1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 /* 29 * The objective of this program is to provide a DMU/ZAP/SPA stress test 30 * that runs entirely in userland, is easy to use, and easy to extend. 31 * 32 * The overall design of the ztest program is as follows: 33 * 34 * (1) For each major functional area (e.g. adding vdevs to a pool, 35 * creating and destroying datasets, reading and writing objects, etc) 36 * we have a simple routine to test that functionality. These 37 * individual routines do not have to do anything "stressful". 38 * 39 * (2) We turn these simple functionality tests into a stress test by 40 * running them all in parallel, with as many threads as desired, 41 * and spread across as many datasets, objects, and vdevs as desired. 42 * 43 * (3) While all this is happening, we inject faults into the pool to 44 * verify that self-healing data really works. 45 * 46 * (4) Every time we open a dataset, we change its checksum and compression 47 * functions. Thus even individual objects vary from block to block 48 * in which checksum they use and whether they're compressed. 49 * 50 * (5) To verify that we never lose on-disk consistency after a crash, 51 * we run the entire test in a child of the main process. 52 * At random times, the child self-immolates with a SIGKILL. 53 * This is the software equivalent of pulling the power cord. 54 * The parent then runs the test again, using the existing 55 * storage pool, as many times as desired. 56 * 57 * (6) To verify that we don't have future leaks or temporal incursions, 58 * many of the functional tests record the transaction group number 59 * as part of their data. When reading old data, they verify that 60 * the transaction group number is less than the current, open txg. 61 * If you add a new test, please do this if applicable. 62 * 63 * When run with no arguments, ztest runs for about five minutes and 64 * produces no output if successful. To get a little bit of information, 65 * specify -V. To get more information, specify -VV, and so on. 66 * 67 * To turn this into an overnight stress test, use -T to specify run time. 68 * 69 * You can ask more more vdevs [-v], datasets [-d], or threads [-t] 70 * to increase the pool capacity, fanout, and overall stress level. 71 * 72 * The -N(okill) option will suppress kills, so each child runs to completion. 73 * This can be useful when you're trying to distinguish temporal incursions 74 * from plain old race conditions. 75 */ 76 77 #include <sys/zfs_context.h> 78 #include <sys/spa.h> 79 #include <sys/dmu.h> 80 #include <sys/txg.h> 81 #include <sys/zap.h> 82 #include <sys/dmu_traverse.h> 83 #include <sys/dmu_objset.h> 84 #include <sys/poll.h> 85 #include <sys/stat.h> 86 #include <sys/time.h> 87 #include <sys/wait.h> 88 #include <sys/mman.h> 89 #include <sys/resource.h> 90 #include <sys/zio.h> 91 #include <sys/zio_checksum.h> 92 #include <sys/zio_compress.h> 93 #include <sys/zil.h> 94 #include <sys/vdev_impl.h> 95 #include <sys/spa_impl.h> 96 #include <sys/dsl_prop.h> 97 #include <sys/refcount.h> 98 #include <stdio.h> 99 #include <stdlib.h> 100 #include <unistd.h> 101 #include <signal.h> 102 #include <umem.h> 103 #include <dlfcn.h> 104 #include <ctype.h> 105 #include <math.h> 106 #include <sys/fs/zfs.h> 107 108 static char cmdname[] = "ztest"; 109 static char *zopt_pool = cmdname; 110 111 static uint64_t zopt_vdevs = 5; 112 static uint64_t zopt_vdevtime; 113 static int zopt_ashift = SPA_MINBLOCKSHIFT; 114 static int zopt_mirrors = 2; 115 static int zopt_raidz = 4; 116 static size_t zopt_vdev_size = SPA_MINDEVSIZE; 117 static int zopt_datasets = 7; 118 static int zopt_threads = 23; 119 static uint64_t zopt_passtime = 60; /* 60 seconds */ 120 static uint64_t zopt_killrate = 70; /* 70% kill rate */ 121 static int zopt_verbose = 0; 122 static int zopt_init = 1; 123 static char *zopt_dir = "/tmp"; 124 static uint64_t zopt_time = 300; /* 5 minutes */ 125 static int zopt_maxfaults; 126 127 typedef struct ztest_args { 128 char *za_pool; 129 objset_t *za_os; 130 zilog_t *za_zilog; 131 thread_t za_thread; 132 uint64_t za_instance; 133 uint64_t za_random; 134 uint64_t za_diroff; 135 uint64_t za_diroff_shared; 136 uint64_t za_zil_seq; 137 hrtime_t za_start; 138 hrtime_t za_stop; 139 hrtime_t za_kill; 140 traverse_handle_t *za_th; 141 } ztest_args_t; 142 143 typedef void ztest_func_t(ztest_args_t *); 144 145 /* 146 * Note: these aren't static because we want dladdr() to work. 147 */ 148 ztest_func_t ztest_dmu_read_write; 149 ztest_func_t ztest_dmu_write_parallel; 150 ztest_func_t ztest_dmu_object_alloc_free; 151 ztest_func_t ztest_zap; 152 ztest_func_t ztest_zap_parallel; 153 ztest_func_t ztest_traverse; 154 ztest_func_t ztest_dsl_prop_get_set; 155 ztest_func_t ztest_dmu_objset_create_destroy; 156 ztest_func_t ztest_dmu_snapshot_create_destroy; 157 ztest_func_t ztest_spa_create_destroy; 158 ztest_func_t ztest_fault_inject; 159 ztest_func_t ztest_vdev_attach_detach; 160 ztest_func_t ztest_vdev_LUN_growth; 161 ztest_func_t ztest_vdev_add_remove; 162 ztest_func_t ztest_scrub; 163 ztest_func_t ztest_spa_rename; 164 165 typedef struct ztest_info { 166 ztest_func_t *zi_func; /* test function */ 167 uint64_t *zi_interval; /* execute every <interval> seconds */ 168 uint64_t zi_calls; /* per-pass count */ 169 uint64_t zi_call_time; /* per-pass time */ 170 uint64_t zi_call_total; /* cumulative total */ 171 uint64_t zi_call_target; /* target cumulative total */ 172 } ztest_info_t; 173 174 uint64_t zopt_always = 0; /* all the time */ 175 uint64_t zopt_often = 1; /* every second */ 176 uint64_t zopt_sometimes = 10; /* every 10 seconds */ 177 uint64_t zopt_rarely = 60; /* every 60 seconds */ 178 179 ztest_info_t ztest_info[] = { 180 { ztest_dmu_read_write, &zopt_always }, 181 { ztest_dmu_write_parallel, &zopt_always }, 182 { ztest_dmu_object_alloc_free, &zopt_always }, 183 { ztest_zap, &zopt_always }, 184 { ztest_zap_parallel, &zopt_always }, 185 { ztest_traverse, &zopt_often }, 186 { ztest_dsl_prop_get_set, &zopt_sometimes }, 187 { ztest_dmu_objset_create_destroy, &zopt_sometimes }, 188 { ztest_dmu_snapshot_create_destroy, &zopt_rarely }, 189 { ztest_spa_create_destroy, &zopt_sometimes }, 190 { ztest_fault_inject, &zopt_sometimes }, 191 { ztest_spa_rename, &zopt_rarely }, 192 { ztest_vdev_attach_detach, &zopt_rarely }, 193 { ztest_vdev_LUN_growth, &zopt_rarely }, 194 { ztest_vdev_add_remove, &zopt_vdevtime }, 195 { ztest_scrub, &zopt_vdevtime }, 196 }; 197 198 #define ZTEST_FUNCS (sizeof (ztest_info) / sizeof (ztest_info_t)) 199 200 #define ZTEST_SYNC_LOCKS 16 201 202 /* 203 * Stuff we need to share writably between parent and child. 204 */ 205 typedef struct ztest_shared { 206 mutex_t zs_vdev_lock; 207 rwlock_t zs_name_lock; 208 uint64_t zs_vdev_primaries; 209 uint64_t zs_enospc_count; 210 hrtime_t zs_start_time; 211 hrtime_t zs_stop_time; 212 uint64_t zs_alloc; 213 uint64_t zs_space; 214 ztest_info_t zs_info[ZTEST_FUNCS]; 215 mutex_t zs_sync_lock[ZTEST_SYNC_LOCKS]; 216 uint64_t zs_seq[ZTEST_SYNC_LOCKS]; 217 } ztest_shared_t; 218 219 typedef struct ztest_block_tag { 220 uint64_t bt_objset; 221 uint64_t bt_object; 222 uint64_t bt_offset; 223 uint64_t bt_txg; 224 uint64_t bt_thread; 225 uint64_t bt_seq; 226 } ztest_block_tag_t; 227 228 static char ztest_dev_template[] = "%s/%s.%llua"; 229 static ztest_shared_t *ztest_shared; 230 231 static int ztest_random_fd; 232 static int ztest_dump_core = 1; 233 234 extern uint64_t zio_gang_bang; 235 236 #define ZTEST_DIROBJ 1 237 #define ZTEST_MICROZAP_OBJ 2 238 #define ZTEST_FATZAP_OBJ 3 239 240 #define ZTEST_DIROBJ_BLOCKSIZE (1 << 10) 241 #define ZTEST_DIRSIZE 256 242 243 /* 244 * These libumem hooks provide a reasonable set of defaults for the allocator's 245 * debugging facilities. 246 */ 247 const char * 248 _umem_debug_init() 249 { 250 return ("default,verbose"); /* $UMEM_DEBUG setting */ 251 } 252 253 const char * 254 _umem_logging_init(void) 255 { 256 return ("fail,contents"); /* $UMEM_LOGGING setting */ 257 } 258 259 #define FATAL_MSG_SZ 1024 260 261 char *fatal_msg; 262 263 static void 264 fatal(int do_perror, char *message, ...) 265 { 266 va_list args; 267 int save_errno = errno; 268 char buf[FATAL_MSG_SZ]; 269 270 (void) fflush(stdout); 271 272 va_start(args, message); 273 (void) sprintf(buf, "ztest: "); 274 /* LINTED */ 275 (void) vsprintf(buf + strlen(buf), message, args); 276 va_end(args); 277 if (do_perror) { 278 (void) snprintf(buf + strlen(buf), FATAL_MSG_SZ - strlen(buf), 279 ": %s", strerror(save_errno)); 280 } 281 (void) fprintf(stderr, "%s\n", buf); 282 fatal_msg = buf; /* to ease debugging */ 283 if (ztest_dump_core) 284 abort(); 285 exit(3); 286 } 287 288 static int 289 str2shift(const char *buf) 290 { 291 const char *ends = "BKMGTPEZ"; 292 int i; 293 294 if (buf[0] == '\0') 295 return (0); 296 for (i = 0; i < strlen(ends); i++) { 297 if (toupper(buf[0]) == ends[i]) 298 break; 299 } 300 if (i == strlen(ends)) 301 fatal(0, "invalid bytes suffix: %s", buf); 302 if (buf[1] == '\0' || (toupper(buf[1]) == 'B' && buf[2] == '\0')) { 303 return (10*i); 304 } 305 fatal(0, "invalid bytes suffix: %s", buf); 306 return (-1); 307 } 308 309 static uint64_t 310 nicenumtoull(const char *buf) 311 { 312 char *end; 313 uint64_t val; 314 315 val = strtoull(buf, &end, 0); 316 if (end == buf) { 317 fatal(0, "bad numeric value: %s", buf); 318 } else if (end[0] == '.') { 319 double fval = strtod(buf, &end); 320 fval *= pow(2, str2shift(end)); 321 if (fval > UINT64_MAX) 322 fatal(0, "value too large: %s", buf); 323 val = (uint64_t)fval; 324 } else { 325 int shift = str2shift(end); 326 if (shift >= 64 || (val << shift) >> shift != val) 327 fatal(0, "value too large: %s", buf); 328 val <<= shift; 329 } 330 return (val); 331 } 332 333 static void 334 usage(void) 335 { 336 char nice_vdev_size[10]; 337 char nice_gang_bang[10]; 338 339 nicenum(zopt_vdev_size, nice_vdev_size); 340 nicenum(zio_gang_bang, nice_gang_bang); 341 342 (void) printf("Usage: %s\n" 343 "\t[-v vdevs (default: %llu)]\n" 344 "\t[-s size_of_each_vdev (default: %s)]\n" 345 "\t[-a alignment_shift (default: %d) (use 0 for random)]\n" 346 "\t[-m mirror_copies (default: %d)]\n" 347 "\t[-r raidz_disks (default: %d)]\n" 348 "\t[-d datasets (default: %d)]\n" 349 "\t[-t threads (default: %d)]\n" 350 "\t[-g gang_block_threshold (default: %s)]\n" 351 "\t[-i initialize pool i times (default: %d)]\n" 352 "\t[-k kill percentage (default: %llu%%)]\n" 353 "\t[-p pool_name (default: %s)]\n" 354 "\t[-f file directory for vdev files (default: %s)]\n" 355 "\t[-V(erbose)] (use multiple times for ever more blather)\n" 356 "\t[-E(xisting)] (use existing pool instead of creating new one)\n" 357 "\t[-T time] total run time (default: %llu sec)\n" 358 "\t[-P passtime] time per pass (default: %llu sec)\n" 359 "", 360 cmdname, 361 (u_longlong_t)zopt_vdevs, /* -v */ 362 nice_vdev_size, /* -s */ 363 zopt_ashift, /* -a */ 364 zopt_mirrors, /* -m */ 365 zopt_raidz, /* -r */ 366 zopt_datasets, /* -d */ 367 zopt_threads, /* -t */ 368 nice_gang_bang, /* -g */ 369 zopt_init, /* -i */ 370 (u_longlong_t)zopt_killrate, /* -k */ 371 zopt_pool, /* -p */ 372 zopt_dir, /* -f */ 373 (u_longlong_t)zopt_time, /* -T */ 374 (u_longlong_t)zopt_passtime); /* -P */ 375 exit(1); 376 } 377 378 static uint64_t 379 ztest_random(uint64_t range) 380 { 381 uint64_t r; 382 383 if (range == 0) 384 return (0); 385 386 if (read(ztest_random_fd, &r, sizeof (r)) != sizeof (r)) 387 fatal(1, "short read from /dev/urandom"); 388 389 return (r % range); 390 } 391 392 static void 393 ztest_record_enospc(char *s) 394 { 395 dprintf("ENOSPC doing: %s\n", s ? s : "<unknown>"); 396 ztest_shared->zs_enospc_count++; 397 } 398 399 static void 400 process_options(int argc, char **argv) 401 { 402 int opt; 403 uint64_t value; 404 405 /* By default, test gang blocks for blocks 32K and greater */ 406 zio_gang_bang = 32 << 10; 407 408 while ((opt = getopt(argc, argv, 409 "v:s:a:m:r:d:t:g:i:k:p:f:VET:P:")) != EOF) { 410 value = 0; 411 switch (opt) { 412 case 'v': 413 case 's': 414 case 'a': 415 case 'm': 416 case 'r': 417 case 'd': 418 case 't': 419 case 'g': 420 case 'i': 421 case 'k': 422 case 'T': 423 case 'P': 424 value = nicenumtoull(optarg); 425 } 426 switch (opt) { 427 case 'v': 428 zopt_vdevs = value; 429 break; 430 case 's': 431 zopt_vdev_size = MAX(SPA_MINDEVSIZE, value); 432 break; 433 case 'a': 434 zopt_ashift = value; 435 break; 436 case 'm': 437 zopt_mirrors = value; 438 break; 439 case 'r': 440 zopt_raidz = MAX(1, value); 441 break; 442 case 'd': 443 zopt_datasets = MAX(1, value); 444 break; 445 case 't': 446 zopt_threads = MAX(1, value); 447 break; 448 case 'g': 449 zio_gang_bang = MAX(SPA_MINBLOCKSIZE << 1, value); 450 break; 451 case 'i': 452 zopt_init = value; 453 break; 454 case 'k': 455 zopt_killrate = value; 456 break; 457 case 'p': 458 zopt_pool = strdup(optarg); 459 break; 460 case 'f': 461 zopt_dir = strdup(optarg); 462 break; 463 case 'V': 464 zopt_verbose++; 465 break; 466 case 'E': 467 zopt_init = 0; 468 break; 469 case 'T': 470 zopt_time = value; 471 break; 472 case 'P': 473 zopt_passtime = MAX(1, value); 474 break; 475 case '?': 476 default: 477 usage(); 478 break; 479 } 480 } 481 482 zopt_vdevtime = (zopt_vdevs > 0 ? zopt_time / zopt_vdevs : UINT64_MAX); 483 zopt_maxfaults = MAX(zopt_mirrors, 1) * (zopt_raidz >= 2 ? 2 : 1) - 1; 484 } 485 486 static uint64_t 487 ztest_get_ashift(void) 488 { 489 if (zopt_ashift == 0) 490 return (SPA_MINBLOCKSHIFT + ztest_random(3)); 491 return (zopt_ashift); 492 } 493 494 static nvlist_t * 495 make_vdev_file(size_t size) 496 { 497 char dev_name[MAXPATHLEN]; 498 uint64_t vdev; 499 uint64_t ashift = ztest_get_ashift(); 500 int fd; 501 nvlist_t *file; 502 503 if (size == 0) { 504 (void) snprintf(dev_name, sizeof (dev_name), "%s", 505 "/dev/bogus"); 506 } else { 507 vdev = ztest_shared->zs_vdev_primaries++; 508 (void) sprintf(dev_name, ztest_dev_template, 509 zopt_dir, zopt_pool, vdev); 510 511 fd = open(dev_name, O_RDWR | O_CREAT | O_TRUNC, 0666); 512 if (fd == -1) 513 fatal(1, "can't open %s", dev_name); 514 if (ftruncate(fd, size) != 0) 515 fatal(1, "can't ftruncate %s", dev_name); 516 (void) close(fd); 517 } 518 519 VERIFY(nvlist_alloc(&file, NV_UNIQUE_NAME, 0) == 0); 520 VERIFY(nvlist_add_string(file, ZPOOL_CONFIG_TYPE, VDEV_TYPE_FILE) == 0); 521 VERIFY(nvlist_add_string(file, ZPOOL_CONFIG_PATH, dev_name) == 0); 522 VERIFY(nvlist_add_uint64(file, ZPOOL_CONFIG_ASHIFT, ashift) == 0); 523 524 return (file); 525 } 526 527 static nvlist_t * 528 make_vdev_raidz(size_t size, int r) 529 { 530 nvlist_t *raidz, **child; 531 int c; 532 533 if (r < 2) 534 return (make_vdev_file(size)); 535 536 child = umem_alloc(r * sizeof (nvlist_t *), UMEM_NOFAIL); 537 538 for (c = 0; c < r; c++) 539 child[c] = make_vdev_file(size); 540 541 VERIFY(nvlist_alloc(&raidz, NV_UNIQUE_NAME, 0) == 0); 542 VERIFY(nvlist_add_string(raidz, ZPOOL_CONFIG_TYPE, 543 VDEV_TYPE_RAIDZ) == 0); 544 VERIFY(nvlist_add_nvlist_array(raidz, ZPOOL_CONFIG_CHILDREN, 545 child, r) == 0); 546 547 for (c = 0; c < r; c++) 548 nvlist_free(child[c]); 549 550 umem_free(child, r * sizeof (nvlist_t *)); 551 552 return (raidz); 553 } 554 555 static nvlist_t * 556 make_vdev_mirror(size_t size, int r, int m) 557 { 558 nvlist_t *mirror, **child; 559 int c; 560 561 if (m < 1) 562 return (make_vdev_raidz(size, r)); 563 564 child = umem_alloc(m * sizeof (nvlist_t *), UMEM_NOFAIL); 565 566 for (c = 0; c < m; c++) 567 child[c] = make_vdev_raidz(size, r); 568 569 VERIFY(nvlist_alloc(&mirror, NV_UNIQUE_NAME, 0) == 0); 570 VERIFY(nvlist_add_string(mirror, ZPOOL_CONFIG_TYPE, 571 VDEV_TYPE_MIRROR) == 0); 572 VERIFY(nvlist_add_nvlist_array(mirror, ZPOOL_CONFIG_CHILDREN, 573 child, m) == 0); 574 575 for (c = 0; c < m; c++) 576 nvlist_free(child[c]); 577 578 umem_free(child, m * sizeof (nvlist_t *)); 579 580 return (mirror); 581 } 582 583 static nvlist_t * 584 make_vdev_root(size_t size, int r, int m, int t) 585 { 586 nvlist_t *root, **child; 587 int c; 588 589 ASSERT(t > 0); 590 591 child = umem_alloc(t * sizeof (nvlist_t *), UMEM_NOFAIL); 592 593 for (c = 0; c < t; c++) 594 child[c] = make_vdev_mirror(size, r, m); 595 596 VERIFY(nvlist_alloc(&root, NV_UNIQUE_NAME, 0) == 0); 597 VERIFY(nvlist_add_string(root, ZPOOL_CONFIG_TYPE, VDEV_TYPE_ROOT) == 0); 598 VERIFY(nvlist_add_nvlist_array(root, ZPOOL_CONFIG_CHILDREN, 599 child, t) == 0); 600 601 for (c = 0; c < t; c++) 602 nvlist_free(child[c]); 603 604 umem_free(child, t * sizeof (nvlist_t *)); 605 606 return (root); 607 } 608 609 static void 610 ztest_set_random_blocksize(objset_t *os, uint64_t object, dmu_tx_t *tx) 611 { 612 int bs = SPA_MINBLOCKSHIFT + 613 ztest_random(SPA_MAXBLOCKSHIFT - SPA_MINBLOCKSHIFT + 1); 614 int ibs = DN_MIN_INDBLKSHIFT + 615 ztest_random(DN_MAX_INDBLKSHIFT - DN_MIN_INDBLKSHIFT + 1); 616 int error; 617 618 error = dmu_object_set_blocksize(os, object, 1ULL << bs, ibs, tx); 619 if (error) { 620 char osname[300]; 621 dmu_objset_name(os, osname); 622 fatal(0, "dmu_object_set_blocksize('%s', %llu, %d, %d) = %d", 623 osname, object, 1 << bs, ibs, error); 624 } 625 } 626 627 static uint8_t 628 ztest_random_checksum(void) 629 { 630 uint8_t checksum; 631 632 do { 633 checksum = ztest_random(ZIO_CHECKSUM_FUNCTIONS); 634 } while (zio_checksum_table[checksum].ci_zbt); 635 636 if (checksum == ZIO_CHECKSUM_OFF) 637 checksum = ZIO_CHECKSUM_ON; 638 639 return (checksum); 640 } 641 642 static uint8_t 643 ztest_random_compress(void) 644 { 645 return ((uint8_t)ztest_random(ZIO_COMPRESS_FUNCTIONS)); 646 } 647 648 typedef struct ztest_replay { 649 objset_t *zr_os; 650 uint64_t zr_assign; 651 } ztest_replay_t; 652 653 static int 654 ztest_replay_create(ztest_replay_t *zr, lr_create_t *lr, boolean_t byteswap) 655 { 656 objset_t *os = zr->zr_os; 657 dmu_tx_t *tx; 658 int error; 659 660 if (byteswap) 661 byteswap_uint64_array(lr, sizeof (*lr)); 662 663 tx = dmu_tx_create(os); 664 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); 665 error = dmu_tx_assign(tx, zr->zr_assign); 666 if (error) { 667 dmu_tx_abort(tx); 668 return (error); 669 } 670 671 error = dmu_object_claim(os, lr->lr_doid, lr->lr_mode, 0, 672 DMU_OT_NONE, 0, tx); 673 ASSERT(error == 0); 674 dmu_tx_commit(tx); 675 676 if (zopt_verbose >= 5) { 677 char osname[MAXNAMELEN]; 678 dmu_objset_name(os, osname); 679 (void) printf("replay create of %s object %llu" 680 " in txg %llu = %d\n", 681 osname, (u_longlong_t)lr->lr_doid, 682 (u_longlong_t)zr->zr_assign, error); 683 } 684 685 return (error); 686 } 687 688 static int 689 ztest_replay_remove(ztest_replay_t *zr, lr_remove_t *lr, boolean_t byteswap) 690 { 691 objset_t *os = zr->zr_os; 692 dmu_tx_t *tx; 693 int error; 694 695 if (byteswap) 696 byteswap_uint64_array(lr, sizeof (*lr)); 697 698 tx = dmu_tx_create(os); 699 dmu_tx_hold_free(tx, lr->lr_doid, 0, DMU_OBJECT_END); 700 error = dmu_tx_assign(tx, zr->zr_assign); 701 if (error) { 702 dmu_tx_abort(tx); 703 return (error); 704 } 705 706 error = dmu_object_free(os, lr->lr_doid, tx); 707 dmu_tx_commit(tx); 708 709 return (error); 710 } 711 712 zil_replay_func_t *ztest_replay_vector[TX_MAX_TYPE] = { 713 NULL, /* 0 no such transaction type */ 714 ztest_replay_create, /* TX_CREATE */ 715 NULL, /* TX_MKDIR */ 716 NULL, /* TX_MKXATTR */ 717 NULL, /* TX_SYMLINK */ 718 ztest_replay_remove, /* TX_REMOVE */ 719 NULL, /* TX_RMDIR */ 720 NULL, /* TX_LINK */ 721 NULL, /* TX_RENAME */ 722 NULL, /* TX_WRITE */ 723 NULL, /* TX_TRUNCATE */ 724 NULL, /* TX_SETATTR */ 725 NULL, /* TX_ACL */ 726 }; 727 728 /* 729 * Verify that we can't destroy an active pool, create an existing pool, 730 * or create a pool with a bad vdev spec. 731 */ 732 void 733 ztest_spa_create_destroy(ztest_args_t *za) 734 { 735 int error; 736 spa_t *spa; 737 nvlist_t *nvroot; 738 739 /* 740 * Attempt to create using a bad file. 741 */ 742 nvroot = make_vdev_root(0, 0, 0, 1); 743 error = spa_create("ztest_bad_file", nvroot, NULL); 744 nvlist_free(nvroot); 745 if (error != ENOENT) 746 fatal(0, "spa_create(bad_file) = %d", error); 747 748 /* 749 * Attempt to create using a bad mirror. 750 */ 751 nvroot = make_vdev_root(0, 0, 2, 1); 752 error = spa_create("ztest_bad_mirror", nvroot, NULL); 753 nvlist_free(nvroot); 754 if (error != ENOENT) 755 fatal(0, "spa_create(bad_mirror) = %d", error); 756 757 /* 758 * Attempt to create an existing pool. It shouldn't matter 759 * what's in the nvroot; we should fail with EEXIST. 760 */ 761 (void) rw_rdlock(&ztest_shared->zs_name_lock); 762 nvroot = make_vdev_root(0, 0, 0, 1); 763 error = spa_create(za->za_pool, nvroot, NULL); 764 nvlist_free(nvroot); 765 if (error != EEXIST) 766 fatal(0, "spa_create(whatever) = %d", error); 767 768 error = spa_open(za->za_pool, &spa, FTAG); 769 if (error) 770 fatal(0, "spa_open() = %d", error); 771 772 error = spa_destroy(za->za_pool); 773 if (error != EBUSY) 774 fatal(0, "spa_destroy() = %d", error); 775 776 spa_close(spa, FTAG); 777 (void) rw_unlock(&ztest_shared->zs_name_lock); 778 } 779 780 /* 781 * Verify that vdev_add() works as expected. 782 */ 783 void 784 ztest_vdev_add_remove(ztest_args_t *za) 785 { 786 spa_t *spa = dmu_objset_spa(za->za_os); 787 uint64_t leaves = MAX(zopt_mirrors, 1) * zopt_raidz; 788 nvlist_t *nvroot; 789 int error; 790 791 if (zopt_verbose >= 6) 792 (void) printf("adding vdev\n"); 793 794 (void) mutex_lock(&ztest_shared->zs_vdev_lock); 795 796 spa_config_enter(spa, RW_READER, FTAG); 797 798 ztest_shared->zs_vdev_primaries = 799 spa->spa_root_vdev->vdev_children * leaves; 800 801 spa_config_exit(spa, FTAG); 802 803 nvroot = make_vdev_root(zopt_vdev_size, zopt_raidz, zopt_mirrors, 1); 804 error = spa_vdev_add(spa, nvroot); 805 nvlist_free(nvroot); 806 807 (void) mutex_unlock(&ztest_shared->zs_vdev_lock); 808 809 if (error == ENOSPC) 810 ztest_record_enospc("spa_vdev_add"); 811 else if (error != 0) 812 fatal(0, "spa_vdev_add() = %d", error); 813 814 if (zopt_verbose >= 6) 815 (void) printf("spa_vdev_add = %d, as expected\n", error); 816 } 817 818 static vdev_t * 819 vdev_lookup_by_path(vdev_t *vd, const char *path) 820 { 821 int c; 822 vdev_t *mvd; 823 824 if (vd->vdev_path != NULL) { 825 if (vd->vdev_wholedisk == 1) { 826 /* 827 * For whole disks, the internal path has 's0', but the 828 * path passed in by the user doesn't. 829 */ 830 if (strlen(path) == strlen(vd->vdev_path) - 2 && 831 strncmp(path, vd->vdev_path, strlen(path)) == 0) 832 return (vd); 833 } else if (strcmp(path, vd->vdev_path) == 0) { 834 return (vd); 835 } 836 } 837 838 for (c = 0; c < vd->vdev_children; c++) 839 if ((mvd = vdev_lookup_by_path(vd->vdev_child[c], path)) != 840 NULL) 841 return (mvd); 842 843 return (NULL); 844 } 845 846 /* 847 * Verify that we can attach and detach devices. 848 */ 849 void 850 ztest_vdev_attach_detach(ztest_args_t *za) 851 { 852 spa_t *spa = dmu_objset_spa(za->za_os); 853 vdev_t *rvd = spa->spa_root_vdev; 854 vdev_t *oldvd, *newvd, *pvd; 855 nvlist_t *root, *file; 856 uint64_t leaves = MAX(zopt_mirrors, 1) * zopt_raidz; 857 uint64_t leaf, top; 858 uint64_t ashift = ztest_get_ashift(); 859 size_t oldsize, newsize; 860 char oldpath[MAXPATHLEN], newpath[MAXPATHLEN]; 861 int replacing; 862 int error, expected_error; 863 int fd; 864 865 (void) mutex_lock(&ztest_shared->zs_vdev_lock); 866 867 spa_config_enter(spa, RW_READER, FTAG); 868 869 /* 870 * Decide whether to do an attach or a replace. 871 */ 872 replacing = ztest_random(2); 873 874 /* 875 * Pick a random top-level vdev. 876 */ 877 top = ztest_random(rvd->vdev_children); 878 879 /* 880 * Pick a random leaf within it. 881 */ 882 leaf = ztest_random(leaves); 883 884 /* 885 * Generate the path to this leaf. The filename will end with 'a'. 886 * We'll alternate replacements with a filename that ends with 'b'. 887 */ 888 (void) snprintf(oldpath, sizeof (oldpath), 889 ztest_dev_template, zopt_dir, zopt_pool, top * leaves + leaf); 890 891 bcopy(oldpath, newpath, MAXPATHLEN); 892 893 /* 894 * If the 'a' file isn't part of the pool, the 'b' file must be. 895 */ 896 if (vdev_lookup_by_path(rvd, oldpath) == NULL) 897 oldpath[strlen(oldpath) - 1] = 'b'; 898 else 899 newpath[strlen(newpath) - 1] = 'b'; 900 901 /* 902 * Now oldpath represents something that's already in the pool, 903 * and newpath is the thing we'll try to attach. 904 */ 905 oldvd = vdev_lookup_by_path(rvd, oldpath); 906 newvd = vdev_lookup_by_path(rvd, newpath); 907 ASSERT(oldvd != NULL); 908 pvd = oldvd->vdev_parent; 909 910 /* 911 * Make newsize a little bigger or smaller than oldsize. 912 * If it's smaller, the attach should fail. 913 * If it's larger, and we're doing a replace, 914 * we should get dynamic LUN growth when we're done. 915 */ 916 oldsize = vdev_get_rsize(oldvd); 917 newsize = 10 * oldsize / (9 + ztest_random(3)); 918 919 /* 920 * If pvd is not a mirror or root, the attach should fail with ENOTSUP, 921 * unless it's a replace; in that case any non-replacing parent is OK. 922 * 923 * If newvd is already part of the pool, it should fail with EBUSY. 924 * 925 * If newvd is too small, it should fail with EOVERFLOW. 926 */ 927 if (pvd->vdev_ops != &vdev_mirror_ops && 928 pvd->vdev_ops != &vdev_root_ops && 929 (!replacing || pvd->vdev_ops == &vdev_replacing_ops)) 930 expected_error = ENOTSUP; 931 else if (newvd != NULL) 932 expected_error = EBUSY; 933 else if (newsize < oldsize) 934 expected_error = EOVERFLOW; 935 else if (ashift > oldvd->vdev_top->vdev_ashift) 936 expected_error = EDOM; 937 else 938 expected_error = 0; 939 940 /* 941 * If newvd isn't already part of the pool, create it. 942 */ 943 if (newvd == NULL) { 944 fd = open(newpath, O_RDWR | O_CREAT | O_TRUNC, 0666); 945 if (fd == -1) 946 fatal(1, "can't open %s", newpath); 947 if (ftruncate(fd, newsize) != 0) 948 fatal(1, "can't ftruncate %s", newpath); 949 (void) close(fd); 950 } 951 952 spa_config_exit(spa, FTAG); 953 954 /* 955 * Build the nvlist describing newpath. 956 */ 957 VERIFY(nvlist_alloc(&file, NV_UNIQUE_NAME, 0) == 0); 958 VERIFY(nvlist_add_string(file, ZPOOL_CONFIG_TYPE, VDEV_TYPE_FILE) == 0); 959 VERIFY(nvlist_add_string(file, ZPOOL_CONFIG_PATH, newpath) == 0); 960 VERIFY(nvlist_add_uint64(file, ZPOOL_CONFIG_ASHIFT, ashift) == 0); 961 962 VERIFY(nvlist_alloc(&root, NV_UNIQUE_NAME, 0) == 0); 963 VERIFY(nvlist_add_string(root, ZPOOL_CONFIG_TYPE, VDEV_TYPE_ROOT) == 0); 964 VERIFY(nvlist_add_nvlist_array(root, ZPOOL_CONFIG_CHILDREN, 965 &file, 1) == 0); 966 967 error = spa_vdev_attach(spa, oldvd->vdev_guid, root, replacing); 968 969 nvlist_free(file); 970 nvlist_free(root); 971 972 /* 973 * If our parent was the replacing vdev, but the replace completed, 974 * then instead of failing with ENOTSUP we may either succeed, 975 * fail with ENODEV, or fail with EOVERFLOW. 976 */ 977 if (expected_error == ENOTSUP && 978 (error == 0 || error == ENODEV || error == EOVERFLOW)) 979 expected_error = error; 980 981 /* 982 * If someone grew the LUN, the replacement may be too small. 983 */ 984 if (error == EOVERFLOW) 985 expected_error = error; 986 987 if (error != expected_error) { 988 fatal(0, "attach (%s, %s, %d) returned %d, expected %d", 989 oldpath, newpath, replacing, error, expected_error); 990 } 991 992 (void) mutex_unlock(&ztest_shared->zs_vdev_lock); 993 } 994 995 /* 996 * Verify that dynamic LUN growth works as expected. 997 */ 998 /* ARGSUSED */ 999 void 1000 ztest_vdev_LUN_growth(ztest_args_t *za) 1001 { 1002 spa_t *spa = dmu_objset_spa(za->za_os); 1003 char dev_name[MAXPATHLEN]; 1004 uint64_t leaves = MAX(zopt_mirrors, 1) * zopt_raidz; 1005 uint64_t vdev; 1006 size_t fsize; 1007 int fd; 1008 1009 (void) mutex_lock(&ztest_shared->zs_vdev_lock); 1010 1011 /* 1012 * Pick a random leaf vdev. 1013 */ 1014 spa_config_enter(spa, RW_READER, FTAG); 1015 vdev = ztest_random(spa->spa_root_vdev->vdev_children * leaves); 1016 spa_config_exit(spa, FTAG); 1017 1018 (void) sprintf(dev_name, ztest_dev_template, zopt_dir, zopt_pool, vdev); 1019 1020 if ((fd = open(dev_name, O_RDWR)) != -1) { 1021 /* 1022 * Determine the size. 1023 */ 1024 fsize = lseek(fd, 0, SEEK_END); 1025 1026 /* 1027 * If it's less than 2x the original size, grow by around 3%. 1028 */ 1029 if (fsize < 2 * zopt_vdev_size) { 1030 size_t newsize = fsize + ztest_random(fsize / 32); 1031 (void) ftruncate(fd, newsize); 1032 if (zopt_verbose >= 6) { 1033 (void) printf("%s grew from %lu to %lu bytes\n", 1034 dev_name, (ulong_t)fsize, (ulong_t)newsize); 1035 } 1036 } 1037 (void) close(fd); 1038 } 1039 1040 (void) mutex_unlock(&ztest_shared->zs_vdev_lock); 1041 } 1042 1043 /* ARGSUSED */ 1044 static void 1045 ztest_create_cb(objset_t *os, void *arg, dmu_tx_t *tx) 1046 { 1047 /* 1048 * Create the directory object. 1049 */ 1050 VERIFY(dmu_object_claim(os, ZTEST_DIROBJ, 1051 DMU_OT_UINT64_OTHER, ZTEST_DIROBJ_BLOCKSIZE, 1052 DMU_OT_UINT64_OTHER, sizeof (ztest_block_tag_t), tx) == 0); 1053 1054 VERIFY(zap_create_claim(os, ZTEST_MICROZAP_OBJ, 1055 DMU_OT_ZAP_OTHER, DMU_OT_NONE, 0, tx) == 0); 1056 1057 VERIFY(zap_create_claim(os, ZTEST_FATZAP_OBJ, 1058 DMU_OT_ZAP_OTHER, DMU_OT_NONE, 0, tx) == 0); 1059 } 1060 1061 /* ARGSUSED */ 1062 static void 1063 ztest_destroy_cb(char *name, void *arg) 1064 { 1065 objset_t *os; 1066 dmu_object_info_t doi; 1067 int error; 1068 1069 /* 1070 * Verify that the dataset contains a directory object. 1071 */ 1072 error = dmu_objset_open(name, DMU_OST_OTHER, 1073 DS_MODE_STANDARD | DS_MODE_READONLY, &os); 1074 ASSERT3U(error, ==, 0); 1075 error = dmu_object_info(os, ZTEST_DIROBJ, &doi); 1076 if (error != ENOENT) { 1077 /* We could have crashed in the middle of destroying it */ 1078 ASSERT3U(error, ==, 0); 1079 ASSERT3U(doi.doi_type, ==, DMU_OT_UINT64_OTHER); 1080 ASSERT3S(doi.doi_physical_blks, >=, 0); 1081 } 1082 dmu_objset_close(os); 1083 1084 /* 1085 * Destroy the dataset. 1086 */ 1087 error = dmu_objset_destroy(name); 1088 ASSERT3U(error, ==, 0); 1089 } 1090 1091 /* 1092 * Verify that dmu_objset_{create,destroy,open,close} work as expected. 1093 */ 1094 static uint64_t 1095 ztest_log_create(zilog_t *zilog, dmu_tx_t *tx, uint64_t object, int mode) 1096 { 1097 itx_t *itx; 1098 lr_create_t *lr; 1099 size_t namesize; 1100 char name[24]; 1101 1102 (void) sprintf(name, "ZOBJ_%llu", (u_longlong_t)object); 1103 namesize = strlen(name) + 1; 1104 1105 itx = zil_itx_create(TX_CREATE, sizeof (*lr) + namesize + 1106 ztest_random(ZIL_MAX_BLKSZ)); 1107 lr = (lr_create_t *)&itx->itx_lr; 1108 bzero(lr + 1, lr->lr_common.lrc_reclen - sizeof (*lr)); 1109 lr->lr_doid = object; 1110 lr->lr_foid = 0; 1111 lr->lr_mode = mode; 1112 lr->lr_uid = 0; 1113 lr->lr_gid = 0; 1114 lr->lr_gen = dmu_tx_get_txg(tx); 1115 lr->lr_crtime[0] = time(NULL); 1116 lr->lr_crtime[1] = 0; 1117 lr->lr_rdev = 0; 1118 bcopy(name, (char *)(lr + 1), namesize); 1119 1120 return (zil_itx_assign(zilog, itx, tx)); 1121 } 1122 1123 #ifndef lint 1124 static uint64_t 1125 ztest_log_remove(zilog_t *zilog, dmu_tx_t *tx, uint64_t object) 1126 { 1127 itx_t *itx; 1128 lr_remove_t *lr; 1129 size_t namesize; 1130 char name[24]; 1131 1132 (void) sprintf(name, "ZOBJ_%llu", (u_longlong_t)object); 1133 namesize = strlen(name) + 1; 1134 1135 itx = zil_itx_create(TX_REMOVE, sizeof (*lr) + namesize + 1136 ztest_random(8000)); 1137 lr = (lr_remove_t *)&itx->itx_lr; 1138 lr->lr_doid = object; 1139 bcopy(name, (char *)(lr + 1), namesize); 1140 1141 return (zil_itx_assign(zilog, itx, tx)); 1142 } 1143 #endif /* lint */ 1144 1145 void 1146 ztest_dmu_objset_create_destroy(ztest_args_t *za) 1147 { 1148 int error; 1149 objset_t *os; 1150 char name[100]; 1151 int mode, basemode, expected_error; 1152 zilog_t *zilog; 1153 uint64_t seq; 1154 uint64_t objects; 1155 ztest_replay_t zr; 1156 1157 (void) rw_rdlock(&ztest_shared->zs_name_lock); 1158 (void) snprintf(name, 100, "%s/%s_temp_%llu", za->za_pool, za->za_pool, 1159 (u_longlong_t)za->za_instance); 1160 1161 basemode = DS_MODE_LEVEL(za->za_instance); 1162 if (basemode == DS_MODE_NONE) 1163 basemode++; 1164 1165 /* 1166 * If this dataset exists from a previous run, process its replay log 1167 * half of the time. If we don't replay it, then dmu_objset_destroy() 1168 * (invoked from ztest_destroy_cb() below) should just throw it away. 1169 */ 1170 if (ztest_random(2) == 0 && 1171 dmu_objset_open(name, DMU_OST_OTHER, DS_MODE_PRIMARY, &os) == 0) { 1172 zr.zr_os = os; 1173 zil_replay(os, &zr, &zr.zr_assign, ztest_replay_vector, NULL); 1174 dmu_objset_close(os); 1175 } 1176 1177 /* 1178 * There may be an old instance of the dataset we're about to 1179 * create lying around from a previous run. If so, destroy it 1180 * and all of its snapshots. 1181 */ 1182 dmu_objset_find(name, ztest_destroy_cb, NULL, DS_FIND_SNAPSHOTS); 1183 1184 /* 1185 * Verify that the destroyed dataset is no longer in the namespace. 1186 */ 1187 error = dmu_objset_open(name, DMU_OST_OTHER, basemode, &os); 1188 if (error != ENOENT) 1189 fatal(1, "dmu_objset_open(%s) found destroyed dataset %p", 1190 name, os); 1191 1192 /* 1193 * Verify that we can create a new dataset. 1194 */ 1195 error = dmu_objset_create(name, DMU_OST_OTHER, NULL, ztest_create_cb, 1196 NULL); 1197 if (error) { 1198 if (error == ENOSPC) { 1199 ztest_record_enospc("dmu_objset_create"); 1200 (void) rw_unlock(&ztest_shared->zs_name_lock); 1201 return; 1202 } 1203 fatal(0, "dmu_objset_create(%s) = %d", name, error); 1204 } 1205 1206 error = dmu_objset_open(name, DMU_OST_OTHER, basemode, &os); 1207 if (error) { 1208 fatal(0, "dmu_objset_open(%s) = %d", name, error); 1209 } 1210 1211 /* 1212 * Open the intent log for it. 1213 */ 1214 zilog = zil_open(os, NULL); 1215 1216 /* 1217 * Put a random number of objects in there. 1218 */ 1219 objects = ztest_random(20); 1220 seq = 0; 1221 while (objects-- != 0) { 1222 uint64_t object; 1223 dmu_tx_t *tx = dmu_tx_create(os); 1224 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, sizeof (name)); 1225 error = dmu_tx_assign(tx, TXG_WAIT); 1226 if (error) { 1227 dmu_tx_abort(tx); 1228 } else { 1229 object = dmu_object_alloc(os, DMU_OT_UINT64_OTHER, 0, 1230 DMU_OT_NONE, 0, tx); 1231 ztest_set_random_blocksize(os, object, tx); 1232 seq = ztest_log_create(zilog, tx, object, 1233 DMU_OT_UINT64_OTHER); 1234 dmu_write(os, object, 0, sizeof (name), name, tx); 1235 dmu_tx_commit(tx); 1236 } 1237 if (ztest_random(5) == 0) { 1238 zil_commit(zilog, seq, FSYNC); 1239 } 1240 if (ztest_random(100) == 0) { 1241 error = zil_suspend(zilog); 1242 if (error == 0) { 1243 zil_resume(zilog); 1244 } 1245 } 1246 } 1247 1248 /* 1249 * Verify that we cannot create an existing dataset. 1250 */ 1251 error = dmu_objset_create(name, DMU_OST_OTHER, NULL, NULL, NULL); 1252 if (error != EEXIST) 1253 fatal(0, "created existing dataset, error = %d", error); 1254 1255 /* 1256 * Verify that multiple dataset opens are allowed, but only when 1257 * the new access mode is compatible with the base mode. 1258 * We use a mixture of typed and typeless opens, and when the 1259 * open succeeds, verify that the discovered type is correct. 1260 */ 1261 for (mode = DS_MODE_STANDARD; mode < DS_MODE_LEVELS; mode++) { 1262 objset_t *os2; 1263 error = dmu_objset_open(name, DMU_OST_OTHER, mode, &os2); 1264 expected_error = (basemode + mode < DS_MODE_LEVELS) ? 0 : EBUSY; 1265 if (error != expected_error) 1266 fatal(0, "dmu_objset_open('%s') = %d, expected %d", 1267 name, error, expected_error); 1268 if (error == 0) 1269 dmu_objset_close(os2); 1270 } 1271 1272 zil_close(zilog); 1273 dmu_objset_close(os); 1274 1275 error = dmu_objset_destroy(name); 1276 if (error) 1277 fatal(0, "dmu_objset_destroy(%s) = %d", name, error); 1278 1279 (void) rw_unlock(&ztest_shared->zs_name_lock); 1280 } 1281 1282 /* 1283 * Verify that dmu_snapshot_{create,destroy,open,close} work as expected. 1284 */ 1285 void 1286 ztest_dmu_snapshot_create_destroy(ztest_args_t *za) 1287 { 1288 int error; 1289 objset_t *os = za->za_os; 1290 char snapname[100]; 1291 char osname[MAXNAMELEN]; 1292 1293 (void) rw_rdlock(&ztest_shared->zs_name_lock); 1294 dmu_objset_name(os, osname); 1295 (void) snprintf(snapname, 100, "%s@%llu", osname, 1296 (u_longlong_t)za->za_instance); 1297 1298 error = dmu_objset_destroy(snapname); 1299 if (error != 0 && error != ENOENT) 1300 fatal(0, "dmu_objset_destroy() = %d", error); 1301 error = dmu_objset_create(snapname, DMU_OST_OTHER, NULL, NULL, NULL); 1302 if (error == ENOSPC) 1303 ztest_record_enospc("dmu_take_snapshot"); 1304 else if (error != 0 && error != EEXIST) 1305 fatal(0, "dmu_take_snapshot() = %d", error); 1306 (void) rw_unlock(&ztest_shared->zs_name_lock); 1307 } 1308 1309 #define ZTEST_TRAVERSE_BLOCKS 1000 1310 1311 static int 1312 ztest_blk_cb(traverse_blk_cache_t *bc, spa_t *spa, void *arg) 1313 { 1314 ztest_args_t *za = arg; 1315 zbookmark_t *zb = &bc->bc_bookmark; 1316 blkptr_t *bp = &bc->bc_blkptr; 1317 dnode_phys_t *dnp = bc->bc_dnode; 1318 traverse_handle_t *th = za->za_th; 1319 uint64_t size = BP_GET_LSIZE(bp); 1320 1321 /* 1322 * Level -1 indicates the objset_phys_t or something in its intent log. 1323 */ 1324 if (zb->zb_level == -1) { 1325 if (BP_GET_TYPE(bp) == DMU_OT_OBJSET) { 1326 ASSERT3U(zb->zb_object, ==, 0); 1327 ASSERT3U(zb->zb_blkid, ==, 0); 1328 ASSERT3U(size, ==, sizeof (objset_phys_t)); 1329 za->za_zil_seq = 0; 1330 } else if (BP_GET_TYPE(bp) == DMU_OT_INTENT_LOG) { 1331 ASSERT3U(zb->zb_object, ==, 0); 1332 ASSERT3U(zb->zb_blkid, >, za->za_zil_seq); 1333 za->za_zil_seq = zb->zb_blkid; 1334 } else { 1335 ASSERT3U(zb->zb_object, !=, 0); /* lr_write_t */ 1336 } 1337 1338 return (0); 1339 } 1340 1341 ASSERT(dnp != NULL); 1342 1343 if (bc->bc_errno) 1344 return (ERESTART); 1345 1346 /* 1347 * Once in a while, abort the traverse. We only do this to odd 1348 * instance numbers to ensure that even ones can run to completion. 1349 */ 1350 if ((za->za_instance & 1) && ztest_random(10000) == 0) 1351 return (EINTR); 1352 1353 if (bp->blk_birth == 0) { 1354 ASSERT(th->th_advance & ADVANCE_HOLES); 1355 return (0); 1356 } 1357 1358 if (zb->zb_level == 0 && !(th->th_advance & ADVANCE_DATA) && 1359 bc == &th->th_cache[ZB_DN_CACHE][0]) { 1360 ASSERT(bc->bc_data == NULL); 1361 return (0); 1362 } 1363 1364 ASSERT(bc->bc_data != NULL); 1365 1366 /* 1367 * This is an expensive question, so don't ask it too often. 1368 */ 1369 if (((za->za_random ^ th->th_callbacks) & 0xff) == 0) { 1370 void *xbuf = umem_alloc(size, UMEM_NOFAIL); 1371 if (arc_tryread(spa, bp, xbuf) == 0) { 1372 ASSERT(bcmp(bc->bc_data, xbuf, size) == 0); 1373 } 1374 umem_free(xbuf, size); 1375 } 1376 1377 if (zb->zb_level > 0) { 1378 ASSERT3U(size, ==, 1ULL << dnp->dn_indblkshift); 1379 return (0); 1380 } 1381 1382 ASSERT(zb->zb_level == 0); 1383 ASSERT3U(size, ==, dnp->dn_datablkszsec << DEV_BSHIFT); 1384 1385 return (0); 1386 } 1387 1388 /* 1389 * Verify that live pool traversal works. 1390 */ 1391 void 1392 ztest_traverse(ztest_args_t *za) 1393 { 1394 spa_t *spa = dmu_objset_spa(za->za_os); 1395 traverse_handle_t *th = za->za_th; 1396 int rc, advance; 1397 uint64_t cbstart, cblimit; 1398 1399 if (th == NULL) { 1400 advance = 0; 1401 1402 if (ztest_random(2) == 0) 1403 advance |= ADVANCE_PRE; 1404 1405 if (ztest_random(2) == 0) 1406 advance |= ADVANCE_PRUNE; 1407 1408 if (ztest_random(2) == 0) 1409 advance |= ADVANCE_DATA; 1410 1411 if (ztest_random(2) == 0) 1412 advance |= ADVANCE_HOLES; 1413 1414 if (ztest_random(2) == 0) 1415 advance |= ADVANCE_ZIL; 1416 1417 th = za->za_th = traverse_init(spa, ztest_blk_cb, za, advance, 1418 ZIO_FLAG_CANFAIL); 1419 1420 traverse_add_pool(th, 0, -1ULL); 1421 } 1422 1423 advance = th->th_advance; 1424 cbstart = th->th_callbacks; 1425 cblimit = cbstart + ((advance & ADVANCE_DATA) ? 100 : 1000); 1426 1427 while ((rc = traverse_more(th)) == EAGAIN && th->th_callbacks < cblimit) 1428 continue; 1429 1430 if (zopt_verbose >= 5) 1431 (void) printf("traverse %s%s%s%s %llu blocks to " 1432 "<%llu, %llu, %lld, %llx>%s\n", 1433 (advance & ADVANCE_PRE) ? "pre" : "post", 1434 (advance & ADVANCE_PRUNE) ? "|prune" : "", 1435 (advance & ADVANCE_DATA) ? "|data" : "", 1436 (advance & ADVANCE_HOLES) ? "|holes" : "", 1437 (u_longlong_t)(th->th_callbacks - cbstart), 1438 (u_longlong_t)th->th_lastcb.zb_objset, 1439 (u_longlong_t)th->th_lastcb.zb_object, 1440 (u_longlong_t)th->th_lastcb.zb_level, 1441 (u_longlong_t)th->th_lastcb.zb_blkid, 1442 rc == 0 ? " [done]" : 1443 rc == EINTR ? " [aborted]" : 1444 rc == EAGAIN ? "" : 1445 strerror(rc)); 1446 1447 if (rc != EAGAIN) { 1448 if (rc != 0 && rc != EINTR) 1449 fatal(0, "traverse_more(%p) = %d", th, rc); 1450 traverse_fini(th); 1451 za->za_th = NULL; 1452 } 1453 } 1454 1455 /* 1456 * Verify that dmu_object_{alloc,free} work as expected. 1457 */ 1458 void 1459 ztest_dmu_object_alloc_free(ztest_args_t *za) 1460 { 1461 objset_t *os = za->za_os; 1462 dmu_buf_t *db; 1463 dmu_tx_t *tx; 1464 uint64_t batchobj, object, batchsize, endoff, temp; 1465 int b, c, error, bonuslen; 1466 dmu_object_info_t doi; 1467 char osname[MAXNAMELEN]; 1468 1469 dmu_objset_name(os, osname); 1470 1471 endoff = -8ULL; 1472 batchsize = 2; 1473 1474 /* 1475 * Create a batch object if necessary, and record it in the directory. 1476 */ 1477 VERIFY(0 == dmu_read(os, ZTEST_DIROBJ, za->za_diroff, 1478 sizeof (uint64_t), &batchobj)); 1479 if (batchobj == 0) { 1480 tx = dmu_tx_create(os); 1481 dmu_tx_hold_write(tx, ZTEST_DIROBJ, za->za_diroff, 1482 sizeof (uint64_t)); 1483 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); 1484 error = dmu_tx_assign(tx, TXG_WAIT); 1485 if (error) { 1486 ztest_record_enospc("create a batch object"); 1487 dmu_tx_abort(tx); 1488 return; 1489 } 1490 batchobj = dmu_object_alloc(os, DMU_OT_UINT64_OTHER, 0, 1491 DMU_OT_NONE, 0, tx); 1492 ztest_set_random_blocksize(os, batchobj, tx); 1493 dmu_write(os, ZTEST_DIROBJ, za->za_diroff, 1494 sizeof (uint64_t), &batchobj, tx); 1495 dmu_tx_commit(tx); 1496 } 1497 1498 /* 1499 * Destroy the previous batch of objects. 1500 */ 1501 for (b = 0; b < batchsize; b++) { 1502 VERIFY(0 == dmu_read(os, batchobj, b * sizeof (uint64_t), 1503 sizeof (uint64_t), &object)); 1504 if (object == 0) 1505 continue; 1506 /* 1507 * Read and validate contents. 1508 * We expect the nth byte of the bonus buffer to be n. 1509 */ 1510 VERIFY(0 == dmu_bonus_hold(os, object, FTAG, &db)); 1511 1512 dmu_object_info_from_db(db, &doi); 1513 ASSERT(doi.doi_type == DMU_OT_UINT64_OTHER); 1514 ASSERT(doi.doi_bonus_type == DMU_OT_PLAIN_OTHER); 1515 ASSERT3S(doi.doi_physical_blks, >=, 0); 1516 1517 bonuslen = db->db_size; 1518 1519 for (c = 0; c < bonuslen; c++) { 1520 if (((uint8_t *)db->db_data)[c] != 1521 (uint8_t)(c + bonuslen)) { 1522 fatal(0, 1523 "bad bonus: %s, obj %llu, off %d: %u != %u", 1524 osname, object, c, 1525 ((uint8_t *)db->db_data)[c], 1526 (uint8_t)(c + bonuslen)); 1527 } 1528 } 1529 1530 dmu_buf_rele(db, FTAG); 1531 1532 /* 1533 * We expect the word at endoff to be our object number. 1534 */ 1535 VERIFY(0 == dmu_read(os, object, endoff, 1536 sizeof (uint64_t), &temp)); 1537 1538 if (temp != object) { 1539 fatal(0, "bad data in %s, got %llu, expected %llu", 1540 osname, temp, object); 1541 } 1542 1543 /* 1544 * Destroy old object and clear batch entry. 1545 */ 1546 tx = dmu_tx_create(os); 1547 dmu_tx_hold_write(tx, batchobj, 1548 b * sizeof (uint64_t), sizeof (uint64_t)); 1549 dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END); 1550 error = dmu_tx_assign(tx, TXG_WAIT); 1551 if (error) { 1552 ztest_record_enospc("free object"); 1553 dmu_tx_abort(tx); 1554 return; 1555 } 1556 error = dmu_object_free(os, object, tx); 1557 if (error) { 1558 fatal(0, "dmu_object_free('%s', %llu) = %d", 1559 osname, object, error); 1560 } 1561 object = 0; 1562 1563 dmu_object_set_checksum(os, batchobj, 1564 ztest_random_checksum(), tx); 1565 dmu_object_set_compress(os, batchobj, 1566 ztest_random_compress(), tx); 1567 1568 dmu_write(os, batchobj, b * sizeof (uint64_t), 1569 sizeof (uint64_t), &object, tx); 1570 1571 dmu_tx_commit(tx); 1572 } 1573 1574 /* 1575 * Before creating the new batch of objects, generate a bunch of churn. 1576 */ 1577 for (b = ztest_random(100); b > 0; b--) { 1578 tx = dmu_tx_create(os); 1579 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); 1580 error = dmu_tx_assign(tx, TXG_WAIT); 1581 if (error) { 1582 ztest_record_enospc("churn objects"); 1583 dmu_tx_abort(tx); 1584 return; 1585 } 1586 object = dmu_object_alloc(os, DMU_OT_UINT64_OTHER, 0, 1587 DMU_OT_NONE, 0, tx); 1588 ztest_set_random_blocksize(os, object, tx); 1589 error = dmu_object_free(os, object, tx); 1590 if (error) { 1591 fatal(0, "dmu_object_free('%s', %llu) = %d", 1592 osname, object, error); 1593 } 1594 dmu_tx_commit(tx); 1595 } 1596 1597 /* 1598 * Create a new batch of objects with randomly chosen 1599 * blocksizes and record them in the batch directory. 1600 */ 1601 for (b = 0; b < batchsize; b++) { 1602 uint32_t va_blksize; 1603 u_longlong_t va_nblocks; 1604 1605 tx = dmu_tx_create(os); 1606 dmu_tx_hold_write(tx, batchobj, b * sizeof (uint64_t), 1607 sizeof (uint64_t)); 1608 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); 1609 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, endoff, 1610 sizeof (uint64_t)); 1611 error = dmu_tx_assign(tx, TXG_WAIT); 1612 if (error) { 1613 ztest_record_enospc("create batchobj"); 1614 dmu_tx_abort(tx); 1615 return; 1616 } 1617 bonuslen = (int)ztest_random(dmu_bonus_max()) + 1; 1618 1619 object = dmu_object_alloc(os, DMU_OT_UINT64_OTHER, 0, 1620 DMU_OT_PLAIN_OTHER, bonuslen, tx); 1621 1622 ztest_set_random_blocksize(os, object, tx); 1623 1624 dmu_object_set_checksum(os, object, 1625 ztest_random_checksum(), tx); 1626 dmu_object_set_compress(os, object, 1627 ztest_random_compress(), tx); 1628 1629 dmu_write(os, batchobj, b * sizeof (uint64_t), 1630 sizeof (uint64_t), &object, tx); 1631 1632 /* 1633 * Write to both the bonus buffer and the regular data. 1634 */ 1635 VERIFY(0 == dmu_bonus_hold(os, object, FTAG, &db)); 1636 ASSERT3U(bonuslen, ==, db->db_size); 1637 1638 dmu_object_size_from_db(db, &va_blksize, &va_nblocks); 1639 ASSERT3S(va_nblocks, >=, 0); 1640 1641 dmu_buf_will_dirty(db, tx); 1642 1643 /* 1644 * See comments above regarding the contents of 1645 * the bonus buffer and the word at endoff. 1646 */ 1647 for (c = 0; c < db->db_size; c++) 1648 ((uint8_t *)db->db_data)[c] = (uint8_t)(c + bonuslen); 1649 1650 dmu_buf_rele(db, FTAG); 1651 1652 /* 1653 * Write to a large offset to increase indirection. 1654 */ 1655 dmu_write(os, object, endoff, sizeof (uint64_t), &object, tx); 1656 1657 dmu_tx_commit(tx); 1658 } 1659 } 1660 1661 /* 1662 * Verify that dmu_{read,write} work as expected. 1663 */ 1664 typedef struct bufwad { 1665 uint64_t bw_index; 1666 uint64_t bw_txg; 1667 uint64_t bw_data; 1668 } bufwad_t; 1669 1670 typedef struct dmu_read_write_dir { 1671 uint64_t dd_packobj; 1672 uint64_t dd_bigobj; 1673 uint64_t dd_chunk; 1674 } dmu_read_write_dir_t; 1675 1676 void 1677 ztest_dmu_read_write(ztest_args_t *za) 1678 { 1679 objset_t *os = za->za_os; 1680 dmu_read_write_dir_t dd; 1681 dmu_tx_t *tx; 1682 int i, freeit, error; 1683 uint64_t n, s, txg; 1684 bufwad_t *packbuf, *bigbuf, *pack, *bigH, *bigT; 1685 uint64_t packoff, packsize, bigoff, bigsize; 1686 uint64_t regions = 997; 1687 uint64_t stride = 123456789ULL; 1688 uint64_t width = 40; 1689 int free_percent = 5; 1690 1691 /* 1692 * This test uses two objects, packobj and bigobj, that are always 1693 * updated together (i.e. in the same tx) so that their contents are 1694 * in sync and can be compared. Their contents relate to each other 1695 * in a simple way: packobj is a dense array of 'bufwad' structures, 1696 * while bigobj is a sparse array of the same bufwads. Specifically, 1697 * for any index n, there are three bufwads that should be identical: 1698 * 1699 * packobj, at offset n * sizeof (bufwad_t) 1700 * bigobj, at the head of the nth chunk 1701 * bigobj, at the tail of the nth chunk 1702 * 1703 * The chunk size is arbitrary. It doesn't have to be a power of two, 1704 * and it doesn't have any relation to the object blocksize. 1705 * The only requirement is that it can hold at least two bufwads. 1706 * 1707 * Normally, we write the bufwad to each of these locations. 1708 * However, free_percent of the time we instead write zeroes to 1709 * packobj and perform a dmu_free_range() on bigobj. By comparing 1710 * bigobj to packobj, we can verify that the DMU is correctly 1711 * tracking which parts of an object are allocated and free, 1712 * and that the contents of the allocated blocks are correct. 1713 */ 1714 1715 /* 1716 * Read the directory info. If it's the first time, set things up. 1717 */ 1718 VERIFY(0 == dmu_read(os, ZTEST_DIROBJ, za->za_diroff, 1719 sizeof (dd), &dd)); 1720 if (dd.dd_chunk == 0) { 1721 ASSERT(dd.dd_packobj == 0); 1722 ASSERT(dd.dd_bigobj == 0); 1723 tx = dmu_tx_create(os); 1724 dmu_tx_hold_write(tx, ZTEST_DIROBJ, za->za_diroff, sizeof (dd)); 1725 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); 1726 error = dmu_tx_assign(tx, TXG_WAIT); 1727 if (error) { 1728 ztest_record_enospc("create r/w directory"); 1729 dmu_tx_abort(tx); 1730 return; 1731 } 1732 1733 dd.dd_packobj = dmu_object_alloc(os, DMU_OT_UINT64_OTHER, 0, 1734 DMU_OT_NONE, 0, tx); 1735 dd.dd_bigobj = dmu_object_alloc(os, DMU_OT_UINT64_OTHER, 0, 1736 DMU_OT_NONE, 0, tx); 1737 dd.dd_chunk = (1000 + ztest_random(1000)) * sizeof (uint64_t); 1738 1739 ztest_set_random_blocksize(os, dd.dd_packobj, tx); 1740 ztest_set_random_blocksize(os, dd.dd_bigobj, tx); 1741 1742 dmu_write(os, ZTEST_DIROBJ, za->za_diroff, sizeof (dd), &dd, 1743 tx); 1744 dmu_tx_commit(tx); 1745 } 1746 1747 /* 1748 * Prefetch a random chunk of the big object. 1749 * Our aim here is to get some async reads in flight 1750 * for blocks that we may free below; the DMU should 1751 * handle this race correctly. 1752 */ 1753 n = ztest_random(regions) * stride + ztest_random(width); 1754 s = 1 + ztest_random(2 * width - 1); 1755 dmu_prefetch(os, dd.dd_bigobj, n * dd.dd_chunk, s * dd.dd_chunk); 1756 1757 /* 1758 * Pick a random index and compute the offsets into packobj and bigobj. 1759 */ 1760 n = ztest_random(regions) * stride + ztest_random(width); 1761 s = 1 + ztest_random(width - 1); 1762 1763 packoff = n * sizeof (bufwad_t); 1764 packsize = s * sizeof (bufwad_t); 1765 1766 bigoff = n * dd.dd_chunk; 1767 bigsize = s * dd.dd_chunk; 1768 1769 packbuf = umem_alloc(packsize, UMEM_NOFAIL); 1770 bigbuf = umem_alloc(bigsize, UMEM_NOFAIL); 1771 1772 /* 1773 * free_percent of the time, free a range of bigobj rather than 1774 * overwriting it. 1775 */ 1776 freeit = (ztest_random(100) < free_percent); 1777 1778 /* 1779 * Read the current contents of our objects. 1780 */ 1781 error = dmu_read(os, dd.dd_packobj, packoff, packsize, packbuf); 1782 ASSERT3U(error, ==, 0); 1783 error = dmu_read(os, dd.dd_bigobj, bigoff, bigsize, bigbuf); 1784 ASSERT3U(error, ==, 0); 1785 1786 /* 1787 * Get a tx for the mods to both packobj and bigobj. 1788 */ 1789 tx = dmu_tx_create(os); 1790 1791 dmu_tx_hold_write(tx, dd.dd_packobj, packoff, packsize); 1792 1793 if (freeit) 1794 dmu_tx_hold_free(tx, dd.dd_bigobj, bigoff, bigsize); 1795 else 1796 dmu_tx_hold_write(tx, dd.dd_bigobj, bigoff, bigsize); 1797 1798 error = dmu_tx_assign(tx, TXG_WAIT); 1799 1800 if (error) { 1801 ztest_record_enospc("dmu r/w range"); 1802 dmu_tx_abort(tx); 1803 umem_free(packbuf, packsize); 1804 umem_free(bigbuf, bigsize); 1805 return; 1806 } 1807 1808 txg = dmu_tx_get_txg(tx); 1809 1810 /* 1811 * For each index from n to n + s, verify that the existing bufwad 1812 * in packobj matches the bufwads at the head and tail of the 1813 * corresponding chunk in bigobj. Then update all three bufwads 1814 * with the new values we want to write out. 1815 */ 1816 for (i = 0; i < s; i++) { 1817 /* LINTED */ 1818 pack = (bufwad_t *)((char *)packbuf + i * sizeof (bufwad_t)); 1819 /* LINTED */ 1820 bigH = (bufwad_t *)((char *)bigbuf + i * dd.dd_chunk); 1821 /* LINTED */ 1822 bigT = (bufwad_t *)((char *)bigH + dd.dd_chunk) - 1; 1823 1824 ASSERT((uintptr_t)bigH - (uintptr_t)bigbuf < bigsize); 1825 ASSERT((uintptr_t)bigT - (uintptr_t)bigbuf < bigsize); 1826 1827 if (pack->bw_txg > txg) 1828 fatal(0, "future leak: got %llx, open txg is %llx", 1829 pack->bw_txg, txg); 1830 1831 if (pack->bw_data != 0 && pack->bw_index != n + i) 1832 fatal(0, "wrong index: got %llx, wanted %llx+%llx", 1833 pack->bw_index, n, i); 1834 1835 if (bcmp(pack, bigH, sizeof (bufwad_t)) != 0) 1836 fatal(0, "pack/bigH mismatch in %p/%p", pack, bigH); 1837 1838 if (bcmp(pack, bigT, sizeof (bufwad_t)) != 0) 1839 fatal(0, "pack/bigT mismatch in %p/%p", pack, bigT); 1840 1841 if (freeit) { 1842 bzero(pack, sizeof (bufwad_t)); 1843 } else { 1844 pack->bw_index = n + i; 1845 pack->bw_txg = txg; 1846 pack->bw_data = 1 + ztest_random(-2ULL); 1847 } 1848 *bigH = *pack; 1849 *bigT = *pack; 1850 } 1851 1852 /* 1853 * We've verified all the old bufwads, and made new ones. 1854 * Now write them out. 1855 */ 1856 dmu_write(os, dd.dd_packobj, packoff, packsize, packbuf, tx); 1857 1858 if (freeit) { 1859 if (zopt_verbose >= 6) { 1860 (void) printf("freeing offset %llx size %llx" 1861 " txg %llx\n", 1862 (u_longlong_t)bigoff, 1863 (u_longlong_t)bigsize, 1864 (u_longlong_t)txg); 1865 } 1866 VERIFY(0 == dmu_free_range(os, dd.dd_bigobj, bigoff, 1867 bigsize, tx)); 1868 } else { 1869 if (zopt_verbose >= 6) { 1870 (void) printf("writing offset %llx size %llx" 1871 " txg %llx\n", 1872 (u_longlong_t)bigoff, 1873 (u_longlong_t)bigsize, 1874 (u_longlong_t)txg); 1875 } 1876 dmu_write(os, dd.dd_bigobj, bigoff, bigsize, bigbuf, tx); 1877 } 1878 1879 dmu_tx_commit(tx); 1880 1881 /* 1882 * Sanity check the stuff we just wrote. 1883 */ 1884 { 1885 void *packcheck = umem_alloc(packsize, UMEM_NOFAIL); 1886 void *bigcheck = umem_alloc(bigsize, UMEM_NOFAIL); 1887 1888 VERIFY(0 == dmu_read(os, dd.dd_packobj, packoff, 1889 packsize, packcheck)); 1890 VERIFY(0 == dmu_read(os, dd.dd_bigobj, bigoff, 1891 bigsize, bigcheck)); 1892 1893 ASSERT(bcmp(packbuf, packcheck, packsize) == 0); 1894 ASSERT(bcmp(bigbuf, bigcheck, bigsize) == 0); 1895 1896 umem_free(packcheck, packsize); 1897 umem_free(bigcheck, bigsize); 1898 } 1899 1900 umem_free(packbuf, packsize); 1901 umem_free(bigbuf, bigsize); 1902 } 1903 1904 void 1905 ztest_dmu_write_parallel(ztest_args_t *za) 1906 { 1907 objset_t *os = za->za_os; 1908 dmu_tx_t *tx; 1909 dmu_buf_t *db; 1910 int i, b, error, do_free, bs; 1911 uint64_t off, txg_how, txg; 1912 mutex_t *lp; 1913 char osname[MAXNAMELEN]; 1914 char iobuf[SPA_MAXBLOCKSIZE]; 1915 ztest_block_tag_t rbt, wbt; 1916 1917 dmu_objset_name(os, osname); 1918 bs = ZTEST_DIROBJ_BLOCKSIZE; 1919 1920 /* 1921 * Have multiple threads write to large offsets in ZTEST_DIROBJ 1922 * to verify that having multiple threads writing to the same object 1923 * in parallel doesn't cause any trouble. 1924 * Also do parallel writes to the bonus buffer on occasion. 1925 */ 1926 for (i = 0; i < 50; i++) { 1927 b = ztest_random(ZTEST_SYNC_LOCKS); 1928 lp = &ztest_shared->zs_sync_lock[b]; 1929 1930 do_free = (ztest_random(4) == 0); 1931 1932 off = za->za_diroff_shared + ((uint64_t)b << SPA_MAXBLOCKSHIFT); 1933 1934 if (ztest_random(4) == 0) { 1935 /* 1936 * Do the bonus buffer instead of a regular block. 1937 */ 1938 do_free = 0; 1939 off = -1ULL; 1940 } 1941 1942 tx = dmu_tx_create(os); 1943 1944 if (off == -1ULL) 1945 dmu_tx_hold_bonus(tx, ZTEST_DIROBJ); 1946 else if (do_free) 1947 dmu_tx_hold_free(tx, ZTEST_DIROBJ, off, bs); 1948 else 1949 dmu_tx_hold_write(tx, ZTEST_DIROBJ, off, bs); 1950 1951 txg_how = ztest_random(2) == 0 ? TXG_WAIT : TXG_NOWAIT; 1952 error = dmu_tx_assign(tx, txg_how); 1953 if (error) { 1954 dmu_tx_abort(tx); 1955 if (error == ERESTART) { 1956 ASSERT(txg_how == TXG_NOWAIT); 1957 txg_wait_open(dmu_objset_pool(os), 0); 1958 continue; 1959 } 1960 ztest_record_enospc("dmu write parallel"); 1961 return; 1962 } 1963 txg = dmu_tx_get_txg(tx); 1964 1965 if (do_free) { 1966 (void) mutex_lock(lp); 1967 VERIFY(0 == dmu_free_range(os, ZTEST_DIROBJ, off, 1968 bs, tx)); 1969 (void) mutex_unlock(lp); 1970 dmu_tx_commit(tx); 1971 continue; 1972 } 1973 1974 wbt.bt_objset = dmu_objset_id(os); 1975 wbt.bt_object = ZTEST_DIROBJ; 1976 wbt.bt_offset = off; 1977 wbt.bt_txg = txg; 1978 wbt.bt_thread = za->za_instance; 1979 1980 if (off == -1ULL) { 1981 wbt.bt_seq = 0; 1982 VERIFY(0 == dmu_bonus_hold(os, ZTEST_DIROBJ, 1983 FTAG, &db)); 1984 ASSERT3U(db->db_size, ==, sizeof (wbt)); 1985 bcopy(db->db_data, &rbt, db->db_size); 1986 if (rbt.bt_objset != 0) { 1987 ASSERT3U(rbt.bt_objset, ==, wbt.bt_objset); 1988 ASSERT3U(rbt.bt_object, ==, wbt.bt_object); 1989 ASSERT3U(rbt.bt_offset, ==, wbt.bt_offset); 1990 ASSERT3U(rbt.bt_txg, <=, wbt.bt_txg); 1991 } 1992 dmu_buf_will_dirty(db, tx); 1993 bcopy(&wbt, db->db_data, db->db_size); 1994 dmu_buf_rele(db, FTAG); 1995 dmu_tx_commit(tx); 1996 continue; 1997 } 1998 1999 (void) mutex_lock(lp); 2000 2001 wbt.bt_seq = ztest_shared->zs_seq[b]++; 2002 2003 dmu_write(os, ZTEST_DIROBJ, off, sizeof (wbt), &wbt, tx); 2004 2005 (void) mutex_unlock(lp); 2006 2007 if (ztest_random(100) == 0) 2008 (void) poll(NULL, 0, 1); /* open dn_notxholds window */ 2009 2010 dmu_tx_commit(tx); 2011 2012 if (ztest_random(1000) == 0) 2013 txg_wait_synced(dmu_objset_pool(os), txg); 2014 2015 if (ztest_random(2) == 0) { 2016 blkptr_t blk = { 0 }; 2017 uint64_t blkoff; 2018 zbookmark_t zb; 2019 2020 txg_suspend(dmu_objset_pool(os)); 2021 (void) mutex_lock(lp); 2022 error = dmu_sync(os, ZTEST_DIROBJ, off, &blkoff, &blk, 2023 txg); 2024 (void) mutex_unlock(lp); 2025 if (error) { 2026 txg_resume(dmu_objset_pool(os)); 2027 dprintf("dmu_sync(%s, %d, %llx) = %d\n", 2028 osname, ZTEST_DIROBJ, off, error); 2029 continue; 2030 } 2031 2032 if (blk.blk_birth == 0) { /* concurrent free */ 2033 txg_resume(dmu_objset_pool(os)); 2034 continue; 2035 } 2036 2037 ASSERT(blk.blk_fill == 1); 2038 ASSERT3U(BP_GET_TYPE(&blk), ==, DMU_OT_UINT64_OTHER); 2039 ASSERT3U(BP_GET_LEVEL(&blk), ==, 0); 2040 ASSERT3U(BP_GET_LSIZE(&blk), ==, bs); 2041 2042 /* 2043 * Read the block that dmu_sync() returned to 2044 * make sure its contents match what we wrote. 2045 * We do this while still txg_suspend()ed to ensure 2046 * that the block can't be reused before we read it. 2047 */ 2048 zb.zb_objset = dmu_objset_id(os); 2049 zb.zb_object = ZTEST_DIROBJ; 2050 zb.zb_level = 0; 2051 zb.zb_blkid = off / bs; 2052 error = zio_wait(zio_read(NULL, dmu_objset_spa(os), 2053 &blk, iobuf, bs, NULL, NULL, 2054 ZIO_PRIORITY_SYNC_READ, ZIO_FLAG_MUSTSUCCEED, &zb)); 2055 ASSERT(error == 0); 2056 2057 txg_resume(dmu_objset_pool(os)); 2058 2059 bcopy(&iobuf[blkoff], &rbt, sizeof (rbt)); 2060 2061 if (rbt.bt_objset == 0) /* concurrent free */ 2062 continue; 2063 2064 ASSERT3U(rbt.bt_objset, ==, wbt.bt_objset); 2065 ASSERT3U(rbt.bt_object, ==, wbt.bt_object); 2066 ASSERT3U(rbt.bt_offset, ==, wbt.bt_offset); 2067 2068 /* 2069 * The semantic of dmu_sync() is that we always 2070 * push the most recent version of the data, 2071 * so in the face of concurrent updates we may 2072 * see a newer version of the block. That's OK. 2073 */ 2074 ASSERT3U(rbt.bt_txg, >=, wbt.bt_txg); 2075 if (rbt.bt_thread == wbt.bt_thread) 2076 ASSERT3U(rbt.bt_seq, ==, wbt.bt_seq); 2077 else 2078 ASSERT3U(rbt.bt_seq, >, wbt.bt_seq); 2079 } 2080 } 2081 } 2082 2083 /* 2084 * Verify that zap_{create,destroy,add,remove,update} work as expected. 2085 */ 2086 #define ZTEST_ZAP_MIN_INTS 1 2087 #define ZTEST_ZAP_MAX_INTS 4 2088 #define ZTEST_ZAP_MAX_PROPS 1000 2089 2090 void 2091 ztest_zap(ztest_args_t *za) 2092 { 2093 objset_t *os = za->za_os; 2094 uint64_t object; 2095 uint64_t txg, last_txg; 2096 uint64_t value[ZTEST_ZAP_MAX_INTS]; 2097 uint64_t zl_ints, zl_intsize, prop; 2098 int i, ints; 2099 int iters = 100; 2100 dmu_tx_t *tx; 2101 char propname[100], txgname[100]; 2102 int error; 2103 char osname[MAXNAMELEN]; 2104 char *hc[2] = { "s.acl.h", ".s.open.h.hyLZlg" }; 2105 2106 dmu_objset_name(os, osname); 2107 2108 /* 2109 * Create a new object if necessary, and record it in the directory. 2110 */ 2111 VERIFY(0 == dmu_read(os, ZTEST_DIROBJ, za->za_diroff, 2112 sizeof (uint64_t), &object)); 2113 2114 if (object == 0) { 2115 tx = dmu_tx_create(os); 2116 dmu_tx_hold_write(tx, ZTEST_DIROBJ, za->za_diroff, 2117 sizeof (uint64_t)); 2118 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, TRUE, NULL); 2119 error = dmu_tx_assign(tx, TXG_WAIT); 2120 if (error) { 2121 ztest_record_enospc("create zap test obj"); 2122 dmu_tx_abort(tx); 2123 return; 2124 } 2125 object = zap_create(os, DMU_OT_ZAP_OTHER, DMU_OT_NONE, 0, tx); 2126 if (error) { 2127 fatal(0, "zap_create('%s', %llu) = %d", 2128 osname, object, error); 2129 } 2130 ASSERT(object != 0); 2131 dmu_write(os, ZTEST_DIROBJ, za->za_diroff, 2132 sizeof (uint64_t), &object, tx); 2133 /* 2134 * Generate a known hash collision, and verify that 2135 * we can lookup and remove both entries. 2136 */ 2137 for (i = 0; i < 2; i++) { 2138 value[i] = i; 2139 error = zap_add(os, object, hc[i], sizeof (uint64_t), 2140 1, &value[i], tx); 2141 ASSERT3U(error, ==, 0); 2142 } 2143 for (i = 0; i < 2; i++) { 2144 error = zap_add(os, object, hc[i], sizeof (uint64_t), 2145 1, &value[i], tx); 2146 ASSERT3U(error, ==, EEXIST); 2147 error = zap_length(os, object, hc[i], 2148 &zl_intsize, &zl_ints); 2149 ASSERT3U(error, ==, 0); 2150 ASSERT3U(zl_intsize, ==, sizeof (uint64_t)); 2151 ASSERT3U(zl_ints, ==, 1); 2152 } 2153 for (i = 0; i < 2; i++) { 2154 error = zap_remove(os, object, hc[i], tx); 2155 ASSERT3U(error, ==, 0); 2156 } 2157 2158 dmu_tx_commit(tx); 2159 } 2160 2161 ints = MAX(ZTEST_ZAP_MIN_INTS, object % ZTEST_ZAP_MAX_INTS); 2162 2163 while (--iters >= 0) { 2164 prop = ztest_random(ZTEST_ZAP_MAX_PROPS); 2165 (void) sprintf(propname, "prop_%llu", (u_longlong_t)prop); 2166 (void) sprintf(txgname, "txg_%llu", (u_longlong_t)prop); 2167 bzero(value, sizeof (value)); 2168 last_txg = 0; 2169 2170 /* 2171 * If these zap entries already exist, validate their contents. 2172 */ 2173 error = zap_length(os, object, txgname, &zl_intsize, &zl_ints); 2174 if (error == 0) { 2175 ASSERT3U(zl_intsize, ==, sizeof (uint64_t)); 2176 ASSERT3U(zl_ints, ==, 1); 2177 2178 error = zap_lookup(os, object, txgname, zl_intsize, 2179 zl_ints, &last_txg); 2180 2181 ASSERT3U(error, ==, 0); 2182 2183 error = zap_length(os, object, propname, &zl_intsize, 2184 &zl_ints); 2185 2186 ASSERT3U(error, ==, 0); 2187 ASSERT3U(zl_intsize, ==, sizeof (uint64_t)); 2188 ASSERT3U(zl_ints, ==, ints); 2189 2190 error = zap_lookup(os, object, propname, zl_intsize, 2191 zl_ints, value); 2192 2193 ASSERT3U(error, ==, 0); 2194 2195 for (i = 0; i < ints; i++) { 2196 ASSERT3U(value[i], ==, last_txg + object + i); 2197 } 2198 } else { 2199 ASSERT3U(error, ==, ENOENT); 2200 } 2201 2202 /* 2203 * Atomically update two entries in our zap object. 2204 * The first is named txg_%llu, and contains the txg 2205 * in which the property was last updated. The second 2206 * is named prop_%llu, and the nth element of its value 2207 * should be txg + object + n. 2208 */ 2209 tx = dmu_tx_create(os); 2210 dmu_tx_hold_zap(tx, object, TRUE, NULL); 2211 error = dmu_tx_assign(tx, TXG_WAIT); 2212 if (error) { 2213 ztest_record_enospc("create zap entry"); 2214 dmu_tx_abort(tx); 2215 return; 2216 } 2217 txg = dmu_tx_get_txg(tx); 2218 2219 if (last_txg > txg) 2220 fatal(0, "zap future leak: old %llu new %llu", 2221 last_txg, txg); 2222 2223 for (i = 0; i < ints; i++) 2224 value[i] = txg + object + i; 2225 2226 error = zap_update(os, object, txgname, sizeof (uint64_t), 2227 1, &txg, tx); 2228 if (error) 2229 fatal(0, "zap_update('%s', %llu, '%s') = %d", 2230 osname, object, txgname, error); 2231 2232 error = zap_update(os, object, propname, sizeof (uint64_t), 2233 ints, value, tx); 2234 if (error) 2235 fatal(0, "zap_update('%s', %llu, '%s') = %d", 2236 osname, object, propname, error); 2237 2238 dmu_tx_commit(tx); 2239 2240 /* 2241 * Remove a random pair of entries. 2242 */ 2243 prop = ztest_random(ZTEST_ZAP_MAX_PROPS); 2244 (void) sprintf(propname, "prop_%llu", (u_longlong_t)prop); 2245 (void) sprintf(txgname, "txg_%llu", (u_longlong_t)prop); 2246 2247 error = zap_length(os, object, txgname, &zl_intsize, &zl_ints); 2248 2249 if (error == ENOENT) 2250 continue; 2251 2252 ASSERT3U(error, ==, 0); 2253 2254 tx = dmu_tx_create(os); 2255 dmu_tx_hold_zap(tx, object, TRUE, NULL); 2256 error = dmu_tx_assign(tx, TXG_WAIT); 2257 if (error) { 2258 ztest_record_enospc("remove zap entry"); 2259 dmu_tx_abort(tx); 2260 return; 2261 } 2262 error = zap_remove(os, object, txgname, tx); 2263 if (error) 2264 fatal(0, "zap_remove('%s', %llu, '%s') = %d", 2265 osname, object, txgname, error); 2266 2267 error = zap_remove(os, object, propname, tx); 2268 if (error) 2269 fatal(0, "zap_remove('%s', %llu, '%s') = %d", 2270 osname, object, propname, error); 2271 2272 dmu_tx_commit(tx); 2273 } 2274 2275 /* 2276 * Once in a while, destroy the object. 2277 */ 2278 if (ztest_random(100) != 0) 2279 return; 2280 2281 tx = dmu_tx_create(os); 2282 dmu_tx_hold_write(tx, ZTEST_DIROBJ, za->za_diroff, sizeof (uint64_t)); 2283 dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END); 2284 error = dmu_tx_assign(tx, TXG_WAIT); 2285 if (error) { 2286 ztest_record_enospc("destroy zap object"); 2287 dmu_tx_abort(tx); 2288 return; 2289 } 2290 error = zap_destroy(os, object, tx); 2291 if (error) 2292 fatal(0, "zap_destroy('%s', %llu) = %d", 2293 osname, object, error); 2294 object = 0; 2295 dmu_write(os, ZTEST_DIROBJ, za->za_diroff, sizeof (uint64_t), 2296 &object, tx); 2297 dmu_tx_commit(tx); 2298 } 2299 2300 void 2301 ztest_zap_parallel(ztest_args_t *za) 2302 { 2303 objset_t *os = za->za_os; 2304 uint64_t txg, object, count, wsize, wc, zl_wsize, zl_wc; 2305 int iters = 100; 2306 dmu_tx_t *tx; 2307 int i, namelen, error; 2308 char name[20], string_value[20]; 2309 void *data; 2310 2311 while (--iters >= 0) { 2312 /* 2313 * Generate a random name of the form 'xxx.....' where each 2314 * x is a random printable character and the dots are dots. 2315 * There are 94 such characters, and the name length goes from 2316 * 6 to 20, so there are 94^3 * 15 = 12,458,760 possible names. 2317 */ 2318 namelen = ztest_random(sizeof (name) - 5) + 5 + 1; 2319 2320 for (i = 0; i < 3; i++) 2321 name[i] = '!' + ztest_random('~' - '!' + 1); 2322 for (; i < namelen - 1; i++) 2323 name[i] = '.'; 2324 name[i] = '\0'; 2325 2326 if (ztest_random(2) == 0) 2327 object = ZTEST_MICROZAP_OBJ; 2328 else 2329 object = ZTEST_FATZAP_OBJ; 2330 2331 if ((namelen & 1) || object == ZTEST_MICROZAP_OBJ) { 2332 wsize = sizeof (txg); 2333 wc = 1; 2334 data = &txg; 2335 } else { 2336 wsize = 1; 2337 wc = namelen; 2338 data = string_value; 2339 } 2340 2341 count = -1ULL; 2342 VERIFY(zap_count(os, object, &count) == 0); 2343 ASSERT(count != -1ULL); 2344 2345 /* 2346 * Select an operation: length, lookup, add, update, remove. 2347 */ 2348 i = ztest_random(5); 2349 2350 if (i >= 2) { 2351 tx = dmu_tx_create(os); 2352 dmu_tx_hold_zap(tx, object, TRUE, NULL); 2353 error = dmu_tx_assign(tx, TXG_WAIT); 2354 if (error) { 2355 ztest_record_enospc("zap parallel"); 2356 dmu_tx_abort(tx); 2357 return; 2358 } 2359 txg = dmu_tx_get_txg(tx); 2360 bcopy(name, string_value, namelen); 2361 } else { 2362 tx = NULL; 2363 txg = 0; 2364 bzero(string_value, namelen); 2365 } 2366 2367 switch (i) { 2368 2369 case 0: 2370 error = zap_length(os, object, name, &zl_wsize, &zl_wc); 2371 if (error == 0) { 2372 ASSERT3U(wsize, ==, zl_wsize); 2373 ASSERT3U(wc, ==, zl_wc); 2374 } else { 2375 ASSERT3U(error, ==, ENOENT); 2376 } 2377 break; 2378 2379 case 1: 2380 error = zap_lookup(os, object, name, wsize, wc, data); 2381 if (error == 0) { 2382 if (data == string_value && 2383 bcmp(name, data, namelen) != 0) 2384 fatal(0, "name '%s' != val '%s' len %d", 2385 name, data, namelen); 2386 } else { 2387 ASSERT3U(error, ==, ENOENT); 2388 } 2389 break; 2390 2391 case 2: 2392 error = zap_add(os, object, name, wsize, wc, data, tx); 2393 ASSERT(error == 0 || error == EEXIST); 2394 break; 2395 2396 case 3: 2397 VERIFY(zap_update(os, object, name, wsize, wc, 2398 data, tx) == 0); 2399 break; 2400 2401 case 4: 2402 error = zap_remove(os, object, name, tx); 2403 ASSERT(error == 0 || error == ENOENT); 2404 break; 2405 } 2406 2407 if (tx != NULL) 2408 dmu_tx_commit(tx); 2409 } 2410 } 2411 2412 void 2413 ztest_dsl_prop_get_set(ztest_args_t *za) 2414 { 2415 objset_t *os = za->za_os; 2416 int i, inherit; 2417 uint64_t value; 2418 const char *prop, *valname; 2419 char setpoint[MAXPATHLEN]; 2420 char osname[MAXNAMELEN]; 2421 int error; 2422 2423 (void) rw_rdlock(&ztest_shared->zs_name_lock); 2424 2425 dmu_objset_name(os, osname); 2426 2427 for (i = 0; i < 2; i++) { 2428 if (i == 0) { 2429 prop = "checksum"; 2430 value = ztest_random_checksum(); 2431 inherit = (value == ZIO_CHECKSUM_INHERIT); 2432 } else { 2433 prop = "compression"; 2434 value = ztest_random_compress(); 2435 inherit = (value == ZIO_COMPRESS_INHERIT); 2436 } 2437 2438 error = dsl_prop_set(osname, prop, sizeof (value), 2439 !inherit, &value); 2440 2441 if (error == ENOSPC) { 2442 ztest_record_enospc("dsl_prop_set"); 2443 break; 2444 } 2445 2446 ASSERT3U(error, ==, 0); 2447 2448 VERIFY3U(dsl_prop_get(osname, prop, sizeof (value), 2449 1, &value, setpoint), ==, 0); 2450 2451 if (i == 0) 2452 valname = zio_checksum_table[value].ci_name; 2453 else 2454 valname = zio_compress_table[value].ci_name; 2455 2456 if (zopt_verbose >= 6) { 2457 (void) printf("%s %s = %s for '%s'\n", 2458 osname, prop, valname, setpoint); 2459 } 2460 } 2461 2462 (void) rw_unlock(&ztest_shared->zs_name_lock); 2463 } 2464 2465 static void 2466 ztest_error_setup(vdev_t *vd, int mode, int mask, uint64_t arg) 2467 { 2468 int c; 2469 2470 for (c = 0; c < vd->vdev_children; c++) 2471 ztest_error_setup(vd->vdev_child[c], mode, mask, arg); 2472 2473 if (vd->vdev_path != NULL) { 2474 vd->vdev_fault_mode = mode; 2475 vd->vdev_fault_mask = mask; 2476 vd->vdev_fault_arg = arg; 2477 } 2478 } 2479 2480 /* 2481 * Inject random faults into the on-disk data. 2482 */ 2483 void 2484 ztest_fault_inject(ztest_args_t *za) 2485 { 2486 int fd; 2487 uint64_t offset; 2488 uint64_t leaves = MAX(zopt_mirrors, 1) * zopt_raidz; 2489 uint64_t bad = 0x1990c0ffeedecade; 2490 uint64_t top, leaf; 2491 char path0[MAXPATHLEN]; 2492 char pathrand[MAXPATHLEN]; 2493 size_t fsize; 2494 spa_t *spa = dmu_objset_spa(za->za_os); 2495 int bshift = SPA_MAXBLOCKSHIFT + 2; /* don't scrog all labels */ 2496 int iters = 1000; 2497 vdev_t *vd0; 2498 uint64_t guid0 = 0; 2499 2500 /* 2501 * We can't inject faults when we have no fault tolerance. 2502 */ 2503 if (zopt_maxfaults == 0) 2504 return; 2505 2506 ASSERT(leaves >= 2); 2507 2508 /* 2509 * Pick a random top-level vdev. 2510 */ 2511 spa_config_enter(spa, RW_READER, FTAG); 2512 top = ztest_random(spa->spa_root_vdev->vdev_children); 2513 spa_config_exit(spa, FTAG); 2514 2515 /* 2516 * Pick a random leaf. 2517 */ 2518 leaf = ztest_random(leaves); 2519 2520 /* 2521 * Generate paths to the first two leaves in this top-level vdev, 2522 * and to the random leaf we selected. We'll induce transient 2523 * I/O errors and random online/offline activity on leaf 0, 2524 * and we'll write random garbage to the randomly chosen leaf. 2525 */ 2526 (void) snprintf(path0, sizeof (path0), 2527 ztest_dev_template, zopt_dir, zopt_pool, top * leaves + 0); 2528 (void) snprintf(pathrand, sizeof (pathrand), 2529 ztest_dev_template, zopt_dir, zopt_pool, top * leaves + leaf); 2530 2531 dprintf("damaging %s and %s\n", path0, pathrand); 2532 2533 spa_config_enter(spa, RW_READER, FTAG); 2534 2535 /* 2536 * If we can tolerate two or more faults, make vd0 fail randomly. 2537 */ 2538 vd0 = vdev_lookup_by_path(spa->spa_root_vdev, path0); 2539 if (vd0 != NULL && zopt_maxfaults >= 2) { 2540 guid0 = vd0->vdev_guid; 2541 ztest_error_setup(vd0, VDEV_FAULT_COUNT, 2542 (1U << ZIO_TYPE_READ) | (1U << ZIO_TYPE_WRITE), 100); 2543 } 2544 2545 spa_config_exit(spa, FTAG); 2546 2547 /* 2548 * If we can tolerate two or more faults, randomly online/offline vd0. 2549 */ 2550 if (zopt_maxfaults >= 2 && guid0 != 0) { 2551 if (ztest_random(10) < 6) 2552 (void) vdev_offline(spa, guid0, B_TRUE); 2553 else 2554 (void) vdev_online(spa, guid0); 2555 } 2556 2557 /* 2558 * We have at least single-fault tolerance, so inject data corruption. 2559 */ 2560 fd = open(pathrand, O_RDWR); 2561 2562 if (fd == -1) /* we hit a gap in the device namespace */ 2563 return; 2564 2565 fsize = lseek(fd, 0, SEEK_END); 2566 2567 while (--iters != 0) { 2568 offset = ztest_random(fsize / (leaves << bshift)) * 2569 (leaves << bshift) + (leaf << bshift) + 2570 (ztest_random(1ULL << (bshift - 1)) & -8ULL); 2571 2572 if (offset >= fsize) 2573 continue; 2574 2575 if (zopt_verbose >= 6) 2576 (void) printf("injecting bad word into %s," 2577 " offset 0x%llx\n", pathrand, (u_longlong_t)offset); 2578 2579 if (pwrite(fd, &bad, sizeof (bad), offset) != sizeof (bad)) 2580 fatal(1, "can't inject bad word at 0x%llx in %s", 2581 offset, pathrand); 2582 } 2583 2584 (void) close(fd); 2585 } 2586 2587 /* 2588 * Scrub the pool. 2589 */ 2590 void 2591 ztest_scrub(ztest_args_t *za) 2592 { 2593 spa_t *spa = dmu_objset_spa(za->za_os); 2594 2595 (void) spa_scrub(spa, POOL_SCRUB_EVERYTHING, B_FALSE); 2596 (void) poll(NULL, 0, 1000); /* wait a second, then force a restart */ 2597 (void) spa_scrub(spa, POOL_SCRUB_EVERYTHING, B_FALSE); 2598 } 2599 2600 /* 2601 * Rename the pool to a different name and then rename it back. 2602 */ 2603 void 2604 ztest_spa_rename(ztest_args_t *za) 2605 { 2606 char *oldname, *newname; 2607 int error; 2608 spa_t *spa; 2609 2610 (void) rw_wrlock(&ztest_shared->zs_name_lock); 2611 2612 oldname = za->za_pool; 2613 newname = umem_alloc(strlen(oldname) + 5, UMEM_NOFAIL); 2614 (void) strcpy(newname, oldname); 2615 (void) strcat(newname, "_tmp"); 2616 2617 /* 2618 * Do the rename 2619 */ 2620 error = spa_rename(oldname, newname); 2621 if (error) 2622 fatal(0, "spa_rename('%s', '%s') = %d", oldname, 2623 newname, error); 2624 2625 /* 2626 * Try to open it under the old name, which shouldn't exist 2627 */ 2628 error = spa_open(oldname, &spa, FTAG); 2629 if (error != ENOENT) 2630 fatal(0, "spa_open('%s') = %d", oldname, error); 2631 2632 /* 2633 * Open it under the new name and make sure it's still the same spa_t. 2634 */ 2635 error = spa_open(newname, &spa, FTAG); 2636 if (error != 0) 2637 fatal(0, "spa_open('%s') = %d", newname, error); 2638 2639 ASSERT(spa == dmu_objset_spa(za->za_os)); 2640 spa_close(spa, FTAG); 2641 2642 /* 2643 * Rename it back to the original 2644 */ 2645 error = spa_rename(newname, oldname); 2646 if (error) 2647 fatal(0, "spa_rename('%s', '%s') = %d", newname, 2648 oldname, error); 2649 2650 /* 2651 * Make sure it can still be opened 2652 */ 2653 error = spa_open(oldname, &spa, FTAG); 2654 if (error != 0) 2655 fatal(0, "spa_open('%s') = %d", oldname, error); 2656 2657 ASSERT(spa == dmu_objset_spa(za->za_os)); 2658 spa_close(spa, FTAG); 2659 2660 umem_free(newname, strlen(newname) + 1); 2661 2662 (void) rw_unlock(&ztest_shared->zs_name_lock); 2663 } 2664 2665 2666 /* 2667 * Completely obliterate one disk. 2668 */ 2669 static void 2670 ztest_obliterate_one_disk(uint64_t vdev) 2671 { 2672 int fd; 2673 char dev_name[MAXPATHLEN], copy_name[MAXPATHLEN]; 2674 size_t fsize; 2675 2676 if (zopt_maxfaults < 2) 2677 return; 2678 2679 (void) sprintf(dev_name, ztest_dev_template, zopt_dir, zopt_pool, vdev); 2680 (void) snprintf(copy_name, MAXPATHLEN, "%s.old", dev_name); 2681 2682 fd = open(dev_name, O_RDWR); 2683 2684 if (fd == -1) 2685 fatal(1, "can't open %s", dev_name); 2686 2687 /* 2688 * Determine the size. 2689 */ 2690 fsize = lseek(fd, 0, SEEK_END); 2691 2692 (void) close(fd); 2693 2694 /* 2695 * Rename the old device to dev_name.old (useful for debugging). 2696 */ 2697 VERIFY(rename(dev_name, copy_name) == 0); 2698 2699 /* 2700 * Create a new one. 2701 */ 2702 VERIFY((fd = open(dev_name, O_RDWR | O_CREAT | O_TRUNC, 0666)) >= 0); 2703 VERIFY(ftruncate(fd, fsize) == 0); 2704 (void) close(fd); 2705 } 2706 2707 static void 2708 ztest_replace_one_disk(spa_t *spa, uint64_t vdev) 2709 { 2710 char dev_name[MAXPATHLEN]; 2711 nvlist_t *file, *root; 2712 int error; 2713 uint64_t guid; 2714 uint64_t ashift = ztest_get_ashift(); 2715 vdev_t *vd; 2716 2717 (void) sprintf(dev_name, ztest_dev_template, zopt_dir, zopt_pool, vdev); 2718 2719 /* 2720 * Build the nvlist describing dev_name. 2721 */ 2722 VERIFY(nvlist_alloc(&file, NV_UNIQUE_NAME, 0) == 0); 2723 VERIFY(nvlist_add_string(file, ZPOOL_CONFIG_TYPE, VDEV_TYPE_FILE) == 0); 2724 VERIFY(nvlist_add_string(file, ZPOOL_CONFIG_PATH, dev_name) == 0); 2725 VERIFY(nvlist_add_uint64(file, ZPOOL_CONFIG_ASHIFT, ashift) == 0); 2726 2727 VERIFY(nvlist_alloc(&root, NV_UNIQUE_NAME, 0) == 0); 2728 VERIFY(nvlist_add_string(root, ZPOOL_CONFIG_TYPE, VDEV_TYPE_ROOT) == 0); 2729 VERIFY(nvlist_add_nvlist_array(root, ZPOOL_CONFIG_CHILDREN, 2730 &file, 1) == 0); 2731 2732 spa_config_enter(spa, RW_READER, FTAG); 2733 if ((vd = vdev_lookup_by_path(spa->spa_root_vdev, dev_name)) == NULL) 2734 guid = 0; 2735 else 2736 guid = vd->vdev_guid; 2737 spa_config_exit(spa, FTAG); 2738 error = spa_vdev_attach(spa, guid, root, B_TRUE); 2739 if (error != 0 && 2740 error != EBUSY && 2741 error != ENOTSUP && 2742 error != ENODEV && 2743 error != EDOM) 2744 fatal(0, "spa_vdev_attach(in-place) = %d", error); 2745 2746 nvlist_free(file); 2747 nvlist_free(root); 2748 } 2749 2750 static void 2751 ztest_verify_blocks(char *pool) 2752 { 2753 int status; 2754 char zdb[MAXPATHLEN + MAXNAMELEN + 20]; 2755 char zbuf[1024]; 2756 char *bin; 2757 FILE *fp; 2758 2759 (void) realpath(getexecname(), zdb); 2760 2761 /* zdb lives in /usr/sbin, while ztest lives in /usr/bin */ 2762 bin = strstr(zdb, "/usr/bin/"); 2763 /* LINTED */ 2764 (void) sprintf(bin, "/usr/sbin/zdb -bc%s%s -U -O %s %s", 2765 zopt_verbose >= 3 ? "s" : "", 2766 zopt_verbose >= 4 ? "v" : "", 2767 ztest_random(2) == 0 ? "pre" : "post", pool); 2768 2769 if (zopt_verbose >= 5) 2770 (void) printf("Executing %s\n", strstr(zdb, "zdb ")); 2771 2772 fp = popen(zdb, "r"); 2773 2774 while (fgets(zbuf, sizeof (zbuf), fp) != NULL) 2775 if (zopt_verbose >= 3) 2776 (void) printf("%s", zbuf); 2777 2778 status = pclose(fp); 2779 2780 if (status == 0) 2781 return; 2782 2783 ztest_dump_core = 0; 2784 if (WIFEXITED(status)) 2785 fatal(0, "'%s' exit code %d", zdb, WEXITSTATUS(status)); 2786 else 2787 fatal(0, "'%s' died with signal %d", zdb, WTERMSIG(status)); 2788 } 2789 2790 static void 2791 ztest_walk_pool_directory(char *header) 2792 { 2793 spa_t *spa = NULL; 2794 2795 if (zopt_verbose >= 6) 2796 (void) printf("%s\n", header); 2797 2798 mutex_enter(&spa_namespace_lock); 2799 while ((spa = spa_next(spa)) != NULL) 2800 if (zopt_verbose >= 6) 2801 (void) printf("\t%s\n", spa_name(spa)); 2802 mutex_exit(&spa_namespace_lock); 2803 } 2804 2805 static void 2806 ztest_spa_import_export(char *oldname, char *newname) 2807 { 2808 nvlist_t *config; 2809 uint64_t pool_guid; 2810 spa_t *spa; 2811 int error; 2812 2813 if (zopt_verbose >= 4) { 2814 (void) printf("import/export: old = %s, new = %s\n", 2815 oldname, newname); 2816 } 2817 2818 /* 2819 * Clean up from previous runs. 2820 */ 2821 (void) spa_destroy(newname); 2822 2823 /* 2824 * Get the pool's configuration and guid. 2825 */ 2826 error = spa_open(oldname, &spa, FTAG); 2827 if (error) 2828 fatal(0, "spa_open('%s') = %d", oldname, error); 2829 2830 pool_guid = spa_guid(spa); 2831 spa_close(spa, FTAG); 2832 2833 ztest_walk_pool_directory("pools before export"); 2834 2835 /* 2836 * Export it. 2837 */ 2838 error = spa_export(oldname, &config); 2839 if (error) 2840 fatal(0, "spa_export('%s') = %d", oldname, error); 2841 2842 ztest_walk_pool_directory("pools after export"); 2843 2844 /* 2845 * Import it under the new name. 2846 */ 2847 error = spa_import(newname, config, NULL); 2848 if (error) 2849 fatal(0, "spa_import('%s') = %d", newname, error); 2850 2851 ztest_walk_pool_directory("pools after import"); 2852 2853 /* 2854 * Try to import it again -- should fail with EEXIST. 2855 */ 2856 error = spa_import(newname, config, NULL); 2857 if (error != EEXIST) 2858 fatal(0, "spa_import('%s') twice", newname); 2859 2860 /* 2861 * Try to import it under a different name -- should fail with EEXIST. 2862 */ 2863 error = spa_import(oldname, config, NULL); 2864 if (error != EEXIST) 2865 fatal(0, "spa_import('%s') under multiple names", newname); 2866 2867 /* 2868 * Verify that the pool is no longer visible under the old name. 2869 */ 2870 error = spa_open(oldname, &spa, FTAG); 2871 if (error != ENOENT) 2872 fatal(0, "spa_open('%s') = %d", newname, error); 2873 2874 /* 2875 * Verify that we can open and close the pool using the new name. 2876 */ 2877 error = spa_open(newname, &spa, FTAG); 2878 if (error) 2879 fatal(0, "spa_open('%s') = %d", newname, error); 2880 ASSERT(pool_guid == spa_guid(spa)); 2881 spa_close(spa, FTAG); 2882 2883 nvlist_free(config); 2884 } 2885 2886 static void * 2887 ztest_thread(void *arg) 2888 { 2889 ztest_args_t *za = arg; 2890 ztest_shared_t *zs = ztest_shared; 2891 hrtime_t now, functime; 2892 ztest_info_t *zi; 2893 int f; 2894 2895 while ((now = gethrtime()) < za->za_stop) { 2896 /* 2897 * See if it's time to force a crash. 2898 */ 2899 if (now > za->za_kill) { 2900 zs->zs_alloc = spa_get_alloc(dmu_objset_spa(za->za_os)); 2901 zs->zs_space = spa_get_space(dmu_objset_spa(za->za_os)); 2902 (void) kill(getpid(), SIGKILL); 2903 } 2904 2905 /* 2906 * Pick a random function. 2907 */ 2908 f = ztest_random(ZTEST_FUNCS); 2909 zi = &zs->zs_info[f]; 2910 2911 /* 2912 * Decide whether to call it, based on the requested frequency. 2913 */ 2914 if (zi->zi_call_target == 0 || 2915 (double)zi->zi_call_total / zi->zi_call_target > 2916 (double)(now - zs->zs_start_time) / (zopt_time * NANOSEC)) 2917 continue; 2918 2919 atomic_add_64(&zi->zi_calls, 1); 2920 atomic_add_64(&zi->zi_call_total, 1); 2921 2922 za->za_diroff = (za->za_instance * ZTEST_FUNCS + f) * 2923 ZTEST_DIRSIZE; 2924 za->za_diroff_shared = (1ULL << 63); 2925 2926 ztest_dmu_write_parallel(za); 2927 2928 zi->zi_func(za); 2929 2930 functime = gethrtime() - now; 2931 2932 atomic_add_64(&zi->zi_call_time, functime); 2933 2934 if (zopt_verbose >= 4) { 2935 Dl_info dli; 2936 (void) dladdr((void *)zi->zi_func, &dli); 2937 (void) printf("%6.2f sec in %s\n", 2938 (double)functime / NANOSEC, dli.dli_sname); 2939 } 2940 2941 /* 2942 * If we're getting ENOSPC with some regularity, stop. 2943 */ 2944 if (zs->zs_enospc_count > 10) 2945 break; 2946 } 2947 2948 return (NULL); 2949 } 2950 2951 /* 2952 * Kick off threads to run tests on all datasets in parallel. 2953 */ 2954 static void 2955 ztest_run(char *pool) 2956 { 2957 int t, d, error; 2958 ztest_shared_t *zs = ztest_shared; 2959 ztest_args_t *za; 2960 spa_t *spa; 2961 char name[100]; 2962 2963 (void) _mutex_init(&zs->zs_vdev_lock, USYNC_THREAD, NULL); 2964 (void) rwlock_init(&zs->zs_name_lock, USYNC_THREAD, NULL); 2965 2966 for (t = 0; t < ZTEST_SYNC_LOCKS; t++) 2967 (void) _mutex_init(&zs->zs_sync_lock[t], USYNC_THREAD, NULL); 2968 2969 /* 2970 * Destroy one disk before we even start. 2971 * It's mirrored, so everything should work just fine. 2972 * This makes us exercise fault handling very early in spa_load(). 2973 */ 2974 ztest_obliterate_one_disk(0); 2975 2976 /* 2977 * Verify that the sum of the sizes of all blocks in the pool 2978 * equals the SPA's allocated space total. 2979 */ 2980 ztest_verify_blocks(pool); 2981 2982 /* 2983 * Kick off a replacement of the disk we just obliterated. 2984 */ 2985 kernel_init(FREAD | FWRITE); 2986 error = spa_open(pool, &spa, FTAG); 2987 if (error) 2988 fatal(0, "spa_open(%s) = %d", pool, error); 2989 ztest_replace_one_disk(spa, 0); 2990 if (zopt_verbose >= 5) 2991 show_pool_stats(spa); 2992 spa_close(spa, FTAG); 2993 kernel_fini(); 2994 2995 kernel_init(FREAD | FWRITE); 2996 2997 /* 2998 * Verify that we can export the pool and reimport it under a 2999 * different name. 3000 */ 3001 if (ztest_random(2) == 0) { 3002 (void) snprintf(name, 100, "%s_import", pool); 3003 ztest_spa_import_export(pool, name); 3004 ztest_spa_import_export(name, pool); 3005 } 3006 3007 /* 3008 * Verify that we can loop over all pools. 3009 */ 3010 mutex_enter(&spa_namespace_lock); 3011 for (spa = spa_next(NULL); spa != NULL; spa = spa_next(spa)) { 3012 if (zopt_verbose > 3) { 3013 (void) printf("spa_next: found %s\n", spa_name(spa)); 3014 } 3015 } 3016 mutex_exit(&spa_namespace_lock); 3017 3018 /* 3019 * Open our pool. 3020 */ 3021 error = spa_open(pool, &spa, FTAG); 3022 if (error) 3023 fatal(0, "spa_open() = %d", error); 3024 3025 /* 3026 * Verify that we can safely inquire about about any object, 3027 * whether it's allocated or not. To make it interesting, 3028 * we probe a 5-wide window around each power of two. 3029 * This hits all edge cases, including zero and the max. 3030 */ 3031 for (t = 0; t < 64; t++) { 3032 for (d = -5; d <= 5; d++) { 3033 error = dmu_object_info(spa->spa_meta_objset, 3034 (1ULL << t) + d, NULL); 3035 ASSERT(error == 0 || error == ENOENT || 3036 error == EINVAL); 3037 } 3038 } 3039 3040 /* 3041 * Now kick off all the tests that run in parallel. 3042 */ 3043 zs->zs_enospc_count = 0; 3044 3045 za = umem_zalloc(zopt_threads * sizeof (ztest_args_t), UMEM_NOFAIL); 3046 3047 if (zopt_verbose >= 4) 3048 (void) printf("starting main threads...\n"); 3049 3050 za[0].za_start = gethrtime(); 3051 za[0].za_stop = za[0].za_start + zopt_passtime * NANOSEC; 3052 za[0].za_stop = MIN(za[0].za_stop, zs->zs_stop_time); 3053 za[0].za_kill = za[0].za_stop; 3054 if (ztest_random(100) < zopt_killrate) 3055 za[0].za_kill -= ztest_random(zopt_passtime * NANOSEC); 3056 3057 for (t = 0; t < zopt_threads; t++) { 3058 d = t % zopt_datasets; 3059 if (t < zopt_datasets) { 3060 ztest_replay_t zr; 3061 (void) rw_rdlock(&ztest_shared->zs_name_lock); 3062 (void) snprintf(name, 100, "%s/%s_%d", pool, pool, d); 3063 error = dmu_objset_create(name, DMU_OST_OTHER, NULL, 3064 ztest_create_cb, NULL); 3065 if (error != 0 && error != EEXIST) { 3066 if (error == ENOSPC) { 3067 zs->zs_enospc_count++; 3068 (void) rw_unlock( 3069 &ztest_shared->zs_name_lock); 3070 break; 3071 } 3072 fatal(0, "dmu_objset_create(%s) = %d", 3073 name, error); 3074 } 3075 error = dmu_objset_open(name, DMU_OST_OTHER, 3076 DS_MODE_STANDARD, &za[d].za_os); 3077 if (error) 3078 fatal(0, "dmu_objset_open('%s') = %d", 3079 name, error); 3080 (void) rw_unlock(&ztest_shared->zs_name_lock); 3081 zr.zr_os = za[d].za_os; 3082 zil_replay(zr.zr_os, &zr, &zr.zr_assign, 3083 ztest_replay_vector, NULL); 3084 za[d].za_zilog = zil_open(za[d].za_os, NULL); 3085 } 3086 za[t].za_pool = spa_strdup(pool); 3087 za[t].za_os = za[d].za_os; 3088 za[t].za_zilog = za[d].za_zilog; 3089 za[t].za_instance = t; 3090 za[t].za_random = ztest_random(-1ULL); 3091 za[t].za_start = za[0].za_start; 3092 za[t].za_stop = za[0].za_stop; 3093 za[t].za_kill = za[0].za_kill; 3094 3095 error = thr_create(0, 0, ztest_thread, &za[t], THR_BOUND, 3096 &za[t].za_thread); 3097 if (error) 3098 fatal(0, "can't create thread %d: error %d", 3099 t, error); 3100 } 3101 3102 while (--t >= 0) { 3103 error = thr_join(za[t].za_thread, NULL, NULL); 3104 if (error) 3105 fatal(0, "thr_join(%d) = %d", t, error); 3106 if (za[t].za_th) 3107 traverse_fini(za[t].za_th); 3108 if (t < zopt_datasets) { 3109 zil_close(za[t].za_zilog); 3110 dmu_objset_close(za[t].za_os); 3111 } 3112 spa_strfree(za[t].za_pool); 3113 } 3114 3115 umem_free(za, zopt_threads * sizeof (ztest_args_t)); 3116 3117 if (zopt_verbose >= 3) 3118 show_pool_stats(spa); 3119 3120 txg_wait_synced(spa_get_dsl(spa), 0); 3121 3122 zs->zs_alloc = spa_get_alloc(spa); 3123 zs->zs_space = spa_get_space(spa); 3124 3125 /* 3126 * Did we have out-of-space errors? If so, destroy a random objset. 3127 */ 3128 if (zs->zs_enospc_count != 0) { 3129 (void) rw_rdlock(&ztest_shared->zs_name_lock); 3130 (void) snprintf(name, 100, "%s/%s_%d", pool, pool, 3131 (int)ztest_random(zopt_datasets)); 3132 if (zopt_verbose >= 3) 3133 (void) printf("Destroying %s to free up space\n", name); 3134 dmu_objset_find(name, ztest_destroy_cb, NULL, 3135 DS_FIND_SNAPSHOTS); 3136 (void) rw_unlock(&ztest_shared->zs_name_lock); 3137 } 3138 3139 txg_wait_synced(spa_get_dsl(spa), 0); 3140 3141 /* 3142 * Right before closing the pool, kick off a bunch of async I/O; 3143 * spa_close() should wait for it to complete. 3144 */ 3145 for (t = 1; t < 50; t++) 3146 dmu_prefetch(spa->spa_meta_objset, t, 0, 1 << 15); 3147 3148 spa_close(spa, FTAG); 3149 3150 kernel_fini(); 3151 } 3152 3153 void 3154 print_time(hrtime_t t, char *timebuf) 3155 { 3156 hrtime_t s = t / NANOSEC; 3157 hrtime_t m = s / 60; 3158 hrtime_t h = m / 60; 3159 hrtime_t d = h / 24; 3160 3161 s -= m * 60; 3162 m -= h * 60; 3163 h -= d * 24; 3164 3165 timebuf[0] = '\0'; 3166 3167 if (d) 3168 (void) sprintf(timebuf, 3169 "%llud%02lluh%02llum%02llus", d, h, m, s); 3170 else if (h) 3171 (void) sprintf(timebuf, "%lluh%02llum%02llus", h, m, s); 3172 else if (m) 3173 (void) sprintf(timebuf, "%llum%02llus", m, s); 3174 else 3175 (void) sprintf(timebuf, "%llus", s); 3176 } 3177 3178 /* 3179 * Create a storage pool with the given name and initial vdev size. 3180 * Then create the specified number of datasets in the pool. 3181 */ 3182 static void 3183 ztest_init(char *pool) 3184 { 3185 spa_t *spa; 3186 int error; 3187 nvlist_t *nvroot; 3188 3189 kernel_init(FREAD | FWRITE); 3190 3191 /* 3192 * Create the storage pool. 3193 */ 3194 (void) spa_destroy(pool); 3195 ztest_shared->zs_vdev_primaries = 0; 3196 nvroot = make_vdev_root(zopt_vdev_size, zopt_raidz, zopt_mirrors, 1); 3197 error = spa_create(pool, nvroot, NULL); 3198 nvlist_free(nvroot); 3199 3200 if (error) 3201 fatal(0, "spa_create() = %d", error); 3202 error = spa_open(pool, &spa, FTAG); 3203 if (error) 3204 fatal(0, "spa_open() = %d", error); 3205 3206 if (zopt_verbose >= 3) 3207 show_pool_stats(spa); 3208 3209 spa_close(spa, FTAG); 3210 3211 kernel_fini(); 3212 } 3213 3214 int 3215 main(int argc, char **argv) 3216 { 3217 int kills = 0; 3218 int iters = 0; 3219 int i, f; 3220 ztest_shared_t *zs; 3221 ztest_info_t *zi; 3222 char timebuf[100]; 3223 char numbuf[6]; 3224 3225 (void) setvbuf(stdout, NULL, _IOLBF, 0); 3226 3227 /* Override location of zpool.cache */ 3228 spa_config_dir = "/tmp"; 3229 3230 ztest_random_fd = open("/dev/urandom", O_RDONLY); 3231 3232 process_options(argc, argv); 3233 3234 argc -= optind; 3235 argv += optind; 3236 3237 dprintf_setup(&argc, argv); 3238 3239 /* 3240 * Blow away any existing copy of zpool.cache 3241 */ 3242 if (zopt_init != 0) 3243 (void) remove("/tmp/zpool.cache"); 3244 3245 zs = ztest_shared = (void *)mmap(0, 3246 P2ROUNDUP(sizeof (ztest_shared_t), getpagesize()), 3247 PROT_READ | PROT_WRITE, MAP_SHARED | MAP_ANON, -1, 0); 3248 3249 if (zopt_verbose >= 1) { 3250 (void) printf("%llu vdevs, %d datasets, %d threads," 3251 " %llu seconds...\n", 3252 (u_longlong_t)zopt_vdevs, zopt_datasets, zopt_threads, 3253 (u_longlong_t)zopt_time); 3254 } 3255 3256 /* 3257 * Create and initialize our storage pool. 3258 */ 3259 for (i = 1; i <= zopt_init; i++) { 3260 bzero(zs, sizeof (ztest_shared_t)); 3261 if (zopt_verbose >= 3 && zopt_init != 1) 3262 (void) printf("ztest_init(), pass %d\n", i); 3263 ztest_init(zopt_pool); 3264 } 3265 3266 /* 3267 * Initialize the call targets for each function. 3268 */ 3269 for (f = 0; f < ZTEST_FUNCS; f++) { 3270 zi = &zs->zs_info[f]; 3271 3272 *zi = ztest_info[f]; 3273 3274 if (*zi->zi_interval == 0) 3275 zi->zi_call_target = UINT64_MAX; 3276 else 3277 zi->zi_call_target = zopt_time / *zi->zi_interval; 3278 } 3279 3280 zs->zs_start_time = gethrtime(); 3281 zs->zs_stop_time = zs->zs_start_time + zopt_time * NANOSEC; 3282 3283 /* 3284 * Run the tests in a loop. These tests include fault injection 3285 * to verify that self-healing data works, and forced crashes 3286 * to verify that we never lose on-disk consistency. 3287 */ 3288 while (gethrtime() < zs->zs_stop_time) { 3289 int status; 3290 pid_t pid; 3291 char *tmp; 3292 3293 /* 3294 * Initialize the workload counters for each function. 3295 */ 3296 for (f = 0; f < ZTEST_FUNCS; f++) { 3297 zi = &zs->zs_info[f]; 3298 zi->zi_calls = 0; 3299 zi->zi_call_time = 0; 3300 } 3301 3302 pid = fork(); 3303 3304 if (pid == -1) 3305 fatal(1, "fork failed"); 3306 3307 if (pid == 0) { /* child */ 3308 struct rlimit rl = { 1024, 1024 }; 3309 (void) setrlimit(RLIMIT_NOFILE, &rl); 3310 ztest_run(zopt_pool); 3311 exit(0); 3312 } 3313 3314 while (waitpid(pid, &status, WEXITED) != pid) 3315 continue; 3316 3317 if (WIFEXITED(status)) { 3318 if (WEXITSTATUS(status) != 0) { 3319 (void) fprintf(stderr, 3320 "child exited with code %d\n", 3321 WEXITSTATUS(status)); 3322 exit(2); 3323 } 3324 } else { 3325 if (WTERMSIG(status) != SIGKILL) { 3326 (void) fprintf(stderr, 3327 "child died with signal %d\n", 3328 WTERMSIG(status)); 3329 exit(3); 3330 } 3331 kills++; 3332 } 3333 3334 iters++; 3335 3336 if (zopt_verbose >= 1) { 3337 hrtime_t now = gethrtime(); 3338 3339 now = MIN(now, zs->zs_stop_time); 3340 print_time(zs->zs_stop_time - now, timebuf); 3341 nicenum(zs->zs_space, numbuf); 3342 3343 (void) printf("Pass %3d, %8s, %3llu ENOSPC, " 3344 "%4.1f%% of %5s used, %3.0f%% done, %8s to go\n", 3345 iters, 3346 WIFEXITED(status) ? "Complete" : "SIGKILL", 3347 (u_longlong_t)zs->zs_enospc_count, 3348 100.0 * zs->zs_alloc / zs->zs_space, 3349 numbuf, 3350 100.0 * (now - zs->zs_start_time) / 3351 (zopt_time * NANOSEC), timebuf); 3352 } 3353 3354 if (zopt_verbose >= 2) { 3355 (void) printf("\nWorkload summary:\n\n"); 3356 (void) printf("%7s %9s %s\n", 3357 "Calls", "Time", "Function"); 3358 (void) printf("%7s %9s %s\n", 3359 "-----", "----", "--------"); 3360 for (f = 0; f < ZTEST_FUNCS; f++) { 3361 Dl_info dli; 3362 3363 zi = &zs->zs_info[f]; 3364 print_time(zi->zi_call_time, timebuf); 3365 (void) dladdr((void *)zi->zi_func, &dli); 3366 (void) printf("%7llu %9s %s\n", 3367 (u_longlong_t)zi->zi_calls, timebuf, 3368 dli.dli_sname); 3369 } 3370 (void) printf("\n"); 3371 } 3372 3373 /* 3374 * It's possible that we killed a child during a rename test, in 3375 * which case we'll have a 'ztest_tmp' pool lying around instead 3376 * of 'ztest'. Do a blind rename in case this happened. 3377 */ 3378 tmp = umem_alloc(strlen(zopt_pool) + 5, UMEM_NOFAIL); 3379 (void) strcpy(tmp, zopt_pool); 3380 (void) strcat(tmp, "_tmp"); 3381 kernel_init(FREAD | FWRITE); 3382 (void) spa_rename(tmp, zopt_pool); 3383 kernel_fini(); 3384 umem_free(tmp, strlen(tmp) + 1); 3385 } 3386 3387 ztest_verify_blocks(zopt_pool); 3388 3389 if (zopt_verbose >= 1) { 3390 (void) printf("%d killed, %d completed, %.0f%% kill rate\n", 3391 kills, iters - kills, (100.0 * kills) / MAX(1, iters)); 3392 } 3393 3394 return (0); 3395 } 3396