + size, NULL); 2086 2087 lr->lr_foid = object; 2088 lr->lr_offset = offset; 2089 lr->lr_length = size; 2090 lr->lr_blkoff = 0; 2091 BP_ZERO(&lr->lr_blkptr); 2092 2093 bcopy(data, lr + 1, size); 2094 2095 error = ztest_replay_write(zd, lr, B_FALSE); 2096 2097 ztest_lr_free(lr, sizeof (*lr) + size, NULL); 2098 2099 return (error); 2100 } 2101 2102 static int 2103 ztest_truncate(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size) 2104 { 2105 lr_truncate_t *lr; 2106 int error; 2107 2108 lr = ztest_lr_alloc(sizeof (*lr), NULL); 2109 2110 lr->lr_foid = object; 2111 lr->lr_offset = offset; 2112 lr->lr_length = size; 2113 2114 error = ztest_replay_truncate(zd, lr, B_FALSE); 2115 2116 ztest_lr_free(lr, sizeof (*lr), NULL); 2117 2118 return (error); 2119 } 2120 2121 static int 2122 ztest_setattr(ztest_ds_t *zd, uint64_t object) 2123 { 2124 lr_setattr_t *lr; 2125 int error; 2126 2127 lr = ztest_lr_alloc(sizeof (*lr), NULL); 2128 2129 lr->lr_foid = object; 2130 lr->lr_size = 0; 2131 lr->lr_mode = 0; 2132 2133 error = ztest_replay_setattr(zd, lr, B_FALSE); 2134 2135 ztest_lr_free(lr, sizeof (*lr), NULL); 2136 2137 return (error); 2138 } 2139 2140 static void 2141 ztest_prealloc(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size) 2142 { 2143 objset_t *os = zd->zd_os; 2144 dmu_tx_t *tx; 2145 uint64_t txg; 2146 rl_t *rl; 2147 2148 txg_wait_synced(dmu_objset_pool(os), 0); 2149 2150 ztest_object_lock(zd, object, RL_READER); 2151 rl = ztest_range_lock(zd, object, offset, size, RL_WRITER); 2152 2153 tx = dmu_tx_create(os); 2154 2155 dmu_tx_hold_write(tx, object, offset, size); 2156 2157 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); 2158 2159 if (txg != 0) { 2160 dmu_prealloc(os, object, offset, size, tx); 2161 dmu_tx_commit(tx); 2162 txg_wait_synced(dmu_objset_pool(os), txg); 2163 } else { 2164 (void) dmu_free_long_range(os, object, offset, size); 2165 } 2166 2167 ztest_range_unlock(rl); 2168 ztest_object_unlock(zd, object); 2169 } 2170 2171 static void 2172 ztest_io(ztest_ds_t *zd, uint64_t object, uint64_t offset) 2173 { 2174 int err; 2175 ztest_block_tag_t wbt; 2176 dmu_object_info_t doi; 2177 enum ztest_io_type io_type; 2178 uint64_t blocksize; 2179 void *data; 2180 2181 VERIFY(dmu_object_info(zd->zd_os, object, &doi) == 0); 2182 blocksize = doi.doi_data_block_size; 2183 data = umem_alloc(blocksize, UMEM_NOFAIL); 2184 2185 /* 2186 * Pick an i/o type at random, biased toward writing block tags. 2187 */ 2188 io_type = ztest_random(ZTEST_IO_TYPES); 2189 if (ztest_random(2) == 0) 2190 io_type = ZTEST_IO_WRITE_TAG; 2191 2192 (void) rw_rdlock(&zd->zd_zilog_lock); 2193 2194 switch (io_type) { 2195 2196 case ZTEST_IO_WRITE_TAG: 2197 ztest_bt_generate(&wbt, zd->zd_os, object, offset, 0, 0, 0); 2198 (void) ztest_write(zd, object, offset, sizeof (wbt), &wbt); 2199 break; 2200 2201 case ZTEST_IO_WRITE_PATTERN: 2202 (void) memset(data, 'a' + (object + offset) % 5, blocksize); 2203 if (ztest_random(2) == 0) { 2204 /* 2205 * Induce fletcher2 collisions to ensure that 2206 * zio_ddt_collision() detects and resolves them 2207 * when using fletcher2-verify for deduplication. 2208 */ 2209 ((uint64_t *)data)[0] ^= 1ULL << 63; 2210 ((uint64_t *)data)[4] ^= 1ULL << 63; 2211 } 2212 (void) ztest_write(zd, object, offset, blocksize, data); 2213 break; 2214 2215 case ZTEST_IO_WRITE_ZEROES: 2216 bzero(data, blocksize); 2217 (void) ztest_write(zd, object, offset, blocksize, data); 2218 break; 2219 2220 case ZTEST_IO_TRUNCATE: 2221 (void) ztest_truncate(zd, object, offset, blocksize); 2222 break; 2223 2224 case ZTEST_IO_SETATTR: 2225 (void) ztest_setattr(zd, object); 2226 break; 2227 2228 case ZTEST_IO_REWRITE: 2229 (void) rw_rdlock(&ztest_name_lock); 2230 err = ztest_dsl_prop_set_uint64(zd->zd_name, 2231 ZFS_PROP_CHECKSUM, spa_dedup_checksum(ztest_spa), 2232 B_FALSE); 2233 VERIFY(err == 0 || err == ENOSPC); 2234 err = ztest_dsl_prop_set_uint64(zd->zd_name, 2235 ZFS_PROP_COMPRESSION, 2236 ztest_random_dsl_prop(ZFS_PROP_COMPRESSION), 2237 B_FALSE); 2238 VERIFY(err == 0 || err == ENOSPC); 2239 (void) rw_unlock(&ztest_name_lock); 2240 2241 VERIFY0(dmu_read(zd->zd_os, object, offset, blocksize, data, 2242 DMU_READ_NO_PREFETCH)); 2243 2244 (void) ztest_write(zd, object, offset, blocksize, data); 2245 break; 2246 } 2247 2248 (void) rw_unlock(&zd->zd_zilog_lock); 2249 2250 umem_free(data, blocksize); 2251 } 2252 2253 /* 2254 * Initialize an object description template. 2255 */ 2256 static void 2257 ztest_od_init(ztest_od_t *od, uint64_t id, char *tag, uint64_t index, 2258 dmu_object_type_t type, uint64_t blocksize, uint64_t gen) 2259 { 2260 od->od_dir = ZTEST_DIROBJ; 2261 od->od_object = 0; 2262 2263 od->od_crtype = type; 2264 od->od_crblocksize = blocksize ? blocksize : ztest_random_blocksize(); 2265 od->od_crgen = gen; 2266 2267 od->od_type = DMU_OT_NONE; 2268 od->od_blocksize = 0; 2269 od->od_gen = 0; 2270 2271 (void) snprintf(od->od_name, sizeof (od->od_name), "%s(%lld)[%llu]", 2272 tag, (int64_t)id, index); 2273 } 2274 2275 /* 2276 * Lookup or create the objects for a test using the od template. 2277 * If the objects do not all exist, or if 'remove' is specified, 2278 * remove any existing objects and create new ones. Otherwise, 2279 * use the existing objects. 2280 */ 2281 static int 2282 ztest_object_init(ztest_ds_t *zd, ztest_od_t *od, size_t size, boolean_t remove) 2283 { 2284 int count = size / sizeof (*od); 2285 int rv = 0; 2286 2287 VERIFY(mutex_lock(&zd->zd_dirobj_lock) == 0); 2288 if ((ztest_lookup(zd, od, count) != 0 || remove) && 2289 (ztest_remove(zd, od, count) != 0 || 2290 ztest_create(zd, od, count) != 0)) 2291 rv = -1; 2292 zd->zd_od = od; 2293 VERIFY(mutex_unlock(&zd->zd_dirobj_lock) == 0); 2294 2295 return (rv); 2296 } 2297 2298 /* ARGSUSED */ 2299 void 2300 ztest_zil_commit(ztest_ds_t *zd, uint64_t id) 2301 { 2302 zilog_t *zilog = zd->zd_zilog; 2303 2304 (void) rw_rdlock(&zd->zd_zilog_lock); 2305 2306 zil_commit(zilog, ztest_random(ZTEST_OBJECTS)); 2307 2308 /* 2309 * Remember the committed values in zd, which is in parent/child 2310 * shared memory. If we die, the next iteration of ztest_run() 2311 * will verify that the log really does contain this record. 2312 */ 2313 mutex_enter(&zilog->zl_lock); 2314 ASSERT(zd->zd_shared != NULL); 2315 ASSERT3U(zd->zd_shared->zd_seq, <=, zilog->zl_commit_lr_seq); 2316 zd->zd_shared->zd_seq = zilog->zl_commit_lr_seq; 2317 mutex_exit(&zilog->zl_lock); 2318 2319 (void) rw_unlock(&zd->zd_zilog_lock); 2320 } 2321 2322 /* 2323 * This function is designed to simulate the operations that occur during a 2324 * mount/unmount operation. We hold the dataset across these operations in an 2325 * attempt to expose any implicit assumptions about ZIL management. 2326 */ 2327 /* ARGSUSED */ 2328 void 2329 ztest_zil_remount(ztest_ds_t *zd, uint64_t id) 2330 { 2331 objset_t *os = zd->zd_os; 2332 2333 /* 2334 * We grab the zd_dirobj_lock to ensure that no other thread is 2335 * updating the zil (i.e. adding in-memory log records) and the 2336 * zd_zilog_lock to block any I/O. 2337 */ 2338 VERIFY0(mutex_lock(&zd->zd_dirobj_lock)); 2339 (void) rw_wrlock(&zd->zd_zilog_lock); 2340 2341 /* zfsvfs_teardown() */ 2342 zil_close(zd->zd_zilog); 2343 2344 /* zfsvfs_setup() */ 2345 VERIFY(zil_open(os, ztest_get_data) == zd->zd_zilog); 2346 zil_replay(os, zd, ztest_replay_vector); 2347 2348 (void) rw_unlock(&zd->zd_zilog_lock); 2349 VERIFY(mutex_unlock(&zd->zd_dirobj_lock) == 0); 2350 } 2351 2352 /* 2353 * Verify that we can't destroy an active pool, create an existing pool, 2354 * or create a pool with a bad vdev spec. 2355 */ 2356 /* ARGSUSED */ 2357 void 2358 ztest_spa_create_destroy(ztest_ds_t *zd, uint64_t id) 2359 { 2360 ztest_shared_opts_t *zo = &ztest_opts; 2361 spa_t *spa; 2362 nvlist_t *nvroot; 2363 2364 /* 2365 * Attempt to create using a bad file. 2366 */ 2367 nvroot = make_vdev_root("/dev/bogus", NULL, NULL, 0, 0, 0, 0, 0, 1); 2368 VERIFY3U(ENOENT, ==, 2369 spa_create("ztest_bad_file", nvroot, NULL, NULL)); 2370 nvlist_free(nvroot); 2371 2372 /* 2373 * Attempt to create using a bad mirror. 2374 */ 2375 nvroot = make_vdev_root("/dev/bogus", NULL, NULL, 0, 0, 0, 0, 2, 1); 2376 VERIFY3U(ENOENT, ==, 2377 spa_create("ztest_bad_mirror", nvroot, NULL, NULL)); 2378 nvlist_free(nvroot); 2379 2380 /* 2381 * Attempt to create an existing pool. It shouldn't matter 2382 * what's in the nvroot; we should fail with EEXIST. 2383 */ 2384 (void) rw_rdlock(&ztest_name_lock); 2385 nvroot = make_vdev_root("/dev/bogus", NULL, NULL, 0, 0, 0, 0, 0, 1); 2386 VERIFY3U(EEXIST, ==, spa_create(zo->zo_pool, nvroot, NULL, NULL)); 2387 nvlist_free(nvroot); 2388 VERIFY3U(0, ==, spa_open(zo->zo_pool, &spa, FTAG)); 2389 VERIFY3U(EBUSY, ==, spa_destroy(zo->zo_pool)); 2390 spa_close(spa, FTAG); 2391 2392 (void) rw_unlock(&ztest_name_lock); 2393 } 2394 2395 /* ARGSUSED */ 2396 void 2397 ztest_spa_upgrade(ztest_ds_t *zd, uint64_t id) 2398 { 2399 spa_t *spa; 2400 uint64_t initial_version = SPA_VERSION_INITIAL; 2401 uint64_t version, newversion; 2402 nvlist_t *nvroot, *props; 2403 char *name; 2404 2405 VERIFY0(mutex_lock(&ztest_vdev_lock)); 2406 name = kmem_asprintf("%s_upgrade", ztest_opts.zo_pool); 2407 2408 /* 2409 * Clean up from previous runs. 2410 */ 2411 (void) spa_destroy(name); 2412 2413 nvroot = make_vdev_root(NULL, NULL, name, ztest_opts.zo_vdev_size, 0, 2414 0, ztest_opts.zo_raidz, ztest_opts.zo_mirrors, 1); 2415 2416 /* 2417 * If we're configuring a RAIDZ device then make sure that the 2418 * the initial version is capable of supporting that feature. 2419 */ 2420 switch (ztest_opts.zo_raidz_parity) { 2421 case 0: 2422 case 1: 2423 initial_version = SPA_VERSION_INITIAL; 2424 break; 2425 case 2: 2426 initial_version = SPA_VERSION_RAIDZ2; 2427 break; 2428 case 3: 2429 initial_version = SPA_VERSION_RAIDZ3; 2430 break; 2431 } 2432 2433 /* 2434 * Create a pool with a spa version that can be upgraded. Pick 2435 * a value between initial_version and SPA_VERSION_BEFORE_FEATURES. 2436 */ 2437 do { 2438 version = ztest_random_spa_version(initial_version); 2439 } while (version > SPA_VERSION_BEFORE_FEATURES); 2440 2441 props = fnvlist_alloc(); 2442 fnvlist_add_uint64(props, 2443 zpool_prop_to_name(ZPOOL_PROP_VERSION), version); 2444 VERIFY0(spa_create(name, nvroot, props, NULL)); 2445 fnvlist_free(nvroot); 2446 fnvlist_free(props); 2447 2448 VERIFY0(spa_open(name, &spa, FTAG)); 2449 VERIFY3U(spa_version(spa), ==, version); 2450 newversion = ztest_random_spa_version(version + 1); 2451 2452 if (ztest_opts.zo_verbose >= 4) { 2453 (void) printf("upgrading spa version from %llu to %llu\n", 2454 (u_longlong_t)version, (u_longlong_t)newversion); 2455 } 2456 2457 spa_upgrade(spa, newversion); 2458 VERIFY3U(spa_version(spa), >, version); 2459 VERIFY3U(spa_version(spa), ==, fnvlist_lookup_uint64(spa->spa_config, 2460 zpool_prop_to_name(ZPOOL_PROP_VERSION))); 2461 spa_close(spa, FTAG); 2462 2463 strfree(name); 2464 VERIFY0(mutex_unlock(&ztest_vdev_lock)); 2465 } 2466 2467 static vdev_t * 2468 vdev_lookup_by_path(vdev_t *vd, const char *path) 2469 { 2470 vdev_t *mvd; 2471 2472 if (vd->vdev_path != NULL && strcmp(path, vd->vdev_path) == 0) 2473 return (vd); 2474 2475 for (int c = 0; c < vd->vdev_children; c++) 2476 if ((mvd = vdev_lookup_by_path(vd->vdev_child[c], path)) != 2477 NULL) 2478 return (mvd); 2479 2480 return (NULL); 2481 } 2482 2483 /* 2484 * Find the first available hole which can be used as a top-level. 2485 */ 2486 int 2487 find_vdev_hole(spa_t *spa) 2488 { 2489 vdev_t *rvd = spa->spa_root_vdev; 2490 int c; 2491 2492 ASSERT(spa_config_held(spa, SCL_VDEV, RW_READER) == SCL_VDEV); 2493 2494 for (c = 0; c < rvd->vdev_children; c++) { 2495 vdev_t *cvd = rvd->vdev_child[c]; 2496 2497 if (cvd->vdev_ishole) 2498 break; 2499 } 2500 return (c); 2501 } 2502 2503 /* 2504 * Verify that vdev_add() works as expected. 2505 */ 2506 /* ARGSUSED */ 2507 void 2508 ztest_vdev_add_remove(ztest_ds_t *zd, uint64_t id) 2509 { 2510 ztest_shared_t *zs = ztest_shared; 2511 spa_t *spa = ztest_spa; 2512 uint64_t leaves; 2513 uint64_t guid; 2514 nvlist_t *nvroot; 2515 int error; 2516 2517 VERIFY(mutex_lock(&ztest_vdev_lock) == 0); 2518 leaves = MAX(zs->zs_mirrors + zs->zs_splits, 1) * ztest_opts.zo_raidz; 2519 2520 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 2521 2522 ztest_shared->zs_vdev_next_leaf = find_vdev_hole(spa) * leaves; 2523 2524 /* 2525 * If we have slogs then remove them 1/4 of the time. 2526 */ 2527 if (spa_has_slogs(spa) && ztest_random(4) == 0) { 2528 /* 2529 * Grab the guid from the head of the log class rotor. 2530 */ 2531 guid = spa_log_class(spa)->mc_rotor->mg_vd->vdev_guid; 2532 2533 spa_config_exit(spa, SCL_VDEV, FTAG); 2534 2535 /* 2536 * We have to grab the zs_name_lock as writer to 2537 * prevent a race between removing a slog (dmu_objset_find) 2538 * and destroying a dataset. Removing the slog will 2539 * grab a reference on the dataset which may cause 2540 * dmu_objset_destroy() to fail with EBUSY thus 2541 * leaving the dataset in an inconsistent state. 2542 */ 2543 VERIFY(rw_wrlock(&ztest_name_lock) == 0); 2544 error = spa_vdev_remove(spa, guid, B_FALSE); 2545 VERIFY(rw_unlock(&ztest_name_lock) == 0); 2546 2547 if (error && error != EEXIST) 2548 fatal(0, "spa_vdev_remove() = %d", error); 2549 } else { 2550 spa_config_exit(spa, SCL_VDEV, FTAG); 2551 2552 /* 2553 * Make 1/4 of the devices be log devices. 2554 */ 2555 nvroot = make_vdev_root(NULL, NULL, NULL, 2556 ztest_opts.zo_vdev_size, 0, 2557 ztest_random(4) == 0, ztest_opts.zo_raidz, 2558 zs->zs_mirrors, 1); 2559 2560 error = spa_vdev_add(spa, nvroot); 2561 nvlist_free(nvroot); 2562 2563 if (error == ENOSPC) 2564 ztest_record_enospc("spa_vdev_add"); 2565 else if (error != 0) 2566 fatal(0, "spa_vdev_add() = %d", error); 2567 } 2568 2569 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 2570 } 2571 2572 /* 2573 * Verify that adding/removing aux devices (l2arc, hot spare) works as expected. 2574 */ 2575 /* ARGSUSED */ 2576 void 2577 ztest_vdev_aux_add_remove(ztest_ds_t *zd, uint64_t id) 2578 { 2579 ztest_shared_t *zs = ztest_shared; 2580 spa_t *spa = ztest_spa; 2581 vdev_t *rvd = spa->spa_root_vdev; 2582 spa_aux_vdev_t *sav; 2583 char *aux; 2584 uint64_t guid = 0; 2585 int error; 2586 2587 if (ztest_random(2) == 0) { 2588 sav = &spa->spa_spares; 2589 aux = ZPOOL_CONFIG_SPARES; 2590 } else { 2591 sav = &spa->spa_l2cache; 2592 aux = ZPOOL_CONFIG_L2CACHE; 2593 } 2594 2595 VERIFY(mutex_lock(&ztest_vdev_lock) == 0); 2596 2597 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 2598 2599 if (sav->sav_count != 0 && ztest_random(4) == 0) { 2600 /* 2601 * Pick a random device to remove. 2602 */ 2603 guid = sav->sav_vdevs[ztest_random(sav->sav_count)]->vdev_guid; 2604 } else { 2605 /* 2606 * Find an unused device we can add. 2607 */ 2608 zs->zs_vdev_aux = 0; 2609 for (;;) { 2610 char path[MAXPATHLEN]; 2611 int c; 2612 (void) snprintf(path, sizeof (path), ztest_aux_template, 2613 ztest_opts.zo_dir, ztest_opts.zo_pool, aux, 2614 zs->zs_vdev_aux); 2615 for (c = 0; c < sav->sav_count; c++) 2616 if (strcmp(sav->sav_vdevs[c]->vdev_path, 2617 path) == 0) 2618 break; 2619 if (c == sav->sav_count && 2620 vdev_lookup_by_path(rvd, path) == NULL) 2621 break; 2622 zs->zs_vdev_aux++; 2623 } 2624 } 2625 2626 spa_config_exit(spa, SCL_VDEV, FTAG); 2627 2628 if (guid == 0) { 2629 /* 2630 * Add a new device. 2631 */ 2632 nvlist_t *nvroot = make_vdev_root(NULL, aux, NULL, 2633 (ztest_opts.zo_vdev_size * 5) / 4, 0, 0, 0, 0, 1); 2634 error = spa_vdev_add(spa, nvroot); 2635 if (error != 0) 2636 fatal(0, "spa_vdev_add(%p) = %d", nvroot, error); 2637 nvlist_free(nvroot); 2638 } else { 2639 /* 2640 * Remove an existing device. Sometimes, dirty its 2641 * vdev state first to make sure we handle removal 2642 * of devices that have pending state changes. 2643 */ 2644 if (ztest_random(2) == 0) 2645 (void) vdev_online(spa, guid, 0, NULL); 2646 2647 error = spa_vdev_remove(spa, guid, B_FALSE); 2648 if (error != 0 && error != EBUSY) 2649 fatal(0, "spa_vdev_remove(%llu) = %d", guid, error); 2650 } 2651 2652 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 2653 } 2654 2655 /* 2656 * split a pool if it has mirror tlvdevs 2657 */ 2658 /* ARGSUSED */ 2659 void 2660 ztest_split_pool(ztest_ds_t *zd, uint64_t id) 2661 { 2662 ztest_shared_t *zs = ztest_shared; 2663 spa_t *spa = ztest_spa; 2664 vdev_t *rvd = spa->spa_root_vdev; 2665 nvlist_t *tree, **child, *config, *split, **schild; 2666 uint_t c, children, schildren = 0, lastlogid = 0; 2667 int error = 0; 2668 2669 VERIFY(mutex_lock(&ztest_vdev_lock) == 0); 2670 2671 /* ensure we have a useable config; mirrors of raidz aren't supported */ 2672 if (zs->zs_mirrors < 3 || ztest_opts.zo_raidz > 1) { 2673 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 2674 return; 2675 } 2676 2677 /* clean up the old pool, if any */ 2678 (void) spa_destroy("splitp"); 2679 2680 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 2681 2682 /* generate a config from the existing config */ 2683 mutex_enter(&spa->spa_props_lock); 2684 VERIFY(nvlist_lookup_nvlist(spa->spa_config, ZPOOL_CONFIG_VDEV_TREE, 2685 &tree) == 0); 2686 mutex_exit(&spa->spa_props_lock); 2687 2688 VERIFY(nvlist_lookup_nvlist_array(tree, ZPOOL_CONFIG_CHILDREN, &child, 2689 &children) == 0); 2690 2691 schild = malloc(rvd->vdev_children * sizeof (nvlist_t *)); 2692 for (c = 0; c < children; c++) { 2693 vdev_t *tvd = rvd->vdev_child[c]; 2694 nvlist_t **mchild; 2695 uint_t mchildren; 2696 2697 if (tvd->vdev_islog || tvd->vdev_ops == &vdev_hole_ops) { 2698 VERIFY(nvlist_alloc(&schild[schildren], NV_UNIQUE_NAME, 2699 0) == 0); 2700 VERIFY(nvlist_add_string(schild[schildren], 2701 ZPOOL_CONFIG_TYPE, VDEV_TYPE_HOLE) == 0); 2702 VERIFY(nvlist_add_uint64(schild[schildren], 2703 ZPOOL_CONFIG_IS_HOLE, 1) == 0); 2704 if (lastlogid == 0) 2705 lastlogid = schildren; 2706 ++schildren; 2707 continue; 2708 } 2709 lastlogid = 0; 2710 VERIFY(nvlist_lookup_nvlist_array(child[c], 2711 ZPOOL_CONFIG_CHILDREN, &mchild, &mchildren) == 0); 2712 VERIFY(nvlist_dup(mchild[0], &schild[schildren++], 0) == 0); 2713 } 2714 2715 /* OK, create a config that can be used to split */ 2716 VERIFY(nvlist_alloc(&split, NV_UNIQUE_NAME, 0) == 0); 2717 VERIFY(nvlist_add_string(split, ZPOOL_CONFIG_TYPE, 2718 VDEV_TYPE_ROOT) == 0); 2719 VERIFY(nvlist_add_nvlist_array(split, ZPOOL_CONFIG_CHILDREN, schild, 2720 lastlogid != 0 ? lastlogid : schildren) == 0); 2721 2722 VERIFY(nvlist_alloc(&config, NV_UNIQUE_NAME, 0) == 0); 2723 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, split) == 0); 2724 2725 for (c = 0; c < schildren; c++) 2726 nvlist_free(schild[c]); 2727 free(schild); 2728 nvlist_free(split); 2729 2730 spa_config_exit(spa, SCL_VDEV, FTAG); 2731 2732 (void) rw_wrlock(&ztest_name_lock); 2733 error = spa_vdev_split_mirror(spa, "splitp", config, NULL, B_FALSE); 2734 (void) rw_unlock(&ztest_name_lock); 2735 2736 nvlist_free(config); 2737 2738 if (error == 0) { 2739 (void) printf("successful split - results:\n"); 2740 mutex_enter(&spa_namespace_lock); 2741 show_pool_stats(spa); 2742 show_pool_stats(spa_lookup("splitp")); 2743 mutex_exit(&spa_namespace_lock); 2744 ++zs->zs_splits; 2745 --zs->zs_mirrors; 2746 } 2747 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 2748 2749 } 2750 2751 /* 2752 * Verify that we can attach and detach devices. 2753 */ 2754 /* ARGSUSED */ 2755 void 2756 ztest_vdev_attach_detach(ztest_ds_t *zd, uint64_t id) 2757 { 2758 ztest_shared_t *zs = ztest_shared; 2759 spa_t *spa = ztest_spa; 2760 spa_aux_vdev_t *sav = &spa->spa_spares; 2761 vdev_t *rvd = spa->spa_root_vdev; 2762 vdev_t *oldvd, *newvd, *pvd; 2763 nvlist_t *root; 2764 uint64_t leaves; 2765 uint64_t leaf, top; 2766 uint64_t ashift = ztest_get_ashift(); 2767 uint64_t oldguid, pguid; 2768 uint64_t oldsize, newsize; 2769 char oldpath[MAXPATHLEN], newpath[MAXPATHLEN]; 2770 int replacing; 2771 int oldvd_has_siblings = B_FALSE; 2772 int newvd_is_spare = B_FALSE; 2773 int oldvd_is_log; 2774 int error, expected_error; 2775 2776 VERIFY(mutex_lock(&ztest_vdev_lock) == 0); 2777 leaves = MAX(zs->zs_mirrors, 1) * ztest_opts.zo_raidz; 2778 2779 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 2780 2781 /* 2782 * Decide whether to do an attach or a replace. 2783 */ 2784 replacing = ztest_random(2); 2785 2786 /* 2787 * Pick a random top-level vdev. 2788 */ 2789 top = ztest_random_vdev_top(spa, B_TRUE); 2790 2791 /* 2792 * Pick a random leaf within it. 2793 */ 2794 leaf = ztest_random(leaves); 2795 2796 /* 2797 * Locate this vdev. 2798 */ 2799 oldvd = rvd->vdev_child[top]; 2800 if (zs->zs_mirrors >= 1) { 2801 ASSERT(oldvd->vdev_ops == &vdev_mirror_ops); 2802 ASSERT(oldvd->vdev_children >= zs->zs_mirrors); 2803 oldvd = oldvd->vdev_child[leaf / ztest_opts.zo_raidz]; 2804 } 2805 if (ztest_opts.zo_raidz > 1) { 2806 ASSERT(oldvd->vdev_ops == &vdev_raidz_ops); 2807 ASSERT(oldvd->vdev_children == ztest_opts.zo_raidz); 2808 oldvd = oldvd->vdev_child[leaf % ztest_opts.zo_raidz]; 2809 } 2810 2811 /* 2812 * If we're already doing an attach or replace, oldvd may be a 2813 * mirror vdev -- in which case, pick a random child. 2814 */ 2815 while (oldvd->vdev_children != 0) { 2816 oldvd_has_siblings = B_TRUE; 2817 ASSERT(oldvd->vdev_children >= 2); 2818 oldvd = oldvd->vdev_child[ztest_random(oldvd->vdev_children)]; 2819 } 2820 2821 oldguid = oldvd->vdev_guid; 2822 oldsize = vdev_get_min_asize(oldvd); 2823 oldvd_is_log = oldvd->vdev_top->vdev_islog; 2824 (void) strcpy(oldpath, oldvd->vdev_path); 2825 pvd = oldvd->vdev_parent; 2826 pguid = pvd->vdev_guid; 2827 2828 /* 2829 * If oldvd has siblings, then half of the time, detach it. 2830 */ 2831 if (oldvd_has_siblings && ztest_random(2) == 0) { 2832 spa_config_exit(spa, SCL_VDEV, FTAG); 2833 error = spa_vdev_detach(spa, oldguid, pguid, B_FALSE); 2834 if (error != 0 && error != ENODEV && error != EBUSY && 2835 error != ENOTSUP) 2836 fatal(0, "detach (%s) returned %d", oldpath, error); 2837 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 2838 return; 2839 } 2840 2841 /* 2842 * For the new vdev, choose with equal probability between the two 2843 * standard paths (ending in either 'a' or 'b') or a random hot spare. 2844 */ 2845 if (sav->sav_count != 0 && ztest_random(3) == 0) { 2846 newvd = sav->sav_vdevs[ztest_random(sav->sav_count)]; 2847 newvd_is_spare = B_TRUE; 2848 (void) strcpy(newpath, newvd->vdev_path); 2849 } else { 2850 (void) snprintf(newpath, sizeof (newpath), ztest_dev_template, 2851 ztest_opts.zo_dir, ztest_opts.zo_pool, 2852 top * leaves + leaf); 2853 if (ztest_random(2) == 0) 2854 newpath[strlen(newpath) - 1] = 'b'; 2855 newvd = vdev_lookup_by_path(rvd, newpath); 2856 } 2857 2858 if (newvd) { 2859 newsize = vdev_get_min_asize(newvd); 2860 } else { 2861 /* 2862 * Make newsize a little bigger or smaller than oldsize. 2863 * If it's smaller, the attach should fail. 2864 * If it's larger, and we're doing a replace, 2865 * we should get dynamic LUN growth when we're done. 2866 */ 2867 newsize = 10 * oldsize / (9 + ztest_random(3)); 2868 } 2869 2870 /* 2871 * If pvd is not a mirror or root, the attach should fail with ENOTSUP, 2872 * unless it's a replace; in that case any non-replacing parent is OK. 2873 * 2874 * If newvd is already part of the pool, it should fail with EBUSY. 2875 * 2876 * If newvd is too small, it should fail with EOVERFLOW. 2877 */ 2878 if (pvd->vdev_ops != &vdev_mirror_ops && 2879 pvd->vdev_ops != &vdev_root_ops && (!replacing || 2880 pvd->vdev_ops == &vdev_replacing_ops || 2881 pvd->vdev_ops == &vdev_spare_ops)) 2882 expected_error = ENOTSUP; 2883 else if (newvd_is_spare && (!replacing || oldvd_is_log)) 2884 expected_error = ENOTSUP; 2885 else if (newvd == oldvd) 2886 expected_error = replacing ? 0 : EBUSY; 2887 else if (vdev_lookup_by_path(rvd, newpath) != NULL) 2888 expected_error = EBUSY; 2889 else if (newsize < oldsize) 2890 expected_error = EOVERFLOW; 2891 else if (ashift > oldvd->vdev_top->vdev_ashift) 2892 expected_error = EDOM; 2893 else 2894 expected_error = 0; 2895 2896 spa_config_exit(spa, SCL_VDEV, FTAG); 2897 2898 /* 2899 * Build the nvlist describing newpath. 2900 */ 2901 root = make_vdev_root(newpath, NULL, NULL, newvd == NULL ? newsize : 0, 2902 ashift, 0, 0, 0, 1); 2903 2904 error = spa_vdev_attach(spa, oldguid, root, replacing); 2905 2906 nvlist_free(root); 2907 2908 /* 2909 * If our parent was the replacing vdev, but the replace completed, 2910 * then instead of failing with ENOTSUP we may either succeed, 2911 * fail with ENODEV, or fail with EOVERFLOW. 2912 */ 2913 if (expected_error == ENOTSUP && 2914 (error == 0 || error == ENODEV || error == EOVERFLOW)) 2915 expected_error = error; 2916 2917 /* 2918 * If someone grew the LUN, the replacement may be too small. 2919 */ 2920 if (error == EOVERFLOW || error == EBUSY) 2921 expected_error = error; 2922 2923 /* XXX workaround 6690467 */ 2924 if (error != expected_error && expected_error != EBUSY) { 2925 fatal(0, "attach (%s %llu, %s %llu, %d) " 2926 "returned %d, expected %d", 2927 oldpath, oldsize, newpath, 2928 newsize, replacing, error, expected_error); 2929 } 2930 2931 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 2932 } 2933 2934 /* 2935 * Callback function which expands the physical size of the vdev. 2936 */ 2937 vdev_t * 2938 grow_vdev(vdev_t *vd, void *arg) 2939 { 2940 spa_t *spa = vd->vdev_spa; 2941 size_t *newsize = arg; 2942 size_t fsize; 2943 int fd; 2944 2945 ASSERT(spa_config_held(spa, SCL_STATE, RW_READER) == SCL_STATE); 2946 ASSERT(vd->vdev_ops->vdev_op_leaf); 2947 2948 if ((fd = open(vd->vdev_path, O_RDWR)) == -1) 2949 return (vd); 2950 2951 fsize = lseek(fd, 0, SEEK_END); 2952 (void) ftruncate(fd, *newsize); 2953 2954 if (ztest_opts.zo_verbose >= 6) { 2955 (void) printf("%s grew from %lu to %lu bytes\n", 2956 vd->vdev_path, (ulong_t)fsize, (ulong_t)*newsize); 2957 } 2958 (void) close(fd); 2959 return (NULL); 2960 } 2961 2962 /* 2963 * Callback function which expands a given vdev by calling vdev_online(). 2964 */ 2965 /* ARGSUSED */ 2966 vdev_t * 2967 online_vdev(vdev_t *vd, void *arg) 2968 { 2969 spa_t *spa = vd->vdev_spa; 2970 vdev_t *tvd = vd->vdev_top; 2971 uint64_t guid = vd->vdev_guid; 2972 uint64_t generation = spa->spa_config_generation + 1; 2973 vdev_state_t newstate = VDEV_STATE_UNKNOWN; 2974 int error; 2975 2976 ASSERT(spa_config_held(spa, SCL_STATE, RW_READER) == SCL_STATE); 2977 ASSERT(vd->vdev_ops->vdev_op_leaf); 2978 2979 /* Calling vdev_online will initialize the new metaslabs */ 2980 spa_config_exit(spa, SCL_STATE, spa); 2981 error = vdev_online(spa, guid, ZFS_ONLINE_EXPAND, &newstate); 2982 spa_config_enter(spa, SCL_STATE, spa, RW_READER); 2983 2984 /* 2985 * If vdev_online returned an error or the underlying vdev_open 2986 * failed then we abort the expand. The only way to know that 2987 * vdev_open fails is by checking the returned newstate. 2988 */ 2989 if (error || newstate != VDEV_STATE_HEALTHY) { 2990 if (ztest_opts.zo_verbose >= 5) { 2991 (void) printf("Unable to expand vdev, state %llu, " 2992 "error %d\n", (u_longlong_t)newstate, error); 2993 } 2994 return (vd); 2995 } 2996 ASSERT3U(newstate, ==, VDEV_STATE_HEALTHY); 2997 2998 /* 2999 * Since we dropped the lock we need to ensure that we're 3000 * still talking to the original vdev. It's possible this 3001 * vdev may have been detached/replaced while we were 3002 * trying to online it. 3003 */ 3004 if (generation != spa->spa_config_generation) { 3005 if (ztest_opts.zo_verbose >= 5) { 3006 (void) printf("vdev configuration has changed, " 3007 "guid %llu, state %llu, expected gen %llu, " 3008 "got gen %llu\n", 3009 (u_longlong_t)guid, 3010 (u_longlong_t)tvd->vdev_state, 3011 (u_longlong_t)generation, 3012 (u_longlong_t)spa->spa_config_generation); 3013 } 3014 return (vd); 3015 } 3016 return (NULL); 3017 } 3018 3019 /* 3020 * Traverse the vdev tree calling the supplied function. 3021 * We continue to walk the tree until we either have walked all 3022 * children or we receive a non-NULL return from the callback. 3023 * If a NULL callback is passed, then we just return back the first 3024 * leaf vdev we encounter. 3025 */ 3026 vdev_t * 3027 vdev_walk_tree(vdev_t *vd, vdev_t *(*func)(vdev_t *, void *), void *arg) 3028 { 3029 if (vd->vdev_ops->vdev_op_leaf) { 3030 if (func == NULL) 3031 return (vd); 3032 else 3033 return (func(vd, arg)); 3034 } 3035 3036 for (uint_t c = 0; c < vd->vdev_children; c++) { 3037 vdev_t *cvd = vd->vdev_child[c]; 3038 if ((cvd = vdev_walk_tree(cvd, func, arg)) != NULL) 3039 return (cvd); 3040 } 3041 return (NULL); 3042 } 3043 3044 /* 3045 * Verify that dynamic LUN growth works as expected. 3046 */ 3047 /* ARGSUSED */ 3048 void 3049 ztest_vdev_LUN_growth(ztest_ds_t *zd, uint64_t id) 3050 { 3051 spa_t *spa = ztest_spa; 3052 vdev_t *vd, *tvd; 3053 metaslab_class_t *mc; 3054 metaslab_group_t *mg; 3055 size_t psize, newsize; 3056 uint64_t top; 3057 uint64_t old_class_space, new_class_space, old_ms_count, new_ms_count; 3058 3059 VERIFY(mutex_lock(&ztest_vdev_lock) == 0); 3060 spa_config_enter(spa, SCL_STATE, spa, RW_READER); 3061 3062 top = ztest_random_vdev_top(spa, B_TRUE); 3063 3064 tvd = spa->spa_root_vdev->vdev_child[top]; 3065 mg = tvd->vdev_mg; 3066 mc = mg->mg_class; 3067 old_ms_count = tvd->vdev_ms_count; 3068 old_class_space = metaslab_class_get_space(mc); 3069 3070 /* 3071 * Determine the size of the first leaf vdev associated with 3072 * our top-level device. 3073 */ 3074 vd = vdev_walk_tree(tvd, NULL, NULL); 3075 ASSERT3P(vd, !=, NULL); 3076 ASSERT(vd->vdev_ops->vdev_op_leaf); 3077 3078 psize = vd->vdev_psize; 3079 3080 /* 3081 * We only try to expand the vdev if it's healthy, less than 4x its 3082 * original size, and it has a valid psize. 3083 */ 3084 if (tvd->vdev_state != VDEV_STATE_HEALTHY || 3085 psize == 0 || psize >= 4 * ztest_opts.zo_vdev_size) { 3086 spa_config_exit(spa, SCL_STATE, spa); 3087 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 3088 return; 3089 } 3090 ASSERT(psize > 0); 3091 newsize = psize + psize / 8; 3092 ASSERT3U(newsize, >, psize); 3093 3094 if (ztest_opts.zo_verbose >= 6) { 3095 (void) printf("Expanding LUN %s from %lu to %lu\n", 3096 vd->vdev_path, (ulong_t)psize, (ulong_t)newsize); 3097 } 3098 3099 /* 3100 * Growing the vdev is a two step process: 3101 * 1). expand the physical size (i.e. relabel) 3102 * 2). online the vdev to create the new metaslabs 3103 */ 3104 if (vdev_walk_tree(tvd, grow_vdev, &newsize) != NULL || 3105 vdev_walk_tree(tvd, online_vdev, NULL) != NULL || 3106 tvd->vdev_state != VDEV_STATE_HEALTHY) { 3107 if (ztest_opts.zo_verbose >= 5) { 3108 (void) printf("Could not expand LUN because " 3109 "the vdev configuration changed.\n"); 3110 } 3111 spa_config_exit(spa, SCL_STATE, spa); 3112 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 3113 return; 3114 } 3115 3116 spa_config_exit(spa, SCL_STATE, spa); 3117 3118 /* 3119 * Expanding the LUN will update the config asynchronously, 3120 * thus we must wait for the async thread to complete any 3121 * pending tasks before proceeding. 3122 */ 3123 for (;;) { 3124 boolean_t done; 3125 mutex_enter(&spa->spa_async_lock); 3126 done = (spa->spa_async_thread == NULL && !spa->spa_async_tasks); 3127 mutex_exit(&spa->spa_async_lock); 3128 if (done) 3129 break; 3130 txg_wait_synced(spa_get_dsl(spa), 0); 3131 (void) poll(NULL, 0, 100); 3132 } 3133 3134 spa_config_enter(spa, SCL_STATE, spa, RW_READER); 3135 3136 tvd = spa->spa_root_vdev->vdev_child[top]; 3137 new_ms_count = tvd->vdev_ms_count; 3138 new_class_space = metaslab_class_get_space(mc); 3139 3140 if (tvd->vdev_mg != mg || mg->mg_class != mc) { 3141 if (ztest_opts.zo_verbose >= 5) { 3142 (void) printf("Could not verify LUN expansion due to " 3143 "intervening vdev offline or remove.\n"); 3144 } 3145 spa_config_exit(spa, SCL_STATE, spa); 3146 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 3147 return; 3148 } 3149 3150 /* 3151 * Make sure we were able to grow the vdev. 3152 */ 3153 if (new_ms_count <= old_ms_count) 3154 fatal(0, "LUN expansion failed: ms_count %llu <= %llu\n", 3155 old_ms_count, new_ms_count); 3156 3157 /* 3158 * Make sure we were able to grow the pool. 3159 */ 3160 if (new_class_space <= old_class_space) 3161 fatal(0, "LUN expansion failed: class_space %llu <= %llu\n", 3162 old_class_space, new_class_space); 3163 3164 if (ztest_opts.zo_verbose >= 5) { 3165 char oldnumbuf[6], newnumbuf[6]; 3166 3167 nicenum(old_class_space, oldnumbuf); 3168 nicenum(new_class_space, newnumbuf); 3169 (void) printf("%s grew from %s to %s\n", 3170 spa->spa_name, oldnumbuf, newnumbuf); 3171 } 3172 3173 spa_config_exit(spa, SCL_STATE, spa); 3174 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 3175 } 3176 3177 /* 3178 * Verify that dmu_objset_{create,destroy,open,close} work as expected. 3179 */ 3180 /* ARGSUSED */ 3181 static void 3182 ztest_objset_create_cb(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx) 3183 { 3184 /* 3185 * Create the objects common to all ztest datasets. 3186 */ 3187 VERIFY(zap_create_claim(os, ZTEST_DIROBJ, 3188 DMU_OT_ZAP_OTHER, DMU_OT_NONE, 0, tx) == 0); 3189 } 3190 3191 static int 3192 ztest_dataset_create(char *dsname) 3193 { 3194 uint64_t zilset = ztest_random(100); 3195 int err = dmu_objset_create(dsname, DMU_OST_OTHER, 0, 3196 ztest_objset_create_cb, NULL); 3197 3198 if (err || zilset < 80) 3199 return (err); 3200 3201 if (ztest_opts.zo_verbose >= 6) 3202 (void) printf("Setting dataset %s to sync always\n", dsname); 3203 return (ztest_dsl_prop_set_uint64(dsname, ZFS_PROP_SYNC, 3204 ZFS_SYNC_ALWAYS, B_FALSE)); 3205 } 3206 3207 /* ARGSUSED */ 3208 static int 3209 ztest_objset_destroy_cb(const char *name, void *arg) 3210 { 3211 objset_t *os; 3212 dmu_object_info_t doi; 3213 int error; 3214 3215 /* 3216 * Verify that the dataset contains a directory object. 3217 */ 3218 VERIFY0(dmu_objset_own(name, DMU_OST_OTHER, B_TRUE, FTAG, &os)); 3219 error = dmu_object_info(os, ZTEST_DIROBJ, &doi); 3220 if (error != ENOENT) { 3221 /* We could have crashed in the middle of destroying it */ 3222 ASSERT0(error); 3223 ASSERT3U(doi.doi_type, ==, DMU_OT_ZAP_OTHER); 3224 ASSERT3S(doi.doi_physical_blocks_512, >=, 0); 3225 } 3226 dmu_objset_disown(os, FTAG); 3227 3228 /* 3229 * Destroy the dataset. 3230 */ 3231 if (strchr(name, '@') != NULL) { 3232 VERIFY0(dsl_destroy_snapshot(name, B_FALSE)); 3233 } else { 3234 VERIFY0(dsl_destroy_head(name)); 3235 } 3236 return (0); 3237 } 3238 3239 static boolean_t 3240 ztest_snapshot_create(char *osname, uint64_t id) 3241 { 3242 char snapname[MAXNAMELEN]; 3243 int error; 3244 3245 (void) snprintf(snapname, sizeof (snapname), "%llu", (u_longlong_t)id); 3246 3247 error = dmu_objset_snapshot_one(osname, snapname); 3248 if (error == ENOSPC) { 3249 ztest_record_enospc(FTAG); 3250 return (B_FALSE); 3251 } 3252 if (error != 0 && error != EEXIST) { 3253 fatal(0, "ztest_snapshot_create(%s@%s) = %d", osname, 3254 snapname, error); 3255 } 3256 return (B_TRUE); 3257 } 3258 3259 static boolean_t 3260 ztest_snapshot_destroy(char *osname, uint64_t id) 3261 { 3262 char snapname[MAXNAMELEN]; 3263 int error; 3264 3265 (void) snprintf(snapname, MAXNAMELEN, "%s@%llu", osname, 3266 (u_longlong_t)id); 3267 3268 error = dsl_destroy_snapshot(snapname, B_FALSE); 3269 if (error != 0 && error != ENOENT) 3270 fatal(0, "ztest_snapshot_destroy(%s) = %d", snapname, error); 3271 return (B_TRUE); 3272 } 3273 3274 /* ARGSUSED */ 3275 void 3276 ztest_dmu_objset_create_destroy(ztest_ds_t *zd, uint64_t id) 3277 { 3278 ztest_ds_t zdtmp; 3279 int iters; 3280 int error; 3281 objset_t *os, *os2; 3282 char name[MAXNAMELEN]; 3283 zilog_t *zilog; 3284 3285 (void) rw_rdlock(&ztest_name_lock); 3286 3287 (void) snprintf(name, MAXNAMELEN, "%s/temp_%llu", 3288 ztest_opts.zo_pool, (u_longlong_t)id); 3289 3290 /* 3291 * If this dataset exists from a previous run, process its replay log 3292 * half of the time. If we don't replay it, then dmu_objset_destroy() 3293 * (invoked from ztest_objset_destroy_cb()) should just throw it away. 3294 */ 3295 if (ztest_random(2) == 0 && 3296 dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, FTAG, &os) == 0) { 3297 ztest_zd_init(&zdtmp, NULL, os); 3298 zil_replay(os, &zdtmp, ztest_replay_vector); 3299 ztest_zd_fini(&zdtmp); 3300 dmu_objset_disown(os, FTAG); 3301 } 3302 3303 /* 3304 * There may be an old instance of the dataset we're about to 3305 * create lying around from a previous run. If so, destroy it 3306 * and all of its snapshots. 3307 */ 3308 (void) dmu_objset_find(name, ztest_objset_destroy_cb, NULL, 3309 DS_FIND_CHILDREN | DS_FIND_SNAPSHOTS); 3310 3311 /* 3312 * Verify that the destroyed dataset is no longer in the namespace. 3313 */ 3314 VERIFY3U(ENOENT, ==, dmu_objset_own(name, DMU_OST_OTHER, B_TRUE, 3315 FTAG, &os)); 3316 3317 /* 3318 * Verify that we can create a new dataset. 3319 */ 3320 error = ztest_dataset_create(name); 3321 if (error) { 3322 if (error == ENOSPC) { 3323 ztest_record_enospc(FTAG); 3324 (void) rw_unlock(&ztest_name_lock); 3325 return; 3326 } 3327 fatal(0, "dmu_objset_create(%s) = %d", name, error); 3328 } 3329 3330 VERIFY0(dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, FTAG, &os)); 3331 3332 ztest_zd_init(&zdtmp, NULL, os); 3333 3334 /* 3335 * Open the intent log for it. 3336 */ 3337 zilog = zil_open(os, ztest_get_data); 3338 3339 /* 3340 * Put some objects in there, do a little I/O to them, 3341 * and randomly take a couple of snapshots along the way. 3342 */ 3343 iters = ztest_random(5); 3344 for (int i = 0; i < iters; i++) { 3345 ztest_dmu_object_alloc_free(&zdtmp, id); 3346 if (ztest_random(iters) == 0) 3347 (void) ztest_snapshot_create(name, i); 3348 } 3349 3350 /* 3351 * Verify that we cannot create an existing dataset. 3352 */ 3353 VERIFY3U(EEXIST, ==, 3354 dmu_objset_create(name, DMU_OST_OTHER, 0, NULL, NULL)); 3355 3356 /* 3357 * Verify that we can hold an objset that is also owned. 3358 */ 3359 VERIFY3U(0, ==, dmu_objset_hold(name, FTAG, &os2)); 3360 dmu_objset_rele(os2, FTAG); 3361 3362 /* 3363 * Verify that we cannot own an objset that is already owned. 3364 */ 3365 VERIFY3U(EBUSY, ==, 3366 dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, FTAG, &os2)); 3367 3368 zil_close(zilog); 3369 dmu_objset_disown(os, FTAG); 3370 ztest_zd_fini(&zdtmp); 3371 3372 (void) rw_unlock(&ztest_name_lock); 3373 } 3374 3375 /* 3376 * Verify that dmu_snapshot_{create,destroy,open,close} work as expected. 3377 */ 3378 void 3379 ztest_dmu_snapshot_create_destroy(ztest_ds_t *zd, uint64_t id) 3380 { 3381 (void) rw_rdlock(&ztest_name_lock); 3382 (void) ztest_snapshot_destroy(zd->zd_name, id); 3383 (void) ztest_snapshot_create(zd->zd_name, id); 3384 (void) rw_unlock(&ztest_name_lock); 3385 } 3386 3387 /* 3388 * Cleanup non-standard snapshots and clones. 3389 */ 3390 void 3391 ztest_dsl_dataset_cleanup(char *osname, uint64_t id) 3392 { 3393 char snap1name[MAXNAMELEN]; 3394 char clone1name[MAXNAMELEN]; 3395 char snap2name[MAXNAMELEN]; 3396 char clone2name[MAXNAMELEN]; 3397 char snap3name[MAXNAMELEN]; 3398 int error; 3399 3400 (void) snprintf(snap1name, MAXNAMELEN, "%s@s1_%llu", osname, id); 3401 (void) snprintf(clone1name, MAXNAMELEN, "%s/c1_%llu", osname, id); 3402 (void) snprintf(snap2name, MAXNAMELEN, "%s@s2_%llu", clone1name, id); 3403 (void) snprintf(clone2name, MAXNAMELEN, "%s/c2_%llu", osname, id); 3404 (void) snprintf(snap3name, MAXNAMELEN, "%s@s3_%llu", clone1name, id); 3405 3406 error = dsl_destroy_head(clone2name); 3407 if (error && error != ENOENT) 3408 fatal(0, "dsl_destroy_head(%s) = %d", clone2name, error); 3409 error = dsl_destroy_snapshot(snap3name, B_FALSE); 3410 if (error && error != ENOENT) 3411 fatal(0, "dsl_destroy_snapshot(%s) = %d", snap3name, error); 3412 error = dsl_destroy_snapshot(snap2name, B_FALSE); 3413 if (error && error != ENOENT) 3414 fatal(0, "dsl_destroy_snapshot(%s) = %d", snap2name, error); 3415 error = dsl_destroy_head(clone1name); 3416 if (error && error != ENOENT) 3417 fatal(0, "dsl_destroy_head(%s) = %d", clone1name, error); 3418 error = dsl_destroy_snapshot(snap1name, B_FALSE); 3419 if (error && error != ENOENT) 3420 fatal(0, "dsl_destroy_snapshot(%s) = %d", snap1name, error); 3421 } 3422 3423 /* 3424 * Verify dsl_dataset_promote handles EBUSY 3425 */ 3426 void 3427 ztest_dsl_dataset_promote_busy(ztest_ds_t *zd, uint64_t id) 3428 { 3429 objset_t *os; 3430 char snap1name[MAXNAMELEN]; 3431 char clone1name[MAXNAMELEN]; 3432 char snap2name[MAXNAMELEN]; 3433 char clone2name[MAXNAMELEN]; 3434 char snap3name[MAXNAMELEN]; 3435 char *osname = zd->zd_name; 3436 int error; 3437 3438 (void) rw_rdlock(&ztest_name_lock); 3439 3440 ztest_dsl_dataset_cleanup(osname, id); 3441 3442 (void) snprintf(snap1name, MAXNAMELEN, "%s@s1_%llu", osname, id); 3443 (void) snprintf(clone1name, MAXNAMELEN, "%s/c1_%llu", osname, id); 3444 (void) snprintf(snap2name, MAXNAMELEN, "%s@s2_%llu", clone1name, id); 3445 (void) snprintf(clone2name, MAXNAMELEN, "%s/c2_%llu", osname, id); 3446 (void) snprintf(snap3name, MAXNAMELEN, "%s@s3_%llu", clone1name, id); 3447 3448 error = dmu_objset_snapshot_one(osname, strchr(snap1name, '@') + 1); 3449 if (error && error != EEXIST) { 3450 if (error == ENOSPC) { 3451 ztest_record_enospc(FTAG); 3452 goto out; 3453 } 3454 fatal(0, "dmu_take_snapshot(%s) = %d", snap1name, error); 3455 } 3456 3457 error = dmu_objset_clone(clone1name, snap1name); 3458 if (error) { 3459 if (error == ENOSPC) { 3460 ztest_record_enospc(FTAG); 3461 goto out; 3462 } 3463 fatal(0, "dmu_objset_create(%s) = %d", clone1name, error); 3464 } 3465 3466 error = dmu_objset_snapshot_one(clone1name, strchr(snap2name, '@') + 1); 3467 if (error && error != EEXIST) { 3468 if (error == ENOSPC) { 3469 ztest_record_enospc(FTAG); 3470 goto out; 3471 } 3472 fatal(0, "dmu_open_snapshot(%s) = %d", snap2name, error); 3473 } 3474 3475 error = dmu_objset_snapshot_one(clone1name, strchr(snap3name, '@') + 1); 3476 if (error && error != EEXIST) { 3477 if (error == ENOSPC) { 3478 ztest_record_enospc(FTAG); 3479 goto out; 3480 } 3481 fatal(0, "dmu_open_snapshot(%s) = %d", snap3name, error); 3482 } 3483 3484 error = dmu_objset_clone(clone2name, snap3name); 3485 if (error) { 3486 if (error == ENOSPC) { 3487 ztest_record_enospc(FTAG); 3488 goto out; 3489 } 3490 fatal(0, "dmu_objset_create(%s) = %d", clone2name, error); 3491 } 3492 3493 error = dmu_objset_own(snap2name, DMU_OST_ANY, B_TRUE, FTAG, &os); 3494 if (error) 3495 fatal(0, "dmu_objset_own(%s) = %d", snap2name, error); 3496 error = dsl_dataset_promote(clone2name, NULL); 3497 if (error == ENOSPC) { 3498 dmu_objset_disown(os, FTAG); 3499 ztest_record_enospc(FTAG); 3500 goto out; 3501 } 3502 if (error != EBUSY) 3503 fatal(0, "dsl_dataset_promote(%s), %d, not EBUSY", clone2name, 3504 error); 3505 dmu_objset_disown(os, FTAG); 3506 3507 out: 3508 ztest_dsl_dataset_cleanup(osname, id); 3509 3510 (void) rw_unlock(&ztest_name_lock); 3511 } 3512 3513 /* 3514 * Verify that dmu_object_{alloc,free} work as expected. 3515 */ 3516 void 3517 ztest_dmu_object_alloc_free(ztest_ds_t *zd, uint64_t id) 3518 { 3519 ztest_od_t od[4]; 3520 int batchsize = sizeof (od) / sizeof (od[0]); 3521 3522 for (int b = 0; b < batchsize; b++) 3523 ztest_od_init(&od[b], id, FTAG, b, DMU_OT_UINT64_OTHER, 0, 0); 3524 3525 /* 3526 * Destroy the previous batch of objects, create a new batch, 3527 * and do some I/O on the new objects. 3528 */ 3529 if (ztest_object_init(zd, od, sizeof (od), B_TRUE) != 0) 3530 return; 3531 3532 while (ztest_random(4 * batchsize) != 0) 3533 ztest_io(zd, od[ztest_random(batchsize)].od_object, 3534 ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT); 3535 } 3536 3537 /* 3538 * Verify that dmu_{read,write} work as expected. 3539 */ 3540 void 3541 ztest_dmu_read_write(ztest_ds_t *zd, uint64_t id) 3542 { 3543 objset_t *os = zd->zd_os; 3544 ztest_od_t od[2]; 3545 dmu_tx_t *tx; 3546 int i, freeit, error; 3547 uint64_t n, s, txg; 3548 bufwad_t *packbuf, *bigbuf, *pack, *bigH, *bigT; 3549 uint64_t packobj, packoff, packsize, bigobj, bigoff, bigsize; 3550 uint64_t chunksize = (1000 + ztest_random(1000)) * sizeof (uint64_t); 3551 uint64_t regions = 997; 3552 uint64_t stride = 123456789ULL; 3553 uint64_t width = 40; 3554 int free_percent = 5; 3555 3556 /* 3557 * This test uses two objects, packobj and bigobj, that are always 3558 * updated together (i.e. in the same tx) so that their contents are 3559 * in sync and can be compared. Their contents relate to each other 3560 * in a simple way: packobj is a dense array of 'bufwad' structures, 3561 * while bigobj is a sparse array of the same bufwads. Specifically, 3562 * for any index n, there are three bufwads that should be identical: 3563 * 3564 * packobj, at offset n * sizeof (bufwad_t) 3565 * bigobj, at the head of the nth chunk 3566 * bigobj, at the tail of the nth chunk 3567 * 3568 * The chunk size is arbitrary. It doesn't have to be a power of two, 3569 * and it doesn't have any relation to the object blocksize. 3570 * The only requirement is that it can hold at least two bufwads. 3571 * 3572 * Normally, we write the bufwad to each of these locations. 3573 * However, free_percent of the time we instead write zeroes to 3574 * packobj and perform a dmu_free_range() on bigobj. By comparing 3575 * bigobj to packobj, we can verify that the DMU is correctly 3576 * tracking which parts of an object are allocated and free, 3577 * and that the contents of the allocated blocks are correct. 3578 */ 3579 3580 /* 3581 * Read the directory info. If it's the first time, set things up. 3582 */ 3583 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, 0, chunksize); 3584 ztest_od_init(&od[1], id, FTAG, 1, DMU_OT_UINT64_OTHER, 0, chunksize); 3585 3586 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0) 3587 return; 3588 3589 bigobj = od[0].od_object; 3590 packobj = od[1].od_object; 3591 chunksize = od[0].od_gen; 3592 ASSERT(chunksize == od[1].od_gen); 3593 3594 /* 3595 * Prefetch a random chunk of the big object. 3596 * Our aim here is to get some async reads in flight 3597 * for blocks that we may free below; the DMU should 3598 * handle this race correctly. 3599 */ 3600 n = ztest_random(regions) * stride + ztest_random(width); 3601 s = 1 + ztest_random(2 * width - 1); 3602 dmu_prefetch(os, bigobj, n * chunksize, s * chunksize); 3603 3604 /* 3605 * Pick a random index and compute the offsets into packobj and bigobj. 3606 */ 3607 n = ztest_random(regions) * stride + ztest_random(width); 3608 s = 1 + ztest_random(width - 1); 3609 3610 packoff = n * sizeof (bufwad_t); 3611 packsize = s * sizeof (bufwad_t); 3612 3613 bigoff = n * chunksize; 3614 bigsize = s * chunksize; 3615 3616 packbuf = umem_alloc(packsize, UMEM_NOFAIL); 3617 bigbuf = umem_alloc(bigsize, UMEM_NOFAIL); 3618 3619 /* 3620 * free_percent of the time, free a range of bigobj rather than 3621 * overwriting it. 3622 */ 3623 freeit = (ztest_random(100) < free_percent); 3624 3625 /* 3626 * Read the current contents of our objects. 3627 */ 3628 error = dmu_read(os, packobj, packoff, packsize, packbuf, 3629 DMU_READ_PREFETCH); 3630 ASSERT0(error); 3631 error = dmu_read(os, bigobj, bigoff, bigsize, bigbuf, 3632 DMU_READ_PREFETCH); 3633 ASSERT0(error); 3634 3635 /* 3636 * Get a tx for the mods to both packobj and bigobj. 3637 */ 3638 tx = dmu_tx_create(os); 3639 3640 dmu_tx_hold_write(tx, packobj, packoff, packsize); 3641 3642 if (freeit) 3643 dmu_tx_hold_free(tx, bigobj, bigoff, bigsize); 3644 else 3645 dmu_tx_hold_write(tx, bigobj, bigoff, bigsize); 3646 3647 /* This accounts for setting the checksum/compression. */ 3648 dmu_tx_hold_bonus(tx, bigobj); 3649 3650 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); 3651 if (txg == 0) { 3652 umem_free(packbuf, packsize); 3653 umem_free(bigbuf, bigsize); 3654 return; 3655 } 3656 3657 enum zio_checksum cksum; 3658 do { 3659 cksum = (enum zio_checksum) 3660 ztest_random_dsl_prop(ZFS_PROP_CHECKSUM); 3661 } while (cksum >= ZIO_CHECKSUM_LEGACY_FUNCTIONS); 3662 dmu_object_set_checksum(os, bigobj, cksum, tx); 3663 3664 enum zio_compress comp; 3665 do { 3666 comp = (enum zio_compress) 3667 ztest_random_dsl_prop(ZFS_PROP_COMPRESSION); 3668 } while (comp >= ZIO_COMPRESS_LEGACY_FUNCTIONS); 3669 dmu_object_set_compress(os, bigobj, comp, tx); 3670 3671 /* 3672 * For each index from n to n + s, verify that the existing bufwad 3673 * in packobj matches the bufwads at the head and tail of the 3674 * corresponding chunk in bigobj. Then update all three bufwads 3675 * with the new values we want to write out. 3676 */ 3677 for (i = 0; i < s; i++) { 3678 /* LINTED */ 3679 pack = (bufwad_t *)((char *)packbuf + i * sizeof (bufwad_t)); 3680 /* LINTED */ 3681 bigH = (bufwad_t *)((char *)bigbuf + i * chunksize); 3682 /* LINTED */ 3683 bigT = (bufwad_t *)((char *)bigH + chunksize) - 1; 3684 3685 ASSERT((uintptr_t)bigH - (uintptr_t)bigbuf < bigsize); 3686 ASSERT((uintptr_t)bigT - (uintptr_t)bigbuf < bigsize); 3687 3688 if (pack->bw_txg > txg) 3689 fatal(0, "future leak: got %llx, open txg is %llx", 3690 pack->bw_txg, txg); 3691 3692 if (pack->bw_data != 0 && pack->bw_index != n + i) 3693 fatal(0, "wrong index: got %llx, wanted %llx+%llx", 3694 pack->bw_index, n, i); 3695 3696 if (bcmp(pack, bigH, sizeof (bufwad_t)) != 0) 3697 fatal(0, "pack/bigH mismatch in %p/%p", pack, bigH); 3698 3699 if (bcmp(pack, bigT, sizeof (bufwad_t)) != 0) 3700 fatal(0, "pack/bigT mismatch in %p/%p", pack, bigT); 3701 3702 if (freeit) { 3703 bzero(pack, sizeof (bufwad_t)); 3704 } else { 3705 pack->bw_index = n + i; 3706 pack->bw_txg = txg; 3707 pack->bw_data = 1 + ztest_random(-2ULL); 3708 } 3709 *bigH = *pack; 3710 *bigT = *pack; 3711 } 3712 3713 /* 3714 * We've verified all the old bufwads, and made new ones. 3715 * Now write them out. 3716 */ 3717 dmu_write(os, packobj, packoff, packsize, packbuf, tx); 3718 3719 if (freeit) { 3720 if (ztest_opts.zo_verbose >= 7) { 3721 (void) printf("freeing offset %llx size %llx" 3722 " txg %llx\n", 3723 (u_longlong_t)bigoff, 3724 (u_longlong_t)bigsize, 3725 (u_longlong_t)txg); 3726 } 3727 VERIFY(0 == dmu_free_range(os, bigobj, bigoff, bigsize, tx)); 3728 } else { 3729 if (ztest_opts.zo_verbose >= 7) { 3730 (void) printf("writing offset %llx size %llx" 3731 " txg %llx\n", 3732 (u_longlong_t)bigoff, 3733 (u_longlong_t)bigsize, 3734 (u_longlong_t)txg); 3735 } 3736 dmu_write(os, bigobj, bigoff, bigsize, bigbuf, tx); 3737 } 3738 3739 dmu_tx_commit(tx); 3740 3741 /* 3742 * Sanity check the stuff we just wrote. 3743 */ 3744 { 3745 void *packcheck = umem_alloc(packsize, UMEM_NOFAIL); 3746 void *bigcheck = umem_alloc(bigsize, UMEM_NOFAIL); 3747 3748 VERIFY(0 == dmu_read(os, packobj, packoff, 3749 packsize, packcheck, DMU_READ_PREFETCH)); 3750 VERIFY(0 == dmu_read(os, bigobj, bigoff, 3751 bigsize, bigcheck, DMU_READ_PREFETCH)); 3752 3753 ASSERT(bcmp(packbuf, packcheck, packsize) == 0); 3754 ASSERT(bcmp(bigbuf, bigcheck, bigsize) == 0); 3755 3756 umem_free(packcheck, packsize); 3757 umem_free(bigcheck, bigsize); 3758 } 3759 3760 umem_free(packbuf, packsize); 3761 umem_free(bigbuf, bigsize); 3762 } 3763 3764 void 3765 compare_and_update_pbbufs(uint64_t s, bufwad_t *packbuf, bufwad_t *bigbuf, 3766 uint64_t bigsize, uint64_t n, uint64_t chunksize, uint64_t txg) 3767 { 3768 uint64_t i; 3769 bufwad_t *pack; 3770 bufwad_t *bigH; 3771 bufwad_t *bigT; 3772 3773 /* 3774 * For each index from n to n + s, verify that the existing bufwad 3775 * in packobj matches the bufwads at the head and tail of the 3776 * corresponding chunk in bigobj. Then update all three bufwads 3777 * with the new values we want to write out. 3778 */ 3779 for (i = 0; i < s; i++) { 3780 /* LINTED */ 3781 pack = (bufwad_t *)((char *)packbuf + i * sizeof (bufwad_t)); 3782 /* LINTED */ 3783 bigH = (bufwad_t *)((char *)bigbuf + i * chunksize); 3784 /* LINTED */ 3785 bigT = (bufwad_t *)((char *)bigH + chunksize) - 1; 3786 3787 ASSERT((uintptr_t)bigH - (uintptr_t)bigbuf < bigsize); 3788 ASSERT((uintptr_t)bigT - (uintptr_t)bigbuf < bigsize); 3789 3790 if (pack->bw_txg > txg) 3791 fatal(0, "future leak: got %llx, open txg is %llx", 3792 pack->bw_txg, txg); 3793 3794 if (pack->bw_data != 0 && pack->bw_index != n + i) 3795 fatal(0, "wrong index: got %llx, wanted %llx+%llx", 3796 pack->bw_index, n, i); 3797 3798 if (bcmp(pack, bigH, sizeof (bufwad_t)) != 0) 3799 fatal(0, "pack/bigH mismatch in %p/%p", pack, bigH); 3800 3801 if (bcmp(pack, bigT, sizeof (bufwad_t)) != 0) 3802 fatal(0, "pack/bigT mismatch in %p/%p", pack, bigT); 3803 3804 pack->bw_index = n + i; 3805 pack->bw_txg = txg; 3806 pack->bw_data = 1 + ztest_random(-2ULL); 3807 3808 *bigH = *pack; 3809 *bigT = *pack; 3810 } 3811 } 3812 3813 void 3814 ztest_dmu_read_write_zcopy(ztest_ds_t *zd, uint64_t id) 3815 { 3816 objset_t *os = zd->zd_os; 3817 ztest_od_t od[2]; 3818 dmu_tx_t *tx; 3819 uint64_t i; 3820 int error; 3821 uint64_t n, s, txg; 3822 bufwad_t *packbuf, *bigbuf; 3823 uint64_t packobj, packoff, packsize, bigobj, bigoff, bigsize; 3824 uint64_t blocksize = ztest_random_blocksize(); 3825 uint64_t chunksize = blocksize; 3826 uint64_t regions = 997; 3827 uint64_t stride = 123456789ULL; 3828 uint64_t width = 9; 3829 dmu_buf_t *bonus_db; 3830 arc_buf_t **bigbuf_arcbufs; 3831 dmu_object_info_t doi; 3832 3833 /* 3834 * This test uses two objects, packobj and bigobj, that are always 3835 * updated together (i.e. in the same tx) so that their contents are 3836 * in sync and can be compared. Their contents relate to each other 3837 * in a simple way: packobj is a dense array of 'bufwad' structures, 3838 * while bigobj is a sparse array of the same bufwads. Specifically, 3839 * for any index n, there are three bufwads that should be identical: 3840 * 3841 * packobj, at offset n * sizeof (bufwad_t) 3842 * bigobj, at the head of the nth chunk 3843 * bigobj, at the tail of the nth chunk 3844 * 3845 * The chunk size is set equal to bigobj block size so that 3846 * dmu_assign_arcbuf() can be tested for object updates. 3847 */ 3848 3849 /* 3850 * Read the directory info. If it's the first time, set things up. 3851 */ 3852 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0); 3853 ztest_od_init(&od[1], id, FTAG, 1, DMU_OT_UINT64_OTHER, 0, chunksize); 3854 3855 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0) 3856 return; 3857 3858 bigobj = od[0].od_object; 3859 packobj = od[1].od_object; 3860 blocksize = od[0].od_blocksize; 3861 chunksize = blocksize; 3862 ASSERT(chunksize == od[1].od_gen); 3863 3864 VERIFY(dmu_object_info(os, bigobj, &doi) == 0); 3865 VERIFY(ISP2(doi.doi_data_block_size)); 3866 VERIFY(chunksize == doi.doi_data_block_size); 3867 VERIFY(chunksize >= 2 * sizeof (bufwad_t)); 3868 3869 /* 3870 * Pick a random index and compute the offsets into packobj and bigobj. 3871 */ 3872 n = ztest_random(regions) * stride + ztest_random(width); 3873 s = 1 + ztest_random(width - 1); 3874 3875 packoff = n * sizeof (bufwad_t); 3876 packsize = s * sizeof (bufwad_t); 3877 3878 bigoff = n * chunksize; 3879 bigsize = s * chunksize; 3880 3881 packbuf = umem_zalloc(packsize, UMEM_NOFAIL); 3882 bigbuf = umem_zalloc(bigsize, UMEM_NOFAIL); 3883 3884 VERIFY3U(0, ==, dmu_bonus_hold(os, bigobj, FTAG, &bonus_db)); 3885 3886 bigbuf_arcbufs = umem_zalloc(2 * s * sizeof (arc_buf_t *), UMEM_NOFAIL); 3887 3888 /* 3889 * Iteration 0 test zcopy for DB_UNCACHED dbufs. 3890 * Iteration 1 test zcopy to already referenced dbufs. 3891 * Iteration 2 test zcopy to dirty dbuf in the same txg. 3892 * Iteration 3 test zcopy to dbuf dirty in previous txg. 3893 * Iteration 4 test zcopy when dbuf is no longer dirty. 3894 * Iteration 5 test zcopy when it can't be done. 3895 * Iteration 6 one more zcopy write. 3896 */ 3897 for (i = 0; i < 7; i++) { 3898 uint64_t j; 3899 uint64_t off; 3900 3901 /* 3902 * In iteration 5 (i == 5) use arcbufs 3903 * that don't match bigobj blksz to test 3904 * dmu_assign_arcbuf() when it can't directly 3905 * assign an arcbuf to a dbuf. 3906 */ 3907 for (j = 0; j < s; j++) { 3908 if (i != 5) { 3909 bigbuf_arcbufs[j] = 3910 dmu_request_arcbuf(bonus_db, chunksize); 3911 } else { 3912 bigbuf_arcbufs[2 * j] = 3913 dmu_request_arcbuf(bonus_db, chunksize / 2); 3914 bigbuf_arcbufs[2 * j + 1] = 3915 dmu_request_arcbuf(bonus_db, chunksize / 2); 3916 } 3917 } 3918 3919 /* 3920 * Get a tx for the mods to both packobj and bigobj. 3921 */ 3922 tx = dmu_tx_create(os); 3923 3924 dmu_tx_hold_write(tx, packobj, packoff, packsize); 3925 dmu_tx_hold_write(tx, bigobj, bigoff, bigsize); 3926 3927 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); 3928 if (txg == 0) { 3929 umem_free(packbuf, packsize); 3930 umem_free(bigbuf, bigsize); 3931 for (j = 0; j < s; j++) { 3932 if (i != 5) { 3933 dmu_return_arcbuf(bigbuf_arcbufs[j]); 3934 } else { 3935 dmu_return_arcbuf( 3936 bigbuf_arcbufs[2 * j]); 3937 dmu_return_arcbuf( 3938 bigbuf_arcbufs[2 * j + 1]); 3939 } 3940 } 3941 umem_free(bigbuf_arcbufs, 2 * s * sizeof (arc_buf_t *)); 3942 dmu_buf_rele(bonus_db, FTAG); 3943 return; 3944 } 3945 3946 /* 3947 * 50% of the time don't read objects in the 1st iteration to 3948 * test dmu_assign_arcbuf() for the case when there're no 3949 * existing dbufs for the specified offsets. 3950 */ 3951 if (i != 0 || ztest_random(2) != 0) { 3952 error = dmu_read(os, packobj, packoff, 3953 packsize, packbuf, DMU_READ_PREFETCH); 3954 ASSERT0(error); 3955 error = dmu_read(os, bigobj, bigoff, bigsize, 3956 bigbuf, DMU_READ_PREFETCH); 3957 ASSERT0(error); 3958 } 3959 compare_and_update_pbbufs(s, packbuf, bigbuf, bigsize, 3960 n, chunksize, txg); 3961 3962 /* 3963 * We've verified all the old bufwads, and made new ones. 3964 * Now write them out. 3965 */ 3966 dmu_write(os, packobj, packoff, packsize, packbuf, tx); 3967 if (ztest_opts.zo_verbose >= 7) { 3968 (void) printf("writing offset %llx size %llx" 3969 " txg %llx\n", 3970 (u_longlong_t)bigoff, 3971 (u_longlong_t)bigsize, 3972 (u_longlong_t)txg); 3973 } 3974 for (off = bigoff, j = 0; j < s; j++, off += chunksize) { 3975 dmu_buf_t *dbt; 3976 if (i != 5) { 3977 bcopy((caddr_t)bigbuf + (off - bigoff), 3978 bigbuf_arcbufs[j]->b_data, chunksize); 3979 } else { 3980 bcopy((caddr_t)bigbuf + (off - bigoff), 3981 bigbuf_arcbufs[2 * j]->b_data, 3982 chunksize / 2); 3983 bcopy((caddr_t)bigbuf + (off - bigoff) + 3984 chunksize / 2, 3985 bigbuf_arcbufs[2 * j + 1]->b_data, 3986 chunksize / 2); 3987 } 3988 3989 if (i == 1) { 3990 VERIFY(dmu_buf_hold(os, bigobj, off, 3991 FTAG, &dbt, DMU_READ_NO_PREFETCH) == 0); 3992 } 3993 if (i != 5) { 3994 dmu_assign_arcbuf(bonus_db, off, 3995 bigbuf_arcbufs[j], tx); 3996 } else { 3997 dmu_assign_arcbuf(bonus_db, off, 3998 bigbuf_arcbufs[2 * j], tx); 3999 dmu_assign_arcbuf(bonus_db, 4000 off + chunksize / 2, 4001 bigbuf_arcbufs[2 * j + 1], tx); 4002 } 4003 if (i == 1) { 4004 dmu_buf_rele(dbt, FTAG); 4005 } 4006 } 4007 dmu_tx_commit(tx); 4008 4009 /* 4010 * Sanity check the stuff we just wrote. 4011 */ 4012 { 4013 void *packcheck = umem_alloc(packsize, UMEM_NOFAIL); 4014 void *bigcheck = umem_alloc(bigsize, UMEM_NOFAIL); 4015 4016 VERIFY(0 == dmu_read(os, packobj, packoff, 4017 packsize, packcheck, DMU_READ_PREFETCH)); 4018 VERIFY(0 == dmu_read(os, bigobj, bigoff, 4019 bigsize, bigcheck, DMU_READ_PREFETCH)); 4020 4021 ASSERT(bcmp(packbuf, packcheck, packsize) == 0); 4022 ASSERT(bcmp(bigbuf, bigcheck, bigsize) == 0); 4023 4024 umem_free(packcheck, packsize); 4025 umem_free(bigcheck, bigsize); 4026 } 4027 if (i == 2) { 4028 txg_wait_open(dmu_objset_pool(os), 0); 4029 } else if (i == 3) { 4030 txg_wait_synced(dmu_objset_pool(os), 0); 4031 } 4032 } 4033 4034 dmu_buf_rele(bonus_db, FTAG); 4035 umem_free(packbuf, packsize); 4036 umem_free(bigbuf, bigsize); 4037 umem_free(bigbuf_arcbufs, 2 * s * sizeof (arc_buf_t *)); 4038 } 4039 4040 /* ARGSUSED */ 4041 void 4042 ztest_dmu_write_parallel(ztest_ds_t *zd, uint64_t id) 4043 { 4044 ztest_od_t od[1]; 4045 uint64_t offset = (1ULL << (ztest_random(20) + 43)) + 4046 (ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT); 4047 4048 /* 4049 * Have multiple threads write to large offsets in an object 4050 * to verify that parallel writes to an object -- even to the 4051 * same blocks within the object -- doesn't cause any trouble. 4052 */ 4053 ztest_od_init(&od[0], ID_PARALLEL, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0); 4054 4055 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0) 4056 return; 4057 4058 while (ztest_random(10) != 0) 4059 ztest_io(zd, od[0].od_object, offset); 4060 } 4061 4062 void 4063 ztest_dmu_prealloc(ztest_ds_t *zd, uint64_t id) 4064 { 4065 ztest_od_t od[1]; 4066 uint64_t offset = (1ULL << (ztest_random(4) + SPA_MAXBLOCKSHIFT)) + 4067 (ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT); 4068 uint64_t count = ztest_random(20) + 1; 4069 uint64_t blocksize = ztest_random_blocksize(); 4070 void *data; 4071 4072 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0); 4073 4074 if (ztest_object_init(zd, od, sizeof (od), !ztest_random(2)) != 0) 4075 return; 4076 4077 if (ztest_truncate(zd, od[0].od_object, offset, count * blocksize) != 0) 4078 return; 4079 4080 ztest_prealloc(zd, od[0].od_object, offset, count * blocksize); 4081 4082 data = umem_zalloc(blocksize, UMEM_NOFAIL); 4083 4084 while (ztest_random(count) != 0) { 4085 uint64_t randoff = offset + (ztest_random(count) * blocksize); 4086 if (ztest_write(zd, od[0].od_object, randoff, blocksize, 4087 data) != 0) 4088 break; 4089 while (ztest_random(4) != 0) 4090 ztest_io(zd, od[0].od_object, randoff); 4091 } 4092 4093 umem_free(data, blocksize); 4094 } 4095 4096 /* 4097 * Verify that zap_{create,destroy,add,remove,update} work as expected. 4098 */ 4099 #define ZTEST_ZAP_MIN_INTS 1 4100 #define ZTEST_ZAP_MAX_INTS 4 4101 #define ZTEST_ZAP_MAX_PROPS 1000 4102 4103 void 4104 ztest_zap(ztest_ds_t *zd, uint64_t id) 4105 { 4106 objset_t *os = zd->zd_os; 4107 ztest_od_t od[1]; 4108 uint64_t object; 4109 uint64_t txg, last_txg; 4110 uint64_t value[ZTEST_ZAP_MAX_INTS]; 4111 uint64_t zl_ints, zl_intsize, prop; 4112 int i, ints; 4113 dmu_tx_t *tx; 4114 char propname[100], txgname[100]; 4115 int error; 4116 char *hc[2] = { "s.acl.h", ".s.open.h.hyLZlg" }; 4117 4118 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_ZAP_OTHER, 0, 0); 4119 4120 if (ztest_object_init(zd, od, sizeof (od), !ztest_random(2)) != 0) 4121 return; 4122 4123 object = od[0].od_object; 4124 4125 /* 4126 * Generate a known hash collision, and verify that 4127 * we can lookup and remove both entries. 4128 */ 4129 tx = dmu_tx_create(os); 4130 dmu_tx_hold_zap(tx, object, B_TRUE, NULL); 4131 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); 4132 if (txg == 0) 4133 return; 4134 for (i = 0; i < 2; i++) { 4135 value[i] = i; 4136 VERIFY3U(0, ==, zap_add(os, object, hc[i], sizeof (uint64_t), 4137 1, &value[i], tx)); 4138 } 4139 for (i = 0; i < 2; i++) { 4140 VERIFY3U(EEXIST, ==, zap_add(os, object, hc[i], 4141 sizeof (uint64_t), 1, &value[i], tx)); 4142 VERIFY3U(0, ==, 4143 zap_length(os, object, hc[i], &zl_intsize, &zl_ints)); 4144 ASSERT3U(zl_intsize, ==, sizeof (uint64_t)); 4145 ASSERT3U(zl_ints, ==, 1); 4146 } 4147 for (i = 0; i < 2; i++) { 4148 VERIFY3U(0, ==, zap_remove(os, object, hc[i], tx)); 4149 } 4150 dmu_tx_commit(tx); 4151 4152 /* 4153 * Generate a buch of random entries. 4154 */ 4155 ints = MAX(ZTEST_ZAP_MIN_INTS, object % ZTEST_ZAP_MAX_INTS); 4156 4157 prop = ztest_random(ZTEST_ZAP_MAX_PROPS); 4158 (void) sprintf(propname, "prop_%llu", (u_longlong_t)prop); 4159 (void) sprintf(txgname, "txg_%llu", (u_longlong_t)prop); 4160 bzero(value, sizeof (value)); 4161 last_txg = 0; 4162 4163 /* 4164 * If these zap entries already exist, validate their contents. 4165 */ 4166 error = zap_length(os, object, txgname, &zl_intsize, &zl_ints); 4167 if (error == 0) { 4168 ASSERT3U(zl_intsize, ==, sizeof (uint64_t)); 4169 ASSERT3U(zl_ints, ==, 1); 4170 4171 VERIFY(zap_lookup(os, object, txgname, zl_intsize, 4172 zl_ints, &last_txg) == 0); 4173 4174 VERIFY(zap_length(os, object, propname, &zl_intsize, 4175 &zl_ints) == 0); 4176 4177 ASSERT3U(zl_intsize, ==, sizeof (uint64_t)); 4178 ASSERT3U(zl_ints, ==, ints); 4179 4180 VERIFY(zap_lookup(os, object, propname, zl_intsize, 4181 zl_ints, value) == 0); 4182 4183 for (i = 0; i < ints; i++) { 4184 ASSERT3U(value[i], ==, last_txg + object + i); 4185 } 4186 } else { 4187 ASSERT3U(error, ==, ENOENT); 4188 } 4189 4190 /* 4191 * Atomically update two entries in our zap object. 4192 * The first is named txg_%llu, and contains the txg 4193 * in which the property was last updated. The second 4194 * is named prop_%llu, and the nth element of its value 4195 * should be txg + object + n. 4196 */ 4197 tx = dmu_tx_create(os); 4198 dmu_tx_hold_zap(tx, object, B_TRUE, NULL); 4199 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); 4200 if (txg == 0) 4201 return; 4202 4203 if (last_txg > txg) 4204 fatal(0, "zap future leak: old %llu new %llu", last_txg, txg); 4205 4206 for (i = 0; i < ints; i++) 4207 value[i] = txg + object + i; 4208 4209 VERIFY3U(0, ==, zap_update(os, object, txgname, sizeof (uint64_t), 4210 1, &txg, tx)); 4211 VERIFY3U(0, ==, zap_update(os, object, propname, sizeof (uint64_t), 4212 ints, value, tx)); 4213 4214 dmu_tx_commit(tx); 4215 4216 /* 4217 * Remove a random pair of entries. 4218 */ 4219 prop = ztest_random(ZTEST_ZAP_MAX_PROPS); 4220 (void) sprintf(propname, "prop_%llu", (u_longlong_t)prop); 4221 (void) sprintf(txgname, "txg_%llu", (u_longlong_t)prop); 4222 4223 error = zap_length(os, object, txgname, &zl_intsize, &zl_ints); 4224 4225 if (error == ENOENT) 4226 return; 4227 4228 ASSERT0(error); 4229 4230 tx = dmu_tx_create(os); 4231 dmu_tx_hold_zap(tx, object, B_TRUE, NULL); 4232 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); 4233 if (txg == 0) 4234 return; 4235 VERIFY3U(0, ==, zap_remove(os, object, txgname, tx)); 4236 VERIFY3U(0, ==, zap_remove(os, object, propname, tx)); 4237 dmu_tx_commit(tx); 4238 } 4239 4240 /* 4241 * Testcase to test the upgrading of a microzap to fatzap. 4242 */ 4243 void 4244 ztest_fzap(ztest_ds_t *zd, uint64_t id) 4245 { 4246 objset_t *os = zd->zd_os; 4247 ztest_od_t od[1]; 4248 uint64_t object, txg; 4249 4250 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_ZAP_OTHER, 0, 0); 4251 4252 if (ztest_object_init(zd, od, sizeof (od), !ztest_random(2)) != 0) 4253 return; 4254 4255 object = od[0].od_object; 4256 4257 /* 4258 * Add entries to this ZAP and make sure it spills over 4259 * and gets upgraded to a fatzap. Also, since we are adding 4260 * 2050 entries we should see ptrtbl growth and leaf-block split. 4261 */ 4262 for (int i = 0; i < 2050; i++) { 4263 char name[MAXNAMELEN]; 4264 uint64_t value = i; 4265 dmu_tx_t *tx; 4266 int error; 4267 4268 (void) snprintf(name, sizeof (name), "fzap-%llu-%llu", 4269 id, value); 4270 4271 tx = dmu_tx_create(os); 4272 dmu_tx_hold_zap(tx, object, B_TRUE, name); 4273 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); 4274 if (txg == 0) 4275 return; 4276 error = zap_add(os, object, name, sizeof (uint64_t), 1, 4277 &value, tx); 4278 ASSERT(error == 0 || error == EEXIST); 4279 dmu_tx_commit(tx); 4280 } 4281 } 4282 4283 /* ARGSUSED */ 4284 void 4285 ztest_zap_parallel(ztest_ds_t *zd, uint64_t id) 4286 { 4287 objset_t *os = zd->zd_os; 4288 ztest_od_t od[1]; 4289 uint64_t txg, object, count, wsize, wc, zl_wsize, zl_wc; 4290 dmu_tx_t *tx; 4291 int i, namelen, error; 4292 int micro = ztest_random(2); 4293 char name[20], string_value[20]; 4294 void *data; 4295 4296 ztest_od_init(&od[0], ID_PARALLEL, FTAG, micro, DMU_OT_ZAP_OTHER, 0, 0); 4297 4298 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0) 4299 return; 4300 4301 object = od[0].od_object; 4302 4303 /* 4304 * Generate a random name of the form 'xxx.....' where each 4305 * x is a random printable character and the dots are dots. 4306 * There are 94 such characters, and the name length goes from 4307 * 6 to 20, so there are 94^3 * 15 = 12,458,760 possible names. 4308 */ 4309 namelen = ztest_random(sizeof (name) - 5) + 5 + 1; 4310 4311 for (i = 0; i < 3; i++) 4312 name[i] = '!' + ztest_random('~' - '!' + 1); 4313 for (; i < namelen - 1; i++) 4314 name[i] = '.'; 4315 name[i] = '\0'; 4316 4317 if ((namelen & 1) || micro) { 4318 wsize = sizeof (txg); 4319 wc = 1; 4320 data = &txg; 4321 } else { 4322 wsize = 1; 4323 wc = namelen; 4324 data = string_value; 4325 } 4326 4327 count = -1ULL; 4328 VERIFY0(zap_count(os, object, &count)); 4329 ASSERT(count != -1ULL); 4330 4331 /* 4332 * Select an operation: length, lookup, add, update, remove. 4333 */ 4334 i = ztest_random(5); 4335 4336 if (i >= 2) { 4337 tx = dmu_tx_create(os); 4338 dmu_tx_hold_zap(tx, object, B_TRUE, NULL); 4339 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); 4340 if (txg == 0) 4341 return; 4342 bcopy(name, string_value, namelen); 4343 } else { 4344 tx = NULL; 4345 txg = 0; 4346 bzero(string_value, namelen); 4347 } 4348 4349 switch (i) { 4350 4351 case 0: 4352 error = zap_length(os, object, name, &zl_wsize, &zl_wc); 4353 if (error == 0) { 4354 ASSERT3U(wsize, ==, zl_wsize); 4355 ASSERT3U(wc, ==, zl_wc); 4356 } else { 4357 ASSERT3U(error, ==, ENOENT); 4358 } 4359 break; 4360 4361 case 1: 4362 error = zap_lookup(os, object, name, wsize, wc, data); 4363 if (error == 0) { 4364 if (data == string_value && 4365 bcmp(name, data, namelen) != 0) 4366 fatal(0, "name '%s' != val '%s' len %d", 4367 name, data, namelen); 4368 } else { 4369 ASSERT3U(error, ==, ENOENT); 4370 } 4371 break; 4372 4373 case 2: 4374 error = zap_add(os, object, name, wsize, wc, data, tx); 4375 ASSERT(error == 0 || error == EEXIST); 4376 break; 4377 4378 case 3: 4379 VERIFY(zap_update(os, object, name, wsize, wc, data, tx) == 0); 4380 break; 4381 4382 case 4: 4383 error = zap_remove(os, object, name, tx); 4384 ASSERT(error == 0 || error == ENOENT); 4385 break; 4386 } 4387 4388 if (tx != NULL) 4389 dmu_tx_commit(tx); 4390 } 4391 4392 /* 4393 * Commit callback data. 4394 */ 4395 typedef struct ztest_cb_data { 4396 list_node_t zcd_node; 4397 uint64_t zcd_txg; 4398 int zcd_expected_err; 4399 boolean_t zcd_added; 4400 boolean_t zcd_called; 4401 spa_t *zcd_spa; 4402 } ztest_cb_data_t; 4403 4404 /* This is the actual commit callback function */ 4405 static void 4406 ztest_commit_callback(void *arg, int error) 4407 { 4408 ztest_cb_data_t *data = arg; 4409 uint64_t synced_txg; 4410 4411 VERIFY(data != NULL); 4412 VERIFY3S(data->zcd_expected_err, ==, error); 4413 VERIFY(!data->zcd_called); 4414 4415 synced_txg = spa_last_synced_txg(data->zcd_spa); 4416 if (data->zcd_txg > synced_txg) 4417 fatal(0, "commit callback of txg %" PRIu64 " called prematurely" 4418 ", last synced txg = %" PRIu64 "\n", data->zcd_txg, 4419 synced_txg); 4420 4421 data->zcd_called = B_TRUE; 4422 4423 if (error == ECANCELED) { 4424 ASSERT0(data->zcd_txg); 4425 ASSERT(!data->zcd_added); 4426 4427 /* 4428 * The private callback data should be destroyed here, but 4429 * since we are going to check the zcd_called field after 4430 * dmu_tx_abort(), we will destroy it there. 4431 */ 4432 return; 4433 } 4434 4435 /* Was this callback added to the global callback list? */ 4436 if (!data->zcd_added) 4437 goto out; 4438 4439 ASSERT3U(data->zcd_txg, !=, 0); 4440 4441 /* Remove our callback from the list */ 4442 (void) mutex_lock(&zcl.zcl_callbacks_lock); 4443 list_remove(&zcl.zcl_callbacks, data); 4444 (void) mutex_unlock(&zcl.zcl_callbacks_lock); 4445 4446 out: 4447 umem_free(data, sizeof (ztest_cb_data_t)); 4448 } 4449 4450 /* Allocate and initialize callback data structure */ 4451 static ztest_cb_data_t * 4452 ztest_create_cb_data(objset_t *os, uint64_t txg) 4453 { 4454 ztest_cb_data_t *cb_data; 4455 4456 cb_data = umem_zalloc(sizeof (ztest_cb_data_t), UMEM_NOFAIL); 4457 4458 cb_data->zcd_txg = txg; 4459 cb_data->zcd_spa = dmu_objset_spa(os); 4460 4461 return (cb_data); 4462 } 4463 4464 /* 4465 * If a number of txgs equal to this threshold have been created after a commit 4466 * callback has been registered but not called, then we assume there is an 4467 * implementation bug. 4468 */ 4469 #define ZTEST_COMMIT_CALLBACK_THRESH (TXG_CONCURRENT_STATES + 2) 4470 4471 /* 4472 * Commit callback test. 4473 */ 4474 void 4475 ztest_dmu_commit_callbacks(ztest_ds_t *zd, uint64_t id) 4476 { 4477 objset_t *os = zd->zd_os; 4478 ztest_od_t od[1]; 4479 dmu_tx_t *tx; 4480 ztest_cb_data_t *cb_data[3], *tmp_cb; 4481 uint64_t old_txg, txg; 4482 int i, error; 4483 4484 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0); 4485 4486 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0) 4487 return; 4488 4489 tx = dmu_tx_create(os); 4490 4491 cb_data[0] = ztest_create_cb_data(os, 0); 4492 dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[0]); 4493 4494 dmu_tx_hold_write(tx, od[0].od_object, 0, sizeof (uint64_t)); 4495 4496 /* Every once in a while, abort the transaction on purpose */ 4497 if (ztest_random(100) == 0) 4498 error = -1; 4499 4500 if (!error) 4501 error = dmu_tx_assign(tx, TXG_NOWAIT); 4502 4503 txg = error ? 0 : dmu_tx_get_txg(tx); 4504 4505 cb_data[0]->zcd_txg = txg; 4506 cb_data[1] = ztest_create_cb_data(os, txg); 4507 dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[1]); 4508 4509 if (error) { 4510 /* 4511 * It's not a strict requirement to call the registered 4512 * callbacks from inside dmu_tx_abort(), but that's what 4513 * it's supposed to happen in the current implementation 4514 * so we will check for that. 4515 */ 4516 for (i = 0; i < 2; i++) { 4517 cb_data[i]->zcd_expected_err = ECANCELED; 4518 VERIFY(!cb_data[i]->zcd_called); 4519 } 4520 4521 dmu_tx_abort(tx); 4522 4523 for (i = 0; i < 2; i++) { 4524 VERIFY(cb_data[i]->zcd_called); 4525 umem_free(cb_data[i], sizeof (ztest_cb_data_t)); 4526 } 4527 4528 return; 4529 } 4530 4531 cb_data[2] = ztest_create_cb_data(os, txg); 4532 dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[2]); 4533 4534 /* 4535 * Read existing data to make sure there isn't a future leak. 4536 */ 4537 VERIFY(0 == dmu_read(os, od[0].od_object, 0, sizeof (uint64_t), 4538 &old_txg, DMU_READ_PREFETCH)); 4539 4540 if (old_txg > txg) 4541 fatal(0, "future leak: got %" PRIu64 ", open txg is %" PRIu64, 4542 old_txg, txg); 4543 4544 dmu_write(os, od[0].od_object, 0, sizeof (uint64_t), &txg, tx); 4545 4546 (void) mutex_lock(&zcl.zcl_callbacks_lock); 4547 4548 /* 4549 * Since commit callbacks don't have any ordering requirement and since 4550 * it is theoretically possible for a commit callback to be called 4551 * after an arbitrary amount of time has elapsed since its txg has been 4552 * synced, it is difficult to reliably determine whether a commit 4553 * callback hasn't been called due to high load or due to a flawed 4554 * implementation. 4555 * 4556 * In practice, we will assume that if after a certain number of txgs a 4557 * commit callback hasn't been called, then most likely there's an 4558 * implementation bug.. 4559 */ 4560 tmp_cb = list_head(&zcl.zcl_callbacks); 4561 if (tmp_cb != NULL && 4562 (txg - ZTEST_COMMIT_CALLBACK_THRESH) > tmp_cb->zcd_txg) { 4563 fatal(0, "Commit callback threshold exceeded, oldest txg: %" 4564 PRIu64 ", open txg: %" PRIu64 "\n", tmp_cb->zcd_txg, txg); 4565 } 4566 4567 /* 4568 * Let's find the place to insert our callbacks. 4569 * 4570 * Even though the list is ordered by txg, it is possible for the 4571 * insertion point to not be the end because our txg may already be 4572 * quiescing at this point and other callbacks in the open txg 4573 * (from other objsets) may have sneaked in. 4574 */ 4575 tmp_cb = list_tail(&zcl.zcl_callbacks); 4576 while (tmp_cb != NULL && tmp_cb->zcd_txg > txg) 4577 tmp_cb = list_prev(&zcl.zcl_callbacks, tmp_cb); 4578 4579 /* Add the 3 callbacks to the list */ 4580 for (i = 0; i < 3; i++) { 4581 if (tmp_cb == NULL) 4582 list_insert_head(&zcl.zcl_callbacks, cb_data[i]); 4583 else 4584 list_insert_after(&zcl.zcl_callbacks, tmp_cb, 4585 cb_data[i]); 4586 4587 cb_data[i]->zcd_added = B_TRUE; 4588 VERIFY(!cb_data[i]->zcd_called); 4589 4590 tmp_cb = cb_data[i]; 4591 } 4592 4593 (void) mutex_unlock(&zcl.zcl_callbacks_lock); 4594 4595 dmu_tx_commit(tx); 4596 } 4597 4598 /* ARGSUSED */ 4599 void 4600 ztest_dsl_prop_get_set(ztest_ds_t *zd, uint64_t id) 4601 { 4602 zfs_prop_t proplist[] = { 4603 ZFS_PROP_CHECKSUM, 4604 ZFS_PROP_COMPRESSION, 4605 ZFS_PROP_COPIES, 4606 ZFS_PROP_DEDUP 4607 }; 4608 4609 (void) rw_rdlock(&ztest_name_lock); 4610 4611 for (int p = 0; p < sizeof (proplist) / sizeof (proplist[0]); p++) 4612 (void) ztest_dsl_prop_set_uint64(zd->zd_name, proplist[p], 4613 ztest_random_dsl_prop(proplist[p]), (int)ztest_random(2)); 4614 4615 (void) rw_unlock(&ztest_name_lock); 4616 } 4617 4618 /* ARGSUSED */ 4619 void 4620 ztest_spa_prop_get_set(ztest_ds_t *zd, uint64_t id) 4621 { 4622 nvlist_t *props = NULL; 4623 4624 (void) rw_rdlock(&ztest_name_lock); 4625 4626 (void) ztest_spa_prop_set_uint64(ZPOOL_PROP_DEDUPDITTO, 4627 ZIO_DEDUPDITTO_MIN + ztest_random(ZIO_DEDUPDITTO_MIN)); 4628 4629 VERIFY0(spa_prop_get(ztest_spa, &props)); 4630 4631 if (ztest_opts.zo_verbose >= 6) 4632 dump_nvlist(props, 4); 4633 4634 nvlist_free(props); 4635 4636 (void) rw_unlock(&ztest_name_lock); 4637 } 4638 4639 static int 4640 user_release_one(const char *snapname, const char *holdname) 4641 { 4642 nvlist_t *snaps, *holds; 4643 int error; 4644 4645 snaps = fnvlist_alloc(); 4646 holds = fnvlist_alloc(); 4647 fnvlist_add_boolean(holds, holdname); 4648 fnvlist_add_nvlist(snaps, snapname, holds); 4649 fnvlist_free(holds); 4650 error = dsl_dataset_user_release(snaps, NULL); 4651 fnvlist_free(snaps); 4652 return (error); 4653 } 4654 4655 /* 4656 * Test snapshot hold/release and deferred destroy. 4657 */ 4658 void 4659 ztest_dmu_snapshot_hold(ztest_ds_t *zd, uint64_t id) 4660 { 4661 int error; 4662 objset_t *os = zd->zd_os; 4663 objset_t *origin; 4664 char snapname[100]; 4665 char fullname[100]; 4666 char clonename[100]; 4667 char tag[100]; 4668 char osname[MAXNAMELEN]; 4669 nvlist_t *holds; 4670 4671 (void) rw_rdlock(&ztest_name_lock); 4672 4673 dmu_objset_name(os, osname); 4674 4675 (void) snprintf(snapname, sizeof (snapname), "sh1_%llu", id); 4676 (void) snprintf(fullname, sizeof (fullname), "%s@%s", osname, snapname); 4677 (void) snprintf(clonename, sizeof (clonename), 4678 "%s/ch1_%llu", osname, id); 4679 (void) snprintf(tag, sizeof (tag), "tag_%llu", id); 4680 4681 /* 4682 * Clean up from any previous run. 4683 */ 4684 error = dsl_destroy_head(clonename); 4685 if (error != ENOENT) 4686 ASSERT0(error); 4687 error = user_release_one(fullname, tag); 4688 if (error != ESRCH && error != ENOENT) 4689 ASSERT0(error); 4690 error = dsl_destroy_snapshot(fullname, B_FALSE); 4691 if (error != ENOENT) 4692 ASSERT0(error); 4693 4694 /* 4695 * Create snapshot, clone it, mark snap for deferred destroy, 4696 * destroy clone, verify snap was also destroyed. 4697 */ 4698 error = dmu_objset_snapshot_one(osname, snapname); 4699 if (error) { 4700 if (error == ENOSPC) { 4701 ztest_record_enospc("dmu_objset_snapshot"); 4702 goto out; 4703 } 4704 fatal(0, "dmu_objset_snapshot(%s) = %d", fullname, error); 4705 } 4706 4707 error = dmu_objset_clone(clonename, fullname); 4708 if (error) { 4709 if (error == ENOSPC) { 4710 ztest_record_enospc("dmu_objset_clone"); 4711 goto out; 4712 } 4713 fatal(0, "dmu_objset_clone(%s) = %d", clonename, error); 4714 } 4715 4716 error = dsl_destroy_snapshot(fullname, B_TRUE); 4717 if (error) { 4718 fatal(0, "dsl_destroy_snapshot(%s, B_TRUE) = %d", 4719 fullname, error); 4720 } 4721 4722 error = dsl_destroy_head(clonename); 4723 if (error) 4724 fatal(0, "dsl_destroy_head(%s) = %d", clonename, error); 4725 4726 error = dmu_objset_hold(fullname, FTAG, &origin); 4727 if (error != ENOENT) 4728 fatal(0, "dmu_objset_hold(%s) = %d", fullname, error); 4729 4730 /* 4731 * Create snapshot, add temporary hold, verify that we can't 4732 * destroy a held snapshot, mark for deferred destroy, 4733 * release hold, verify snapshot was destroyed. 4734 */ 4735 error = dmu_objset_snapshot_one(osname, snapname); 4736 if (error) { 4737 if (error == ENOSPC) { 4738 ztest_record_enospc("dmu_objset_snapshot"); 4739 goto out; 4740 } 4741 fatal(0, "dmu_objset_snapshot(%s) = %d", fullname, error); 4742 } 4743 4744 holds = fnvlist_alloc(); 4745 fnvlist_add_string(holds, fullname, tag); 4746 error = dsl_dataset_user_hold(holds, 0, NULL); 4747 fnvlist_free(holds); 4748 4749 if (error == ENOSPC) { 4750 ztest_record_enospc("dsl_dataset_user_hold"); 4751 goto out; 4752 } else if (error) { 4753 fatal(0, "dsl_dataset_user_hold(%s, %s) = %u", 4754 fullname, tag, error); 4755 } 4756 4757 error = dsl_destroy_snapshot(fullname, B_FALSE); 4758 if (error != EBUSY) { 4759 fatal(0, "dsl_destroy_snapshot(%s, B_FALSE) = %d", 4760 fullname, error); 4761 } 4762 4763 error = dsl_destroy_snapshot(fullname, B_TRUE); 4764 if (error) { 4765 fatal(0, "dsl_destroy_snapshot(%s, B_TRUE) = %d", 4766 fullname, error); 4767 } 4768 4769 error = user_release_one(fullname, tag); 4770 if (error) 4771 fatal(0, "user_release_one(%s, %s) = %d", fullname, tag, error); 4772 4773 VERIFY3U(dmu_objset_hold(fullname, FTAG, &origin), ==, ENOENT); 4774 4775 out: 4776 (void) rw_unlock(&ztest_name_lock); 4777 } 4778 4779 /* 4780 * Inject random faults into the on-disk data. 4781 */ 4782 /* ARGSUSED */ 4783 void 4784 ztest_fault_inject(ztest_ds_t *zd, uint64_t id) 4785 { 4786 ztest_shared_t *zs = ztest_shared; 4787 spa_t *spa = ztest_spa; 4788 int fd; 4789 uint64_t offset; 4790 uint64_t leaves; 4791 uint64_t bad = 0x1990c0ffeedecade; 4792 uint64_t top, leaf; 4793 char path0[MAXPATHLEN]; 4794 char pathrand[MAXPATHLEN]; 4795 size_t fsize; 4796 int bshift = SPA_OLD_MAXBLOCKSHIFT + 2; /* don't scrog all labels */ 4797 int iters = 1000; 4798 int maxfaults; 4799 int mirror_save; 4800 vdev_t *vd0 = NULL; 4801 uint64_t guid0 = 0; 4802 boolean_t islog = B_FALSE; 4803 4804 VERIFY(mutex_lock(&ztest_vdev_lock) == 0); 4805 maxfaults = MAXFAULTS(); 4806 leaves = MAX(zs->zs_mirrors, 1) * ztest_opts.zo_raidz; 4807 mirror_save = zs->zs_mirrors; 4808 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 4809 4810 ASSERT(leaves >= 1); 4811 4812 /* 4813 * Grab the name lock as reader. There are some operations 4814 * which don't like to have their vdevs changed while 4815 * they are in progress (i.e. spa_change_guid). Those 4816 * operations will have grabbed the name lock as writer. 4817 */ 4818 (void) rw_rdlock(&ztest_name_lock); 4819 4820 /* 4821 * We need SCL_STATE here because we're going to look at vd0->vdev_tsd. 4822 */ 4823 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 4824 4825 if (ztest_random(2) == 0) { 4826 /* 4827 * Inject errors on a normal data device or slog device. 4828 */ 4829 top = ztest_random_vdev_top(spa, B_TRUE); 4830 leaf = ztest_random(leaves) + zs->zs_splits; 4831 4832 /* 4833 * Generate paths to the first leaf in this top-level vdev, 4834 * and to the random leaf we selected. We'll induce transient 4835 * write failures and random online/offline activity on leaf 0, 4836 * and we'll write random garbage to the randomly chosen leaf. 4837 */ 4838 (void) snprintf(path0, sizeof (path0), ztest_dev_template, 4839 ztest_opts.zo_dir, ztest_opts.zo_pool, 4840 top * leaves + zs->zs_splits); 4841 (void) snprintf(pathrand, sizeof (pathrand), ztest_dev_template, 4842 ztest_opts.zo_dir, ztest_opts.zo_pool, 4843 top * leaves + leaf); 4844 4845 vd0 = vdev_lookup_by_path(spa->spa_root_vdev, path0); 4846 if (vd0 != NULL && vd0->vdev_top->vdev_islog) 4847 islog = B_TRUE; 4848 4849 /* 4850 * If the top-level vdev needs to be resilvered 4851 * then we only allow faults on the device that is 4852 * resilvering. 4853 */ 4854 if (vd0 != NULL && maxfaults != 1 && 4855 (!vdev_resilver_needed(vd0->vdev_top, NULL, NULL) || 4856 vd0->vdev_resilver_txg != 0)) { 4857 /* 4858 * Make vd0 explicitly claim to be unreadable, 4859 * or unwriteable, or reach behind its back 4860 * and close the underlying fd. We can do this if 4861 * maxfaults == 0 because we'll fail and reexecute, 4862 * and we can do it if maxfaults >= 2 because we'll 4863 * have enough redundancy. If maxfaults == 1, the 4864 * combination of this with injection of random data 4865 * corruption below exceeds the pool's fault tolerance. 4866 */ 4867 vdev_file_t *vf = vd0->vdev_tsd; 4868 4869 if (vf != NULL && ztest_random(3) == 0) { 4870 (void) close(vf->vf_vnode->v_fd); 4871 vf->vf_vnode->v_fd = -1; 4872 } else if (ztest_random(2) == 0) { 4873 vd0->vdev_cant_read = B_TRUE; 4874 } else { 4875 vd0->vdev_cant_write = B_TRUE; 4876 } 4877 guid0 = vd0->vdev_guid; 4878 } 4879 } else { 4880 /* 4881 * Inject errors on an l2cache device. 4882 */ 4883 spa_aux_vdev_t *sav = &spa->spa_l2cache; 4884 4885 if (sav->sav_count == 0) { 4886 spa_config_exit(spa, SCL_STATE, FTAG); 4887 (void) rw_unlock(&ztest_name_lock); 4888 return; 4889 } 4890 vd0 = sav->sav_vdevs[ztest_random(sav->sav_count)]; 4891 guid0 = vd0->vdev_guid; 4892 (void) strcpy(path0, vd0->vdev_path); 4893 (void) strcpy(pathrand, vd0->vdev_path); 4894 4895 leaf = 0; 4896 leaves = 1; 4897 maxfaults = INT_MAX; /* no limit on cache devices */ 4898 } 4899 4900 spa_config_exit(spa, SCL_STATE, FTAG); 4901 (void) rw_unlock(&ztest_name_lock); 4902 4903 /* 4904 * If we can tolerate two or more faults, or we're dealing 4905 * with a slog, randomly online/offline vd0. 4906 */ 4907 if ((maxfaults >= 2 || islog) && guid0 != 0) { 4908 if (ztest_random(10) < 6) { 4909 int flags = (ztest_random(2) == 0 ? 4910 ZFS_OFFLINE_TEMPORARY : 0); 4911 4912 /* 4913 * We have to grab the zs_name_lock as writer to 4914 * prevent a race between offlining a slog and 4915 * destroying a dataset. Offlining the slog will 4916 * grab a reference on the dataset which may cause 4917 * dmu_objset_destroy() to fail with EBUSY thus 4918 * leaving the dataset in an inconsistent state. 4919 */ 4920 if (islog) 4921 (void) rw_wrlock(&ztest_name_lock); 4922 4923 VERIFY(vdev_offline(spa, guid0, flags) != EBUSY); 4924 4925 if (islog) 4926 (void) rw_unlock(&ztest_name_lock); 4927 } else { 4928 /* 4929 * Ideally we would like to be able to randomly 4930 * call vdev_[on|off]line without holding locks 4931 * to force unpredictable failures but the side 4932 * effects of vdev_[on|off]line prevent us from 4933 * doing so. We grab the ztest_vdev_lock here to 4934 * prevent a race between injection testing and 4935 * aux_vdev removal. 4936 */ 4937 VERIFY(mutex_lock(&ztest_vdev_lock) == 0); 4938 (void) vdev_online(spa, guid0, 0, NULL); 4939 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 4940 } 4941 } 4942 4943 if (maxfaults == 0) 4944 return; 4945 4946 /* 4947 * We have at least single-fault tolerance, so inject data corruption. 4948 */ 4949 fd = open(pathrand, O_RDWR); 4950 4951 if (fd == -1) /* we hit a gap in the device namespace */ 4952 return; 4953 4954 fsize = lseek(fd, 0, SEEK_END); 4955 4956 while (--iters != 0) { 4957 offset = ztest_random(fsize / (leaves << bshift)) * 4958 (leaves << bshift) + (leaf << bshift) + 4959 (ztest_random(1ULL << (bshift - 1)) & -8ULL); 4960 4961 if (offset >= fsize) 4962 continue; 4963 4964 VERIFY(mutex_lock(&ztest_vdev_lock) == 0); 4965 if (mirror_save != zs->zs_mirrors) { 4966 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 4967 (void) close(fd); 4968 return; 4969 } 4970 4971 if (pwrite(fd, &bad, sizeof (bad), offset) != sizeof (bad)) 4972 fatal(1, "can't inject bad word at 0x%llx in %s", 4973 offset, pathrand); 4974 4975 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 4976 4977 if (ztest_opts.zo_verbose >= 7) 4978 (void) printf("injected bad word into %s," 4979 " offset 0x%llx\n", pathrand, (u_longlong_t)offset); 4980 } 4981 4982 (void) close(fd); 4983 } 4984 4985 /* 4986 * Verify that DDT repair works as expected. 4987 */ 4988 void 4989 ztest_ddt_repair(ztest_ds_t *zd, uint64_t id) 4990 { 4991 ztest_shared_t *zs = ztest_shared; 4992 spa_t *spa = ztest_spa; 4993 objset_t *os = zd->zd_os; 4994 ztest_od_t od[1]; 4995 uint64_t object, blocksize, txg, pattern, psize; 4996 enum zio_checksum checksum = spa_dedup_checksum(spa); 4997 dmu_buf_t *db; 4998 dmu_tx_t *tx; 4999 void *buf; 5000 blkptr_t blk; 5001 int copies = 2 * ZIO_DEDUPDITTO_MIN; 5002 5003 blocksize = ztest_random_blocksize(); 5004 blocksize = MIN(blocksize, 2048); /* because we write so many */ 5005 5006 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0); 5007 5008 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0) 5009 return; 5010 5011 /* 5012 * Take the name lock as writer to prevent anyone else from changing 5013 * the pool and dataset properies we need to maintain during this test. 5014 */ 5015 (void) rw_wrlock(&ztest_name_lock); 5016 5017 if (ztest_dsl_prop_set_uint64(zd->zd_name, ZFS_PROP_DEDUP, checksum, 5018 B_FALSE) != 0 || 5019 ztest_dsl_prop_set_uint64(zd->zd_name, ZFS_PROP_COPIES, 1, 5020 B_FALSE) != 0) { 5021 (void) rw_unlock(&ztest_name_lock); 5022 return; 5023 } 5024 5025 object = od[0].od_object; 5026 blocksize = od[0].od_blocksize; 5027 pattern = zs->zs_guid ^ dmu_objset_fsid_guid(os); 5028 5029 ASSERT(object != 0); 5030 5031 tx = dmu_tx_create(os); 5032 dmu_tx_hold_write(tx, object, 0, copies * blocksize); 5033 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); 5034 if (txg == 0) { 5035 (void) rw_unlock(&ztest_name_lock); 5036 return; 5037 } 5038 5039 /* 5040 * Write all the copies of our block. 5041 */ 5042 for (int i = 0; i < copies; i++) { 5043 uint64_t offset = i * blocksize; 5044 int error = dmu_buf_hold(os, object, offset, FTAG, &db, 5045 DMU_READ_NO_PREFETCH); 5046 if (error != 0) { 5047 fatal(B_FALSE, "dmu_buf_hold(%p, %llu, %llu) = %u", 5048 os, (long long)object, (long long) offset, error); 5049 } 5050 ASSERT(db->db_offset == offset); 5051 ASSERT(db->db_size == blocksize); 5052 ASSERT(ztest_pattern_match(db->db_data, db->db_size, pattern) || 5053 ztest_pattern_match(db->db_data, db->db_size, 0ULL)); 5054 dmu_buf_will_fill(db, tx); 5055 ztest_pattern_set(db->db_data, db->db_size, pattern); 5056 dmu_buf_rele(db, FTAG); 5057 } 5058 5059 dmu_tx_commit(tx); 5060 txg_wait_synced(spa_get_dsl(spa), txg); 5061 5062 /* 5063 * Find out what block we got. 5064 */ 5065 VERIFY0(dmu_buf_hold(os, object, 0, FTAG, &db, 5066 DMU_READ_NO_PREFETCH)); 5067 blk = *((dmu_buf_impl_t *)db)->db_blkptr; 5068 dmu_buf_rele(db, FTAG); 5069 5070 /* 5071 * Damage the block. Dedup-ditto will save us when we read it later. 5072 */ 5073 psize = BP_GET_PSIZE(&blk); 5074 buf = zio_buf_alloc(psize); 5075 ztest_pattern_set(buf, psize, ~pattern); 5076 5077 (void) zio_wait(zio_rewrite(NULL, spa, 0, &blk, 5078 buf, psize, NULL, NULL, ZIO_PRIORITY_SYNC_WRITE, 5079 ZIO_FLAG_CANFAIL | ZIO_FLAG_INDUCE_DAMAGE, NULL)); 5080 5081 zio_buf_free(buf, psize); 5082 5083 (void) rw_unlock(&ztest_name_lock); 5084 } 5085 5086 /* 5087 * Scrub the pool. 5088 */ 5089 /* ARGSUSED */ 5090 void 5091 ztest_scrub(ztest_ds_t *zd, uint64_t id) 5092 { 5093 spa_t *spa = ztest_spa; 5094 5095 (void) spa_scan(spa, POOL_SCAN_SCRUB); 5096 (void) poll(NULL, 0, 100); /* wait a moment, then force a restart */ 5097 (void) spa_scan(spa, POOL_SCAN_SCRUB); 5098 } 5099 5100 /* 5101 * Change the guid for the pool. 5102 */ 5103 /* ARGSUSED */ 5104 void 5105 ztest_reguid(ztest_ds_t *zd, uint64_t id) 5106 { 5107 spa_t *spa = ztest_spa; 5108 uint64_t orig, load; 5109 int error; 5110 5111 orig = spa_guid(spa); 5112 load = spa_load_guid(spa); 5113 5114 (void) rw_wrlock(&ztest_name_lock); 5115 error = spa_change_guid(spa); 5116 (void) rw_unlock(&ztest_name_lock); 5117 5118 if (error != 0) 5119 return; 5120 5121 if (ztest_opts.zo_verbose >= 4) { 5122 (void) printf("Changed guid old %llu -> %llu\n", 5123 (u_longlong_t)orig, (u_longlong_t)spa_guid(spa)); 5124 } 5125 5126 VERIFY3U(orig, !=, spa_guid(spa)); 5127 VERIFY3U(load, ==, spa_load_guid(spa)); 5128 } 5129 5130 /* 5131 * Rename the pool to a different name and then rename it back. 5132 */ 5133 /* ARGSUSED */ 5134 void 5135 ztest_spa_rename(ztest_ds_t *zd, uint64_t id) 5136 { 5137 char *oldname, *newname; 5138 spa_t *spa; 5139 5140 (void) rw_wrlock(&ztest_name_lock); 5141 5142 oldname = ztest_opts.zo_pool; 5143 newname = umem_alloc(strlen(oldname) + 5, UMEM_NOFAIL); 5144 (void) strcpy(newname, oldname); 5145 (void) strcat(newname, "_tmp"); 5146 5147 /* 5148 * Do the rename 5149 */ 5150 VERIFY3U(0, ==, spa_rename(oldname, newname)); 5151 5152 /* 5153 * Try to open it under the old name, which shouldn't exist 5154 */ 5155 VERIFY3U(ENOENT, ==, spa_open(oldname, &spa, FTAG)); 5156 5157 /* 5158 * Open it under the new name and make sure it's still the same spa_t. 5159 */ 5160 VERIFY3U(0, ==, spa_open(newname, &spa, FTAG)); 5161 5162 ASSERT(spa == ztest_spa); 5163 spa_close(spa, FTAG); 5164 5165 /* 5166 * Rename it back to the original 5167 */ 5168 VERIFY3U(0, ==, spa_rename(newname, oldname)); 5169 5170 /* 5171 * Make sure it can still be opened 5172 */ 5173 VERIFY3U(0, ==, spa_open(oldname, &spa, FTAG)); 5174 5175 ASSERT(spa == ztest_spa); 5176 spa_close(spa, FTAG); 5177 5178 umem_free(newname, strlen(newname) + 1); 5179 5180 (void) rw_unlock(&ztest_name_lock); 5181 } 5182 5183 /* 5184 * Verify pool integrity by running zdb. 5185 */ 5186 static void 5187 ztest_run_zdb(char *pool) 5188 { 5189 int status; 5190 char zdb[MAXPATHLEN + MAXNAMELEN + 20]; 5191 char zbuf[1024]; 5192 char *bin; 5193 char *ztest; 5194 char *isa; 5195 int isalen; 5196 FILE *fp; 5197 5198 (void) realpath(getexecname(), zdb); 5199 5200 /* zdb lives in /usr/sbin, while ztest lives in /usr/bin */ 5201 bin = strstr(zdb, "/usr/bin/"); 5202 ztest = strstr(bin, "/ztest"); 5203 isa = bin + 8; 5204 isalen = ztest - isa; 5205 isa = strdup(isa); 5206 /* LINTED */ 5207 (void) sprintf(bin, 5208 "/usr/sbin%.*s/zdb -bcc%s%s -d -U %s %s", 5209 isalen, 5210 isa, 5211 ztest_opts.zo_verbose >= 3 ? "s" : "", 5212 ztest_opts.zo_verbose >= 4 ? "v" : "", 5213 spa_config_path, 5214 pool); 5215 free(isa); 5216 5217 if (ztest_opts.zo_verbose >= 5) 5218 (void) printf("Executing %s\n", strstr(zdb, "zdb ")); 5219 5220 fp = popen(zdb, "r"); 5221 5222 while (fgets(zbuf, sizeof (zbuf), fp) != NULL) 5223 if (ztest_opts.zo_verbose >= 3) 5224 (void) printf("%s", zbuf); 5225 5226 status = pclose(fp); 5227 5228 if (status == 0) 5229 return; 5230 5231 ztest_dump_core = 0; 5232 if (WIFEXITED(status)) 5233 fatal(0, "'%s' exit code %d", zdb, WEXITSTATUS(status)); 5234 else 5235 fatal(0, "'%s' died with signal %d", zdb, WTERMSIG(status)); 5236 } 5237 5238 static void 5239 ztest_walk_pool_directory(char *header) 5240 { 5241 spa_t *spa = NULL; 5242 5243 if (ztest_opts.zo_verbose >= 6) 5244 (void) printf("%s\n", header); 5245 5246 mutex_enter(&spa_namespace_lock); 5247 while ((spa = spa_next(spa)) != NULL) 5248 if (ztest_opts.zo_verbose >= 6) 5249 (void) printf("\t%s\n", spa_name(spa)); 5250 mutex_exit(&spa_namespace_lock); 5251 } 5252 5253 static void 5254 ztest_spa_import_export(char *oldname, char *newname) 5255 { 5256 nvlist_t *config, *newconfig; 5257 uint64_t pool_guid; 5258 spa_t *spa; 5259 int error; 5260 5261 if (ztest_opts.zo_verbose >= 4) { 5262 (void) printf("import/export: old = %s, new = %s\n", 5263 oldname, newname); 5264 } 5265 5266 /* 5267 * Clean up from previous runs. 5268 */ 5269 (void) spa_destroy(newname); 5270 5271 /* 5272 * Get the pool's configuration and guid. 5273 */ 5274 VERIFY3U(0, ==, spa_open(oldname, &spa, FTAG)); 5275 5276 /* 5277 * Kick off a scrub to tickle scrub/export races. 5278 */ 5279 if (ztest_random(2) == 0) 5280 (void) spa_scan(spa, POOL_SCAN_SCRUB); 5281 5282 pool_guid = spa_guid(spa); 5283 spa_close(spa, FTAG); 5284 5285 ztest_walk_pool_directory("pools before export"); 5286 5287 /* 5288 * Export it. 5289 */ 5290 VERIFY3U(0, ==, spa_export(oldname, &config, B_FALSE, B_FALSE)); 5291 5292 ztest_walk_pool_directory("pools after export"); 5293 5294 /* 5295 * Try to import it. 5296 */ 5297 newconfig = spa_tryimport(config); 5298 ASSERT(newconfig != NULL); 5299 nvlist_free(newconfig); 5300 5301 /* 5302 * Import it under the new name. 5303 */ 5304 error = spa_import(newname, config, NULL, 0); 5305 if (error != 0) { 5306 dump_nvlist(config, 0); 5307 fatal(B_FALSE, "couldn't import pool %s as %s: error %u", 5308 oldname, newname, error); 5309 } 5310 5311 ztest_walk_pool_directory("pools after import"); 5312 5313 /* 5314 * Try to import it again -- should fail with EEXIST. 5315 */ 5316 VERIFY3U(EEXIST, ==, spa_import(newname, config, NULL, 0)); 5317 5318 /* 5319 * Try to import it under a different name -- should fail with EEXIST. 5320 */ 5321 VERIFY3U(EEXIST, ==, spa_import(oldname, config, NULL, 0)); 5322 5323 /* 5324 * Verify that the pool is no longer visible under the old name. 5325 */ 5326 VERIFY3U(ENOENT, ==, spa_open(oldname, &spa, FTAG)); 5327 5328 /* 5329 * Verify that we can open and close the pool using the new name. 5330 */ 5331 VERIFY3U(0, ==, spa_open(newname, &spa, FTAG)); 5332 ASSERT(pool_guid == spa_guid(spa)); 5333 spa_close(spa, FTAG); 5334 5335 nvlist_free(config); 5336 } 5337 5338 static void 5339 ztest_resume(spa_t *spa) 5340 { 5341 if (spa_suspended(spa) && ztest_opts.zo_verbose >= 6) 5342 (void) printf("resuming from suspended state\n"); 5343 spa_vdev_state_enter(spa, SCL_NONE); 5344 vdev_clear(spa, NULL); 5345 (void) spa_vdev_state_exit(spa, NULL, 0); 5346 (void) zio_resume(spa); 5347 } 5348 5349 static void * 5350 ztest_resume_thread(void *arg) 5351 { 5352 spa_t *spa = arg; 5353 5354 while (!ztest_exiting) { 5355 if (spa_suspended(spa)) 5356 ztest_resume(spa); 5357 (void) poll(NULL, 0, 100); 5358 } 5359 return (NULL); 5360 } 5361 5362 static void * 5363 ztest_deadman_thread(void *arg) 5364 { 5365 ztest_shared_t *zs = arg; 5366 spa_t *spa = ztest_spa; 5367 hrtime_t delta, total = 0; 5368 5369 for (;;) { 5370 delta = zs->zs_thread_stop - zs->zs_thread_start + 5371 MSEC2NSEC(zfs_deadman_synctime_ms); 5372 5373 (void) poll(NULL, 0, (int)NSEC2MSEC(delta)); 5374 5375 /* 5376 * If the pool is suspended then fail immediately. Otherwise, 5377 * check to see if the pool is making any progress. If 5378 * vdev_deadman() discovers that there hasn't been any recent 5379 * I/Os then it will end up aborting the tests. 5380 */ 5381 if (spa_suspended(spa) || spa->spa_root_vdev == NULL) { 5382 fatal(0, "aborting test after %llu seconds because " 5383 "pool has transitioned to a suspended state.", 5384 zfs_deadman_synctime_ms / 1000); 5385 return (NULL); 5386 } 5387 vdev_deadman(spa->spa_root_vdev); 5388 5389 total += zfs_deadman_synctime_ms/1000; 5390 (void) printf("ztest has been running for %lld seconds\n", 5391 total); 5392 } 5393 } 5394 5395 static void 5396 ztest_execute(int test, ztest_info_t *zi, uint64_t id) 5397 { 5398 ztest_ds_t *zd = &ztest_ds[id % ztest_opts.zo_datasets]; 5399 ztest_shared_callstate_t *zc = ZTEST_GET_SHARED_CALLSTATE(test); 5400 hrtime_t functime = gethrtime(); 5401 5402 for (int i = 0; i < zi->zi_iters; i++) 5403 zi->zi_func(zd, id); 5404 5405 functime = gethrtime() - functime; 5406 5407 atomic_add_64(&zc->zc_count, 1); 5408 atomic_add_64(&zc->zc_time, functime); 5409 5410 if (ztest_opts.zo_verbose >= 4) { 5411 Dl_info dli; 5412 (void) dladdr((void *)zi->zi_func, &dli); 5413 (void) printf("%6.2f sec in %s\n", 5414 (double)functime / NANOSEC, dli.dli_sname); 5415 } 5416 } 5417 5418 static void * 5419 ztest_thread(void *arg) 5420 { 5421 int rand; 5422 uint64_t id = (uintptr_t)arg; 5423 ztest_shared_t *zs = ztest_shared; 5424 uint64_t call_next; 5425 hrtime_t now; 5426 ztest_info_t *zi; 5427 ztest_shared_callstate_t *zc; 5428 5429 while ((now = gethrtime()) < zs->zs_thread_stop) { 5430 /* 5431 * See if it's time to force a crash. 5432 */ 5433 if (now > zs->zs_thread_kill) 5434 ztest_kill(zs); 5435 5436 /* 5437 * If we're getting ENOSPC with some regularity, stop. 5438 */ 5439 if (zs->zs_enospc_count > 10) 5440 break; 5441 5442 /* 5443 * Pick a random function to execute. 5444 */ 5445 rand = ztest_random(ZTEST_FUNCS); 5446 zi = &ztest_info[rand]; 5447 zc = ZTEST_GET_SHARED_CALLSTATE(rand); 5448 call_next = zc->zc_next; 5449 5450 if (now >= call_next && 5451 atomic_cas_64(&zc->zc_next, call_next, call_next + 5452 ztest_random(2 * zi->zi_interval[0] + 1)) == call_next) { 5453 ztest_execute(rand, zi, id); 5454 } 5455 } 5456 5457 return (NULL); 5458 } 5459 5460 static void 5461 ztest_dataset_name(char *dsname, char *pool, int d) 5462 { 5463 (void) snprintf(dsname, MAXNAMELEN, "%s/ds_%d", pool, d); 5464 } 5465 5466 static void 5467 ztest_dataset_destroy(int d) 5468 { 5469 char name[MAXNAMELEN]; 5470 5471 ztest_dataset_name(name, ztest_opts.zo_pool, d); 5472 5473 if (ztest_opts.zo_verbose >= 3) 5474 (void) printf("Destroying %s to free up space\n", name); 5475 5476 /* 5477 * Cleanup any non-standard clones and snapshots. In general, 5478 * ztest thread t operates on dataset (t % zopt_datasets), 5479 * so there may be more than one thing to clean up. 5480 */ 5481 for (int t = d; t < ztest_opts.zo_threads; 5482 t += ztest_opts.zo_datasets) { 5483 ztest_dsl_dataset_cleanup(name, t); 5484 } 5485 5486 (void) dmu_objset_find(name, ztest_objset_destroy_cb, NULL, 5487 DS_FIND_SNAPSHOTS | DS_FIND_CHILDREN); 5488 } 5489 5490 static void 5491 ztest_dataset_dirobj_verify(ztest_ds_t *zd) 5492 { 5493 uint64_t usedobjs, dirobjs, scratch; 5494 5495 /* 5496 * ZTEST_DIROBJ is the object directory for the entire dataset. 5497 * Therefore, the number of objects in use should equal the 5498 * number of ZTEST_DIROBJ entries, +1 for ZTEST_DIROBJ itself. 5499 * If not, we have an object leak. 5500 * 5501 * Note that we can only check this in ztest_dataset_open(), 5502 * when the open-context and syncing-context values agree. 5503 * That's because zap_count() returns the open-context value, 5504 * while dmu_objset_space() returns the rootbp fill count. 5505 */ 5506 VERIFY3U(0, ==, zap_count(zd->zd_os, ZTEST_DIROBJ, &dirobjs)); 5507 dmu_objset_space(zd->zd_os, &scratch, &scratch, &usedobjs, &scratch); 5508 ASSERT3U(dirobjs + 1, ==, usedobjs); 5509 } 5510 5511 static int 5512 ztest_dataset_open(int d) 5513 { 5514 ztest_ds_t *zd = &ztest_ds[d]; 5515 uint64_t committed_seq = ZTEST_GET_SHARED_DS(d)->zd_seq; 5516 objset_t *os; 5517 zilog_t *zilog; 5518 char name[MAXNAMELEN]; 5519 int error; 5520 5521 ztest_dataset_name(name, ztest_opts.zo_pool, d); 5522 5523 (void) rw_rdlock(&ztest_name_lock); 5524 5525 error = ztest_dataset_create(name); 5526 if (error == ENOSPC) { 5527 (void) rw_unlock(&ztest_name_lock); 5528 ztest_record_enospc(FTAG); 5529 return (error); 5530 } 5531 ASSERT(error == 0 || error == EEXIST); 5532 5533 VERIFY0(dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, zd, &os)); 5534 (void) rw_unlock(&ztest_name_lock); 5535 5536 ztest_zd_init(zd, ZTEST_GET_SHARED_DS(d), os); 5537 5538 zilog = zd->zd_zilog; 5539 5540 if (zilog->zl_header->zh_claim_lr_seq != 0 && 5541 zilog->zl_header->zh_claim_lr_seq < committed_seq) 5542 fatal(0, "missing log records: claimed %llu < committed %llu", 5543 zilog->zl_header->zh_claim_lr_seq, committed_seq); 5544 5545 ztest_dataset_dirobj_verify(zd); 5546 5547 zil_replay(os, zd, ztest_replay_vector); 5548 5549 ztest_dataset_dirobj_verify(zd); 5550 5551 if (ztest_opts.zo_verbose >= 6) 5552 (void) printf("%s replay %llu blocks, %llu records, seq %llu\n", 5553 zd->zd_name, 5554 (u_longlong_t)zilog->zl_parse_blk_count, 5555 (u_longlong_t)zilog->zl_parse_lr_count, 5556 (u_longlong_t)zilog->zl_replaying_seq); 5557 5558 zilog = zil_open(os, ztest_get_data); 5559 5560 if (zilog->zl_replaying_seq != 0 && 5561 zilog->zl_replaying_seq < committed_seq) 5562 fatal(0, "missing log records: replayed %llu < committed %llu", 5563 zilog->zl_replaying_seq, committed_seq); 5564 5565 return (0); 5566 } 5567 5568 static void 5569 ztest_dataset_close(int d) 5570 { 5571 ztest_ds_t *zd = &ztest_ds[d]; 5572 5573 zil_close(zd->zd_zilog); 5574 dmu_objset_disown(zd->zd_os, zd); 5575 5576 ztest_zd_fini(zd); 5577 } 5578 5579 /* 5580 * Kick off threads to run tests on all datasets in parallel. 5581 */ 5582 static void 5583 ztest_run(ztest_shared_t *zs) 5584 { 5585 thread_t *tid; 5586 spa_t *spa; 5587 objset_t *os; 5588 thread_t resume_tid; 5589 int error; 5590 5591 ztest_exiting = B_FALSE; 5592 5593 /* 5594 * Initialize parent/child shared state. 5595 */ 5596 VERIFY(_mutex_init(&ztest_vdev_lock, USYNC_THREAD, NULL) == 0); 5597 VERIFY(rwlock_init(&ztest_name_lock, USYNC_THREAD, NULL) == 0); 5598 5599 zs->zs_thread_start = gethrtime(); 5600 zs->zs_thread_stop = 5601 zs->zs_thread_start + ztest_opts.zo_passtime * NANOSEC; 5602 zs->zs_thread_stop = MIN(zs->zs_thread_stop, zs->zs_proc_stop); 5603 zs->zs_thread_kill = zs->zs_thread_stop; 5604 if (ztest_random(100) < ztest_opts.zo_killrate) { 5605 zs->zs_thread_kill -= 5606 ztest_random(ztest_opts.zo_passtime * NANOSEC); 5607 } 5608 5609 (void) _mutex_init(&zcl.zcl_callbacks_lock, USYNC_THREAD, NULL); 5610 5611 list_create(&zcl.zcl_callbacks, sizeof (ztest_cb_data_t), 5612 offsetof(ztest_cb_data_t, zcd_node)); 5613 5614 /* 5615 * Open our pool. 5616 */ 5617 kernel_init(FREAD | FWRITE); 5618 VERIFY0(spa_open(ztest_opts.zo_pool, &spa, FTAG)); 5619 spa->spa_debug = B_TRUE; 5620 metaslab_preload_limit = ztest_random(20) + 1; 5621 ztest_spa = spa; 5622 5623 VERIFY0(dmu_objset_own(ztest_opts.zo_pool, 5624 DMU_OST_ANY, B_TRUE, FTAG, &os)); 5625 zs->zs_guid = dmu_objset_fsid_guid(os); 5626 dmu_objset_disown(os, FTAG); 5627 5628 spa->spa_dedup_ditto = 2 * ZIO_DEDUPDITTO_MIN; 5629 5630 /* 5631 * We don't expect the pool to suspend unless maxfaults == 0, 5632 * in which case ztest_fault_inject() temporarily takes away 5633 * the only valid replica. 5634 */ 5635 if (MAXFAULTS() == 0) 5636 spa->spa_failmode = ZIO_FAILURE_MODE_WAIT; 5637 else 5638 spa->spa_failmode = ZIO_FAILURE_MODE_PANIC; 5639 5640 /* 5641 * Create a thread to periodically resume suspended I/O. 5642 */ 5643 VERIFY(thr_create(0, 0, ztest_resume_thread, spa, THR_BOUND, 5644 &resume_tid) == 0); 5645 5646 /* 5647 * Create a deadman thread to abort() if we hang. 5648 */ 5649 VERIFY(thr_create(0, 0, ztest_deadman_thread, zs, THR_BOUND, 5650 NULL) == 0); 5651 5652 /* 5653 * Verify that we can safely inquire about about any object, 5654 * whether it's allocated or not. To make it interesting, 5655 * we probe a 5-wide window around each power of two. 5656 * This hits all edge cases, including zero and the max. 5657 */ 5658 for (int t = 0; t < 64; t++) { 5659 for (int d = -5; d <= 5; d++) { 5660 error = dmu_object_info(spa->spa_meta_objset, 5661 (1ULL << t) + d, NULL); 5662 ASSERT(error == 0 || error == ENOENT || 5663 error == EINVAL); 5664 } 5665 } 5666 5667 /* 5668 * If we got any ENOSPC errors on the previous run, destroy something. 5669 */ 5670 if (zs->zs_enospc_count != 0) { 5671 int d = ztest_random(ztest_opts.zo_datasets); 5672 ztest_dataset_destroy(d); 5673 } 5674 zs->zs_enospc_count = 0; 5675 5676 tid = umem_zalloc(ztest_opts.zo_threads * sizeof (thread_t), 5677 UMEM_NOFAIL); 5678 5679 if (ztest_opts.zo_verbose >= 4) 5680 (void) printf("starting main threads...\n"); 5681 5682 /* 5683 * Kick off all the tests that run in parallel. 5684 */ 5685 for (int t = 0; t < ztest_opts.zo_threads; t++) { 5686 if (t < ztest_opts.zo_datasets && 5687 ztest_dataset_open(t) != 0) 5688 return; 5689 VERIFY(thr_create(0, 0, ztest_thread, (void *)(uintptr_t)t, 5690 THR_BOUND, &tid[t]) == 0); 5691 } 5692 5693 /* 5694 * Wait for all of the tests to complete. We go in reverse order 5695 * so we don't close datasets while threads are still using them. 5696 */ 5697 for (int t = ztest_opts.zo_threads - 1; t >= 0; t--) { 5698 VERIFY(thr_join(tid[t], NULL, NULL) == 0); 5699 if (t < ztest_opts.zo_datasets) 5700 ztest_dataset_close(t); 5701 } 5702 5703 txg_wait_synced(spa_get_dsl(spa), 0); 5704 5705 zs->zs_alloc = metaslab_class_get_alloc(spa_normal_class(spa)); 5706 zs->zs_space = metaslab_class_get_space(spa_normal_class(spa)); 5707 zfs_dbgmsg_print(FTAG); 5708 5709 umem_free(tid, ztest_opts.zo_threads * sizeof (thread_t)); 5710 5711 /* Kill the resume thread */ 5712 ztest_exiting = B_TRUE; 5713 VERIFY(thr_join(resume_tid, NULL, NULL) == 0); 5714 ztest_resume(spa); 5715 5716 /* 5717 * Right before closing the pool, kick off a bunch of async I/O; 5718 * spa_close() should wait for it to complete. 5719 */ 5720 for (uint64_t object = 1; object < 50; object++) 5721 dmu_prefetch(spa->spa_meta_objset, object, 0, 1ULL << 20); 5722 5723 spa_close(spa, FTAG); 5724 5725 /* 5726 * Verify that we can loop over all pools. 5727 */ 5728 mutex_enter(&spa_namespace_lock); 5729 for (spa = spa_next(NULL); spa != NULL; spa = spa_next(spa)) 5730 if (ztest_opts.zo_verbose > 3) 5731 (void) printf("spa_next: found %s\n", spa_name(spa)); 5732 mutex_exit(&spa_namespace_lock); 5733 5734 /* 5735 * Verify that we can export the pool and reimport it under a 5736 * different name. 5737 */ 5738 if (ztest_random(2) == 0) { 5739 char name[MAXNAMELEN]; 5740 (void) snprintf(name, MAXNAMELEN, "%s_import", 5741 ztest_opts.zo_pool); 5742 ztest_spa_import_export(ztest_opts.zo_pool, name); 5743 ztest_spa_import_export(name, ztest_opts.zo_pool); 5744 } 5745 5746 kernel_fini(); 5747 5748 list_destroy(&zcl.zcl_callbacks); 5749 5750 (void) _mutex_destroy(&zcl.zcl_callbacks_lock); 5751 5752 (void) rwlock_destroy(&ztest_name_lock); 5753 (void) _mutex_destroy(&ztest_vdev_lock); 5754 } 5755 5756 static void 5757 ztest_freeze(void) 5758 { 5759 ztest_ds_t *zd = &ztest_ds[0]; 5760 spa_t *spa; 5761 int numloops = 0; 5762 5763 if (ztest_opts.zo_verbose >= 3) 5764 (void) printf("testing spa_freeze()...\n"); 5765 5766 kernel_init(FREAD | FWRITE); 5767 VERIFY3U(0, ==, spa_open(ztest_opts.zo_pool, &spa, FTAG)); 5768 VERIFY3U(0, ==, ztest_dataset_open(0)); 5769 spa->spa_debug = B_TRUE; 5770 ztest_spa = spa; 5771 5772 /* 5773 * Force the first log block to be transactionally allocated. 5774 * We have to do this before we freeze the pool -- otherwise 5775 * the log chain won't be anchored. 5776 */ 5777 while (BP_IS_HOLE(&zd->zd_zilog->zl_header->zh_log)) { 5778 ztest_dmu_object_alloc_free(zd, 0); 5779 zil_commit(zd->zd_zilog, 0); 5780 } 5781 5782 txg_wait_synced(spa_get_dsl(spa), 0); 5783 5784 /* 5785 * Freeze the pool. This stops spa_sync() from doing anything, 5786 * so that the only way to record changes from now on is the ZIL. 5787 */ 5788 spa_freeze(spa); 5789 5790 /* 5791 * Because it is hard to predict how much space a write will actually 5792 * require beforehand, we leave ourselves some fudge space to write over 5793 * capacity. 5794 */ 5795 uint64_t capacity = metaslab_class_get_space(spa_normal_class(spa)) / 2; 5796 5797 /* 5798 * Run tests that generate log records but don't alter the pool config 5799 * or depend on DSL sync tasks (snapshots, objset create/destroy, etc). 5800 * We do a txg_wait_synced() after each iteration to force the txg 5801 * to increase well beyond the last synced value in the uberblock. 5802 * The ZIL should be OK with that. 5803 * 5804 * Run a random number of times less than zo_maxloops and ensure we do 5805 * not run out of space on the pool. 5806 */ 5807 while (ztest_random(10) != 0 && 5808 numloops++ < ztest_opts.zo_maxloops && 5809 metaslab_class_get_alloc(spa_normal_class(spa)) < capacity) { 5810 ztest_od_t od; 5811 ztest_od_init(&od, 0, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0); 5812 VERIFY0(ztest_object_init(zd, &od, sizeof (od), B_FALSE)); 5813 ztest_io(zd, od.od_object, 5814 ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT); 5815 txg_wait_synced(spa_get_dsl(spa), 0); 5816 } 5817 5818 /* 5819 * Commit all of the changes we just generated. 5820 */ 5821 zil_commit(zd->zd_zilog, 0); 5822 txg_wait_synced(spa_get_dsl(spa), 0); 5823 5824 /* 5825 * Close our dataset and close the pool. 5826 */ 5827 ztest_dataset_close(0); 5828 spa_close(spa, FTAG); 5829 kernel_fini(); 5830 5831 /* 5832 * Open and close the pool and dataset to induce log replay. 5833 */ 5834 kernel_init(FREAD | FWRITE); 5835 VERIFY3U(0, ==, spa_open(ztest_opts.zo_pool, &spa, FTAG)); 5836 ASSERT(spa_freeze_txg(spa) == UINT64_MAX); 5837 VERIFY3U(0, ==, ztest_dataset_open(0)); 5838 ztest_dataset_close(0); 5839 5840 spa->spa_debug = B_TRUE; 5841 ztest_spa = spa; 5842 txg_wait_synced(spa_get_dsl(spa), 0); 5843 ztest_reguid(NULL, 0); 5844 5845 spa_close(spa, FTAG); 5846 kernel_fini(); 5847 } 5848 5849 void 5850 print_time(hrtime_t t, char *timebuf) 5851 { 5852 hrtime_t s = t / NANOSEC; 5853 hrtime_t m = s / 60; 5854 hrtime_t h = m / 60; 5855 hrtime_t d = h / 24; 5856 5857 s -= m * 60; 5858 m -= h * 60; 5859 h -= d * 24; 5860 5861 timebuf[0] = '\0'; 5862 5863 if (d) 5864 (void) sprintf(timebuf, 5865 "%llud%02lluh%02llum%02llus", d, h, m, s); 5866 else if (h) 5867 (void) sprintf(timebuf, "%lluh%02llum%02llus", h, m, s); 5868 else if (m) 5869 (void) sprintf(timebuf, "%llum%02llus", m, s); 5870 else 5871 (void) sprintf(timebuf, "%llus", s); 5872 } 5873 5874 static nvlist_t * 5875 make_random_props() 5876 { 5877 nvlist_t *props; 5878 5879 VERIFY(nvlist_alloc(&props, NV_UNIQUE_NAME, 0) == 0); 5880 if (ztest_random(2) == 0) 5881 return (props); 5882 VERIFY(nvlist_add_uint64(props, "autoreplace", 1) == 0); 5883 5884 return (props); 5885 } 5886 5887 /* 5888 * Create a storage pool with the given name and initial vdev size. 5889 * Then test spa_freeze() functionality. 5890 */ 5891 static void 5892 ztest_init(ztest_shared_t *zs) 5893 { 5894 spa_t *spa; 5895 nvlist_t *nvroot, *props; 5896 5897 VERIFY(_mutex_init(&ztest_vdev_lock, USYNC_THREAD, NULL) == 0); 5898 VERIFY(rwlock_init(&ztest_name_lock, USYNC_THREAD, NULL) == 0); 5899 5900 kernel_init(FREAD | FWRITE); 5901 5902 /* 5903 * Create the storage pool. 5904 */ 5905 (void) spa_destroy(ztest_opts.zo_pool); 5906 ztest_shared->zs_vdev_next_leaf = 0; 5907 zs->zs_splits = 0; 5908 zs->zs_mirrors = ztest_opts.zo_mirrors; 5909 nvroot = make_vdev_root(NULL, NULL, NULL, ztest_opts.zo_vdev_size, 0, 5910 0, ztest_opts.zo_raidz, zs->zs_mirrors, 1); 5911 props = make_random_props(); 5912 for (int i = 0; i < SPA_FEATURES; i++) { 5913 char buf[1024]; 5914 (void) snprintf(buf, sizeof (buf), "feature@%s", 5915 spa_feature_table[i].fi_uname); 5916 VERIFY3U(0, ==, nvlist_add_uint64(props, buf, 0)); 5917 } 5918 VERIFY3U(0, ==, spa_create(ztest_opts.zo_pool, nvroot, props, NULL)); 5919 nvlist_free(nvroot); 5920 5921 VERIFY3U(0, ==, spa_open(ztest_opts.zo_pool, &spa, FTAG)); 5922 zs->zs_metaslab_sz = 5923 1ULL << spa->spa_root_vdev->vdev_child[0]->vdev_ms_shift; 5924 5925 spa_close(spa, FTAG); 5926 5927 kernel_fini(); 5928 5929 ztest_run_zdb(ztest_opts.zo_pool); 5930 5931 ztest_freeze(); 5932 5933 ztest_run_zdb(ztest_opts.zo_pool); 5934 5935 (void) rwlock_destroy(&ztest_name_lock); 5936 (void) _mutex_destroy(&ztest_vdev_lock); 5937 } 5938 5939 static void 5940 setup_data_fd(void) 5941 { 5942 static char ztest_name_data[] = "/tmp/ztest.data.XXXXXX"; 5943 5944 ztest_fd_data = mkstemp(ztest_name_data); 5945 ASSERT3S(ztest_fd_data, >=, 0); 5946 (void) unlink(ztest_name_data); 5947 } 5948 5949 5950 static int 5951 shared_data_size(ztest_shared_hdr_t *hdr) 5952 { 5953 int size; 5954 5955 size = hdr->zh_hdr_size; 5956 size += hdr->zh_opts_size; 5957 size += hdr->zh_size; 5958 size += hdr->zh_stats_size * hdr->zh_stats_count; 5959 size += hdr->zh_ds_size * hdr->zh_ds_count; 5960 5961 return (size); 5962 } 5963 5964 static void 5965 setup_hdr(void) 5966 { 5967 int size; 5968 ztest_shared_hdr_t *hdr; 5969 5970 hdr = (void *)mmap(0, P2ROUNDUP(sizeof (*hdr), getpagesize()), 5971 PROT_READ | PROT_WRITE, MAP_SHARED, ztest_fd_data, 0); 5972 ASSERT(hdr != MAP_FAILED); 5973 5974 VERIFY3U(0, ==, ftruncate(ztest_fd_data, sizeof (ztest_shared_hdr_t))); 5975 5976 hdr->zh_hdr_size = sizeof (ztest_shared_hdr_t); 5977 hdr->zh_opts_size = sizeof (ztest_shared_opts_t); 5978 hdr->zh_size = sizeof (ztest_shared_t); 5979 hdr->zh_stats_size = sizeof (ztest_shared_callstate_t); 5980 hdr->zh_stats_count = ZTEST_FUNCS; 5981 hdr->zh_ds_size = sizeof (ztest_shared_ds_t); 5982 hdr->zh_ds_count = ztest_opts.zo_datasets; 5983 5984 size = shared_data_size(hdr); 5985 VERIFY3U(0, ==, ftruncate(ztest_fd_data, size)); 5986 5987 (void) munmap((caddr_t)hdr, P2ROUNDUP(sizeof (*hdr), getpagesize())); 5988 } 5989 5990 static void 5991 setup_data(void) 5992 { 5993 int size, offset; 5994 ztest_shared_hdr_t *hdr; 5995 uint8_t *buf; 5996 5997 hdr = (void *)mmap(0, P2ROUNDUP(sizeof (*hdr), getpagesize()), 5998 PROT_READ, MAP_SHARED, ztest_fd_data, 0); 5999 ASSERT(hdr != MAP_FAILED); 6000 6001 size = shared_data_size(hdr); 6002 6003 (void) munmap((caddr_t)hdr, P2ROUNDUP(sizeof (*hdr), getpagesize())); 6004 hdr = ztest_shared_hdr = (void *)mmap(0, P2ROUNDUP(size, getpagesize()), 6005 PROT_READ | PROT_WRITE, MAP_SHARED, ztest_fd_data, 0); 6006 ASSERT(hdr != MAP_FAILED); 6007 buf = (uint8_t *)hdr; 6008 6009 offset = hdr->zh_hdr_size; 6010 ztest_shared_opts = (void *)&buf[offset]; 6011 offset += hdr->zh_opts_size; 6012 ztest_shared = (void *)&buf[offset]; 6013 offset += hdr->zh_size; 6014 ztest_shared_callstate = (void *)&buf[offset]; 6015 offset += hdr->zh_stats_size * hdr->zh_stats_count; 6016 ztest_shared_ds = (void *)&buf[offset]; 6017 } 6018 6019 static boolean_t 6020 exec_child(char *cmd, char *libpath, boolean_t ignorekill, int *statusp) 6021 { 6022 pid_t pid; 6023 int status; 6024 char *cmdbuf = NULL; 6025 6026 pid = fork(); 6027 6028 if (cmd == NULL) { 6029 cmdbuf = umem_alloc(MAXPATHLEN, UMEM_NOFAIL); 6030 (void) strlcpy(cmdbuf, getexecname(), MAXPATHLEN); 6031 cmd = cmdbuf; 6032 } 6033 6034 if (pid == -1) 6035 fatal(1, "fork failed"); 6036 6037 if (pid == 0) { /* child */ 6038 char *emptyargv[2] = { cmd, NULL }; 6039 char fd_data_str[12]; 6040 6041 struct rlimit rl = { 1024, 1024 }; 6042 (void) setrlimit(RLIMIT_NOFILE, &rl); 6043 6044 (void) close(ztest_fd_rand); 6045 VERIFY3U(11, >=, 6046 snprintf(fd_data_str, 12, "%d", ztest_fd_data)); 6047 VERIFY0(setenv("ZTEST_FD_DATA", fd_data_str, 1)); 6048 6049 (void) enable_extended_FILE_stdio(-1, -1); 6050 if (libpath != NULL) 6051 VERIFY(0 == setenv("LD_LIBRARY_PATH", libpath, 1)); 6052 (void) execv(cmd, emptyargv); 6053 ztest_dump_core = B_FALSE; 6054 fatal(B_TRUE, "exec failed: %s", cmd); 6055 } 6056 6057 if (cmdbuf != NULL) { 6058 umem_free(cmdbuf, MAXPATHLEN); 6059 cmd = NULL; 6060 } 6061 6062 while (waitpid(pid, &status, 0) != pid) 6063 continue; 6064 if (statusp != NULL) 6065 *statusp = status; 6066 6067 if (WIFEXITED(status)) { 6068 if (WEXITSTATUS(status) != 0) { 6069 (void) fprintf(stderr, "child exited with code %d\n", 6070 WEXITSTATUS(status)); 6071 exit(2); 6072 } 6073 return (B_FALSE); 6074 } else if (WIFSIGNALED(status)) { 6075 if (!ignorekill || WTERMSIG(status) != SIGKILL) { 6076 (void) fprintf(stderr, "child died with signal %d\n", 6077 WTERMSIG(status)); 6078 exit(3); 6079 } 6080 return (B_TRUE); 6081 } else { 6082 (void) fprintf(stderr, "something strange happened to child\n"); 6083 exit(4); 6084 /* NOTREACHED */ 6085 } 6086 } 6087 6088 static void 6089 ztest_run_init(void) 6090 { 6091 ztest_shared_t *zs = ztest_shared; 6092 6093 ASSERT(ztest_opts.zo_init != 0); 6094 6095 /* 6096 * Blow away any existing copy of zpool.cache 6097 */ 6098 (void) remove(spa_config_path); 6099 6100 /* 6101 * Create and initialize our storage pool. 6102 */ 6103 for (int i = 1; i <= ztest_opts.zo_init; i++) { 6104 bzero(zs, sizeof (ztest_shared_t)); 6105 if (ztest_opts.zo_verbose >= 3 && 6106 ztest_opts.zo_init != 1) { 6107 (void) printf("ztest_init(), pass %d\n", i); 6108 } 6109 ztest_init(zs); 6110 } 6111 } 6112 6113 int 6114 main(int argc, char **argv) 6115 { 6116 int kills = 0; 6117 int iters = 0; 6118 int older = 0; 6119 int newer = 0; 6120 ztest_shared_t *zs; 6121 ztest_info_t *zi; 6122 ztest_shared_callstate_t *zc; 6123 char timebuf[100]; 6124 char numbuf[6]; 6125 spa_t *spa; 6126 char *cmd; 6127 boolean_t hasalt; 6128 char *fd_data_str = getenv("ZTEST_FD_DATA"); 6129 6130 (void) setvbuf(stdout, NULL, _IOLBF, 0); 6131 6132 dprintf_setup(&argc, argv); 6133 zfs_deadman_synctime_ms = 300000; 6134 6135 ztest_fd_rand = open("/dev/urandom", O_RDONLY); 6136 ASSERT3S(ztest_fd_rand, >=, 0); 6137 6138 if (!fd_data_str) { 6139 process_options(argc, argv); 6140 6141 setup_data_fd(); 6142 setup_hdr(); 6143 setup_data(); 6144 bcopy(&ztest_opts, ztest_shared_opts, 6145 sizeof (*ztest_shared_opts)); 6146 } else { 6147 ztest_fd_data = atoi(fd_data_str); 6148 setup_data(); 6149 bcopy(ztest_shared_opts, &ztest_opts, sizeof (ztest_opts)); 6150 } 6151 ASSERT3U(ztest_opts.zo_datasets, ==, ztest_shared_hdr->zh_ds_count); 6152 6153 /* Override location of zpool.cache */ 6154 VERIFY3U(asprintf((char **)&spa_config_path, "%s/zpool.cache", 6155 ztest_opts.zo_dir), !=, -1); 6156 6157 ztest_ds = umem_alloc(ztest_opts.zo_datasets * sizeof (ztest_ds_t), 6158 UMEM_NOFAIL); 6159 zs = ztest_shared; 6160 6161 if (fd_data_str) { 6162 metaslab_gang_bang = ztest_opts.zo_metaslab_gang_bang; 6163 metaslab_df_alloc_threshold = 6164 zs->zs_metaslab_df_alloc_threshold; 6165 6166 if (zs->zs_do_init) 6167 ztest_run_init(); 6168 else 6169 ztest_run(zs); 6170 exit(0); 6171 } 6172 6173 hasalt = (strlen(ztest_opts.zo_alt_ztest) != 0); 6174 6175 if (ztest_opts.zo_verbose >= 1) { 6176 (void) printf("%llu vdevs, %d datasets, %d threads," 6177 " %llu seconds...\n", 6178 (u_longlong_t)ztest_opts.zo_vdevs, 6179 ztest_opts.zo_datasets, 6180 ztest_opts.zo_threads, 6181 (u_longlong_t)ztest_opts.zo_time); 6182 } 6183 6184 cmd = umem_alloc(MAXNAMELEN, UMEM_NOFAIL); 6185 (void) strlcpy(cmd, getexecname(), MAXNAMELEN); 6186 6187 zs->zs_do_init = B_TRUE; 6188 if (strlen(ztest_opts.zo_alt_ztest) != 0) { 6189 if (ztest_opts.zo_verbose >= 1) { 6190 (void) printf("Executing older ztest for " 6191 "initialization: %s\n", ztest_opts.zo_alt_ztest); 6192 } 6193 VERIFY(!exec_child(ztest_opts.zo_alt_ztest, 6194 ztest_opts.zo_alt_libpath, B_FALSE, NULL)); 6195 } else { 6196 VERIFY(!exec_child(NULL, NULL, B_FALSE, NULL)); 6197 } 6198 zs->zs_do_init = B_FALSE; 6199 6200 zs->zs_proc_start = gethrtime(); 6201 zs->zs_proc_stop = zs->zs_proc_start + ztest_opts.zo_time * NANOSEC; 6202 6203 for (int f = 0; f < ZTEST_FUNCS; f++) { 6204 zi = &ztest_info[f]; 6205 zc = ZTEST_GET_SHARED_CALLSTATE(f); 6206 if (zs->zs_proc_start + zi->zi_interval[0] > zs->zs_proc_stop) 6207 zc->zc_next = UINT64_MAX; 6208 else 6209 zc->zc_next = zs->zs_proc_start + 6210 ztest_random(2 * zi->zi_interval[0] + 1); 6211 } 6212 6213 /* 6214 * Run the tests in a loop. These tests include fault injection 6215 * to verify that self-healing data works, and forced crashes 6216 * to verify that we never lose on-disk consistency. 6217 */ 6218 while (gethrtime() < zs->zs_proc_stop) { 6219 int status; 6220 boolean_t killed; 6221 6222 /* 6223 * Initialize the workload counters for each function. 6224 */ 6225 for (int f = 0; f < ZTEST_FUNCS; f++) { 6226 zc = ZTEST_GET_SHARED_CALLSTATE(f); 6227 zc->zc_count = 0; 6228 zc->zc_time = 0; 6229 } 6230 6231 /* Set the allocation switch size */ 6232 zs->zs_metaslab_df_alloc_threshold = 6233 ztest_random(zs->zs_metaslab_sz / 4) + 1; 6234 6235 if (!hasalt || ztest_random(2) == 0) { 6236 if (hasalt && ztest_opts.zo_verbose >= 1) { 6237 (void) printf("Executing newer ztest: %s\n", 6238 cmd); 6239 } 6240 newer++; 6241 killed = exec_child(cmd, NULL, B_TRUE, &status); 6242 } else { 6243 if (hasalt && ztest_opts.zo_verbose >= 1) { 6244 (void) printf("Executing older ztest: %s\n", 6245 ztest_opts.zo_alt_ztest); 6246 } 6247 older++; 6248 killed = exec_child(ztest_opts.zo_alt_ztest, 6249 ztest_opts.zo_alt_libpath, B_TRUE, &status); 6250 } 6251 6252 if (killed) 6253 kills++; 6254 iters++; 6255 6256 if (ztest_opts.zo_verbose >= 1) { 6257 hrtime_t now = gethrtime(); 6258 6259 now = MIN(now, zs->zs_proc_stop); 6260 print_time(zs->zs_proc_stop - now, timebuf); 6261 nicenum(zs->zs_space, numbuf); 6262 6263 (void) printf("Pass %3d, %8s, %3llu ENOSPC, " 6264 "%4.1f%% of %5s used, %3.0f%% done, %8s to go\n", 6265 iters, 6266 WIFEXITED(status) ? "Complete" : "SIGKILL", 6267 (u_longlong_t)zs->zs_enospc_count, 6268 100.0 * zs->zs_alloc / zs->zs_space, 6269 numbuf, 6270 100.0 * (now - zs->zs_proc_start) / 6271 (ztest_opts.zo_time * NANOSEC), timebuf); 6272 } 6273 6274 if (ztest_opts.zo_verbose >= 2) { 6275 (void) printf("\nWorkload summary:\n\n"); 6276 (void) printf("%7s %9s %s\n", 6277 "Calls", "Time", "Function"); 6278 (void) printf("%7s %9s %s\n", 6279 "-----", "----", "--------"); 6280 for (int f = 0; f < ZTEST_FUNCS; f++) { 6281 Dl_info dli; 6282 6283 zi = &ztest_info[f]; 6284 zc = ZTEST_GET_SHARED_CALLSTATE(f); 6285 print_time(zc->zc_time, timebuf); 6286 (void) dladdr((void *)zi->zi_func, &dli); 6287 (void) printf("%7llu %9s %s\n", 6288 (u_longlong_t)zc->zc_count, timebuf, 6289 dli.dli_sname); 6290 } 6291 (void) printf("\n"); 6292 } 6293 6294 /* 6295 * It's possible that we killed a child during a rename test, 6296 * in which case we'll have a 'ztest_tmp' pool lying around 6297 * instead of 'ztest'. Do a blind rename in case this happened. 6298 */ 6299 kernel_init(FREAD); 6300 if (spa_open(ztest_opts.zo_pool, &spa, FTAG) == 0) { 6301 spa_close(spa, FTAG); 6302 } else { 6303 char tmpname[MAXNAMELEN]; 6304 kernel_fini(); 6305 kernel_init(FREAD | FWRITE); 6306 (void) snprintf(tmpname, sizeof (tmpname), "%s_tmp", 6307 ztest_opts.zo_pool); 6308 (void) spa_rename(tmpname, ztest_opts.zo_pool); 6309 } 6310 kernel_fini(); 6311 6312 ztest_run_zdb(ztest_opts.zo_pool); 6313 } 6314 6315 if (ztest_opts.zo_verbose >= 1) { 6316 if (hasalt) { 6317 (void) printf("%d runs of older ztest: %s\n", older, 6318 ztest_opts.zo_alt_ztest); 6319 (void) printf("%d runs of newer ztest: %s\n", newer, 6320 cmd); 6321 } 6322 (void) printf("%d killed, %d completed, %.0f%% kill rate\n", 6323 kills, iters - kills, (100.0 * kills) / MAX(1, iters)); 6324 } 6325 6326 umem_free(cmd, MAXNAMELEN); 6327 6328 return (0); 6329 } 6330