1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* 27 * The objective of this program is to provide a DMU/ZAP/SPA stress test 28 * that runs entirely in userland, is easy to use, and easy to extend. 29 * 30 * The overall design of the ztest program is as follows: 31 * 32 * (1) For each major functional area (e.g. adding vdevs to a pool, 33 * creating and destroying datasets, reading and writing objects, etc) 34 * we have a simple routine to test that functionality. These 35 * individual routines do not have to do anything "stressful". 36 * 37 * (2) We turn these simple functionality tests into a stress test by 38 * running them all in parallel, with as many threads as desired, 39 * and spread across as many datasets, objects, and vdevs as desired. 40 * 41 * (3) While all this is happening, we inject faults into the pool to 42 * verify that self-healing data really works. 43 * 44 * (4) Every time we open a dataset, we change its checksum and compression 45 * functions. Thus even individual objects vary from block to block 46 * in which checksum they use and whether they're compressed. 47 * 48 * (5) To verify that we never lose on-disk consistency after a crash, 49 * we run the entire test in a child of the main process. 50 * At random times, the child self-immolates with a SIGKILL. 51 * This is the software equivalent of pulling the power cord. 52 * The parent then runs the test again, using the existing 53 * storage pool, as many times as desired. 54 * 55 * (6) To verify that we don't have future leaks or temporal incursions, 56 * many of the functional tests record the transaction group number 57 * as part of their data. When reading old data, they verify that 58 * the transaction group number is less than the current, open txg. 59 * If you add a new test, please do this if applicable. 60 * 61 * When run with no arguments, ztest runs for about five minutes and 62 * produces no output if successful. To get a little bit of information, 63 * specify -V. To get more information, specify -VV, and so on. 64 * 65 * To turn this into an overnight stress test, use -T to specify run time. 66 * 67 * You can ask more more vdevs [-v], datasets [-d], or threads [-t] 68 * to increase the pool capacity, fanout, and overall stress level. 69 * 70 * The -N(okill) option will suppress kills, so each child runs to completion. 71 * This can be useful when you're trying to distinguish temporal incursions 72 * from plain old race conditions. 73 */ 74 75 #include <sys/zfs_context.h> 76 #include <sys/spa.h> 77 #include <sys/dmu.h> 78 #include <sys/txg.h> 79 #include <sys/dbuf.h> 80 #include <sys/zap.h> 81 #include <sys/dmu_objset.h> 82 #include <sys/poll.h> 83 #include <sys/stat.h> 84 #include <sys/time.h> 85 #include <sys/wait.h> 86 #include <sys/mman.h> 87 #include <sys/resource.h> 88 #include <sys/zio.h> 89 #include <sys/zio_checksum.h> 90 #include <sys/zio_compress.h> 91 #include <sys/zil.h> 92 #include <sys/vdev_impl.h> 93 #include <sys/vdev_file.h> 94 #include <sys/spa_impl.h> 95 #include <sys/dsl_prop.h> 96 #include <sys/dsl_dataset.h> 97 #include <sys/refcount.h> 98 #include <stdio.h> 99 #include <stdio_ext.h> 100 #include <stdlib.h> 101 #include <unistd.h> 102 #include <signal.h> 103 #include <umem.h> 104 #include <dlfcn.h> 105 #include <ctype.h> 106 #include <math.h> 107 #include <sys/fs/zfs.h> 108 109 static char cmdname[] = "ztest"; 110 static char *zopt_pool = cmdname; 111 112 static uint64_t zopt_vdevs = 5; 113 static uint64_t zopt_vdevtime; 114 static int zopt_ashift = SPA_MINBLOCKSHIFT; 115 static int zopt_mirrors = 2; 116 static int zopt_raidz = 4; 117 static int zopt_raidz_parity = 1; 118 static size_t zopt_vdev_size = SPA_MINDEVSIZE; 119 static int zopt_datasets = 7; 120 static int zopt_threads = 23; 121 static uint64_t zopt_passtime = 60; /* 60 seconds */ 122 static uint64_t zopt_killrate = 70; /* 70% kill rate */ 123 static int zopt_verbose = 0; 124 static int zopt_init = 1; 125 static char *zopt_dir = "/tmp"; 126 static uint64_t zopt_time = 300; /* 5 minutes */ 127 static int zopt_maxfaults; 128 129 typedef struct ztest_block_tag { 130 uint64_t bt_objset; 131 uint64_t bt_object; 132 uint64_t bt_offset; 133 uint64_t bt_txg; 134 uint64_t bt_thread; 135 uint64_t bt_seq; 136 } ztest_block_tag_t; 137 138 typedef struct ztest_args { 139 char za_pool[MAXNAMELEN]; 140 spa_t *za_spa; 141 objset_t *za_os; 142 zilog_t *za_zilog; 143 thread_t za_thread; 144 uint64_t za_instance; 145 uint64_t za_random; 146 uint64_t za_diroff; 147 uint64_t za_diroff_shared; 148 uint64_t za_zil_seq; 149 hrtime_t za_start; 150 hrtime_t za_stop; 151 hrtime_t za_kill; 152 /* 153 * Thread-local variables can go here to aid debugging. 154 */ 155 ztest_block_tag_t za_rbt; 156 ztest_block_tag_t za_wbt; 157 dmu_object_info_t za_doi; 158 dmu_buf_t *za_dbuf; 159 } ztest_args_t; 160 161 typedef void ztest_func_t(ztest_args_t *); 162 163 /* 164 * Note: these aren't static because we want dladdr() to work. 165 */ 166 ztest_func_t ztest_dmu_read_write; 167 ztest_func_t ztest_dmu_read_write_zcopy; 168 ztest_func_t ztest_dmu_write_parallel; 169 ztest_func_t ztest_dmu_object_alloc_free; 170 ztest_func_t ztest_zap; 171 ztest_func_t ztest_zap_parallel; 172 ztest_func_t ztest_traverse; 173 ztest_func_t ztest_dsl_prop_get_set; 174 ztest_func_t ztest_dmu_objset_create_destroy; 175 ztest_func_t ztest_dmu_snapshot_create_destroy; 176 ztest_func_t ztest_dsl_dataset_promote_busy; 177 ztest_func_t ztest_spa_create_destroy; 178 ztest_func_t ztest_fault_inject; 179 ztest_func_t ztest_spa_rename; 180 ztest_func_t ztest_vdev_attach_detach; 181 ztest_func_t ztest_vdev_LUN_growth; 182 ztest_func_t ztest_vdev_add_remove; 183 ztest_func_t ztest_vdev_aux_add_remove; 184 ztest_func_t ztest_scrub; 185 186 typedef struct ztest_info { 187 ztest_func_t *zi_func; /* test function */ 188 uint64_t zi_iters; /* iterations per execution */ 189 uint64_t *zi_interval; /* execute every <interval> seconds */ 190 uint64_t zi_calls; /* per-pass count */ 191 uint64_t zi_call_time; /* per-pass time */ 192 uint64_t zi_call_total; /* cumulative total */ 193 uint64_t zi_call_target; /* target cumulative total */ 194 } ztest_info_t; 195 196 uint64_t zopt_always = 0; /* all the time */ 197 uint64_t zopt_often = 1; /* every second */ 198 uint64_t zopt_sometimes = 10; /* every 10 seconds */ 199 uint64_t zopt_rarely = 60; /* every 60 seconds */ 200 201 ztest_info_t ztest_info[] = { 202 { ztest_dmu_read_write, 1, &zopt_always }, 203 { ztest_dmu_read_write_zcopy, 1, &zopt_always }, 204 { ztest_dmu_write_parallel, 30, &zopt_always }, 205 { ztest_dmu_object_alloc_free, 1, &zopt_always }, 206 { ztest_zap, 30, &zopt_always }, 207 { ztest_zap_parallel, 100, &zopt_always }, 208 { ztest_dsl_prop_get_set, 1, &zopt_sometimes }, 209 { ztest_dmu_objset_create_destroy, 1, &zopt_sometimes }, 210 { ztest_dmu_snapshot_create_destroy, 1, &zopt_sometimes }, 211 { ztest_spa_create_destroy, 1, &zopt_sometimes }, 212 { ztest_fault_inject, 1, &zopt_sometimes }, 213 { ztest_spa_rename, 1, &zopt_rarely }, 214 { ztest_vdev_attach_detach, 1, &zopt_rarely }, 215 { ztest_vdev_LUN_growth, 1, &zopt_rarely }, 216 { ztest_dsl_dataset_promote_busy, 1, &zopt_rarely }, 217 { ztest_vdev_add_remove, 1, &zopt_vdevtime }, 218 { ztest_vdev_aux_add_remove, 1, &zopt_vdevtime }, 219 { ztest_scrub, 1, &zopt_vdevtime }, 220 }; 221 222 #define ZTEST_FUNCS (sizeof (ztest_info) / sizeof (ztest_info_t)) 223 224 #define ZTEST_SYNC_LOCKS 16 225 226 /* 227 * Stuff we need to share writably between parent and child. 228 */ 229 typedef struct ztest_shared { 230 mutex_t zs_vdev_lock; 231 rwlock_t zs_name_lock; 232 uint64_t zs_vdev_primaries; 233 uint64_t zs_vdev_aux; 234 uint64_t zs_enospc_count; 235 hrtime_t zs_start_time; 236 hrtime_t zs_stop_time; 237 uint64_t zs_alloc; 238 uint64_t zs_space; 239 ztest_info_t zs_info[ZTEST_FUNCS]; 240 mutex_t zs_sync_lock[ZTEST_SYNC_LOCKS]; 241 uint64_t zs_seq[ZTEST_SYNC_LOCKS]; 242 } ztest_shared_t; 243 244 static char ztest_dev_template[] = "%s/%s.%llua"; 245 static char ztest_aux_template[] = "%s/%s.%s.%llu"; 246 static ztest_shared_t *ztest_shared; 247 248 static int ztest_random_fd; 249 static int ztest_dump_core = 1; 250 251 static uint64_t metaslab_sz; 252 static boolean_t ztest_exiting; 253 254 extern uint64_t metaslab_gang_bang; 255 extern uint64_t metaslab_df_alloc_threshold; 256 257 #define ZTEST_DIROBJ 1 258 #define ZTEST_MICROZAP_OBJ 2 259 #define ZTEST_FATZAP_OBJ 3 260 261 #define ZTEST_DIROBJ_BLOCKSIZE (1 << 10) 262 #define ZTEST_DIRSIZE 256 263 264 static void usage(boolean_t) __NORETURN; 265 266 /* 267 * These libumem hooks provide a reasonable set of defaults for the allocator's 268 * debugging facilities. 269 */ 270 const char * 271 _umem_debug_init() 272 { 273 return ("default,verbose"); /* $UMEM_DEBUG setting */ 274 } 275 276 const char * 277 _umem_logging_init(void) 278 { 279 return ("fail,contents"); /* $UMEM_LOGGING setting */ 280 } 281 282 #define FATAL_MSG_SZ 1024 283 284 char *fatal_msg; 285 286 static void 287 fatal(int do_perror, char *message, ...) 288 { 289 va_list args; 290 int save_errno = errno; 291 char buf[FATAL_MSG_SZ]; 292 293 (void) fflush(stdout); 294 295 va_start(args, message); 296 (void) sprintf(buf, "ztest: "); 297 /* LINTED */ 298 (void) vsprintf(buf + strlen(buf), message, args); 299 va_end(args); 300 if (do_perror) { 301 (void) snprintf(buf + strlen(buf), FATAL_MSG_SZ - strlen(buf), 302 ": %s", strerror(save_errno)); 303 } 304 (void) fprintf(stderr, "%s\n", buf); 305 fatal_msg = buf; /* to ease debugging */ 306 if (ztest_dump_core) 307 abort(); 308 exit(3); 309 } 310 311 static int 312 str2shift(const char *buf) 313 { 314 const char *ends = "BKMGTPEZ"; 315 int i; 316 317 if (buf[0] == '\0') 318 return (0); 319 for (i = 0; i < strlen(ends); i++) { 320 if (toupper(buf[0]) == ends[i]) 321 break; 322 } 323 if (i == strlen(ends)) { 324 (void) fprintf(stderr, "ztest: invalid bytes suffix: %s\n", 325 buf); 326 usage(B_FALSE); 327 } 328 if (buf[1] == '\0' || (toupper(buf[1]) == 'B' && buf[2] == '\0')) { 329 return (10*i); 330 } 331 (void) fprintf(stderr, "ztest: invalid bytes suffix: %s\n", buf); 332 usage(B_FALSE); 333 /* NOTREACHED */ 334 } 335 336 static uint64_t 337 nicenumtoull(const char *buf) 338 { 339 char *end; 340 uint64_t val; 341 342 val = strtoull(buf, &end, 0); 343 if (end == buf) { 344 (void) fprintf(stderr, "ztest: bad numeric value: %s\n", buf); 345 usage(B_FALSE); 346 } else if (end[0] == '.') { 347 double fval = strtod(buf, &end); 348 fval *= pow(2, str2shift(end)); 349 if (fval > UINT64_MAX) { 350 (void) fprintf(stderr, "ztest: value too large: %s\n", 351 buf); 352 usage(B_FALSE); 353 } 354 val = (uint64_t)fval; 355 } else { 356 int shift = str2shift(end); 357 if (shift >= 64 || (val << shift) >> shift != val) { 358 (void) fprintf(stderr, "ztest: value too large: %s\n", 359 buf); 360 usage(B_FALSE); 361 } 362 val <<= shift; 363 } 364 return (val); 365 } 366 367 static void 368 usage(boolean_t requested) 369 { 370 char nice_vdev_size[10]; 371 char nice_gang_bang[10]; 372 FILE *fp = requested ? stdout : stderr; 373 374 nicenum(zopt_vdev_size, nice_vdev_size); 375 nicenum(metaslab_gang_bang, nice_gang_bang); 376 377 (void) fprintf(fp, "Usage: %s\n" 378 "\t[-v vdevs (default: %llu)]\n" 379 "\t[-s size_of_each_vdev (default: %s)]\n" 380 "\t[-a alignment_shift (default: %d) (use 0 for random)]\n" 381 "\t[-m mirror_copies (default: %d)]\n" 382 "\t[-r raidz_disks (default: %d)]\n" 383 "\t[-R raidz_parity (default: %d)]\n" 384 "\t[-d datasets (default: %d)]\n" 385 "\t[-t threads (default: %d)]\n" 386 "\t[-g gang_block_threshold (default: %s)]\n" 387 "\t[-i initialize pool i times (default: %d)]\n" 388 "\t[-k kill percentage (default: %llu%%)]\n" 389 "\t[-p pool_name (default: %s)]\n" 390 "\t[-f file directory for vdev files (default: %s)]\n" 391 "\t[-V(erbose)] (use multiple times for ever more blather)\n" 392 "\t[-E(xisting)] (use existing pool instead of creating new one)\n" 393 "\t[-T time] total run time (default: %llu sec)\n" 394 "\t[-P passtime] time per pass (default: %llu sec)\n" 395 "\t[-h] (print help)\n" 396 "", 397 cmdname, 398 (u_longlong_t)zopt_vdevs, /* -v */ 399 nice_vdev_size, /* -s */ 400 zopt_ashift, /* -a */ 401 zopt_mirrors, /* -m */ 402 zopt_raidz, /* -r */ 403 zopt_raidz_parity, /* -R */ 404 zopt_datasets, /* -d */ 405 zopt_threads, /* -t */ 406 nice_gang_bang, /* -g */ 407 zopt_init, /* -i */ 408 (u_longlong_t)zopt_killrate, /* -k */ 409 zopt_pool, /* -p */ 410 zopt_dir, /* -f */ 411 (u_longlong_t)zopt_time, /* -T */ 412 (u_longlong_t)zopt_passtime); /* -P */ 413 exit(requested ? 0 : 1); 414 } 415 416 static uint64_t 417 ztest_random(uint64_t range) 418 { 419 uint64_t r; 420 421 if (range == 0) 422 return (0); 423 424 if (read(ztest_random_fd, &r, sizeof (r)) != sizeof (r)) 425 fatal(1, "short read from /dev/urandom"); 426 427 return (r % range); 428 } 429 430 /* ARGSUSED */ 431 static void 432 ztest_record_enospc(char *s) 433 { 434 ztest_shared->zs_enospc_count++; 435 } 436 437 static void 438 process_options(int argc, char **argv) 439 { 440 int opt; 441 uint64_t value; 442 443 /* By default, test gang blocks for blocks 32K and greater */ 444 metaslab_gang_bang = 32 << 10; 445 446 while ((opt = getopt(argc, argv, 447 "v:s:a:m:r:R:d:t:g:i:k:p:f:VET:P:h")) != EOF) { 448 value = 0; 449 switch (opt) { 450 case 'v': 451 case 's': 452 case 'a': 453 case 'm': 454 case 'r': 455 case 'R': 456 case 'd': 457 case 't': 458 case 'g': 459 case 'i': 460 case 'k': 461 case 'T': 462 case 'P': 463 value = nicenumtoull(optarg); 464 } 465 switch (opt) { 466 case 'v': 467 zopt_vdevs = value; 468 break; 469 case 's': 470 zopt_vdev_size = MAX(SPA_MINDEVSIZE, value); 471 break; 472 case 'a': 473 zopt_ashift = value; 474 break; 475 case 'm': 476 zopt_mirrors = value; 477 break; 478 case 'r': 479 zopt_raidz = MAX(1, value); 480 break; 481 case 'R': 482 zopt_raidz_parity = MIN(MAX(value, 1), 2); 483 break; 484 case 'd': 485 zopt_datasets = MAX(1, value); 486 break; 487 case 't': 488 zopt_threads = MAX(1, value); 489 break; 490 case 'g': 491 metaslab_gang_bang = MAX(SPA_MINBLOCKSIZE << 1, value); 492 break; 493 case 'i': 494 zopt_init = value; 495 break; 496 case 'k': 497 zopt_killrate = value; 498 break; 499 case 'p': 500 zopt_pool = strdup(optarg); 501 break; 502 case 'f': 503 zopt_dir = strdup(optarg); 504 break; 505 case 'V': 506 zopt_verbose++; 507 break; 508 case 'E': 509 zopt_init = 0; 510 break; 511 case 'T': 512 zopt_time = value; 513 break; 514 case 'P': 515 zopt_passtime = MAX(1, value); 516 break; 517 case 'h': 518 usage(B_TRUE); 519 break; 520 case '?': 521 default: 522 usage(B_FALSE); 523 break; 524 } 525 } 526 527 zopt_raidz_parity = MIN(zopt_raidz_parity, zopt_raidz - 1); 528 529 zopt_vdevtime = (zopt_vdevs > 0 ? zopt_time / zopt_vdevs : UINT64_MAX); 530 zopt_maxfaults = MAX(zopt_mirrors, 1) * (zopt_raidz_parity + 1) - 1; 531 } 532 533 static uint64_t 534 ztest_get_ashift(void) 535 { 536 if (zopt_ashift == 0) 537 return (SPA_MINBLOCKSHIFT + ztest_random(3)); 538 return (zopt_ashift); 539 } 540 541 static nvlist_t * 542 make_vdev_file(char *path, char *aux, size_t size, uint64_t ashift) 543 { 544 char pathbuf[MAXPATHLEN]; 545 uint64_t vdev; 546 nvlist_t *file; 547 548 if (ashift == 0) 549 ashift = ztest_get_ashift(); 550 551 if (path == NULL) { 552 path = pathbuf; 553 554 if (aux != NULL) { 555 vdev = ztest_shared->zs_vdev_aux; 556 (void) sprintf(path, ztest_aux_template, 557 zopt_dir, zopt_pool, aux, vdev); 558 } else { 559 vdev = ztest_shared->zs_vdev_primaries++; 560 (void) sprintf(path, ztest_dev_template, 561 zopt_dir, zopt_pool, vdev); 562 } 563 } 564 565 if (size != 0) { 566 int fd = open(path, O_RDWR | O_CREAT | O_TRUNC, 0666); 567 if (fd == -1) 568 fatal(1, "can't open %s", path); 569 if (ftruncate(fd, size) != 0) 570 fatal(1, "can't ftruncate %s", path); 571 (void) close(fd); 572 } 573 574 VERIFY(nvlist_alloc(&file, NV_UNIQUE_NAME, 0) == 0); 575 VERIFY(nvlist_add_string(file, ZPOOL_CONFIG_TYPE, VDEV_TYPE_FILE) == 0); 576 VERIFY(nvlist_add_string(file, ZPOOL_CONFIG_PATH, path) == 0); 577 VERIFY(nvlist_add_uint64(file, ZPOOL_CONFIG_ASHIFT, ashift) == 0); 578 579 return (file); 580 } 581 582 static nvlist_t * 583 make_vdev_raidz(char *path, char *aux, size_t size, uint64_t ashift, int r) 584 { 585 nvlist_t *raidz, **child; 586 int c; 587 588 if (r < 2) 589 return (make_vdev_file(path, aux, size, ashift)); 590 child = umem_alloc(r * sizeof (nvlist_t *), UMEM_NOFAIL); 591 592 for (c = 0; c < r; c++) 593 child[c] = make_vdev_file(path, aux, size, ashift); 594 595 VERIFY(nvlist_alloc(&raidz, NV_UNIQUE_NAME, 0) == 0); 596 VERIFY(nvlist_add_string(raidz, ZPOOL_CONFIG_TYPE, 597 VDEV_TYPE_RAIDZ) == 0); 598 VERIFY(nvlist_add_uint64(raidz, ZPOOL_CONFIG_NPARITY, 599 zopt_raidz_parity) == 0); 600 VERIFY(nvlist_add_nvlist_array(raidz, ZPOOL_CONFIG_CHILDREN, 601 child, r) == 0); 602 603 for (c = 0; c < r; c++) 604 nvlist_free(child[c]); 605 606 umem_free(child, r * sizeof (nvlist_t *)); 607 608 return (raidz); 609 } 610 611 static nvlist_t * 612 make_vdev_mirror(char *path, char *aux, size_t size, uint64_t ashift, 613 int r, int m) 614 { 615 nvlist_t *mirror, **child; 616 int c; 617 618 if (m < 1) 619 return (make_vdev_raidz(path, aux, size, ashift, r)); 620 621 child = umem_alloc(m * sizeof (nvlist_t *), UMEM_NOFAIL); 622 623 for (c = 0; c < m; c++) 624 child[c] = make_vdev_raidz(path, aux, size, ashift, r); 625 626 VERIFY(nvlist_alloc(&mirror, NV_UNIQUE_NAME, 0) == 0); 627 VERIFY(nvlist_add_string(mirror, ZPOOL_CONFIG_TYPE, 628 VDEV_TYPE_MIRROR) == 0); 629 VERIFY(nvlist_add_nvlist_array(mirror, ZPOOL_CONFIG_CHILDREN, 630 child, m) == 0); 631 632 for (c = 0; c < m; c++) 633 nvlist_free(child[c]); 634 635 umem_free(child, m * sizeof (nvlist_t *)); 636 637 return (mirror); 638 } 639 640 static nvlist_t * 641 make_vdev_root(char *path, char *aux, size_t size, uint64_t ashift, 642 int log, int r, int m, int t) 643 { 644 nvlist_t *root, **child; 645 int c; 646 647 ASSERT(t > 0); 648 649 child = umem_alloc(t * sizeof (nvlist_t *), UMEM_NOFAIL); 650 651 for (c = 0; c < t; c++) { 652 child[c] = make_vdev_mirror(path, aux, size, ashift, r, m); 653 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_IS_LOG, 654 log) == 0); 655 } 656 657 VERIFY(nvlist_alloc(&root, NV_UNIQUE_NAME, 0) == 0); 658 VERIFY(nvlist_add_string(root, ZPOOL_CONFIG_TYPE, VDEV_TYPE_ROOT) == 0); 659 VERIFY(nvlist_add_nvlist_array(root, aux ? aux : ZPOOL_CONFIG_CHILDREN, 660 child, t) == 0); 661 662 for (c = 0; c < t; c++) 663 nvlist_free(child[c]); 664 665 umem_free(child, t * sizeof (nvlist_t *)); 666 667 return (root); 668 } 669 670 static void 671 ztest_set_random_blocksize(objset_t *os, uint64_t object, dmu_tx_t *tx) 672 { 673 int bs = SPA_MINBLOCKSHIFT + 674 ztest_random(SPA_MAXBLOCKSHIFT - SPA_MINBLOCKSHIFT + 1); 675 int ibs = DN_MIN_INDBLKSHIFT + 676 ztest_random(DN_MAX_INDBLKSHIFT - DN_MIN_INDBLKSHIFT + 1); 677 int error; 678 679 error = dmu_object_set_blocksize(os, object, 1ULL << bs, ibs, tx); 680 if (error) { 681 char osname[300]; 682 dmu_objset_name(os, osname); 683 fatal(0, "dmu_object_set_blocksize('%s', %llu, %d, %d) = %d", 684 osname, object, 1 << bs, ibs, error); 685 } 686 } 687 688 static uint8_t 689 ztest_random_checksum(void) 690 { 691 uint8_t checksum; 692 693 do { 694 checksum = ztest_random(ZIO_CHECKSUM_FUNCTIONS); 695 } while (zio_checksum_table[checksum].ci_zbt); 696 697 if (checksum == ZIO_CHECKSUM_OFF) 698 checksum = ZIO_CHECKSUM_ON; 699 700 return (checksum); 701 } 702 703 static uint8_t 704 ztest_random_compress(void) 705 { 706 return ((uint8_t)ztest_random(ZIO_COMPRESS_FUNCTIONS)); 707 } 708 709 static int 710 ztest_replay_create(objset_t *os, lr_create_t *lr, boolean_t byteswap) 711 { 712 dmu_tx_t *tx; 713 int error; 714 715 if (byteswap) 716 byteswap_uint64_array(lr, sizeof (*lr)); 717 718 tx = dmu_tx_create(os); 719 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); 720 error = dmu_tx_assign(tx, TXG_WAIT); 721 if (error) { 722 dmu_tx_abort(tx); 723 return (error); 724 } 725 726 error = dmu_object_claim(os, lr->lr_doid, lr->lr_mode, 0, 727 DMU_OT_NONE, 0, tx); 728 ASSERT3U(error, ==, 0); 729 dmu_tx_commit(tx); 730 731 if (zopt_verbose >= 5) { 732 char osname[MAXNAMELEN]; 733 dmu_objset_name(os, osname); 734 (void) printf("replay create of %s object %llu" 735 " in txg %llu = %d\n", 736 osname, (u_longlong_t)lr->lr_doid, 737 (u_longlong_t)dmu_tx_get_txg(tx), error); 738 } 739 740 return (error); 741 } 742 743 static int 744 ztest_replay_remove(objset_t *os, lr_remove_t *lr, boolean_t byteswap) 745 { 746 dmu_tx_t *tx; 747 int error; 748 749 if (byteswap) 750 byteswap_uint64_array(lr, sizeof (*lr)); 751 752 tx = dmu_tx_create(os); 753 dmu_tx_hold_free(tx, lr->lr_doid, 0, DMU_OBJECT_END); 754 error = dmu_tx_assign(tx, TXG_WAIT); 755 if (error) { 756 dmu_tx_abort(tx); 757 return (error); 758 } 759 760 error = dmu_object_free(os, lr->lr_doid, tx); 761 dmu_tx_commit(tx); 762 763 return (error); 764 } 765 766 zil_replay_func_t *ztest_replay_vector[TX_MAX_TYPE] = { 767 NULL, /* 0 no such transaction type */ 768 ztest_replay_create, /* TX_CREATE */ 769 NULL, /* TX_MKDIR */ 770 NULL, /* TX_MKXATTR */ 771 NULL, /* TX_SYMLINK */ 772 ztest_replay_remove, /* TX_REMOVE */ 773 NULL, /* TX_RMDIR */ 774 NULL, /* TX_LINK */ 775 NULL, /* TX_RENAME */ 776 NULL, /* TX_WRITE */ 777 NULL, /* TX_TRUNCATE */ 778 NULL, /* TX_SETATTR */ 779 NULL, /* TX_ACL */ 780 }; 781 782 /* 783 * Verify that we can't destroy an active pool, create an existing pool, 784 * or create a pool with a bad vdev spec. 785 */ 786 void 787 ztest_spa_create_destroy(ztest_args_t *za) 788 { 789 int error; 790 spa_t *spa; 791 nvlist_t *nvroot; 792 793 /* 794 * Attempt to create using a bad file. 795 */ 796 nvroot = make_vdev_root("/dev/bogus", NULL, 0, 0, 0, 0, 0, 1); 797 error = spa_create("ztest_bad_file", nvroot, NULL, NULL, NULL); 798 nvlist_free(nvroot); 799 if (error != ENOENT) 800 fatal(0, "spa_create(bad_file) = %d", error); 801 802 /* 803 * Attempt to create using a bad mirror. 804 */ 805 nvroot = make_vdev_root("/dev/bogus", NULL, 0, 0, 0, 0, 2, 1); 806 error = spa_create("ztest_bad_mirror", nvroot, NULL, NULL, NULL); 807 nvlist_free(nvroot); 808 if (error != ENOENT) 809 fatal(0, "spa_create(bad_mirror) = %d", error); 810 811 /* 812 * Attempt to create an existing pool. It shouldn't matter 813 * what's in the nvroot; we should fail with EEXIST. 814 */ 815 (void) rw_rdlock(&ztest_shared->zs_name_lock); 816 nvroot = make_vdev_root("/dev/bogus", NULL, 0, 0, 0, 0, 0, 1); 817 error = spa_create(za->za_pool, nvroot, NULL, NULL, NULL); 818 nvlist_free(nvroot); 819 if (error != EEXIST) 820 fatal(0, "spa_create(whatever) = %d", error); 821 822 error = spa_open(za->za_pool, &spa, FTAG); 823 if (error) 824 fatal(0, "spa_open() = %d", error); 825 826 error = spa_destroy(za->za_pool); 827 if (error != EBUSY) 828 fatal(0, "spa_destroy() = %d", error); 829 830 spa_close(spa, FTAG); 831 (void) rw_unlock(&ztest_shared->zs_name_lock); 832 } 833 834 static vdev_t * 835 vdev_lookup_by_path(vdev_t *vd, const char *path) 836 { 837 vdev_t *mvd; 838 839 if (vd->vdev_path != NULL && strcmp(path, vd->vdev_path) == 0) 840 return (vd); 841 842 for (int c = 0; c < vd->vdev_children; c++) 843 if ((mvd = vdev_lookup_by_path(vd->vdev_child[c], path)) != 844 NULL) 845 return (mvd); 846 847 return (NULL); 848 } 849 850 /* 851 * Verify that vdev_add() works as expected. 852 */ 853 void 854 ztest_vdev_add_remove(ztest_args_t *za) 855 { 856 spa_t *spa = za->za_spa; 857 uint64_t leaves = MAX(zopt_mirrors, 1) * zopt_raidz; 858 nvlist_t *nvroot; 859 int error; 860 861 (void) mutex_lock(&ztest_shared->zs_vdev_lock); 862 863 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 864 865 ztest_shared->zs_vdev_primaries = 866 spa->spa_root_vdev->vdev_children * leaves; 867 868 spa_config_exit(spa, SCL_VDEV, FTAG); 869 870 /* 871 * Make 1/4 of the devices be log devices. 872 */ 873 nvroot = make_vdev_root(NULL, NULL, zopt_vdev_size, 0, 874 ztest_random(4) == 0, zopt_raidz, zopt_mirrors, 1); 875 876 error = spa_vdev_add(spa, nvroot); 877 nvlist_free(nvroot); 878 879 (void) mutex_unlock(&ztest_shared->zs_vdev_lock); 880 881 if (error == ENOSPC) 882 ztest_record_enospc("spa_vdev_add"); 883 else if (error != 0) 884 fatal(0, "spa_vdev_add() = %d", error); 885 } 886 887 /* 888 * Verify that adding/removing aux devices (l2arc, hot spare) works as expected. 889 */ 890 void 891 ztest_vdev_aux_add_remove(ztest_args_t *za) 892 { 893 spa_t *spa = za->za_spa; 894 vdev_t *rvd = spa->spa_root_vdev; 895 spa_aux_vdev_t *sav; 896 char *aux; 897 uint64_t guid = 0; 898 int error; 899 900 if (ztest_random(2) == 0) { 901 sav = &spa->spa_spares; 902 aux = ZPOOL_CONFIG_SPARES; 903 } else { 904 sav = &spa->spa_l2cache; 905 aux = ZPOOL_CONFIG_L2CACHE; 906 } 907 908 (void) mutex_lock(&ztest_shared->zs_vdev_lock); 909 910 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 911 912 if (sav->sav_count != 0 && ztest_random(4) == 0) { 913 /* 914 * Pick a random device to remove. 915 */ 916 guid = sav->sav_vdevs[ztest_random(sav->sav_count)]->vdev_guid; 917 } else { 918 /* 919 * Find an unused device we can add. 920 */ 921 ztest_shared->zs_vdev_aux = 0; 922 for (;;) { 923 char path[MAXPATHLEN]; 924 int c; 925 (void) sprintf(path, ztest_aux_template, zopt_dir, 926 zopt_pool, aux, ztest_shared->zs_vdev_aux); 927 for (c = 0; c < sav->sav_count; c++) 928 if (strcmp(sav->sav_vdevs[c]->vdev_path, 929 path) == 0) 930 break; 931 if (c == sav->sav_count && 932 vdev_lookup_by_path(rvd, path) == NULL) 933 break; 934 ztest_shared->zs_vdev_aux++; 935 } 936 } 937 938 spa_config_exit(spa, SCL_VDEV, FTAG); 939 940 if (guid == 0) { 941 /* 942 * Add a new device. 943 */ 944 nvlist_t *nvroot = make_vdev_root(NULL, aux, 945 (zopt_vdev_size * 5) / 4, 0, 0, 0, 0, 1); 946 error = spa_vdev_add(spa, nvroot); 947 if (error != 0) 948 fatal(0, "spa_vdev_add(%p) = %d", nvroot, error); 949 nvlist_free(nvroot); 950 } else { 951 /* 952 * Remove an existing device. Sometimes, dirty its 953 * vdev state first to make sure we handle removal 954 * of devices that have pending state changes. 955 */ 956 if (ztest_random(2) == 0) 957 (void) vdev_online(spa, guid, B_FALSE, NULL); 958 959 error = spa_vdev_remove(spa, guid, B_FALSE); 960 if (error != 0 && error != EBUSY) 961 fatal(0, "spa_vdev_remove(%llu) = %d", guid, error); 962 } 963 964 (void) mutex_unlock(&ztest_shared->zs_vdev_lock); 965 } 966 967 /* 968 * Verify that we can attach and detach devices. 969 */ 970 void 971 ztest_vdev_attach_detach(ztest_args_t *za) 972 { 973 spa_t *spa = za->za_spa; 974 spa_aux_vdev_t *sav = &spa->spa_spares; 975 vdev_t *rvd = spa->spa_root_vdev; 976 vdev_t *oldvd, *newvd, *pvd; 977 nvlist_t *root; 978 uint64_t leaves = MAX(zopt_mirrors, 1) * zopt_raidz; 979 uint64_t leaf, top; 980 uint64_t ashift = ztest_get_ashift(); 981 uint64_t oldguid, pguid; 982 size_t oldsize, newsize; 983 char oldpath[MAXPATHLEN], newpath[MAXPATHLEN]; 984 int replacing; 985 int oldvd_has_siblings = B_FALSE; 986 int newvd_is_spare = B_FALSE; 987 int oldvd_is_log; 988 int error, expected_error; 989 990 (void) mutex_lock(&ztest_shared->zs_vdev_lock); 991 992 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 993 994 /* 995 * Decide whether to do an attach or a replace. 996 */ 997 replacing = ztest_random(2); 998 999 /* 1000 * Pick a random top-level vdev. 1001 */ 1002 top = ztest_random(rvd->vdev_children); 1003 1004 /* 1005 * Pick a random leaf within it. 1006 */ 1007 leaf = ztest_random(leaves); 1008 1009 /* 1010 * Locate this vdev. 1011 */ 1012 oldvd = rvd->vdev_child[top]; 1013 if (zopt_mirrors >= 1) { 1014 ASSERT(oldvd->vdev_ops == &vdev_mirror_ops); 1015 ASSERT(oldvd->vdev_children >= zopt_mirrors); 1016 oldvd = oldvd->vdev_child[leaf / zopt_raidz]; 1017 } 1018 if (zopt_raidz > 1) { 1019 ASSERT(oldvd->vdev_ops == &vdev_raidz_ops); 1020 ASSERT(oldvd->vdev_children == zopt_raidz); 1021 oldvd = oldvd->vdev_child[leaf % zopt_raidz]; 1022 } 1023 1024 /* 1025 * If we're already doing an attach or replace, oldvd may be a 1026 * mirror vdev -- in which case, pick a random child. 1027 */ 1028 while (oldvd->vdev_children != 0) { 1029 oldvd_has_siblings = B_TRUE; 1030 ASSERT(oldvd->vdev_children >= 2); 1031 oldvd = oldvd->vdev_child[ztest_random(oldvd->vdev_children)]; 1032 } 1033 1034 oldguid = oldvd->vdev_guid; 1035 oldsize = vdev_get_rsize(oldvd); 1036 oldvd_is_log = oldvd->vdev_top->vdev_islog; 1037 (void) strcpy(oldpath, oldvd->vdev_path); 1038 pvd = oldvd->vdev_parent; 1039 pguid = pvd->vdev_guid; 1040 1041 /* 1042 * If oldvd has siblings, then half of the time, detach it. 1043 */ 1044 if (oldvd_has_siblings && ztest_random(2) == 0) { 1045 spa_config_exit(spa, SCL_VDEV, FTAG); 1046 error = spa_vdev_detach(spa, oldguid, pguid, B_FALSE); 1047 if (error != 0 && error != ENODEV && error != EBUSY && 1048 error != ENOTSUP) 1049 fatal(0, "detach (%s) returned %d", oldpath, error); 1050 (void) mutex_unlock(&ztest_shared->zs_vdev_lock); 1051 return; 1052 } 1053 1054 /* 1055 * For the new vdev, choose with equal probability between the two 1056 * standard paths (ending in either 'a' or 'b') or a random hot spare. 1057 */ 1058 if (sav->sav_count != 0 && ztest_random(3) == 0) { 1059 newvd = sav->sav_vdevs[ztest_random(sav->sav_count)]; 1060 newvd_is_spare = B_TRUE; 1061 (void) strcpy(newpath, newvd->vdev_path); 1062 } else { 1063 (void) snprintf(newpath, sizeof (newpath), ztest_dev_template, 1064 zopt_dir, zopt_pool, top * leaves + leaf); 1065 if (ztest_random(2) == 0) 1066 newpath[strlen(newpath) - 1] = 'b'; 1067 newvd = vdev_lookup_by_path(rvd, newpath); 1068 } 1069 1070 if (newvd) { 1071 newsize = vdev_get_rsize(newvd); 1072 } else { 1073 /* 1074 * Make newsize a little bigger or smaller than oldsize. 1075 * If it's smaller, the attach should fail. 1076 * If it's larger, and we're doing a replace, 1077 * we should get dynamic LUN growth when we're done. 1078 */ 1079 newsize = 10 * oldsize / (9 + ztest_random(3)); 1080 } 1081 1082 /* 1083 * If pvd is not a mirror or root, the attach should fail with ENOTSUP, 1084 * unless it's a replace; in that case any non-replacing parent is OK. 1085 * 1086 * If newvd is already part of the pool, it should fail with EBUSY. 1087 * 1088 * If newvd is too small, it should fail with EOVERFLOW. 1089 */ 1090 if (pvd->vdev_ops != &vdev_mirror_ops && 1091 pvd->vdev_ops != &vdev_root_ops && (!replacing || 1092 pvd->vdev_ops == &vdev_replacing_ops || 1093 pvd->vdev_ops == &vdev_spare_ops)) 1094 expected_error = ENOTSUP; 1095 else if (newvd_is_spare && (!replacing || oldvd_is_log)) 1096 expected_error = ENOTSUP; 1097 else if (newvd == oldvd) 1098 expected_error = replacing ? 0 : EBUSY; 1099 else if (vdev_lookup_by_path(rvd, newpath) != NULL) 1100 expected_error = EBUSY; 1101 else if (newsize < oldsize) 1102 expected_error = EOVERFLOW; 1103 else if (ashift > oldvd->vdev_top->vdev_ashift) 1104 expected_error = EDOM; 1105 else 1106 expected_error = 0; 1107 1108 spa_config_exit(spa, SCL_VDEV, FTAG); 1109 1110 /* 1111 * Build the nvlist describing newpath. 1112 */ 1113 root = make_vdev_root(newpath, NULL, newvd == NULL ? newsize : 0, 1114 ashift, 0, 0, 0, 1); 1115 1116 error = spa_vdev_attach(spa, oldguid, root, replacing); 1117 1118 nvlist_free(root); 1119 1120 /* 1121 * If our parent was the replacing vdev, but the replace completed, 1122 * then instead of failing with ENOTSUP we may either succeed, 1123 * fail with ENODEV, or fail with EOVERFLOW. 1124 */ 1125 if (expected_error == ENOTSUP && 1126 (error == 0 || error == ENODEV || error == EOVERFLOW)) 1127 expected_error = error; 1128 1129 /* 1130 * If someone grew the LUN, the replacement may be too small. 1131 */ 1132 if (error == EOVERFLOW || error == EBUSY) 1133 expected_error = error; 1134 1135 /* XXX workaround 6690467 */ 1136 if (error != expected_error && expected_error != EBUSY) { 1137 fatal(0, "attach (%s %llu, %s %llu, %d) " 1138 "returned %d, expected %d", 1139 oldpath, (longlong_t)oldsize, newpath, 1140 (longlong_t)newsize, replacing, error, expected_error); 1141 } 1142 1143 (void) mutex_unlock(&ztest_shared->zs_vdev_lock); 1144 } 1145 1146 /* 1147 * Verify that dynamic LUN growth works as expected. 1148 */ 1149 void 1150 ztest_vdev_LUN_growth(ztest_args_t *za) 1151 { 1152 spa_t *spa = za->za_spa; 1153 char dev_name[MAXPATHLEN]; 1154 uint64_t leaves = MAX(zopt_mirrors, 1) * zopt_raidz; 1155 uint64_t vdev; 1156 size_t fsize; 1157 int fd; 1158 1159 (void) mutex_lock(&ztest_shared->zs_vdev_lock); 1160 1161 /* 1162 * Pick a random leaf vdev. 1163 */ 1164 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 1165 vdev = ztest_random(spa->spa_root_vdev->vdev_children * leaves); 1166 spa_config_exit(spa, SCL_VDEV, FTAG); 1167 1168 (void) sprintf(dev_name, ztest_dev_template, zopt_dir, zopt_pool, vdev); 1169 1170 if ((fd = open(dev_name, O_RDWR)) != -1) { 1171 /* 1172 * Determine the size. 1173 */ 1174 fsize = lseek(fd, 0, SEEK_END); 1175 1176 /* 1177 * If it's less than 2x the original size, grow by around 3%. 1178 */ 1179 if (fsize < 2 * zopt_vdev_size) { 1180 size_t newsize = fsize + ztest_random(fsize / 32); 1181 (void) ftruncate(fd, newsize); 1182 if (zopt_verbose >= 6) { 1183 (void) printf("%s grew from %lu to %lu bytes\n", 1184 dev_name, (ulong_t)fsize, (ulong_t)newsize); 1185 } 1186 } 1187 (void) close(fd); 1188 } 1189 1190 (void) mutex_unlock(&ztest_shared->zs_vdev_lock); 1191 } 1192 1193 /* ARGSUSED */ 1194 static void 1195 ztest_create_cb(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx) 1196 { 1197 /* 1198 * Create the directory object. 1199 */ 1200 VERIFY(dmu_object_claim(os, ZTEST_DIROBJ, 1201 DMU_OT_UINT64_OTHER, ZTEST_DIROBJ_BLOCKSIZE, 1202 DMU_OT_UINT64_OTHER, 5 * sizeof (ztest_block_tag_t), tx) == 0); 1203 1204 VERIFY(zap_create_claim(os, ZTEST_MICROZAP_OBJ, 1205 DMU_OT_ZAP_OTHER, DMU_OT_NONE, 0, tx) == 0); 1206 1207 VERIFY(zap_create_claim(os, ZTEST_FATZAP_OBJ, 1208 DMU_OT_ZAP_OTHER, DMU_OT_NONE, 0, tx) == 0); 1209 } 1210 1211 static int 1212 ztest_destroy_cb(char *name, void *arg) 1213 { 1214 ztest_args_t *za = arg; 1215 objset_t *os; 1216 dmu_object_info_t *doi = &za->za_doi; 1217 int error; 1218 1219 /* 1220 * Verify that the dataset contains a directory object. 1221 */ 1222 error = dmu_objset_open(name, DMU_OST_OTHER, 1223 DS_MODE_USER | DS_MODE_READONLY, &os); 1224 ASSERT3U(error, ==, 0); 1225 error = dmu_object_info(os, ZTEST_DIROBJ, doi); 1226 if (error != ENOENT) { 1227 /* We could have crashed in the middle of destroying it */ 1228 ASSERT3U(error, ==, 0); 1229 ASSERT3U(doi->doi_type, ==, DMU_OT_UINT64_OTHER); 1230 ASSERT3S(doi->doi_physical_blks, >=, 0); 1231 } 1232 dmu_objset_close(os); 1233 1234 /* 1235 * Destroy the dataset. 1236 */ 1237 error = dmu_objset_destroy(name); 1238 if (error) { 1239 (void) dmu_objset_open(name, DMU_OST_OTHER, 1240 DS_MODE_USER | DS_MODE_READONLY, &os); 1241 fatal(0, "dmu_objset_destroy(os=%p) = %d\n", &os, error); 1242 } 1243 return (0); 1244 } 1245 1246 /* 1247 * Verify that dmu_objset_{create,destroy,open,close} work as expected. 1248 */ 1249 static uint64_t 1250 ztest_log_create(zilog_t *zilog, dmu_tx_t *tx, uint64_t object, int mode) 1251 { 1252 itx_t *itx; 1253 lr_create_t *lr; 1254 size_t namesize; 1255 char name[24]; 1256 1257 (void) sprintf(name, "ZOBJ_%llu", (u_longlong_t)object); 1258 namesize = strlen(name) + 1; 1259 1260 itx = zil_itx_create(TX_CREATE, sizeof (*lr) + namesize + 1261 ztest_random(ZIL_MAX_BLKSZ)); 1262 lr = (lr_create_t *)&itx->itx_lr; 1263 bzero(lr + 1, lr->lr_common.lrc_reclen - sizeof (*lr)); 1264 lr->lr_doid = object; 1265 lr->lr_foid = 0; 1266 lr->lr_mode = mode; 1267 lr->lr_uid = 0; 1268 lr->lr_gid = 0; 1269 lr->lr_gen = dmu_tx_get_txg(tx); 1270 lr->lr_crtime[0] = time(NULL); 1271 lr->lr_crtime[1] = 0; 1272 lr->lr_rdev = 0; 1273 bcopy(name, (char *)(lr + 1), namesize); 1274 1275 return (zil_itx_assign(zilog, itx, tx)); 1276 } 1277 1278 void 1279 ztest_dmu_objset_create_destroy(ztest_args_t *za) 1280 { 1281 int error; 1282 objset_t *os, *os2; 1283 char name[100]; 1284 int basemode, expected_error; 1285 zilog_t *zilog; 1286 uint64_t seq; 1287 uint64_t objects; 1288 1289 (void) rw_rdlock(&ztest_shared->zs_name_lock); 1290 (void) snprintf(name, 100, "%s/%s_temp_%llu", za->za_pool, za->za_pool, 1291 (u_longlong_t)za->za_instance); 1292 1293 basemode = DS_MODE_TYPE(za->za_instance); 1294 if (basemode != DS_MODE_USER && basemode != DS_MODE_OWNER) 1295 basemode = DS_MODE_USER; 1296 1297 /* 1298 * If this dataset exists from a previous run, process its replay log 1299 * half of the time. If we don't replay it, then dmu_objset_destroy() 1300 * (invoked from ztest_destroy_cb() below) should just throw it away. 1301 */ 1302 if (ztest_random(2) == 0 && 1303 dmu_objset_open(name, DMU_OST_OTHER, DS_MODE_OWNER, &os) == 0) { 1304 zil_replay(os, os, ztest_replay_vector); 1305 dmu_objset_close(os); 1306 } 1307 1308 /* 1309 * There may be an old instance of the dataset we're about to 1310 * create lying around from a previous run. If so, destroy it 1311 * and all of its snapshots. 1312 */ 1313 (void) dmu_objset_find(name, ztest_destroy_cb, za, 1314 DS_FIND_CHILDREN | DS_FIND_SNAPSHOTS); 1315 1316 /* 1317 * Verify that the destroyed dataset is no longer in the namespace. 1318 */ 1319 error = dmu_objset_open(name, DMU_OST_OTHER, basemode, &os); 1320 if (error != ENOENT) 1321 fatal(1, "dmu_objset_open(%s) found destroyed dataset %p", 1322 name, os); 1323 1324 /* 1325 * Verify that we can create a new dataset. 1326 */ 1327 error = dmu_objset_create(name, DMU_OST_OTHER, NULL, 0, 1328 ztest_create_cb, NULL); 1329 if (error) { 1330 if (error == ENOSPC) { 1331 ztest_record_enospc("dmu_objset_create"); 1332 (void) rw_unlock(&ztest_shared->zs_name_lock); 1333 return; 1334 } 1335 fatal(0, "dmu_objset_create(%s) = %d", name, error); 1336 } 1337 1338 error = dmu_objset_open(name, DMU_OST_OTHER, basemode, &os); 1339 if (error) { 1340 fatal(0, "dmu_objset_open(%s) = %d", name, error); 1341 } 1342 1343 /* 1344 * Open the intent log for it. 1345 */ 1346 zilog = zil_open(os, NULL); 1347 1348 /* 1349 * Put a random number of objects in there. 1350 */ 1351 objects = ztest_random(20); 1352 seq = 0; 1353 while (objects-- != 0) { 1354 uint64_t object; 1355 dmu_tx_t *tx = dmu_tx_create(os); 1356 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, sizeof (name)); 1357 error = dmu_tx_assign(tx, TXG_WAIT); 1358 if (error) { 1359 dmu_tx_abort(tx); 1360 } else { 1361 object = dmu_object_alloc(os, DMU_OT_UINT64_OTHER, 0, 1362 DMU_OT_NONE, 0, tx); 1363 ztest_set_random_blocksize(os, object, tx); 1364 seq = ztest_log_create(zilog, tx, object, 1365 DMU_OT_UINT64_OTHER); 1366 dmu_write(os, object, 0, sizeof (name), name, tx); 1367 dmu_tx_commit(tx); 1368 } 1369 if (ztest_random(5) == 0) { 1370 zil_commit(zilog, seq, object); 1371 } 1372 if (ztest_random(100) == 0) { 1373 error = zil_suspend(zilog); 1374 if (error == 0) { 1375 zil_resume(zilog); 1376 } 1377 } 1378 } 1379 1380 /* 1381 * Verify that we cannot create an existing dataset. 1382 */ 1383 error = dmu_objset_create(name, DMU_OST_OTHER, NULL, 0, NULL, NULL); 1384 if (error != EEXIST) 1385 fatal(0, "created existing dataset, error = %d", error); 1386 1387 /* 1388 * Verify that multiple dataset holds are allowed, but only when 1389 * the new access mode is compatible with the base mode. 1390 */ 1391 if (basemode == DS_MODE_OWNER) { 1392 error = dmu_objset_open(name, DMU_OST_OTHER, DS_MODE_USER, 1393 &os2); 1394 if (error) 1395 fatal(0, "dmu_objset_open('%s') = %d", name, error); 1396 else 1397 dmu_objset_close(os2); 1398 } 1399 error = dmu_objset_open(name, DMU_OST_OTHER, DS_MODE_OWNER, &os2); 1400 expected_error = (basemode == DS_MODE_OWNER) ? EBUSY : 0; 1401 if (error != expected_error) 1402 fatal(0, "dmu_objset_open('%s') = %d, expected %d", 1403 name, error, expected_error); 1404 if (error == 0) 1405 dmu_objset_close(os2); 1406 1407 zil_close(zilog); 1408 dmu_objset_close(os); 1409 1410 error = dmu_objset_destroy(name); 1411 if (error) 1412 fatal(0, "dmu_objset_destroy(%s) = %d", name, error); 1413 1414 (void) rw_unlock(&ztest_shared->zs_name_lock); 1415 } 1416 1417 /* 1418 * Verify that dmu_snapshot_{create,destroy,open,close} work as expected. 1419 */ 1420 void 1421 ztest_dmu_snapshot_create_destroy(ztest_args_t *za) 1422 { 1423 int error; 1424 objset_t *os = za->za_os; 1425 char snapname[100]; 1426 char osname[MAXNAMELEN]; 1427 1428 (void) rw_rdlock(&ztest_shared->zs_name_lock); 1429 dmu_objset_name(os, osname); 1430 (void) snprintf(snapname, 100, "%s@%llu", osname, 1431 (u_longlong_t)za->za_instance); 1432 1433 error = dmu_objset_destroy(snapname); 1434 if (error != 0 && error != ENOENT) 1435 fatal(0, "dmu_objset_destroy() = %d", error); 1436 error = dmu_objset_snapshot(osname, strchr(snapname, '@')+1, 1437 NULL, FALSE); 1438 if (error == ENOSPC) 1439 ztest_record_enospc("dmu_take_snapshot"); 1440 else if (error != 0 && error != EEXIST) 1441 fatal(0, "dmu_take_snapshot() = %d", error); 1442 (void) rw_unlock(&ztest_shared->zs_name_lock); 1443 } 1444 1445 /* 1446 * Cleanup non-standard snapshots and clones. 1447 */ 1448 void 1449 ztest_dsl_dataset_cleanup(char *osname, uint64_t curval) 1450 { 1451 char snap1name[100]; 1452 char clone1name[100]; 1453 char snap2name[100]; 1454 char clone2name[100]; 1455 char snap3name[100]; 1456 int error; 1457 1458 (void) snprintf(snap1name, 100, "%s@s1_%llu", osname, curval); 1459 (void) snprintf(clone1name, 100, "%s/c1_%llu", osname, curval); 1460 (void) snprintf(snap2name, 100, "%s@s2_%llu", clone1name, curval); 1461 (void) snprintf(clone2name, 100, "%s/c2_%llu", osname, curval); 1462 (void) snprintf(snap3name, 100, "%s@s3_%llu", clone1name, curval); 1463 1464 error = dmu_objset_destroy(clone2name); 1465 if (error && error != ENOENT) 1466 fatal(0, "dmu_objset_destroy(%s) = %d", clone2name, error); 1467 error = dmu_objset_destroy(snap3name); 1468 if (error && error != ENOENT) 1469 fatal(0, "dmu_objset_destroy(%s) = %d", snap3name, error); 1470 error = dmu_objset_destroy(snap2name); 1471 if (error && error != ENOENT) 1472 fatal(0, "dmu_objset_destroy(%s) = %d", snap2name, error); 1473 error = dmu_objset_destroy(clone1name); 1474 if (error && error != ENOENT) 1475 fatal(0, "dmu_objset_destroy(%s) = %d", clone1name, error); 1476 error = dmu_objset_destroy(snap1name); 1477 if (error && error != ENOENT) 1478 fatal(0, "dmu_objset_destroy(%s) = %d", snap1name, error); 1479 } 1480 1481 /* 1482 * Verify dsl_dataset_promote handles EBUSY 1483 */ 1484 void 1485 ztest_dsl_dataset_promote_busy(ztest_args_t *za) 1486 { 1487 int error; 1488 objset_t *os = za->za_os; 1489 objset_t *clone; 1490 dsl_dataset_t *ds; 1491 char snap1name[100]; 1492 char clone1name[100]; 1493 char snap2name[100]; 1494 char clone2name[100]; 1495 char snap3name[100]; 1496 char osname[MAXNAMELEN]; 1497 uint64_t curval = za->za_instance; 1498 1499 (void) rw_rdlock(&ztest_shared->zs_name_lock); 1500 1501 dmu_objset_name(os, osname); 1502 ztest_dsl_dataset_cleanup(osname, curval); 1503 1504 (void) snprintf(snap1name, 100, "%s@s1_%llu", osname, curval); 1505 (void) snprintf(clone1name, 100, "%s/c1_%llu", osname, curval); 1506 (void) snprintf(snap2name, 100, "%s@s2_%llu", clone1name, curval); 1507 (void) snprintf(clone2name, 100, "%s/c2_%llu", osname, curval); 1508 (void) snprintf(snap3name, 100, "%s@s3_%llu", clone1name, curval); 1509 1510 error = dmu_objset_snapshot(osname, strchr(snap1name, '@')+1, 1511 NULL, FALSE); 1512 if (error && error != EEXIST) { 1513 if (error == ENOSPC) { 1514 ztest_record_enospc("dmu_take_snapshot"); 1515 goto out; 1516 } 1517 fatal(0, "dmu_take_snapshot(%s) = %d", snap1name, error); 1518 } 1519 1520 error = dmu_objset_open(snap1name, DMU_OST_OTHER, 1521 DS_MODE_USER | DS_MODE_READONLY, &clone); 1522 if (error) 1523 fatal(0, "dmu_open_snapshot(%s) = %d", snap1name, error); 1524 1525 error = dmu_objset_create(clone1name, DMU_OST_OTHER, clone, 0, 1526 NULL, NULL); 1527 dmu_objset_close(clone); 1528 if (error) { 1529 if (error == ENOSPC) { 1530 ztest_record_enospc("dmu_objset_create"); 1531 goto out; 1532 } 1533 fatal(0, "dmu_objset_create(%s) = %d", clone1name, error); 1534 } 1535 1536 error = dmu_objset_snapshot(clone1name, strchr(snap2name, '@')+1, 1537 NULL, FALSE); 1538 if (error && error != EEXIST) { 1539 if (error == ENOSPC) { 1540 ztest_record_enospc("dmu_take_snapshot"); 1541 goto out; 1542 } 1543 fatal(0, "dmu_open_snapshot(%s) = %d", snap2name, error); 1544 } 1545 1546 error = dmu_objset_snapshot(clone1name, strchr(snap3name, '@')+1, 1547 NULL, FALSE); 1548 if (error && error != EEXIST) { 1549 if (error == ENOSPC) { 1550 ztest_record_enospc("dmu_take_snapshot"); 1551 goto out; 1552 } 1553 fatal(0, "dmu_open_snapshot(%s) = %d", snap3name, error); 1554 } 1555 1556 error = dmu_objset_open(snap3name, DMU_OST_OTHER, 1557 DS_MODE_USER | DS_MODE_READONLY, &clone); 1558 if (error) 1559 fatal(0, "dmu_open_snapshot(%s) = %d", snap3name, error); 1560 1561 error = dmu_objset_create(clone2name, DMU_OST_OTHER, clone, 0, 1562 NULL, NULL); 1563 dmu_objset_close(clone); 1564 if (error) { 1565 if (error == ENOSPC) { 1566 ztest_record_enospc("dmu_objset_create"); 1567 goto out; 1568 } 1569 fatal(0, "dmu_objset_create(%s) = %d", clone2name, error); 1570 } 1571 1572 error = dsl_dataset_own(snap1name, DS_MODE_READONLY, FTAG, &ds); 1573 if (error) 1574 fatal(0, "dsl_dataset_own(%s) = %d", snap1name, error); 1575 error = dsl_dataset_promote(clone2name); 1576 if (error != EBUSY) 1577 fatal(0, "dsl_dataset_promote(%s), %d, not EBUSY", clone2name, 1578 error); 1579 dsl_dataset_disown(ds, FTAG); 1580 1581 out: 1582 ztest_dsl_dataset_cleanup(osname, curval); 1583 1584 (void) rw_unlock(&ztest_shared->zs_name_lock); 1585 } 1586 1587 /* 1588 * Verify that dmu_object_{alloc,free} work as expected. 1589 */ 1590 void 1591 ztest_dmu_object_alloc_free(ztest_args_t *za) 1592 { 1593 objset_t *os = za->za_os; 1594 dmu_buf_t *db; 1595 dmu_tx_t *tx; 1596 uint64_t batchobj, object, batchsize, endoff, temp; 1597 int b, c, error, bonuslen; 1598 dmu_object_info_t *doi = &za->za_doi; 1599 char osname[MAXNAMELEN]; 1600 1601 dmu_objset_name(os, osname); 1602 1603 endoff = -8ULL; 1604 batchsize = 2; 1605 1606 /* 1607 * Create a batch object if necessary, and record it in the directory. 1608 */ 1609 VERIFY3U(0, ==, dmu_read(os, ZTEST_DIROBJ, za->za_diroff, 1610 sizeof (uint64_t), &batchobj, DMU_READ_PREFETCH)); 1611 if (batchobj == 0) { 1612 tx = dmu_tx_create(os); 1613 dmu_tx_hold_write(tx, ZTEST_DIROBJ, za->za_diroff, 1614 sizeof (uint64_t)); 1615 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); 1616 error = dmu_tx_assign(tx, TXG_WAIT); 1617 if (error) { 1618 ztest_record_enospc("create a batch object"); 1619 dmu_tx_abort(tx); 1620 return; 1621 } 1622 batchobj = dmu_object_alloc(os, DMU_OT_UINT64_OTHER, 0, 1623 DMU_OT_NONE, 0, tx); 1624 ztest_set_random_blocksize(os, batchobj, tx); 1625 dmu_write(os, ZTEST_DIROBJ, za->za_diroff, 1626 sizeof (uint64_t), &batchobj, tx); 1627 dmu_tx_commit(tx); 1628 } 1629 1630 /* 1631 * Destroy the previous batch of objects. 1632 */ 1633 for (b = 0; b < batchsize; b++) { 1634 VERIFY3U(0, ==, dmu_read(os, batchobj, b * sizeof (uint64_t), 1635 sizeof (uint64_t), &object, DMU_READ_PREFETCH)); 1636 if (object == 0) 1637 continue; 1638 /* 1639 * Read and validate contents. 1640 * We expect the nth byte of the bonus buffer to be n. 1641 */ 1642 VERIFY(0 == dmu_bonus_hold(os, object, FTAG, &db)); 1643 za->za_dbuf = db; 1644 1645 dmu_object_info_from_db(db, doi); 1646 ASSERT(doi->doi_type == DMU_OT_UINT64_OTHER); 1647 ASSERT(doi->doi_bonus_type == DMU_OT_PLAIN_OTHER); 1648 ASSERT3S(doi->doi_physical_blks, >=, 0); 1649 1650 bonuslen = doi->doi_bonus_size; 1651 1652 for (c = 0; c < bonuslen; c++) { 1653 if (((uint8_t *)db->db_data)[c] != 1654 (uint8_t)(c + bonuslen)) { 1655 fatal(0, 1656 "bad bonus: %s, obj %llu, off %d: %u != %u", 1657 osname, object, c, 1658 ((uint8_t *)db->db_data)[c], 1659 (uint8_t)(c + bonuslen)); 1660 } 1661 } 1662 1663 dmu_buf_rele(db, FTAG); 1664 za->za_dbuf = NULL; 1665 1666 /* 1667 * We expect the word at endoff to be our object number. 1668 */ 1669 VERIFY(0 == dmu_read(os, object, endoff, 1670 sizeof (uint64_t), &temp, DMU_READ_PREFETCH)); 1671 1672 if (temp != object) { 1673 fatal(0, "bad data in %s, got %llu, expected %llu", 1674 osname, temp, object); 1675 } 1676 1677 /* 1678 * Destroy old object and clear batch entry. 1679 */ 1680 tx = dmu_tx_create(os); 1681 dmu_tx_hold_write(tx, batchobj, 1682 b * sizeof (uint64_t), sizeof (uint64_t)); 1683 dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END); 1684 error = dmu_tx_assign(tx, TXG_WAIT); 1685 if (error) { 1686 ztest_record_enospc("free object"); 1687 dmu_tx_abort(tx); 1688 return; 1689 } 1690 error = dmu_object_free(os, object, tx); 1691 if (error) { 1692 fatal(0, "dmu_object_free('%s', %llu) = %d", 1693 osname, object, error); 1694 } 1695 object = 0; 1696 1697 dmu_object_set_checksum(os, batchobj, 1698 ztest_random_checksum(), tx); 1699 dmu_object_set_compress(os, batchobj, 1700 ztest_random_compress(), tx); 1701 1702 dmu_write(os, batchobj, b * sizeof (uint64_t), 1703 sizeof (uint64_t), &object, tx); 1704 1705 dmu_tx_commit(tx); 1706 } 1707 1708 /* 1709 * Before creating the new batch of objects, generate a bunch of churn. 1710 */ 1711 for (b = ztest_random(100); b > 0; b--) { 1712 tx = dmu_tx_create(os); 1713 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); 1714 error = dmu_tx_assign(tx, TXG_WAIT); 1715 if (error) { 1716 ztest_record_enospc("churn objects"); 1717 dmu_tx_abort(tx); 1718 return; 1719 } 1720 object = dmu_object_alloc(os, DMU_OT_UINT64_OTHER, 0, 1721 DMU_OT_NONE, 0, tx); 1722 ztest_set_random_blocksize(os, object, tx); 1723 error = dmu_object_free(os, object, tx); 1724 if (error) { 1725 fatal(0, "dmu_object_free('%s', %llu) = %d", 1726 osname, object, error); 1727 } 1728 dmu_tx_commit(tx); 1729 } 1730 1731 /* 1732 * Create a new batch of objects with randomly chosen 1733 * blocksizes and record them in the batch directory. 1734 */ 1735 for (b = 0; b < batchsize; b++) { 1736 uint32_t va_blksize; 1737 u_longlong_t va_nblocks; 1738 1739 tx = dmu_tx_create(os); 1740 dmu_tx_hold_write(tx, batchobj, b * sizeof (uint64_t), 1741 sizeof (uint64_t)); 1742 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); 1743 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, endoff, 1744 sizeof (uint64_t)); 1745 error = dmu_tx_assign(tx, TXG_WAIT); 1746 if (error) { 1747 ztest_record_enospc("create batchobj"); 1748 dmu_tx_abort(tx); 1749 return; 1750 } 1751 bonuslen = (int)ztest_random(dmu_bonus_max()) + 1; 1752 1753 object = dmu_object_alloc(os, DMU_OT_UINT64_OTHER, 0, 1754 DMU_OT_PLAIN_OTHER, bonuslen, tx); 1755 1756 ztest_set_random_blocksize(os, object, tx); 1757 1758 dmu_object_set_checksum(os, object, 1759 ztest_random_checksum(), tx); 1760 dmu_object_set_compress(os, object, 1761 ztest_random_compress(), tx); 1762 1763 dmu_write(os, batchobj, b * sizeof (uint64_t), 1764 sizeof (uint64_t), &object, tx); 1765 1766 /* 1767 * Write to both the bonus buffer and the regular data. 1768 */ 1769 VERIFY(dmu_bonus_hold(os, object, FTAG, &db) == 0); 1770 za->za_dbuf = db; 1771 ASSERT3U(bonuslen, <=, db->db_size); 1772 1773 dmu_object_size_from_db(db, &va_blksize, &va_nblocks); 1774 ASSERT3S(va_nblocks, >=, 0); 1775 1776 dmu_buf_will_dirty(db, tx); 1777 1778 /* 1779 * See comments above regarding the contents of 1780 * the bonus buffer and the word at endoff. 1781 */ 1782 for (c = 0; c < bonuslen; c++) 1783 ((uint8_t *)db->db_data)[c] = (uint8_t)(c + bonuslen); 1784 1785 dmu_buf_rele(db, FTAG); 1786 za->za_dbuf = NULL; 1787 1788 /* 1789 * Write to a large offset to increase indirection. 1790 */ 1791 dmu_write(os, object, endoff, sizeof (uint64_t), &object, tx); 1792 1793 dmu_tx_commit(tx); 1794 } 1795 } 1796 1797 /* 1798 * Verify that dmu_{read,write} work as expected. 1799 */ 1800 typedef struct bufwad { 1801 uint64_t bw_index; 1802 uint64_t bw_txg; 1803 uint64_t bw_data; 1804 } bufwad_t; 1805 1806 typedef struct dmu_read_write_dir { 1807 uint64_t dd_packobj; 1808 uint64_t dd_bigobj; 1809 uint64_t dd_chunk; 1810 } dmu_read_write_dir_t; 1811 1812 void 1813 ztest_dmu_read_write(ztest_args_t *za) 1814 { 1815 objset_t *os = za->za_os; 1816 dmu_read_write_dir_t dd; 1817 dmu_tx_t *tx; 1818 int i, freeit, error; 1819 uint64_t n, s, txg; 1820 bufwad_t *packbuf, *bigbuf, *pack, *bigH, *bigT; 1821 uint64_t packoff, packsize, bigoff, bigsize; 1822 uint64_t regions = 997; 1823 uint64_t stride = 123456789ULL; 1824 uint64_t width = 40; 1825 int free_percent = 5; 1826 1827 /* 1828 * This test uses two objects, packobj and bigobj, that are always 1829 * updated together (i.e. in the same tx) so that their contents are 1830 * in sync and can be compared. Their contents relate to each other 1831 * in a simple way: packobj is a dense array of 'bufwad' structures, 1832 * while bigobj is a sparse array of the same bufwads. Specifically, 1833 * for any index n, there are three bufwads that should be identical: 1834 * 1835 * packobj, at offset n * sizeof (bufwad_t) 1836 * bigobj, at the head of the nth chunk 1837 * bigobj, at the tail of the nth chunk 1838 * 1839 * The chunk size is arbitrary. It doesn't have to be a power of two, 1840 * and it doesn't have any relation to the object blocksize. 1841 * The only requirement is that it can hold at least two bufwads. 1842 * 1843 * Normally, we write the bufwad to each of these locations. 1844 * However, free_percent of the time we instead write zeroes to 1845 * packobj and perform a dmu_free_range() on bigobj. By comparing 1846 * bigobj to packobj, we can verify that the DMU is correctly 1847 * tracking which parts of an object are allocated and free, 1848 * and that the contents of the allocated blocks are correct. 1849 */ 1850 1851 /* 1852 * Read the directory info. If it's the first time, set things up. 1853 */ 1854 VERIFY(0 == dmu_read(os, ZTEST_DIROBJ, za->za_diroff, 1855 sizeof (dd), &dd, DMU_READ_PREFETCH)); 1856 if (dd.dd_chunk == 0) { 1857 ASSERT(dd.dd_packobj == 0); 1858 ASSERT(dd.dd_bigobj == 0); 1859 tx = dmu_tx_create(os); 1860 dmu_tx_hold_write(tx, ZTEST_DIROBJ, za->za_diroff, sizeof (dd)); 1861 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); 1862 error = dmu_tx_assign(tx, TXG_WAIT); 1863 if (error) { 1864 ztest_record_enospc("create r/w directory"); 1865 dmu_tx_abort(tx); 1866 return; 1867 } 1868 1869 dd.dd_packobj = dmu_object_alloc(os, DMU_OT_UINT64_OTHER, 0, 1870 DMU_OT_NONE, 0, tx); 1871 dd.dd_bigobj = dmu_object_alloc(os, DMU_OT_UINT64_OTHER, 0, 1872 DMU_OT_NONE, 0, tx); 1873 dd.dd_chunk = (1000 + ztest_random(1000)) * sizeof (uint64_t); 1874 1875 ztest_set_random_blocksize(os, dd.dd_packobj, tx); 1876 ztest_set_random_blocksize(os, dd.dd_bigobj, tx); 1877 1878 dmu_write(os, ZTEST_DIROBJ, za->za_diroff, sizeof (dd), &dd, 1879 tx); 1880 dmu_tx_commit(tx); 1881 } 1882 1883 /* 1884 * Prefetch a random chunk of the big object. 1885 * Our aim here is to get some async reads in flight 1886 * for blocks that we may free below; the DMU should 1887 * handle this race correctly. 1888 */ 1889 n = ztest_random(regions) * stride + ztest_random(width); 1890 s = 1 + ztest_random(2 * width - 1); 1891 dmu_prefetch(os, dd.dd_bigobj, n * dd.dd_chunk, s * dd.dd_chunk); 1892 1893 /* 1894 * Pick a random index and compute the offsets into packobj and bigobj. 1895 */ 1896 n = ztest_random(regions) * stride + ztest_random(width); 1897 s = 1 + ztest_random(width - 1); 1898 1899 packoff = n * sizeof (bufwad_t); 1900 packsize = s * sizeof (bufwad_t); 1901 1902 bigoff = n * dd.dd_chunk; 1903 bigsize = s * dd.dd_chunk; 1904 1905 packbuf = umem_alloc(packsize, UMEM_NOFAIL); 1906 bigbuf = umem_alloc(bigsize, UMEM_NOFAIL); 1907 1908 /* 1909 * free_percent of the time, free a range of bigobj rather than 1910 * overwriting it. 1911 */ 1912 freeit = (ztest_random(100) < free_percent); 1913 1914 /* 1915 * Read the current contents of our objects. 1916 */ 1917 error = dmu_read(os, dd.dd_packobj, packoff, packsize, packbuf, 1918 DMU_READ_PREFETCH); 1919 ASSERT3U(error, ==, 0); 1920 error = dmu_read(os, dd.dd_bigobj, bigoff, bigsize, bigbuf, 1921 DMU_READ_PREFETCH); 1922 ASSERT3U(error, ==, 0); 1923 1924 /* 1925 * Get a tx for the mods to both packobj and bigobj. 1926 */ 1927 tx = dmu_tx_create(os); 1928 1929 dmu_tx_hold_write(tx, dd.dd_packobj, packoff, packsize); 1930 1931 if (freeit) 1932 dmu_tx_hold_free(tx, dd.dd_bigobj, bigoff, bigsize); 1933 else 1934 dmu_tx_hold_write(tx, dd.dd_bigobj, bigoff, bigsize); 1935 1936 error = dmu_tx_assign(tx, TXG_WAIT); 1937 1938 if (error) { 1939 ztest_record_enospc("dmu r/w range"); 1940 dmu_tx_abort(tx); 1941 umem_free(packbuf, packsize); 1942 umem_free(bigbuf, bigsize); 1943 return; 1944 } 1945 1946 txg = dmu_tx_get_txg(tx); 1947 1948 /* 1949 * For each index from n to n + s, verify that the existing bufwad 1950 * in packobj matches the bufwads at the head and tail of the 1951 * corresponding chunk in bigobj. Then update all three bufwads 1952 * with the new values we want to write out. 1953 */ 1954 for (i = 0; i < s; i++) { 1955 /* LINTED */ 1956 pack = (bufwad_t *)((char *)packbuf + i * sizeof (bufwad_t)); 1957 /* LINTED */ 1958 bigH = (bufwad_t *)((char *)bigbuf + i * dd.dd_chunk); 1959 /* LINTED */ 1960 bigT = (bufwad_t *)((char *)bigH + dd.dd_chunk) - 1; 1961 1962 ASSERT((uintptr_t)bigH - (uintptr_t)bigbuf < bigsize); 1963 ASSERT((uintptr_t)bigT - (uintptr_t)bigbuf < bigsize); 1964 1965 if (pack->bw_txg > txg) 1966 fatal(0, "future leak: got %llx, open txg is %llx", 1967 pack->bw_txg, txg); 1968 1969 if (pack->bw_data != 0 && pack->bw_index != n + i) 1970 fatal(0, "wrong index: got %llx, wanted %llx+%llx", 1971 pack->bw_index, n, i); 1972 1973 if (bcmp(pack, bigH, sizeof (bufwad_t)) != 0) 1974 fatal(0, "pack/bigH mismatch in %p/%p", pack, bigH); 1975 1976 if (bcmp(pack, bigT, sizeof (bufwad_t)) != 0) 1977 fatal(0, "pack/bigT mismatch in %p/%p", pack, bigT); 1978 1979 if (freeit) { 1980 bzero(pack, sizeof (bufwad_t)); 1981 } else { 1982 pack->bw_index = n + i; 1983 pack->bw_txg = txg; 1984 pack->bw_data = 1 + ztest_random(-2ULL); 1985 } 1986 *bigH = *pack; 1987 *bigT = *pack; 1988 } 1989 1990 /* 1991 * We've verified all the old bufwads, and made new ones. 1992 * Now write them out. 1993 */ 1994 dmu_write(os, dd.dd_packobj, packoff, packsize, packbuf, tx); 1995 1996 if (freeit) { 1997 if (zopt_verbose >= 6) { 1998 (void) printf("freeing offset %llx size %llx" 1999 " txg %llx\n", 2000 (u_longlong_t)bigoff, 2001 (u_longlong_t)bigsize, 2002 (u_longlong_t)txg); 2003 } 2004 VERIFY(0 == dmu_free_range(os, dd.dd_bigobj, bigoff, 2005 bigsize, tx)); 2006 } else { 2007 if (zopt_verbose >= 6) { 2008 (void) printf("writing offset %llx size %llx" 2009 " txg %llx\n", 2010 (u_longlong_t)bigoff, 2011 (u_longlong_t)bigsize, 2012 (u_longlong_t)txg); 2013 } 2014 dmu_write(os, dd.dd_bigobj, bigoff, bigsize, bigbuf, tx); 2015 } 2016 2017 dmu_tx_commit(tx); 2018 2019 /* 2020 * Sanity check the stuff we just wrote. 2021 */ 2022 { 2023 void *packcheck = umem_alloc(packsize, UMEM_NOFAIL); 2024 void *bigcheck = umem_alloc(bigsize, UMEM_NOFAIL); 2025 2026 VERIFY(0 == dmu_read(os, dd.dd_packobj, packoff, 2027 packsize, packcheck, DMU_READ_PREFETCH)); 2028 VERIFY(0 == dmu_read(os, dd.dd_bigobj, bigoff, 2029 bigsize, bigcheck, DMU_READ_PREFETCH)); 2030 2031 ASSERT(bcmp(packbuf, packcheck, packsize) == 0); 2032 ASSERT(bcmp(bigbuf, bigcheck, bigsize) == 0); 2033 2034 umem_free(packcheck, packsize); 2035 umem_free(bigcheck, bigsize); 2036 } 2037 2038 umem_free(packbuf, packsize); 2039 umem_free(bigbuf, bigsize); 2040 } 2041 2042 void 2043 compare_and_update_pbbufs(uint64_t s, bufwad_t *packbuf, bufwad_t *bigbuf, 2044 uint64_t bigsize, uint64_t n, dmu_read_write_dir_t dd, uint64_t txg) 2045 { 2046 uint64_t i; 2047 bufwad_t *pack; 2048 bufwad_t *bigH; 2049 bufwad_t *bigT; 2050 2051 /* 2052 * For each index from n to n + s, verify that the existing bufwad 2053 * in packobj matches the bufwads at the head and tail of the 2054 * corresponding chunk in bigobj. Then update all three bufwads 2055 * with the new values we want to write out. 2056 */ 2057 for (i = 0; i < s; i++) { 2058 /* LINTED */ 2059 pack = (bufwad_t *)((char *)packbuf + i * sizeof (bufwad_t)); 2060 /* LINTED */ 2061 bigH = (bufwad_t *)((char *)bigbuf + i * dd.dd_chunk); 2062 /* LINTED */ 2063 bigT = (bufwad_t *)((char *)bigH + dd.dd_chunk) - 1; 2064 2065 ASSERT((uintptr_t)bigH - (uintptr_t)bigbuf < bigsize); 2066 ASSERT((uintptr_t)bigT - (uintptr_t)bigbuf < bigsize); 2067 2068 if (pack->bw_txg > txg) 2069 fatal(0, "future leak: got %llx, open txg is %llx", 2070 pack->bw_txg, txg); 2071 2072 if (pack->bw_data != 0 && pack->bw_index != n + i) 2073 fatal(0, "wrong index: got %llx, wanted %llx+%llx", 2074 pack->bw_index, n, i); 2075 2076 if (bcmp(pack, bigH, sizeof (bufwad_t)) != 0) 2077 fatal(0, "pack/bigH mismatch in %p/%p", pack, bigH); 2078 2079 if (bcmp(pack, bigT, sizeof (bufwad_t)) != 0) 2080 fatal(0, "pack/bigT mismatch in %p/%p", pack, bigT); 2081 2082 pack->bw_index = n + i; 2083 pack->bw_txg = txg; 2084 pack->bw_data = 1 + ztest_random(-2ULL); 2085 2086 *bigH = *pack; 2087 *bigT = *pack; 2088 } 2089 } 2090 2091 void 2092 ztest_dmu_read_write_zcopy(ztest_args_t *za) 2093 { 2094 objset_t *os = za->za_os; 2095 dmu_read_write_dir_t dd; 2096 dmu_tx_t *tx; 2097 uint64_t i; 2098 int error; 2099 uint64_t n, s, txg; 2100 bufwad_t *packbuf, *bigbuf; 2101 uint64_t packoff, packsize, bigoff, bigsize; 2102 uint64_t regions = 997; 2103 uint64_t stride = 123456789ULL; 2104 uint64_t width = 9; 2105 dmu_buf_t *bonus_db; 2106 arc_buf_t **bigbuf_arcbufs; 2107 dmu_object_info_t *doi = &za->za_doi; 2108 2109 /* 2110 * This test uses two objects, packobj and bigobj, that are always 2111 * updated together (i.e. in the same tx) so that their contents are 2112 * in sync and can be compared. Their contents relate to each other 2113 * in a simple way: packobj is a dense array of 'bufwad' structures, 2114 * while bigobj is a sparse array of the same bufwads. Specifically, 2115 * for any index n, there are three bufwads that should be identical: 2116 * 2117 * packobj, at offset n * sizeof (bufwad_t) 2118 * bigobj, at the head of the nth chunk 2119 * bigobj, at the tail of the nth chunk 2120 * 2121 * The chunk size is set equal to bigobj block size so that 2122 * dmu_assign_arcbuf() can be tested for object updates. 2123 */ 2124 2125 /* 2126 * Read the directory info. If it's the first time, set things up. 2127 */ 2128 VERIFY(0 == dmu_read(os, ZTEST_DIROBJ, za->za_diroff, 2129 sizeof (dd), &dd, DMU_READ_PREFETCH)); 2130 if (dd.dd_chunk == 0) { 2131 ASSERT(dd.dd_packobj == 0); 2132 ASSERT(dd.dd_bigobj == 0); 2133 tx = dmu_tx_create(os); 2134 dmu_tx_hold_write(tx, ZTEST_DIROBJ, za->za_diroff, sizeof (dd)); 2135 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); 2136 error = dmu_tx_assign(tx, TXG_WAIT); 2137 if (error) { 2138 ztest_record_enospc("create r/w directory"); 2139 dmu_tx_abort(tx); 2140 return; 2141 } 2142 2143 dd.dd_packobj = dmu_object_alloc(os, DMU_OT_UINT64_OTHER, 0, 2144 DMU_OT_NONE, 0, tx); 2145 dd.dd_bigobj = dmu_object_alloc(os, DMU_OT_UINT64_OTHER, 0, 2146 DMU_OT_NONE, 0, tx); 2147 ztest_set_random_blocksize(os, dd.dd_packobj, tx); 2148 ztest_set_random_blocksize(os, dd.dd_bigobj, tx); 2149 2150 VERIFY(dmu_object_info(os, dd.dd_bigobj, doi) == 0); 2151 ASSERT(doi->doi_data_block_size >= 2 * sizeof (bufwad_t)); 2152 ASSERT(ISP2(doi->doi_data_block_size)); 2153 dd.dd_chunk = doi->doi_data_block_size; 2154 2155 dmu_write(os, ZTEST_DIROBJ, za->za_diroff, sizeof (dd), &dd, 2156 tx); 2157 dmu_tx_commit(tx); 2158 } else { 2159 VERIFY(dmu_object_info(os, dd.dd_bigobj, doi) == 0); 2160 VERIFY(ISP2(doi->doi_data_block_size)); 2161 VERIFY(dd.dd_chunk == doi->doi_data_block_size); 2162 VERIFY(dd.dd_chunk >= 2 * sizeof (bufwad_t)); 2163 } 2164 2165 /* 2166 * Pick a random index and compute the offsets into packobj and bigobj. 2167 */ 2168 n = ztest_random(regions) * stride + ztest_random(width); 2169 s = 1 + ztest_random(width - 1); 2170 2171 packoff = n * sizeof (bufwad_t); 2172 packsize = s * sizeof (bufwad_t); 2173 2174 bigoff = n * dd.dd_chunk; 2175 bigsize = s * dd.dd_chunk; 2176 2177 packbuf = umem_zalloc(packsize, UMEM_NOFAIL); 2178 bigbuf = umem_zalloc(bigsize, UMEM_NOFAIL); 2179 2180 VERIFY(dmu_bonus_hold(os, dd.dd_bigobj, FTAG, &bonus_db) == 0); 2181 2182 bigbuf_arcbufs = umem_zalloc(2 * s * sizeof (arc_buf_t *), UMEM_NOFAIL); 2183 2184 /* 2185 * Iteration 0 test zcopy for DB_UNCACHED dbufs. 2186 * Iteration 1 test zcopy to already referenced dbufs. 2187 * Iteration 2 test zcopy to dirty dbuf in the same txg. 2188 * Iteration 3 test zcopy to dbuf dirty in previous txg. 2189 * Iteration 4 test zcopy when dbuf is no longer dirty. 2190 * Iteration 5 test zcopy when it can't be done. 2191 * Iteration 6 one more zcopy write. 2192 */ 2193 for (i = 0; i < 7; i++) { 2194 uint64_t j; 2195 uint64_t off; 2196 2197 /* 2198 * In iteration 5 (i == 5) use arcbufs 2199 * that don't match bigobj blksz to test 2200 * dmu_assign_arcbuf() when it can't directly 2201 * assign an arcbuf to a dbuf. 2202 */ 2203 for (j = 0; j < s; j++) { 2204 if (i != 5) { 2205 bigbuf_arcbufs[j] = 2206 dmu_request_arcbuf(bonus_db, 2207 dd.dd_chunk); 2208 } else { 2209 bigbuf_arcbufs[2 * j] = 2210 dmu_request_arcbuf(bonus_db, 2211 dd.dd_chunk / 2); 2212 bigbuf_arcbufs[2 * j + 1] = 2213 dmu_request_arcbuf(bonus_db, 2214 dd.dd_chunk / 2); 2215 } 2216 } 2217 2218 /* 2219 * Get a tx for the mods to both packobj and bigobj. 2220 */ 2221 tx = dmu_tx_create(os); 2222 2223 dmu_tx_hold_write(tx, dd.dd_packobj, packoff, packsize); 2224 dmu_tx_hold_write(tx, dd.dd_bigobj, bigoff, bigsize); 2225 2226 if (ztest_random(100) == 0) { 2227 error = -1; 2228 } else { 2229 error = dmu_tx_assign(tx, TXG_WAIT); 2230 } 2231 2232 if (error) { 2233 if (error != -1) { 2234 ztest_record_enospc("dmu r/w range"); 2235 } 2236 dmu_tx_abort(tx); 2237 umem_free(packbuf, packsize); 2238 umem_free(bigbuf, bigsize); 2239 for (j = 0; j < s; j++) { 2240 if (i != 5) { 2241 dmu_return_arcbuf(bigbuf_arcbufs[j]); 2242 } else { 2243 dmu_return_arcbuf( 2244 bigbuf_arcbufs[2 * j]); 2245 dmu_return_arcbuf( 2246 bigbuf_arcbufs[2 * j + 1]); 2247 } 2248 } 2249 umem_free(bigbuf_arcbufs, 2 * s * sizeof (arc_buf_t *)); 2250 dmu_buf_rele(bonus_db, FTAG); 2251 return; 2252 } 2253 2254 txg = dmu_tx_get_txg(tx); 2255 2256 /* 2257 * 50% of the time don't read objects in the 1st iteration to 2258 * test dmu_assign_arcbuf() for the case when there're no 2259 * existing dbufs for the specified offsets. 2260 */ 2261 if (i != 0 || ztest_random(2) != 0) { 2262 error = dmu_read(os, dd.dd_packobj, packoff, 2263 packsize, packbuf, DMU_READ_PREFETCH); 2264 ASSERT3U(error, ==, 0); 2265 error = dmu_read(os, dd.dd_bigobj, bigoff, bigsize, 2266 bigbuf, DMU_READ_PREFETCH); 2267 ASSERT3U(error, ==, 0); 2268 } 2269 compare_and_update_pbbufs(s, packbuf, bigbuf, bigsize, 2270 n, dd, txg); 2271 2272 /* 2273 * We've verified all the old bufwads, and made new ones. 2274 * Now write them out. 2275 */ 2276 dmu_write(os, dd.dd_packobj, packoff, packsize, packbuf, tx); 2277 if (zopt_verbose >= 6) { 2278 (void) printf("writing offset %llx size %llx" 2279 " txg %llx\n", 2280 (u_longlong_t)bigoff, 2281 (u_longlong_t)bigsize, 2282 (u_longlong_t)txg); 2283 } 2284 for (off = bigoff, j = 0; j < s; j++, off += dd.dd_chunk) { 2285 dmu_buf_t *dbt; 2286 if (i != 5) { 2287 bcopy((caddr_t)bigbuf + (off - bigoff), 2288 bigbuf_arcbufs[j]->b_data, dd.dd_chunk); 2289 } else { 2290 bcopy((caddr_t)bigbuf + (off - bigoff), 2291 bigbuf_arcbufs[2 * j]->b_data, 2292 dd.dd_chunk / 2); 2293 bcopy((caddr_t)bigbuf + (off - bigoff) + 2294 dd.dd_chunk / 2, 2295 bigbuf_arcbufs[2 * j + 1]->b_data, 2296 dd.dd_chunk / 2); 2297 } 2298 2299 if (i == 1) { 2300 VERIFY(dmu_buf_hold(os, dd.dd_bigobj, off, 2301 FTAG, &dbt) == 0); 2302 } 2303 if (i != 5) { 2304 dmu_assign_arcbuf(bonus_db, off, 2305 bigbuf_arcbufs[j], tx); 2306 } else { 2307 dmu_assign_arcbuf(bonus_db, off, 2308 bigbuf_arcbufs[2 * j], tx); 2309 dmu_assign_arcbuf(bonus_db, 2310 off + dd.dd_chunk / 2, 2311 bigbuf_arcbufs[2 * j + 1], tx); 2312 } 2313 if (i == 1) { 2314 dmu_buf_rele(dbt, FTAG); 2315 } 2316 } 2317 dmu_tx_commit(tx); 2318 2319 /* 2320 * Sanity check the stuff we just wrote. 2321 */ 2322 { 2323 void *packcheck = umem_alloc(packsize, UMEM_NOFAIL); 2324 void *bigcheck = umem_alloc(bigsize, UMEM_NOFAIL); 2325 2326 VERIFY(0 == dmu_read(os, dd.dd_packobj, packoff, 2327 packsize, packcheck, DMU_READ_PREFETCH)); 2328 VERIFY(0 == dmu_read(os, dd.dd_bigobj, bigoff, 2329 bigsize, bigcheck, DMU_READ_PREFETCH)); 2330 2331 ASSERT(bcmp(packbuf, packcheck, packsize) == 0); 2332 ASSERT(bcmp(bigbuf, bigcheck, bigsize) == 0); 2333 2334 umem_free(packcheck, packsize); 2335 umem_free(bigcheck, bigsize); 2336 } 2337 if (i == 2) { 2338 txg_wait_open(dmu_objset_pool(os), 0); 2339 } else if (i == 3) { 2340 txg_wait_synced(dmu_objset_pool(os), 0); 2341 } 2342 } 2343 2344 dmu_buf_rele(bonus_db, FTAG); 2345 umem_free(packbuf, packsize); 2346 umem_free(bigbuf, bigsize); 2347 umem_free(bigbuf_arcbufs, 2 * s * sizeof (arc_buf_t *)); 2348 } 2349 2350 void 2351 ztest_dmu_check_future_leak(ztest_args_t *za) 2352 { 2353 objset_t *os = za->za_os; 2354 dmu_buf_t *db; 2355 ztest_block_tag_t *bt; 2356 dmu_object_info_t *doi = &za->za_doi; 2357 2358 /* 2359 * Make sure that, if there is a write record in the bonus buffer 2360 * of the ZTEST_DIROBJ, that the txg for this record is <= the 2361 * last synced txg of the pool. 2362 */ 2363 VERIFY(dmu_bonus_hold(os, ZTEST_DIROBJ, FTAG, &db) == 0); 2364 za->za_dbuf = db; 2365 VERIFY(dmu_object_info(os, ZTEST_DIROBJ, doi) == 0); 2366 ASSERT3U(doi->doi_bonus_size, >=, sizeof (*bt)); 2367 ASSERT3U(doi->doi_bonus_size, <=, db->db_size); 2368 ASSERT3U(doi->doi_bonus_size % sizeof (*bt), ==, 0); 2369 bt = (void *)((char *)db->db_data + doi->doi_bonus_size - sizeof (*bt)); 2370 if (bt->bt_objset != 0) { 2371 ASSERT3U(bt->bt_objset, ==, dmu_objset_id(os)); 2372 ASSERT3U(bt->bt_object, ==, ZTEST_DIROBJ); 2373 ASSERT3U(bt->bt_offset, ==, -1ULL); 2374 ASSERT3U(bt->bt_txg, <, spa_first_txg(za->za_spa)); 2375 } 2376 dmu_buf_rele(db, FTAG); 2377 za->za_dbuf = NULL; 2378 } 2379 2380 void 2381 ztest_dmu_write_parallel(ztest_args_t *za) 2382 { 2383 objset_t *os = za->za_os; 2384 ztest_block_tag_t *rbt = &za->za_rbt; 2385 ztest_block_tag_t *wbt = &za->za_wbt; 2386 const size_t btsize = sizeof (ztest_block_tag_t); 2387 dmu_buf_t *db; 2388 int b, error; 2389 int bs = ZTEST_DIROBJ_BLOCKSIZE; 2390 int do_free = 0; 2391 uint64_t off, txg, txg_how; 2392 mutex_t *lp; 2393 char osname[MAXNAMELEN]; 2394 char iobuf[SPA_MAXBLOCKSIZE]; 2395 blkptr_t blk = { 0 }; 2396 uint64_t blkoff; 2397 zbookmark_t zb; 2398 dmu_tx_t *tx = dmu_tx_create(os); 2399 dmu_buf_t *bonus_db; 2400 arc_buf_t *abuf = NULL; 2401 2402 dmu_objset_name(os, osname); 2403 2404 /* 2405 * Have multiple threads write to large offsets in ZTEST_DIROBJ 2406 * to verify that having multiple threads writing to the same object 2407 * in parallel doesn't cause any trouble. 2408 */ 2409 if (ztest_random(4) == 0) { 2410 /* 2411 * Do the bonus buffer instead of a regular block. 2412 * We need a lock to serialize resize vs. others, 2413 * so we hash on the objset ID. 2414 */ 2415 b = dmu_objset_id(os) % ZTEST_SYNC_LOCKS; 2416 off = -1ULL; 2417 dmu_tx_hold_bonus(tx, ZTEST_DIROBJ); 2418 } else { 2419 b = ztest_random(ZTEST_SYNC_LOCKS); 2420 off = za->za_diroff_shared + (b << SPA_MAXBLOCKSHIFT); 2421 if (ztest_random(4) == 0) { 2422 do_free = 1; 2423 dmu_tx_hold_free(tx, ZTEST_DIROBJ, off, bs); 2424 } else { 2425 dmu_tx_hold_write(tx, ZTEST_DIROBJ, off, bs); 2426 } 2427 } 2428 2429 if (off != -1ULL && P2PHASE(off, bs) == 0 && !do_free && 2430 ztest_random(8) == 0) { 2431 VERIFY(dmu_bonus_hold(os, ZTEST_DIROBJ, FTAG, &bonus_db) == 0); 2432 abuf = dmu_request_arcbuf(bonus_db, bs); 2433 } 2434 2435 txg_how = ztest_random(2) == 0 ? TXG_WAIT : TXG_NOWAIT; 2436 error = dmu_tx_assign(tx, txg_how); 2437 if (error) { 2438 if (error == ERESTART) { 2439 ASSERT(txg_how == TXG_NOWAIT); 2440 dmu_tx_wait(tx); 2441 } else { 2442 ztest_record_enospc("dmu write parallel"); 2443 } 2444 dmu_tx_abort(tx); 2445 if (abuf != NULL) { 2446 dmu_return_arcbuf(abuf); 2447 dmu_buf_rele(bonus_db, FTAG); 2448 } 2449 return; 2450 } 2451 txg = dmu_tx_get_txg(tx); 2452 2453 lp = &ztest_shared->zs_sync_lock[b]; 2454 (void) mutex_lock(lp); 2455 2456 wbt->bt_objset = dmu_objset_id(os); 2457 wbt->bt_object = ZTEST_DIROBJ; 2458 wbt->bt_offset = off; 2459 wbt->bt_txg = txg; 2460 wbt->bt_thread = za->za_instance; 2461 wbt->bt_seq = ztest_shared->zs_seq[b]++; /* protected by lp */ 2462 2463 /* 2464 * Occasionally, write an all-zero block to test the behavior 2465 * of blocks that compress into holes. 2466 */ 2467 if (off != -1ULL && ztest_random(8) == 0) 2468 bzero(wbt, btsize); 2469 2470 if (off == -1ULL) { 2471 dmu_object_info_t *doi = &za->za_doi; 2472 char *dboff; 2473 2474 VERIFY(dmu_bonus_hold(os, ZTEST_DIROBJ, FTAG, &db) == 0); 2475 za->za_dbuf = db; 2476 dmu_object_info_from_db(db, doi); 2477 ASSERT3U(doi->doi_bonus_size, <=, db->db_size); 2478 ASSERT3U(doi->doi_bonus_size, >=, btsize); 2479 ASSERT3U(doi->doi_bonus_size % btsize, ==, 0); 2480 dboff = (char *)db->db_data + doi->doi_bonus_size - btsize; 2481 bcopy(dboff, rbt, btsize); 2482 if (rbt->bt_objset != 0) { 2483 ASSERT3U(rbt->bt_objset, ==, wbt->bt_objset); 2484 ASSERT3U(rbt->bt_object, ==, wbt->bt_object); 2485 ASSERT3U(rbt->bt_offset, ==, wbt->bt_offset); 2486 ASSERT3U(rbt->bt_txg, <=, wbt->bt_txg); 2487 } 2488 if (ztest_random(10) == 0) { 2489 int newsize = (ztest_random(db->db_size / 2490 btsize) + 1) * btsize; 2491 2492 ASSERT3U(newsize, >=, btsize); 2493 ASSERT3U(newsize, <=, db->db_size); 2494 VERIFY3U(dmu_set_bonus(db, newsize, tx), ==, 0); 2495 dboff = (char *)db->db_data + newsize - btsize; 2496 } 2497 dmu_buf_will_dirty(db, tx); 2498 bcopy(wbt, dboff, btsize); 2499 dmu_buf_rele(db, FTAG); 2500 za->za_dbuf = NULL; 2501 } else if (do_free) { 2502 VERIFY(dmu_free_range(os, ZTEST_DIROBJ, off, bs, tx) == 0); 2503 } else if (abuf == NULL) { 2504 dmu_write(os, ZTEST_DIROBJ, off, btsize, wbt, tx); 2505 } else { 2506 bcopy(wbt, abuf->b_data, btsize); 2507 dmu_assign_arcbuf(bonus_db, off, abuf, tx); 2508 dmu_buf_rele(bonus_db, FTAG); 2509 } 2510 2511 (void) mutex_unlock(lp); 2512 2513 if (ztest_random(1000) == 0) 2514 (void) poll(NULL, 0, 1); /* open dn_notxholds window */ 2515 2516 dmu_tx_commit(tx); 2517 2518 if (ztest_random(10000) == 0) 2519 txg_wait_synced(dmu_objset_pool(os), txg); 2520 2521 if (off == -1ULL || do_free) 2522 return; 2523 2524 if (ztest_random(2) != 0) 2525 return; 2526 2527 /* 2528 * dmu_sync() the block we just wrote. 2529 */ 2530 (void) mutex_lock(lp); 2531 2532 blkoff = P2ALIGN_TYPED(off, bs, uint64_t); 2533 error = dmu_buf_hold(os, ZTEST_DIROBJ, blkoff, FTAG, &db); 2534 za->za_dbuf = db; 2535 if (error) { 2536 (void) mutex_unlock(lp); 2537 return; 2538 } 2539 blkoff = off - blkoff; 2540 error = dmu_sync(NULL, db, &blk, txg, NULL, NULL); 2541 dmu_buf_rele(db, FTAG); 2542 za->za_dbuf = NULL; 2543 2544 if (error) { 2545 (void) mutex_unlock(lp); 2546 return; 2547 } 2548 2549 if (blk.blk_birth == 0) { /* concurrent free */ 2550 (void) mutex_unlock(lp); 2551 return; 2552 } 2553 2554 txg_suspend(dmu_objset_pool(os)); 2555 2556 (void) mutex_unlock(lp); 2557 2558 ASSERT(blk.blk_fill == 1); 2559 ASSERT3U(BP_GET_TYPE(&blk), ==, DMU_OT_UINT64_OTHER); 2560 ASSERT3U(BP_GET_LEVEL(&blk), ==, 0); 2561 ASSERT3U(BP_GET_LSIZE(&blk), ==, bs); 2562 2563 /* 2564 * Read the block that dmu_sync() returned to make sure its contents 2565 * match what we wrote. We do this while still txg_suspend()ed 2566 * to ensure that the block can't be reused before we read it. 2567 */ 2568 zb.zb_objset = dmu_objset_id(os); 2569 zb.zb_object = ZTEST_DIROBJ; 2570 zb.zb_level = 0; 2571 zb.zb_blkid = off / bs; 2572 error = zio_wait(zio_read(NULL, za->za_spa, &blk, iobuf, bs, 2573 NULL, NULL, ZIO_PRIORITY_SYNC_READ, ZIO_FLAG_MUSTSUCCEED, &zb)); 2574 ASSERT3U(error, ==, 0); 2575 2576 txg_resume(dmu_objset_pool(os)); 2577 2578 bcopy(&iobuf[blkoff], rbt, btsize); 2579 2580 if (rbt->bt_objset == 0) /* concurrent free */ 2581 return; 2582 2583 if (wbt->bt_objset == 0) /* all-zero overwrite */ 2584 return; 2585 2586 ASSERT3U(rbt->bt_objset, ==, wbt->bt_objset); 2587 ASSERT3U(rbt->bt_object, ==, wbt->bt_object); 2588 ASSERT3U(rbt->bt_offset, ==, wbt->bt_offset); 2589 2590 /* 2591 * The semantic of dmu_sync() is that we always push the most recent 2592 * version of the data, so in the face of concurrent updates we may 2593 * see a newer version of the block. That's OK. 2594 */ 2595 ASSERT3U(rbt->bt_txg, >=, wbt->bt_txg); 2596 if (rbt->bt_thread == wbt->bt_thread) 2597 ASSERT3U(rbt->bt_seq, ==, wbt->bt_seq); 2598 else 2599 ASSERT3U(rbt->bt_seq, >, wbt->bt_seq); 2600 } 2601 2602 /* 2603 * Verify that zap_{create,destroy,add,remove,update} work as expected. 2604 */ 2605 #define ZTEST_ZAP_MIN_INTS 1 2606 #define ZTEST_ZAP_MAX_INTS 4 2607 #define ZTEST_ZAP_MAX_PROPS 1000 2608 2609 void 2610 ztest_zap(ztest_args_t *za) 2611 { 2612 objset_t *os = za->za_os; 2613 uint64_t object; 2614 uint64_t txg, last_txg; 2615 uint64_t value[ZTEST_ZAP_MAX_INTS]; 2616 uint64_t zl_ints, zl_intsize, prop; 2617 int i, ints; 2618 dmu_tx_t *tx; 2619 char propname[100], txgname[100]; 2620 int error; 2621 char osname[MAXNAMELEN]; 2622 char *hc[2] = { "s.acl.h", ".s.open.h.hyLZlg" }; 2623 2624 dmu_objset_name(os, osname); 2625 2626 /* 2627 * Create a new object if necessary, and record it in the directory. 2628 */ 2629 VERIFY(0 == dmu_read(os, ZTEST_DIROBJ, za->za_diroff, 2630 sizeof (uint64_t), &object, DMU_READ_PREFETCH)); 2631 2632 if (object == 0) { 2633 tx = dmu_tx_create(os); 2634 dmu_tx_hold_write(tx, ZTEST_DIROBJ, za->za_diroff, 2635 sizeof (uint64_t)); 2636 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, TRUE, NULL); 2637 error = dmu_tx_assign(tx, TXG_WAIT); 2638 if (error) { 2639 ztest_record_enospc("create zap test obj"); 2640 dmu_tx_abort(tx); 2641 return; 2642 } 2643 object = zap_create(os, DMU_OT_ZAP_OTHER, DMU_OT_NONE, 0, tx); 2644 if (error) { 2645 fatal(0, "zap_create('%s', %llu) = %d", 2646 osname, object, error); 2647 } 2648 ASSERT(object != 0); 2649 dmu_write(os, ZTEST_DIROBJ, za->za_diroff, 2650 sizeof (uint64_t), &object, tx); 2651 /* 2652 * Generate a known hash collision, and verify that 2653 * we can lookup and remove both entries. 2654 */ 2655 for (i = 0; i < 2; i++) { 2656 value[i] = i; 2657 error = zap_add(os, object, hc[i], sizeof (uint64_t), 2658 1, &value[i], tx); 2659 ASSERT3U(error, ==, 0); 2660 } 2661 for (i = 0; i < 2; i++) { 2662 error = zap_add(os, object, hc[i], sizeof (uint64_t), 2663 1, &value[i], tx); 2664 ASSERT3U(error, ==, EEXIST); 2665 error = zap_length(os, object, hc[i], 2666 &zl_intsize, &zl_ints); 2667 ASSERT3U(error, ==, 0); 2668 ASSERT3U(zl_intsize, ==, sizeof (uint64_t)); 2669 ASSERT3U(zl_ints, ==, 1); 2670 } 2671 for (i = 0; i < 2; i++) { 2672 error = zap_remove(os, object, hc[i], tx); 2673 ASSERT3U(error, ==, 0); 2674 } 2675 2676 dmu_tx_commit(tx); 2677 } 2678 2679 ints = MAX(ZTEST_ZAP_MIN_INTS, object % ZTEST_ZAP_MAX_INTS); 2680 2681 prop = ztest_random(ZTEST_ZAP_MAX_PROPS); 2682 (void) sprintf(propname, "prop_%llu", (u_longlong_t)prop); 2683 (void) sprintf(txgname, "txg_%llu", (u_longlong_t)prop); 2684 bzero(value, sizeof (value)); 2685 last_txg = 0; 2686 2687 /* 2688 * If these zap entries already exist, validate their contents. 2689 */ 2690 error = zap_length(os, object, txgname, &zl_intsize, &zl_ints); 2691 if (error == 0) { 2692 ASSERT3U(zl_intsize, ==, sizeof (uint64_t)); 2693 ASSERT3U(zl_ints, ==, 1); 2694 2695 VERIFY(zap_lookup(os, object, txgname, zl_intsize, 2696 zl_ints, &last_txg) == 0); 2697 2698 VERIFY(zap_length(os, object, propname, &zl_intsize, 2699 &zl_ints) == 0); 2700 2701 ASSERT3U(zl_intsize, ==, sizeof (uint64_t)); 2702 ASSERT3U(zl_ints, ==, ints); 2703 2704 VERIFY(zap_lookup(os, object, propname, zl_intsize, 2705 zl_ints, value) == 0); 2706 2707 for (i = 0; i < ints; i++) { 2708 ASSERT3U(value[i], ==, last_txg + object + i); 2709 } 2710 } else { 2711 ASSERT3U(error, ==, ENOENT); 2712 } 2713 2714 /* 2715 * Atomically update two entries in our zap object. 2716 * The first is named txg_%llu, and contains the txg 2717 * in which the property was last updated. The second 2718 * is named prop_%llu, and the nth element of its value 2719 * should be txg + object + n. 2720 */ 2721 tx = dmu_tx_create(os); 2722 dmu_tx_hold_zap(tx, object, TRUE, NULL); 2723 error = dmu_tx_assign(tx, TXG_WAIT); 2724 if (error) { 2725 ztest_record_enospc("create zap entry"); 2726 dmu_tx_abort(tx); 2727 return; 2728 } 2729 txg = dmu_tx_get_txg(tx); 2730 2731 if (last_txg > txg) 2732 fatal(0, "zap future leak: old %llu new %llu", last_txg, txg); 2733 2734 for (i = 0; i < ints; i++) 2735 value[i] = txg + object + i; 2736 2737 error = zap_update(os, object, txgname, sizeof (uint64_t), 1, &txg, tx); 2738 if (error) 2739 fatal(0, "zap_update('%s', %llu, '%s') = %d", 2740 osname, object, txgname, error); 2741 2742 error = zap_update(os, object, propname, sizeof (uint64_t), 2743 ints, value, tx); 2744 if (error) 2745 fatal(0, "zap_update('%s', %llu, '%s') = %d", 2746 osname, object, propname, error); 2747 2748 dmu_tx_commit(tx); 2749 2750 /* 2751 * Remove a random pair of entries. 2752 */ 2753 prop = ztest_random(ZTEST_ZAP_MAX_PROPS); 2754 (void) sprintf(propname, "prop_%llu", (u_longlong_t)prop); 2755 (void) sprintf(txgname, "txg_%llu", (u_longlong_t)prop); 2756 2757 error = zap_length(os, object, txgname, &zl_intsize, &zl_ints); 2758 2759 if (error == ENOENT) 2760 return; 2761 2762 ASSERT3U(error, ==, 0); 2763 2764 tx = dmu_tx_create(os); 2765 dmu_tx_hold_zap(tx, object, TRUE, NULL); 2766 error = dmu_tx_assign(tx, TXG_WAIT); 2767 if (error) { 2768 ztest_record_enospc("remove zap entry"); 2769 dmu_tx_abort(tx); 2770 return; 2771 } 2772 error = zap_remove(os, object, txgname, tx); 2773 if (error) 2774 fatal(0, "zap_remove('%s', %llu, '%s') = %d", 2775 osname, object, txgname, error); 2776 2777 error = zap_remove(os, object, propname, tx); 2778 if (error) 2779 fatal(0, "zap_remove('%s', %llu, '%s') = %d", 2780 osname, object, propname, error); 2781 2782 dmu_tx_commit(tx); 2783 2784 /* 2785 * Once in a while, destroy the object. 2786 */ 2787 if (ztest_random(1000) != 0) 2788 return; 2789 2790 tx = dmu_tx_create(os); 2791 dmu_tx_hold_write(tx, ZTEST_DIROBJ, za->za_diroff, sizeof (uint64_t)); 2792 dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END); 2793 error = dmu_tx_assign(tx, TXG_WAIT); 2794 if (error) { 2795 ztest_record_enospc("destroy zap object"); 2796 dmu_tx_abort(tx); 2797 return; 2798 } 2799 error = zap_destroy(os, object, tx); 2800 if (error) 2801 fatal(0, "zap_destroy('%s', %llu) = %d", 2802 osname, object, error); 2803 object = 0; 2804 dmu_write(os, ZTEST_DIROBJ, za->za_diroff, sizeof (uint64_t), 2805 &object, tx); 2806 dmu_tx_commit(tx); 2807 } 2808 2809 void 2810 ztest_zap_parallel(ztest_args_t *za) 2811 { 2812 objset_t *os = za->za_os; 2813 uint64_t txg, object, count, wsize, wc, zl_wsize, zl_wc; 2814 dmu_tx_t *tx; 2815 int i, namelen, error; 2816 char name[20], string_value[20]; 2817 void *data; 2818 2819 /* 2820 * Generate a random name of the form 'xxx.....' where each 2821 * x is a random printable character and the dots are dots. 2822 * There are 94 such characters, and the name length goes from 2823 * 6 to 20, so there are 94^3 * 15 = 12,458,760 possible names. 2824 */ 2825 namelen = ztest_random(sizeof (name) - 5) + 5 + 1; 2826 2827 for (i = 0; i < 3; i++) 2828 name[i] = '!' + ztest_random('~' - '!' + 1); 2829 for (; i < namelen - 1; i++) 2830 name[i] = '.'; 2831 name[i] = '\0'; 2832 2833 if (ztest_random(2) == 0) 2834 object = ZTEST_MICROZAP_OBJ; 2835 else 2836 object = ZTEST_FATZAP_OBJ; 2837 2838 if ((namelen & 1) || object == ZTEST_MICROZAP_OBJ) { 2839 wsize = sizeof (txg); 2840 wc = 1; 2841 data = &txg; 2842 } else { 2843 wsize = 1; 2844 wc = namelen; 2845 data = string_value; 2846 } 2847 2848 count = -1ULL; 2849 VERIFY(zap_count(os, object, &count) == 0); 2850 ASSERT(count != -1ULL); 2851 2852 /* 2853 * Select an operation: length, lookup, add, update, remove. 2854 */ 2855 i = ztest_random(5); 2856 2857 if (i >= 2) { 2858 tx = dmu_tx_create(os); 2859 dmu_tx_hold_zap(tx, object, TRUE, NULL); 2860 error = dmu_tx_assign(tx, TXG_WAIT); 2861 if (error) { 2862 ztest_record_enospc("zap parallel"); 2863 dmu_tx_abort(tx); 2864 return; 2865 } 2866 txg = dmu_tx_get_txg(tx); 2867 bcopy(name, string_value, namelen); 2868 } else { 2869 tx = NULL; 2870 txg = 0; 2871 bzero(string_value, namelen); 2872 } 2873 2874 switch (i) { 2875 2876 case 0: 2877 error = zap_length(os, object, name, &zl_wsize, &zl_wc); 2878 if (error == 0) { 2879 ASSERT3U(wsize, ==, zl_wsize); 2880 ASSERT3U(wc, ==, zl_wc); 2881 } else { 2882 ASSERT3U(error, ==, ENOENT); 2883 } 2884 break; 2885 2886 case 1: 2887 error = zap_lookup(os, object, name, wsize, wc, data); 2888 if (error == 0) { 2889 if (data == string_value && 2890 bcmp(name, data, namelen) != 0) 2891 fatal(0, "name '%s' != val '%s' len %d", 2892 name, data, namelen); 2893 } else { 2894 ASSERT3U(error, ==, ENOENT); 2895 } 2896 break; 2897 2898 case 2: 2899 error = zap_add(os, object, name, wsize, wc, data, tx); 2900 ASSERT(error == 0 || error == EEXIST); 2901 break; 2902 2903 case 3: 2904 VERIFY(zap_update(os, object, name, wsize, wc, data, tx) == 0); 2905 break; 2906 2907 case 4: 2908 error = zap_remove(os, object, name, tx); 2909 ASSERT(error == 0 || error == ENOENT); 2910 break; 2911 } 2912 2913 if (tx != NULL) 2914 dmu_tx_commit(tx); 2915 } 2916 2917 void 2918 ztest_dsl_prop_get_set(ztest_args_t *za) 2919 { 2920 objset_t *os = za->za_os; 2921 int i, inherit; 2922 uint64_t value; 2923 const char *prop, *valname; 2924 char setpoint[MAXPATHLEN]; 2925 char osname[MAXNAMELEN]; 2926 int error; 2927 2928 (void) rw_rdlock(&ztest_shared->zs_name_lock); 2929 2930 dmu_objset_name(os, osname); 2931 2932 for (i = 0; i < 2; i++) { 2933 if (i == 0) { 2934 prop = "checksum"; 2935 value = ztest_random_checksum(); 2936 inherit = (value == ZIO_CHECKSUM_INHERIT); 2937 } else { 2938 prop = "compression"; 2939 value = ztest_random_compress(); 2940 inherit = (value == ZIO_COMPRESS_INHERIT); 2941 } 2942 2943 error = dsl_prop_set(osname, prop, sizeof (value), 2944 !inherit, &value); 2945 2946 if (error == ENOSPC) { 2947 ztest_record_enospc("dsl_prop_set"); 2948 break; 2949 } 2950 2951 ASSERT3U(error, ==, 0); 2952 2953 VERIFY3U(dsl_prop_get(osname, prop, sizeof (value), 2954 1, &value, setpoint), ==, 0); 2955 2956 if (i == 0) 2957 valname = zio_checksum_table[value].ci_name; 2958 else 2959 valname = zio_compress_table[value].ci_name; 2960 2961 if (zopt_verbose >= 6) { 2962 (void) printf("%s %s = %s for '%s'\n", 2963 osname, prop, valname, setpoint); 2964 } 2965 } 2966 2967 (void) rw_unlock(&ztest_shared->zs_name_lock); 2968 } 2969 2970 /* 2971 * Inject random faults into the on-disk data. 2972 */ 2973 void 2974 ztest_fault_inject(ztest_args_t *za) 2975 { 2976 int fd; 2977 uint64_t offset; 2978 uint64_t leaves = MAX(zopt_mirrors, 1) * zopt_raidz; 2979 uint64_t bad = 0x1990c0ffeedecade; 2980 uint64_t top, leaf; 2981 char path0[MAXPATHLEN]; 2982 char pathrand[MAXPATHLEN]; 2983 size_t fsize; 2984 spa_t *spa = za->za_spa; 2985 int bshift = SPA_MAXBLOCKSHIFT + 2; /* don't scrog all labels */ 2986 int iters = 1000; 2987 int maxfaults = zopt_maxfaults; 2988 vdev_t *vd0 = NULL; 2989 uint64_t guid0 = 0; 2990 2991 ASSERT(leaves >= 1); 2992 2993 /* 2994 * We need SCL_STATE here because we're going to look at vd0->vdev_tsd. 2995 */ 2996 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 2997 2998 if (ztest_random(2) == 0) { 2999 /* 3000 * Inject errors on a normal data device. 3001 */ 3002 top = ztest_random(spa->spa_root_vdev->vdev_children); 3003 leaf = ztest_random(leaves); 3004 3005 /* 3006 * Generate paths to the first leaf in this top-level vdev, 3007 * and to the random leaf we selected. We'll induce transient 3008 * write failures and random online/offline activity on leaf 0, 3009 * and we'll write random garbage to the randomly chosen leaf. 3010 */ 3011 (void) snprintf(path0, sizeof (path0), ztest_dev_template, 3012 zopt_dir, zopt_pool, top * leaves + 0); 3013 (void) snprintf(pathrand, sizeof (pathrand), ztest_dev_template, 3014 zopt_dir, zopt_pool, top * leaves + leaf); 3015 3016 vd0 = vdev_lookup_by_path(spa->spa_root_vdev, path0); 3017 if (vd0 != NULL && maxfaults != 1) { 3018 /* 3019 * Make vd0 explicitly claim to be unreadable, 3020 * or unwriteable, or reach behind its back 3021 * and close the underlying fd. We can do this if 3022 * maxfaults == 0 because we'll fail and reexecute, 3023 * and we can do it if maxfaults >= 2 because we'll 3024 * have enough redundancy. If maxfaults == 1, the 3025 * combination of this with injection of random data 3026 * corruption below exceeds the pool's fault tolerance. 3027 */ 3028 vdev_file_t *vf = vd0->vdev_tsd; 3029 3030 if (vf != NULL && ztest_random(3) == 0) { 3031 (void) close(vf->vf_vnode->v_fd); 3032 vf->vf_vnode->v_fd = -1; 3033 } else if (ztest_random(2) == 0) { 3034 vd0->vdev_cant_read = B_TRUE; 3035 } else { 3036 vd0->vdev_cant_write = B_TRUE; 3037 } 3038 guid0 = vd0->vdev_guid; 3039 } 3040 } else { 3041 /* 3042 * Inject errors on an l2cache device. 3043 */ 3044 spa_aux_vdev_t *sav = &spa->spa_l2cache; 3045 3046 if (sav->sav_count == 0) { 3047 spa_config_exit(spa, SCL_STATE, FTAG); 3048 return; 3049 } 3050 vd0 = sav->sav_vdevs[ztest_random(sav->sav_count)]; 3051 guid0 = vd0->vdev_guid; 3052 (void) strcpy(path0, vd0->vdev_path); 3053 (void) strcpy(pathrand, vd0->vdev_path); 3054 3055 leaf = 0; 3056 leaves = 1; 3057 maxfaults = INT_MAX; /* no limit on cache devices */ 3058 } 3059 3060 spa_config_exit(spa, SCL_STATE, FTAG); 3061 3062 if (maxfaults == 0) 3063 return; 3064 3065 /* 3066 * If we can tolerate two or more faults, randomly online/offline vd0. 3067 */ 3068 if (maxfaults >= 2 && guid0 != 0) { 3069 if (ztest_random(10) < 6) { 3070 int flags = (ztest_random(2) == 0 ? 3071 ZFS_OFFLINE_TEMPORARY : 0); 3072 VERIFY(vdev_offline(spa, guid0, flags) != EBUSY); 3073 } else { 3074 (void) vdev_online(spa, guid0, 0, NULL); 3075 } 3076 } 3077 3078 /* 3079 * We have at least single-fault tolerance, so inject data corruption. 3080 */ 3081 fd = open(pathrand, O_RDWR); 3082 3083 if (fd == -1) /* we hit a gap in the device namespace */ 3084 return; 3085 3086 fsize = lseek(fd, 0, SEEK_END); 3087 3088 while (--iters != 0) { 3089 offset = ztest_random(fsize / (leaves << bshift)) * 3090 (leaves << bshift) + (leaf << bshift) + 3091 (ztest_random(1ULL << (bshift - 1)) & -8ULL); 3092 3093 if (offset >= fsize) 3094 continue; 3095 3096 if (zopt_verbose >= 6) 3097 (void) printf("injecting bad word into %s," 3098 " offset 0x%llx\n", pathrand, (u_longlong_t)offset); 3099 3100 if (pwrite(fd, &bad, sizeof (bad), offset) != sizeof (bad)) 3101 fatal(1, "can't inject bad word at 0x%llx in %s", 3102 offset, pathrand); 3103 } 3104 3105 (void) close(fd); 3106 } 3107 3108 /* 3109 * Scrub the pool. 3110 */ 3111 void 3112 ztest_scrub(ztest_args_t *za) 3113 { 3114 spa_t *spa = za->za_spa; 3115 3116 (void) spa_scrub(spa, POOL_SCRUB_EVERYTHING); 3117 (void) poll(NULL, 0, 1000); /* wait a second, then force a restart */ 3118 (void) spa_scrub(spa, POOL_SCRUB_EVERYTHING); 3119 } 3120 3121 /* 3122 * Rename the pool to a different name and then rename it back. 3123 */ 3124 void 3125 ztest_spa_rename(ztest_args_t *za) 3126 { 3127 char *oldname, *newname; 3128 int error; 3129 spa_t *spa; 3130 3131 (void) rw_wrlock(&ztest_shared->zs_name_lock); 3132 3133 oldname = za->za_pool; 3134 newname = umem_alloc(strlen(oldname) + 5, UMEM_NOFAIL); 3135 (void) strcpy(newname, oldname); 3136 (void) strcat(newname, "_tmp"); 3137 3138 /* 3139 * Do the rename 3140 */ 3141 error = spa_rename(oldname, newname); 3142 if (error) 3143 fatal(0, "spa_rename('%s', '%s') = %d", oldname, 3144 newname, error); 3145 3146 /* 3147 * Try to open it under the old name, which shouldn't exist 3148 */ 3149 error = spa_open(oldname, &spa, FTAG); 3150 if (error != ENOENT) 3151 fatal(0, "spa_open('%s') = %d", oldname, error); 3152 3153 /* 3154 * Open it under the new name and make sure it's still the same spa_t. 3155 */ 3156 error = spa_open(newname, &spa, FTAG); 3157 if (error != 0) 3158 fatal(0, "spa_open('%s') = %d", newname, error); 3159 3160 ASSERT(spa == za->za_spa); 3161 spa_close(spa, FTAG); 3162 3163 /* 3164 * Rename it back to the original 3165 */ 3166 error = spa_rename(newname, oldname); 3167 if (error) 3168 fatal(0, "spa_rename('%s', '%s') = %d", newname, 3169 oldname, error); 3170 3171 /* 3172 * Make sure it can still be opened 3173 */ 3174 error = spa_open(oldname, &spa, FTAG); 3175 if (error != 0) 3176 fatal(0, "spa_open('%s') = %d", oldname, error); 3177 3178 ASSERT(spa == za->za_spa); 3179 spa_close(spa, FTAG); 3180 3181 umem_free(newname, strlen(newname) + 1); 3182 3183 (void) rw_unlock(&ztest_shared->zs_name_lock); 3184 } 3185 3186 3187 /* 3188 * Completely obliterate one disk. 3189 */ 3190 static void 3191 ztest_obliterate_one_disk(uint64_t vdev) 3192 { 3193 int fd; 3194 char dev_name[MAXPATHLEN], copy_name[MAXPATHLEN]; 3195 size_t fsize; 3196 3197 if (zopt_maxfaults < 2) 3198 return; 3199 3200 (void) sprintf(dev_name, ztest_dev_template, zopt_dir, zopt_pool, vdev); 3201 (void) snprintf(copy_name, MAXPATHLEN, "%s.old", dev_name); 3202 3203 fd = open(dev_name, O_RDWR); 3204 3205 if (fd == -1) 3206 fatal(1, "can't open %s", dev_name); 3207 3208 /* 3209 * Determine the size. 3210 */ 3211 fsize = lseek(fd, 0, SEEK_END); 3212 3213 (void) close(fd); 3214 3215 /* 3216 * Rename the old device to dev_name.old (useful for debugging). 3217 */ 3218 VERIFY(rename(dev_name, copy_name) == 0); 3219 3220 /* 3221 * Create a new one. 3222 */ 3223 VERIFY((fd = open(dev_name, O_RDWR | O_CREAT | O_TRUNC, 0666)) >= 0); 3224 VERIFY(ftruncate(fd, fsize) == 0); 3225 (void) close(fd); 3226 } 3227 3228 static void 3229 ztest_replace_one_disk(spa_t *spa, uint64_t vdev) 3230 { 3231 char dev_name[MAXPATHLEN]; 3232 nvlist_t *root; 3233 int error; 3234 uint64_t guid; 3235 vdev_t *vd; 3236 3237 (void) sprintf(dev_name, ztest_dev_template, zopt_dir, zopt_pool, vdev); 3238 3239 /* 3240 * Build the nvlist describing dev_name. 3241 */ 3242 root = make_vdev_root(dev_name, NULL, 0, 0, 0, 0, 0, 1); 3243 3244 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 3245 if ((vd = vdev_lookup_by_path(spa->spa_root_vdev, dev_name)) == NULL) 3246 guid = 0; 3247 else 3248 guid = vd->vdev_guid; 3249 spa_config_exit(spa, SCL_VDEV, FTAG); 3250 error = spa_vdev_attach(spa, guid, root, B_TRUE); 3251 if (error != 0 && 3252 error != EBUSY && 3253 error != ENOTSUP && 3254 error != ENODEV && 3255 error != EDOM) 3256 fatal(0, "spa_vdev_attach(in-place) = %d", error); 3257 3258 nvlist_free(root); 3259 } 3260 3261 static void 3262 ztest_verify_blocks(char *pool) 3263 { 3264 int status; 3265 char zdb[MAXPATHLEN + MAXNAMELEN + 20]; 3266 char zbuf[1024]; 3267 char *bin; 3268 char *ztest; 3269 char *isa; 3270 int isalen; 3271 FILE *fp; 3272 3273 (void) realpath(getexecname(), zdb); 3274 3275 /* zdb lives in /usr/sbin, while ztest lives in /usr/bin */ 3276 bin = strstr(zdb, "/usr/bin/"); 3277 ztest = strstr(bin, "/ztest"); 3278 isa = bin + 8; 3279 isalen = ztest - isa; 3280 isa = strdup(isa); 3281 /* LINTED */ 3282 (void) sprintf(bin, 3283 "/usr/sbin%.*s/zdb -bcc%s%s -U /tmp/zpool.cache %s", 3284 isalen, 3285 isa, 3286 zopt_verbose >= 3 ? "s" : "", 3287 zopt_verbose >= 4 ? "v" : "", 3288 pool); 3289 free(isa); 3290 3291 if (zopt_verbose >= 5) 3292 (void) printf("Executing %s\n", strstr(zdb, "zdb ")); 3293 3294 fp = popen(zdb, "r"); 3295 3296 while (fgets(zbuf, sizeof (zbuf), fp) != NULL) 3297 if (zopt_verbose >= 3) 3298 (void) printf("%s", zbuf); 3299 3300 status = pclose(fp); 3301 3302 if (status == 0) 3303 return; 3304 3305 ztest_dump_core = 0; 3306 if (WIFEXITED(status)) 3307 fatal(0, "'%s' exit code %d", zdb, WEXITSTATUS(status)); 3308 else 3309 fatal(0, "'%s' died with signal %d", zdb, WTERMSIG(status)); 3310 } 3311 3312 static void 3313 ztest_walk_pool_directory(char *header) 3314 { 3315 spa_t *spa = NULL; 3316 3317 if (zopt_verbose >= 6) 3318 (void) printf("%s\n", header); 3319 3320 mutex_enter(&spa_namespace_lock); 3321 while ((spa = spa_next(spa)) != NULL) 3322 if (zopt_verbose >= 6) 3323 (void) printf("\t%s\n", spa_name(spa)); 3324 mutex_exit(&spa_namespace_lock); 3325 } 3326 3327 static void 3328 ztest_spa_import_export(char *oldname, char *newname) 3329 { 3330 nvlist_t *config, *newconfig; 3331 uint64_t pool_guid; 3332 spa_t *spa; 3333 int error; 3334 3335 if (zopt_verbose >= 4) { 3336 (void) printf("import/export: old = %s, new = %s\n", 3337 oldname, newname); 3338 } 3339 3340 /* 3341 * Clean up from previous runs. 3342 */ 3343 (void) spa_destroy(newname); 3344 3345 /* 3346 * Get the pool's configuration and guid. 3347 */ 3348 error = spa_open(oldname, &spa, FTAG); 3349 if (error) 3350 fatal(0, "spa_open('%s') = %d", oldname, error); 3351 3352 /* 3353 * Kick off a scrub to tickle scrub/export races. 3354 */ 3355 if (ztest_random(2) == 0) 3356 (void) spa_scrub(spa, POOL_SCRUB_EVERYTHING); 3357 3358 pool_guid = spa_guid(spa); 3359 spa_close(spa, FTAG); 3360 3361 ztest_walk_pool_directory("pools before export"); 3362 3363 /* 3364 * Export it. 3365 */ 3366 error = spa_export(oldname, &config, B_FALSE, B_FALSE); 3367 if (error) 3368 fatal(0, "spa_export('%s') = %d", oldname, error); 3369 3370 ztest_walk_pool_directory("pools after export"); 3371 3372 /* 3373 * Try to import it. 3374 */ 3375 newconfig = spa_tryimport(config); 3376 ASSERT(newconfig != NULL); 3377 nvlist_free(newconfig); 3378 3379 /* 3380 * Import it under the new name. 3381 */ 3382 error = spa_import(newname, config, NULL); 3383 if (error) 3384 fatal(0, "spa_import('%s') = %d", newname, error); 3385 3386 ztest_walk_pool_directory("pools after import"); 3387 3388 /* 3389 * Try to import it again -- should fail with EEXIST. 3390 */ 3391 error = spa_import(newname, config, NULL); 3392 if (error != EEXIST) 3393 fatal(0, "spa_import('%s') twice", newname); 3394 3395 /* 3396 * Try to import it under a different name -- should fail with EEXIST. 3397 */ 3398 error = spa_import(oldname, config, NULL); 3399 if (error != EEXIST) 3400 fatal(0, "spa_import('%s') under multiple names", newname); 3401 3402 /* 3403 * Verify that the pool is no longer visible under the old name. 3404 */ 3405 error = spa_open(oldname, &spa, FTAG); 3406 if (error != ENOENT) 3407 fatal(0, "spa_open('%s') = %d", newname, error); 3408 3409 /* 3410 * Verify that we can open and close the pool using the new name. 3411 */ 3412 error = spa_open(newname, &spa, FTAG); 3413 if (error) 3414 fatal(0, "spa_open('%s') = %d", newname, error); 3415 ASSERT(pool_guid == spa_guid(spa)); 3416 spa_close(spa, FTAG); 3417 3418 nvlist_free(config); 3419 } 3420 3421 static void 3422 ztest_resume(spa_t *spa) 3423 { 3424 if (spa_suspended(spa)) { 3425 spa_vdev_state_enter(spa); 3426 vdev_clear(spa, NULL); 3427 (void) spa_vdev_state_exit(spa, NULL, 0); 3428 (void) zio_resume(spa); 3429 } 3430 } 3431 3432 static void * 3433 ztest_resume_thread(void *arg) 3434 { 3435 spa_t *spa = arg; 3436 3437 while (!ztest_exiting) { 3438 (void) poll(NULL, 0, 1000); 3439 ztest_resume(spa); 3440 } 3441 return (NULL); 3442 } 3443 3444 static void * 3445 ztest_thread(void *arg) 3446 { 3447 ztest_args_t *za = arg; 3448 ztest_shared_t *zs = ztest_shared; 3449 hrtime_t now, functime; 3450 ztest_info_t *zi; 3451 int f, i; 3452 3453 while ((now = gethrtime()) < za->za_stop) { 3454 /* 3455 * See if it's time to force a crash. 3456 */ 3457 if (now > za->za_kill) { 3458 zs->zs_alloc = spa_get_alloc(za->za_spa); 3459 zs->zs_space = spa_get_space(za->za_spa); 3460 (void) kill(getpid(), SIGKILL); 3461 } 3462 3463 /* 3464 * Pick a random function. 3465 */ 3466 f = ztest_random(ZTEST_FUNCS); 3467 zi = &zs->zs_info[f]; 3468 3469 /* 3470 * Decide whether to call it, based on the requested frequency. 3471 */ 3472 if (zi->zi_call_target == 0 || 3473 (double)zi->zi_call_total / zi->zi_call_target > 3474 (double)(now - zs->zs_start_time) / (zopt_time * NANOSEC)) 3475 continue; 3476 3477 atomic_add_64(&zi->zi_calls, 1); 3478 atomic_add_64(&zi->zi_call_total, 1); 3479 3480 za->za_diroff = (za->za_instance * ZTEST_FUNCS + f) * 3481 ZTEST_DIRSIZE; 3482 za->za_diroff_shared = (1ULL << 63); 3483 3484 for (i = 0; i < zi->zi_iters; i++) 3485 zi->zi_func(za); 3486 3487 functime = gethrtime() - now; 3488 3489 atomic_add_64(&zi->zi_call_time, functime); 3490 3491 if (zopt_verbose >= 4) { 3492 Dl_info dli; 3493 (void) dladdr((void *)zi->zi_func, &dli); 3494 (void) printf("%6.2f sec in %s\n", 3495 (double)functime / NANOSEC, dli.dli_sname); 3496 } 3497 3498 /* 3499 * If we're getting ENOSPC with some regularity, stop. 3500 */ 3501 if (zs->zs_enospc_count > 10) 3502 break; 3503 } 3504 3505 return (NULL); 3506 } 3507 3508 /* 3509 * Kick off threads to run tests on all datasets in parallel. 3510 */ 3511 static void 3512 ztest_run(char *pool) 3513 { 3514 int t, d, error; 3515 ztest_shared_t *zs = ztest_shared; 3516 ztest_args_t *za; 3517 spa_t *spa; 3518 char name[100]; 3519 thread_t resume_tid; 3520 3521 ztest_exiting = B_FALSE; 3522 3523 (void) _mutex_init(&zs->zs_vdev_lock, USYNC_THREAD, NULL); 3524 (void) rwlock_init(&zs->zs_name_lock, USYNC_THREAD, NULL); 3525 3526 for (t = 0; t < ZTEST_SYNC_LOCKS; t++) 3527 (void) _mutex_init(&zs->zs_sync_lock[t], USYNC_THREAD, NULL); 3528 3529 /* 3530 * Destroy one disk before we even start. 3531 * It's mirrored, so everything should work just fine. 3532 * This makes us exercise fault handling very early in spa_load(). 3533 */ 3534 ztest_obliterate_one_disk(0); 3535 3536 /* 3537 * Verify that the sum of the sizes of all blocks in the pool 3538 * equals the SPA's allocated space total. 3539 */ 3540 ztest_verify_blocks(pool); 3541 3542 /* 3543 * Kick off a replacement of the disk we just obliterated. 3544 */ 3545 kernel_init(FREAD | FWRITE); 3546 VERIFY(spa_open(pool, &spa, FTAG) == 0); 3547 ztest_replace_one_disk(spa, 0); 3548 if (zopt_verbose >= 5) 3549 show_pool_stats(spa); 3550 spa_close(spa, FTAG); 3551 kernel_fini(); 3552 3553 kernel_init(FREAD | FWRITE); 3554 3555 /* 3556 * Verify that we can export the pool and reimport it under a 3557 * different name. 3558 */ 3559 if (ztest_random(2) == 0) { 3560 (void) snprintf(name, 100, "%s_import", pool); 3561 ztest_spa_import_export(pool, name); 3562 ztest_spa_import_export(name, pool); 3563 } 3564 3565 /* 3566 * Verify that we can loop over all pools. 3567 */ 3568 mutex_enter(&spa_namespace_lock); 3569 for (spa = spa_next(NULL); spa != NULL; spa = spa_next(spa)) { 3570 if (zopt_verbose > 3) { 3571 (void) printf("spa_next: found %s\n", spa_name(spa)); 3572 } 3573 } 3574 mutex_exit(&spa_namespace_lock); 3575 3576 /* 3577 * Open our pool. 3578 */ 3579 VERIFY(spa_open(pool, &spa, FTAG) == 0); 3580 3581 /* 3582 * We don't expect the pool to suspend unless maxfaults == 0, 3583 * in which case ztest_fault_inject() temporarily takes away 3584 * the only valid replica. 3585 */ 3586 if (zopt_maxfaults == 0) 3587 spa->spa_failmode = ZIO_FAILURE_MODE_WAIT; 3588 else 3589 spa->spa_failmode = ZIO_FAILURE_MODE_PANIC; 3590 3591 /* 3592 * Create a thread to periodically resume suspended I/O. 3593 */ 3594 VERIFY(thr_create(0, 0, ztest_resume_thread, spa, THR_BOUND, 3595 &resume_tid) == 0); 3596 3597 /* 3598 * Verify that we can safely inquire about about any object, 3599 * whether it's allocated or not. To make it interesting, 3600 * we probe a 5-wide window around each power of two. 3601 * This hits all edge cases, including zero and the max. 3602 */ 3603 for (t = 0; t < 64; t++) { 3604 for (d = -5; d <= 5; d++) { 3605 error = dmu_object_info(spa->spa_meta_objset, 3606 (1ULL << t) + d, NULL); 3607 ASSERT(error == 0 || error == ENOENT || 3608 error == EINVAL); 3609 } 3610 } 3611 3612 /* 3613 * Now kick off all the tests that run in parallel. 3614 */ 3615 zs->zs_enospc_count = 0; 3616 3617 za = umem_zalloc(zopt_threads * sizeof (ztest_args_t), UMEM_NOFAIL); 3618 3619 if (zopt_verbose >= 4) 3620 (void) printf("starting main threads...\n"); 3621 3622 za[0].za_start = gethrtime(); 3623 za[0].za_stop = za[0].za_start + zopt_passtime * NANOSEC; 3624 za[0].za_stop = MIN(za[0].za_stop, zs->zs_stop_time); 3625 za[0].za_kill = za[0].za_stop; 3626 if (ztest_random(100) < zopt_killrate) 3627 za[0].za_kill -= ztest_random(zopt_passtime * NANOSEC); 3628 3629 for (t = 0; t < zopt_threads; t++) { 3630 d = t % zopt_datasets; 3631 3632 (void) strcpy(za[t].za_pool, pool); 3633 za[t].za_os = za[d].za_os; 3634 za[t].za_spa = spa; 3635 za[t].za_zilog = za[d].za_zilog; 3636 za[t].za_instance = t; 3637 za[t].za_random = ztest_random(-1ULL); 3638 za[t].za_start = za[0].za_start; 3639 za[t].za_stop = za[0].za_stop; 3640 za[t].za_kill = za[0].za_kill; 3641 3642 if (t < zopt_datasets) { 3643 int test_future = FALSE; 3644 (void) rw_rdlock(&ztest_shared->zs_name_lock); 3645 (void) snprintf(name, 100, "%s/%s_%d", pool, pool, d); 3646 error = dmu_objset_create(name, DMU_OST_OTHER, NULL, 0, 3647 ztest_create_cb, NULL); 3648 if (error == EEXIST) { 3649 test_future = TRUE; 3650 } else if (error == ENOSPC) { 3651 zs->zs_enospc_count++; 3652 (void) rw_unlock(&ztest_shared->zs_name_lock); 3653 break; 3654 } else if (error != 0) { 3655 fatal(0, "dmu_objset_create(%s) = %d", 3656 name, error); 3657 } 3658 error = dmu_objset_open(name, DMU_OST_OTHER, 3659 DS_MODE_USER, &za[d].za_os); 3660 if (error) 3661 fatal(0, "dmu_objset_open('%s') = %d", 3662 name, error); 3663 (void) rw_unlock(&ztest_shared->zs_name_lock); 3664 if (test_future) 3665 ztest_dmu_check_future_leak(&za[t]); 3666 zil_replay(za[d].za_os, za[d].za_os, 3667 ztest_replay_vector); 3668 za[d].za_zilog = zil_open(za[d].za_os, NULL); 3669 } 3670 3671 VERIFY(thr_create(0, 0, ztest_thread, &za[t], THR_BOUND, 3672 &za[t].za_thread) == 0); 3673 } 3674 3675 while (--t >= 0) { 3676 VERIFY(thr_join(za[t].za_thread, NULL, NULL) == 0); 3677 if (t < zopt_datasets) { 3678 zil_close(za[t].za_zilog); 3679 dmu_objset_close(za[t].za_os); 3680 } 3681 } 3682 3683 if (zopt_verbose >= 3) 3684 show_pool_stats(spa); 3685 3686 txg_wait_synced(spa_get_dsl(spa), 0); 3687 3688 zs->zs_alloc = spa_get_alloc(spa); 3689 zs->zs_space = spa_get_space(spa); 3690 3691 /* 3692 * If we had out-of-space errors, destroy a random objset. 3693 */ 3694 if (zs->zs_enospc_count != 0) { 3695 (void) rw_rdlock(&ztest_shared->zs_name_lock); 3696 d = (int)ztest_random(zopt_datasets); 3697 (void) snprintf(name, 100, "%s/%s_%d", pool, pool, d); 3698 if (zopt_verbose >= 3) 3699 (void) printf("Destroying %s to free up space\n", name); 3700 3701 /* Cleanup any non-standard clones and snapshots */ 3702 ztest_dsl_dataset_cleanup(name, za[d].za_instance); 3703 3704 (void) dmu_objset_find(name, ztest_destroy_cb, &za[d], 3705 DS_FIND_SNAPSHOTS | DS_FIND_CHILDREN); 3706 (void) rw_unlock(&ztest_shared->zs_name_lock); 3707 } 3708 3709 txg_wait_synced(spa_get_dsl(spa), 0); 3710 3711 umem_free(za, zopt_threads * sizeof (ztest_args_t)); 3712 3713 /* Kill the resume thread */ 3714 ztest_exiting = B_TRUE; 3715 VERIFY(thr_join(resume_tid, NULL, NULL) == 0); 3716 ztest_resume(spa); 3717 3718 /* 3719 * Right before closing the pool, kick off a bunch of async I/O; 3720 * spa_close() should wait for it to complete. 3721 */ 3722 for (t = 1; t < 50; t++) 3723 dmu_prefetch(spa->spa_meta_objset, t, 0, 1 << 15); 3724 3725 spa_close(spa, FTAG); 3726 3727 kernel_fini(); 3728 } 3729 3730 void 3731 print_time(hrtime_t t, char *timebuf) 3732 { 3733 hrtime_t s = t / NANOSEC; 3734 hrtime_t m = s / 60; 3735 hrtime_t h = m / 60; 3736 hrtime_t d = h / 24; 3737 3738 s -= m * 60; 3739 m -= h * 60; 3740 h -= d * 24; 3741 3742 timebuf[0] = '\0'; 3743 3744 if (d) 3745 (void) sprintf(timebuf, 3746 "%llud%02lluh%02llum%02llus", d, h, m, s); 3747 else if (h) 3748 (void) sprintf(timebuf, "%lluh%02llum%02llus", h, m, s); 3749 else if (m) 3750 (void) sprintf(timebuf, "%llum%02llus", m, s); 3751 else 3752 (void) sprintf(timebuf, "%llus", s); 3753 } 3754 3755 /* 3756 * Create a storage pool with the given name and initial vdev size. 3757 * Then create the specified number of datasets in the pool. 3758 */ 3759 static void 3760 ztest_init(char *pool) 3761 { 3762 spa_t *spa; 3763 int error; 3764 nvlist_t *nvroot; 3765 3766 kernel_init(FREAD | FWRITE); 3767 3768 /* 3769 * Create the storage pool. 3770 */ 3771 (void) spa_destroy(pool); 3772 ztest_shared->zs_vdev_primaries = 0; 3773 nvroot = make_vdev_root(NULL, NULL, zopt_vdev_size, 0, 3774 0, zopt_raidz, zopt_mirrors, 1); 3775 error = spa_create(pool, nvroot, NULL, NULL, NULL); 3776 nvlist_free(nvroot); 3777 3778 if (error) 3779 fatal(0, "spa_create() = %d", error); 3780 error = spa_open(pool, &spa, FTAG); 3781 if (error) 3782 fatal(0, "spa_open() = %d", error); 3783 3784 metaslab_sz = 1ULL << spa->spa_root_vdev->vdev_child[0]->vdev_ms_shift; 3785 3786 if (zopt_verbose >= 3) 3787 show_pool_stats(spa); 3788 3789 spa_close(spa, FTAG); 3790 3791 kernel_fini(); 3792 } 3793 3794 int 3795 main(int argc, char **argv) 3796 { 3797 int kills = 0; 3798 int iters = 0; 3799 int i, f; 3800 ztest_shared_t *zs; 3801 ztest_info_t *zi; 3802 char timebuf[100]; 3803 char numbuf[6]; 3804 3805 (void) setvbuf(stdout, NULL, _IOLBF, 0); 3806 3807 /* Override location of zpool.cache */ 3808 spa_config_path = "/tmp/zpool.cache"; 3809 3810 ztest_random_fd = open("/dev/urandom", O_RDONLY); 3811 3812 process_options(argc, argv); 3813 3814 /* 3815 * Blow away any existing copy of zpool.cache 3816 */ 3817 if (zopt_init != 0) 3818 (void) remove("/tmp/zpool.cache"); 3819 3820 zs = ztest_shared = (void *)mmap(0, 3821 P2ROUNDUP(sizeof (ztest_shared_t), getpagesize()), 3822 PROT_READ | PROT_WRITE, MAP_SHARED | MAP_ANON, -1, 0); 3823 3824 if (zopt_verbose >= 1) { 3825 (void) printf("%llu vdevs, %d datasets, %d threads," 3826 " %llu seconds...\n", 3827 (u_longlong_t)zopt_vdevs, zopt_datasets, zopt_threads, 3828 (u_longlong_t)zopt_time); 3829 } 3830 3831 /* 3832 * Create and initialize our storage pool. 3833 */ 3834 for (i = 1; i <= zopt_init; i++) { 3835 bzero(zs, sizeof (ztest_shared_t)); 3836 if (zopt_verbose >= 3 && zopt_init != 1) 3837 (void) printf("ztest_init(), pass %d\n", i); 3838 ztest_init(zopt_pool); 3839 } 3840 3841 /* 3842 * Initialize the call targets for each function. 3843 */ 3844 for (f = 0; f < ZTEST_FUNCS; f++) { 3845 zi = &zs->zs_info[f]; 3846 3847 *zi = ztest_info[f]; 3848 3849 if (*zi->zi_interval == 0) 3850 zi->zi_call_target = UINT64_MAX; 3851 else 3852 zi->zi_call_target = zopt_time / *zi->zi_interval; 3853 } 3854 3855 zs->zs_start_time = gethrtime(); 3856 zs->zs_stop_time = zs->zs_start_time + zopt_time * NANOSEC; 3857 3858 /* 3859 * Run the tests in a loop. These tests include fault injection 3860 * to verify that self-healing data works, and forced crashes 3861 * to verify that we never lose on-disk consistency. 3862 */ 3863 while (gethrtime() < zs->zs_stop_time) { 3864 int status; 3865 pid_t pid; 3866 char *tmp; 3867 3868 /* 3869 * Initialize the workload counters for each function. 3870 */ 3871 for (f = 0; f < ZTEST_FUNCS; f++) { 3872 zi = &zs->zs_info[f]; 3873 zi->zi_calls = 0; 3874 zi->zi_call_time = 0; 3875 } 3876 3877 /* Set the allocation switch size */ 3878 metaslab_df_alloc_threshold = ztest_random(metaslab_sz / 4) + 1; 3879 3880 pid = fork(); 3881 3882 if (pid == -1) 3883 fatal(1, "fork failed"); 3884 3885 if (pid == 0) { /* child */ 3886 struct rlimit rl = { 1024, 1024 }; 3887 (void) setrlimit(RLIMIT_NOFILE, &rl); 3888 (void) enable_extended_FILE_stdio(-1, -1); 3889 ztest_run(zopt_pool); 3890 exit(0); 3891 } 3892 3893 while (waitpid(pid, &status, 0) != pid) 3894 continue; 3895 3896 if (WIFEXITED(status)) { 3897 if (WEXITSTATUS(status) != 0) { 3898 (void) fprintf(stderr, 3899 "child exited with code %d\n", 3900 WEXITSTATUS(status)); 3901 exit(2); 3902 } 3903 } else if (WIFSIGNALED(status)) { 3904 if (WTERMSIG(status) != SIGKILL) { 3905 (void) fprintf(stderr, 3906 "child died with signal %d\n", 3907 WTERMSIG(status)); 3908 exit(3); 3909 } 3910 kills++; 3911 } else { 3912 (void) fprintf(stderr, "something strange happened " 3913 "to child\n"); 3914 exit(4); 3915 } 3916 3917 iters++; 3918 3919 if (zopt_verbose >= 1) { 3920 hrtime_t now = gethrtime(); 3921 3922 now = MIN(now, zs->zs_stop_time); 3923 print_time(zs->zs_stop_time - now, timebuf); 3924 nicenum(zs->zs_space, numbuf); 3925 3926 (void) printf("Pass %3d, %8s, %3llu ENOSPC, " 3927 "%4.1f%% of %5s used, %3.0f%% done, %8s to go\n", 3928 iters, 3929 WIFEXITED(status) ? "Complete" : "SIGKILL", 3930 (u_longlong_t)zs->zs_enospc_count, 3931 100.0 * zs->zs_alloc / zs->zs_space, 3932 numbuf, 3933 100.0 * (now - zs->zs_start_time) / 3934 (zopt_time * NANOSEC), timebuf); 3935 } 3936 3937 if (zopt_verbose >= 2) { 3938 (void) printf("\nWorkload summary:\n\n"); 3939 (void) printf("%7s %9s %s\n", 3940 "Calls", "Time", "Function"); 3941 (void) printf("%7s %9s %s\n", 3942 "-----", "----", "--------"); 3943 for (f = 0; f < ZTEST_FUNCS; f++) { 3944 Dl_info dli; 3945 3946 zi = &zs->zs_info[f]; 3947 print_time(zi->zi_call_time, timebuf); 3948 (void) dladdr((void *)zi->zi_func, &dli); 3949 (void) printf("%7llu %9s %s\n", 3950 (u_longlong_t)zi->zi_calls, timebuf, 3951 dli.dli_sname); 3952 } 3953 (void) printf("\n"); 3954 } 3955 3956 /* 3957 * It's possible that we killed a child during a rename test, in 3958 * which case we'll have a 'ztest_tmp' pool lying around instead 3959 * of 'ztest'. Do a blind rename in case this happened. 3960 */ 3961 tmp = umem_alloc(strlen(zopt_pool) + 5, UMEM_NOFAIL); 3962 (void) strcpy(tmp, zopt_pool); 3963 (void) strcat(tmp, "_tmp"); 3964 kernel_init(FREAD | FWRITE); 3965 (void) spa_rename(tmp, zopt_pool); 3966 kernel_fini(); 3967 umem_free(tmp, strlen(tmp) + 1); 3968 } 3969 3970 ztest_verify_blocks(zopt_pool); 3971 3972 if (zopt_verbose >= 1) { 3973 (void) printf("%d killed, %d completed, %.0f%% kill rate\n", 3974 kills, iters - kills, (100.0 * kills) / MAX(1, iters)); 3975 } 3976 3977 return (0); 3978 } 3979