1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2011, 2014 by Delphix. All rights reserved. 24 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 25 * Copyright (c) 2013 Steven Hartland. All rights reserved. 26 */ 27 28 /* 29 * The objective of this program is to provide a DMU/ZAP/SPA stress test 30 * that runs entirely in userland, is easy to use, and easy to extend. 31 * 32 * The overall design of the ztest program is as follows: 33 * 34 * (1) For each major functional area (e.g. adding vdevs to a pool, 35 * creating and destroying datasets, reading and writing objects, etc) 36 * we have a simple routine to test that functionality. These 37 * individual routines do not have to do anything "stressful". 38 * 39 * (2) We turn these simple functionality tests into a stress test by 40 * running them all in parallel, with as many threads as desired, 41 * and spread across as many datasets, objects, and vdevs as desired. 42 * 43 * (3) While all this is happening, we inject faults into the pool to 44 * verify that self-healing data really works. 45 * 46 * (4) Every time we open a dataset, we change its checksum and compression 47 * functions. Thus even individual objects vary from block to block 48 * in which checksum they use and whether they're compressed. 49 * 50 * (5) To verify that we never lose on-disk consistency after a crash, 51 * we run the entire test in a child of the main process. 52 * At random times, the child self-immolates with a SIGKILL. 53 * This is the software equivalent of pulling the power cord. 54 * The parent then runs the test again, using the existing 55 * storage pool, as many times as desired. If backwards compatibility 56 * testing is enabled ztest will sometimes run the "older" version 57 * of ztest after a SIGKILL. 58 * 59 * (6) To verify that we don't have future leaks or temporal incursions, 60 * many of the functional tests record the transaction group number 61 * as part of their data. When reading old data, they verify that 62 * the transaction group number is less than the current, open txg. 63 * If you add a new test, please do this if applicable. 64 * 65 * When run with no arguments, ztest runs for about five minutes and 66 * produces no output if successful. To get a little bit of information, 67 * specify -V. To get more information, specify -VV, and so on. 68 * 69 * To turn this into an overnight stress test, use -T to specify run time. 70 * 71 * You can ask more more vdevs [-v], datasets [-d], or threads [-t] 72 * to increase the pool capacity, fanout, and overall stress level. 73 * 74 * Use the -k option to set the desired frequency of kills. 75 * 76 * When ztest invokes itself it passes all relevant information through a 77 * temporary file which is mmap-ed in the child process. This allows shared 78 * memory to survive the exec syscall. The ztest_shared_hdr_t struct is always 79 * stored at offset 0 of this file and contains information on the size and 80 * number of shared structures in the file. The information stored in this file 81 * must remain backwards compatible with older versions of ztest so that 82 * ztest can invoke them during backwards compatibility testing (-B). 83 */ 84 85 #include <sys/zfs_context.h> 86 #include <sys/spa.h> 87 #include <sys/dmu.h> 88 #include <sys/txg.h> 89 #include <sys/dbuf.h> 90 #include <sys/zap.h> 91 #include <sys/dmu_objset.h> 92 #include <sys/poll.h> 93 #include <sys/stat.h> 94 #include <sys/time.h> 95 #include <sys/wait.h> 96 #include <sys/mman.h> 97 #include <sys/resource.h> 98 #include <sys/zio.h> 99 #include <sys/zil.h> 100 #include <sys/zil_impl.h> 101 #include <sys/vdev_impl.h> 102 #include <sys/vdev_file.h> 103 #include <sys/spa_impl.h> 104 #include <sys/metaslab_impl.h> 105 #include <sys/dsl_prop.h> 106 #include <sys/dsl_dataset.h> 107 #include <sys/dsl_destroy.h> 108 #include <sys/dsl_scan.h> 109 #include <sys/zio_checksum.h> 110 #include <sys/refcount.h> 111 #include <sys/zfeature.h> 112 #include <sys/dsl_userhold.h> 113 #include <stdio.h> 114 #include <stdio_ext.h> 115 #include <stdlib.h> 116 #include <unistd.h> 117 #include <signal.h> 118 #include <umem.h> 119 #include <dlfcn.h> 120 #include <ctype.h> 121 #include <math.h> 122 #include <sys/fs/zfs.h> 123 #include <libnvpair.h> 124 125 static int ztest_fd_data = -1; 126 static int ztest_fd_rand = -1; 127 128 typedef struct ztest_shared_hdr { 129 uint64_t zh_hdr_size; 130 uint64_t zh_opts_size; 131 uint64_t zh_size; 132 uint64_t zh_stats_size; 133 uint64_t zh_stats_count; 134 uint64_t zh_ds_size; 135 uint64_t zh_ds_count; 136 } ztest_shared_hdr_t; 137 138 static ztest_shared_hdr_t *ztest_shared_hdr; 139 140 typedef struct ztest_shared_opts { 141 char zo_pool[MAXNAMELEN]; 142 char zo_dir[MAXNAMELEN]; 143 char zo_alt_ztest[MAXNAMELEN]; 144 char zo_alt_libpath[MAXNAMELEN]; 145 uint64_t zo_vdevs; 146 uint64_t zo_vdevtime; 147 size_t zo_vdev_size; 148 int zo_ashift; 149 int zo_mirrors; 150 int zo_raidz; 151 int zo_raidz_parity; 152 int zo_datasets; 153 int zo_threads; 154 uint64_t zo_passtime; 155 uint64_t zo_killrate; 156 int zo_verbose; 157 int zo_init; 158 uint64_t zo_time; 159 uint64_t zo_maxloops; 160 uint64_t zo_metaslab_gang_bang; 161 } ztest_shared_opts_t; 162 163 static const ztest_shared_opts_t ztest_opts_defaults = { 164 .zo_pool = { 'z', 't', 'e', 's', 't', '\0' }, 165 .zo_dir = { '/', 't', 'm', 'p', '\0' }, 166 .zo_alt_ztest = { '\0' }, 167 .zo_alt_libpath = { '\0' }, 168 .zo_vdevs = 5, 169 .zo_ashift = SPA_MINBLOCKSHIFT, 170 .zo_mirrors = 2, 171 .zo_raidz = 4, 172 .zo_raidz_parity = 1, 173 .zo_vdev_size = SPA_MINDEVSIZE * 2, 174 .zo_datasets = 7, 175 .zo_threads = 23, 176 .zo_passtime = 60, /* 60 seconds */ 177 .zo_killrate = 70, /* 70% kill rate */ 178 .zo_verbose = 0, 179 .zo_init = 1, 180 .zo_time = 300, /* 5 minutes */ 181 .zo_maxloops = 50, /* max loops during spa_freeze() */ 182 .zo_metaslab_gang_bang = 32 << 10 183 }; 184 185 extern uint64_t metaslab_gang_bang; 186 extern uint64_t metaslab_df_alloc_threshold; 187 extern uint64_t zfs_deadman_synctime_ms; 188 extern int metaslab_preload_limit; 189 190 static ztest_shared_opts_t *ztest_shared_opts; 191 static ztest_shared_opts_t ztest_opts; 192 193 typedef struct ztest_shared_ds { 194 uint64_t zd_seq; 195 } ztest_shared_ds_t; 196 197 static ztest_shared_ds_t *ztest_shared_ds; 198 #define ZTEST_GET_SHARED_DS(d) (&ztest_shared_ds[d]) 199 200 #define BT_MAGIC 0x123456789abcdefULL 201 #define MAXFAULTS() \ 202 (MAX(zs->zs_mirrors, 1) * (ztest_opts.zo_raidz_parity + 1) - 1) 203 204 enum ztest_io_type { 205 ZTEST_IO_WRITE_TAG, 206 ZTEST_IO_WRITE_PATTERN, 207 ZTEST_IO_WRITE_ZEROES, 208 ZTEST_IO_TRUNCATE, 209 ZTEST_IO_SETATTR, 210 ZTEST_IO_REWRITE, 211 ZTEST_IO_TYPES 212 }; 213 214 typedef struct ztest_block_tag { 215 uint64_t bt_magic; 216 uint64_t bt_objset; 217 uint64_t bt_object; 218 uint64_t bt_offset; 219 uint64_t bt_gen; 220 uint64_t bt_txg; 221 uint64_t bt_crtxg; 222 } ztest_block_tag_t; 223 224 typedef struct bufwad { 225 uint64_t bw_index; 226 uint64_t bw_txg; 227 uint64_t bw_data; 228 } bufwad_t; 229 230 /* 231 * XXX -- fix zfs range locks to be generic so we can use them here. 232 */ 233 typedef enum { 234 RL_READER, 235 RL_WRITER, 236 RL_APPEND 237 } rl_type_t; 238 239 typedef struct rll { 240 void *rll_writer; 241 int rll_readers; 242 mutex_t rll_lock; 243 cond_t rll_cv; 244 } rll_t; 245 246 typedef struct rl { 247 uint64_t rl_object; 248 uint64_t rl_offset; 249 uint64_t rl_size; 250 rll_t *rl_lock; 251 } rl_t; 252 253 #define ZTEST_RANGE_LOCKS 64 254 #define ZTEST_OBJECT_LOCKS 64 255 256 /* 257 * Object descriptor. Used as a template for object lookup/create/remove. 258 */ 259 typedef struct ztest_od { 260 uint64_t od_dir; 261 uint64_t od_object; 262 dmu_object_type_t od_type; 263 dmu_object_type_t od_crtype; 264 uint64_t od_blocksize; 265 uint64_t od_crblocksize; 266 uint64_t od_gen; 267 uint64_t od_crgen; 268 char od_name[MAXNAMELEN]; 269 } ztest_od_t; 270 271 /* 272 * Per-dataset state. 273 */ 274 typedef struct ztest_ds { 275 ztest_shared_ds_t *zd_shared; 276 objset_t *zd_os; 277 rwlock_t zd_zilog_lock; 278 zilog_t *zd_zilog; 279 ztest_od_t *zd_od; /* debugging aid */ 280 char zd_name[MAXNAMELEN]; 281 mutex_t zd_dirobj_lock; 282 rll_t zd_object_lock[ZTEST_OBJECT_LOCKS]; 283 rll_t zd_range_lock[ZTEST_RANGE_LOCKS]; 284 } ztest_ds_t; 285 286 /* 287 * Per-iteration state. 288 */ 289 typedef void ztest_func_t(ztest_ds_t *zd, uint64_t id); 290 291 typedef struct ztest_info { 292 ztest_func_t *zi_func; /* test function */ 293 uint64_t zi_iters; /* iterations per execution */ 294 uint64_t *zi_interval; /* execute every <interval> seconds */ 295 } ztest_info_t; 296 297 typedef struct ztest_shared_callstate { 298 uint64_t zc_count; /* per-pass count */ 299 uint64_t zc_time; /* per-pass time */ 300 uint64_t zc_next; /* next time to call this function */ 301 } ztest_shared_callstate_t; 302 303 static ztest_shared_callstate_t *ztest_shared_callstate; 304 #define ZTEST_GET_SHARED_CALLSTATE(c) (&ztest_shared_callstate[c]) 305 306 /* 307 * Note: these aren't static because we want dladdr() to work. 308 */ 309 ztest_func_t ztest_dmu_read_write; 310 ztest_func_t ztest_dmu_write_parallel; 311 ztest_func_t ztest_dmu_object_alloc_free; 312 ztest_func_t ztest_dmu_commit_callbacks; 313 ztest_func_t ztest_zap; 314 ztest_func_t ztest_zap_parallel; 315 ztest_func_t ztest_zil_commit; 316 ztest_func_t ztest_zil_remount; 317 ztest_func_t ztest_dmu_read_write_zcopy; 318 ztest_func_t ztest_dmu_objset_create_destroy; 319 ztest_func_t ztest_dmu_prealloc; 320 ztest_func_t ztest_fzap; 321 ztest_func_t ztest_dmu_snapshot_create_destroy; 322 ztest_func_t ztest_dsl_prop_get_set; 323 ztest_func_t ztest_spa_prop_get_set; 324 ztest_func_t ztest_spa_create_destroy; 325 ztest_func_t ztest_fault_inject; 326 ztest_func_t ztest_ddt_repair; 327 ztest_func_t ztest_dmu_snapshot_hold; 328 ztest_func_t ztest_spa_rename; 329 ztest_func_t ztest_scrub; 330 ztest_func_t ztest_dsl_dataset_promote_busy; 331 ztest_func_t ztest_vdev_attach_detach; 332 ztest_func_t ztest_vdev_LUN_growth; 333 ztest_func_t ztest_vdev_add_remove; 334 ztest_func_t ztest_vdev_aux_add_remove; 335 ztest_func_t ztest_split_pool; 336 ztest_func_t ztest_reguid; 337 ztest_func_t ztest_spa_upgrade; 338 339 uint64_t zopt_always = 0ULL * NANOSEC; /* all the time */ 340 uint64_t zopt_incessant = 1ULL * NANOSEC / 10; /* every 1/10 second */ 341 uint64_t zopt_often = 1ULL * NANOSEC; /* every second */ 342 uint64_t zopt_sometimes = 10ULL * NANOSEC; /* every 10 seconds */ 343 uint64_t zopt_rarely = 60ULL * NANOSEC; /* every 60 seconds */ 344 345 ztest_info_t ztest_info[] = { 346 { ztest_dmu_read_write, 1, &zopt_always }, 347 { ztest_dmu_write_parallel, 10, &zopt_always }, 348 { ztest_dmu_object_alloc_free, 1, &zopt_always }, 349 { ztest_dmu_commit_callbacks, 1, &zopt_always }, 350 { ztest_zap, 30, &zopt_always }, 351 { ztest_zap_parallel, 100, &zopt_always }, 352 { ztest_split_pool, 1, &zopt_always }, 353 { ztest_zil_commit, 1, &zopt_incessant }, 354 { ztest_zil_remount, 1, &zopt_sometimes }, 355 { ztest_dmu_read_write_zcopy, 1, &zopt_often }, 356 { ztest_dmu_objset_create_destroy, 1, &zopt_often }, 357 { ztest_dsl_prop_get_set, 1, &zopt_often }, 358 { ztest_spa_prop_get_set, 1, &zopt_sometimes }, 359 #if 0 360 { ztest_dmu_prealloc, 1, &zopt_sometimes }, 361 #endif 362 { ztest_fzap, 1, &zopt_sometimes }, 363 { ztest_dmu_snapshot_create_destroy, 1, &zopt_sometimes }, 364 { ztest_spa_create_destroy, 1, &zopt_sometimes }, 365 { ztest_fault_inject, 1, &zopt_sometimes }, 366 { ztest_ddt_repair, 1, &zopt_sometimes }, 367 { ztest_dmu_snapshot_hold, 1, &zopt_sometimes }, 368 { ztest_reguid, 1, &zopt_rarely }, 369 { ztest_spa_rename, 1, &zopt_rarely }, 370 { ztest_scrub, 1, &zopt_rarely }, 371 { ztest_spa_upgrade, 1, &zopt_rarely }, 372 { ztest_dsl_dataset_promote_busy, 1, &zopt_rarely }, 373 { ztest_vdev_attach_detach, 1, &zopt_sometimes }, 374 { ztest_vdev_LUN_growth, 1, &zopt_rarely }, 375 { ztest_vdev_add_remove, 1, 376 &ztest_opts.zo_vdevtime }, 377 { ztest_vdev_aux_add_remove, 1, 378 &ztest_opts.zo_vdevtime }, 379 }; 380 381 #define ZTEST_FUNCS (sizeof (ztest_info) / sizeof (ztest_info_t)) 382 383 /* 384 * The following struct is used to hold a list of uncalled commit callbacks. 385 * The callbacks are ordered by txg number. 386 */ 387 typedef struct ztest_cb_list { 388 mutex_t zcl_callbacks_lock; 389 list_t zcl_callbacks; 390 } ztest_cb_list_t; 391 392 /* 393 * Stuff we need to share writably between parent and child. 394 */ 395 typedef struct ztest_shared { 396 boolean_t zs_do_init; 397 hrtime_t zs_proc_start; 398 hrtime_t zs_proc_stop; 399 hrtime_t zs_thread_start; 400 hrtime_t zs_thread_stop; 401 hrtime_t zs_thread_kill; 402 uint64_t zs_enospc_count; 403 uint64_t zs_vdev_next_leaf; 404 uint64_t zs_vdev_aux; 405 uint64_t zs_alloc; 406 uint64_t zs_space; 407 uint64_t zs_splits; 408 uint64_t zs_mirrors; 409 uint64_t zs_metaslab_sz; 410 uint64_t zs_metaslab_df_alloc_threshold; 411 uint64_t zs_guid; 412 } ztest_shared_t; 413 414 #define ID_PARALLEL -1ULL 415 416 static char ztest_dev_template[] = "%s/%s.%llua"; 417 static char ztest_aux_template[] = "%s/%s.%s.%llu"; 418 ztest_shared_t *ztest_shared; 419 420 static spa_t *ztest_spa = NULL; 421 static ztest_ds_t *ztest_ds; 422 423 static mutex_t ztest_vdev_lock; 424 425 /* 426 * The ztest_name_lock protects the pool and dataset namespace used by 427 * the individual tests. To modify the namespace, consumers must grab 428 * this lock as writer. Grabbing the lock as reader will ensure that the 429 * namespace does not change while the lock is held. 430 */ 431 static rwlock_t ztest_name_lock; 432 433 static boolean_t ztest_dump_core = B_TRUE; 434 static boolean_t ztest_exiting; 435 436 /* Global commit callback list */ 437 static ztest_cb_list_t zcl; 438 439 enum ztest_object { 440 ZTEST_META_DNODE = 0, 441 ZTEST_DIROBJ, 442 ZTEST_OBJECTS 443 }; 444 445 static void usage(boolean_t) __NORETURN; 446 447 /* 448 * These libumem hooks provide a reasonable set of defaults for the allocator's 449 * debugging facilities. 450 */ 451 const char * 452 _umem_debug_init() 453 { 454 return ("default,verbose"); /* $UMEM_DEBUG setting */ 455 } 456 457 const char * 458 _umem_logging_init(void) 459 { 460 return ("fail,contents"); /* $UMEM_LOGGING setting */ 461 } 462 463 #define FATAL_MSG_SZ 1024 464 465 char *fatal_msg; 466 467 static void 468 fatal(int do_perror, char *message, ...) 469 { 470 va_list args; 471 int save_errno = errno; 472 char buf[FATAL_MSG_SZ]; 473 474 (void) fflush(stdout); 475 476 va_start(args, message); 477 (void) sprintf(buf, "ztest: "); 478 /* LINTED */ 479 (void) vsprintf(buf + strlen(buf), message, args); 480 va_end(args); 481 if (do_perror) { 482 (void) snprintf(buf + strlen(buf), FATAL_MSG_SZ - strlen(buf), 483 ": %s", strerror(save_errno)); 484 } 485 (void) fprintf(stderr, "%s\n", buf); 486 fatal_msg = buf; /* to ease debugging */ 487 if (ztest_dump_core) 488 abort(); 489 exit(3); 490 } 491 492 static int 493 str2shift(const char *buf) 494 { 495 const char *ends = "BKMGTPEZ"; 496 int i; 497 498 if (buf[0] == '\0') 499 return (0); 500 for (i = 0; i < strlen(ends); i++) { 501 if (toupper(buf[0]) == ends[i]) 502 break; 503 } 504 if (i == strlen(ends)) { 505 (void) fprintf(stderr, "ztest: invalid bytes suffix: %s\n", 506 buf); 507 usage(B_FALSE); 508 } 509 if (buf[1] == '\0' || (toupper(buf[1]) == 'B' && buf[2] == '\0')) { 510 return (10*i); 511 } 512 (void) fprintf(stderr, "ztest: invalid bytes suffix: %s\n", buf); 513 usage(B_FALSE); 514 /* NOTREACHED */ 515 } 516 517 static uint64_t 518 nicenumtoull(const char *buf) 519 { 520 char *end; 521 uint64_t val; 522 523 val = strtoull(buf, &end, 0); 524 if (end == buf) { 525 (void) fprintf(stderr, "ztest: bad numeric value: %s\n", buf); 526 usage(B_FALSE); 527 } else if (end[0] == '.') { 528 double fval = strtod(buf, &end); 529 fval *= pow(2, str2shift(end)); 530 if (fval > UINT64_MAX) { 531 (void) fprintf(stderr, "ztest: value too large: %s\n", 532 buf); 533 usage(B_FALSE); 534 } 535 val = (uint64_t)fval; 536 } else { 537 int shift = str2shift(end); 538 if (shift >= 64 || (val << shift) >> shift != val) { 539 (void) fprintf(stderr, "ztest: value too large: %s\n", 540 buf); 541 usage(B_FALSE); 542 } 543 val <<= shift; 544 } 545 return (val); 546 } 547 548 static void 549 usage(boolean_t requested) 550 { 551 const ztest_shared_opts_t *zo = &ztest_opts_defaults; 552 553 char nice_vdev_size[10]; 554 char nice_gang_bang[10]; 555 FILE *fp = requested ? stdout : stderr; 556 557 nicenum(zo->zo_vdev_size, nice_vdev_size); 558 nicenum(zo->zo_metaslab_gang_bang, nice_gang_bang); 559 560 (void) fprintf(fp, "Usage: %s\n" 561 "\t[-v vdevs (default: %llu)]\n" 562 "\t[-s size_of_each_vdev (default: %s)]\n" 563 "\t[-a alignment_shift (default: %d)] use 0 for random\n" 564 "\t[-m mirror_copies (default: %d)]\n" 565 "\t[-r raidz_disks (default: %d)]\n" 566 "\t[-R raidz_parity (default: %d)]\n" 567 "\t[-d datasets (default: %d)]\n" 568 "\t[-t threads (default: %d)]\n" 569 "\t[-g gang_block_threshold (default: %s)]\n" 570 "\t[-i init_count (default: %d)] initialize pool i times\n" 571 "\t[-k kill_percentage (default: %llu%%)]\n" 572 "\t[-p pool_name (default: %s)]\n" 573 "\t[-f dir (default: %s)] file directory for vdev files\n" 574 "\t[-V] verbose (use multiple times for ever more blather)\n" 575 "\t[-E] use existing pool instead of creating new one\n" 576 "\t[-T time (default: %llu sec)] total run time\n" 577 "\t[-F freezeloops (default: %llu)] max loops in spa_freeze()\n" 578 "\t[-P passtime (default: %llu sec)] time per pass\n" 579 "\t[-B alt_ztest (default: <none>)] alternate ztest path\n" 580 "\t[-h] (print help)\n" 581 "", 582 zo->zo_pool, 583 (u_longlong_t)zo->zo_vdevs, /* -v */ 584 nice_vdev_size, /* -s */ 585 zo->zo_ashift, /* -a */ 586 zo->zo_mirrors, /* -m */ 587 zo->zo_raidz, /* -r */ 588 zo->zo_raidz_parity, /* -R */ 589 zo->zo_datasets, /* -d */ 590 zo->zo_threads, /* -t */ 591 nice_gang_bang, /* -g */ 592 zo->zo_init, /* -i */ 593 (u_longlong_t)zo->zo_killrate, /* -k */ 594 zo->zo_pool, /* -p */ 595 zo->zo_dir, /* -f */ 596 (u_longlong_t)zo->zo_time, /* -T */ 597 (u_longlong_t)zo->zo_maxloops, /* -F */ 598 (u_longlong_t)zo->zo_passtime); 599 exit(requested ? 0 : 1); 600 } 601 602 static void 603 process_options(int argc, char **argv) 604 { 605 char *path; 606 ztest_shared_opts_t *zo = &ztest_opts; 607 608 int opt; 609 uint64_t value; 610 char altdir[MAXNAMELEN] = { 0 }; 611 612 bcopy(&ztest_opts_defaults, zo, sizeof (*zo)); 613 614 while ((opt = getopt(argc, argv, 615 "v:s:a:m:r:R:d:t:g:i:k:p:f:VET:P:hF:B:")) != EOF) { 616 value = 0; 617 switch (opt) { 618 case 'v': 619 case 's': 620 case 'a': 621 case 'm': 622 case 'r': 623 case 'R': 624 case 'd': 625 case 't': 626 case 'g': 627 case 'i': 628 case 'k': 629 case 'T': 630 case 'P': 631 case 'F': 632 value = nicenumtoull(optarg); 633 } 634 switch (opt) { 635 case 'v': 636 zo->zo_vdevs = value; 637 break; 638 case 's': 639 zo->zo_vdev_size = MAX(SPA_MINDEVSIZE, value); 640 break; 641 case 'a': 642 zo->zo_ashift = value; 643 break; 644 case 'm': 645 zo->zo_mirrors = value; 646 break; 647 case 'r': 648 zo->zo_raidz = MAX(1, value); 649 break; 650 case 'R': 651 zo->zo_raidz_parity = MIN(MAX(value, 1), 3); 652 break; 653 case 'd': 654 zo->zo_datasets = MAX(1, value); 655 break; 656 case 't': 657 zo->zo_threads = MAX(1, value); 658 break; 659 case 'g': 660 zo->zo_metaslab_gang_bang = MAX(SPA_MINBLOCKSIZE << 1, 661 value); 662 break; 663 case 'i': 664 zo->zo_init = value; 665 break; 666 case 'k': 667 zo->zo_killrate = value; 668 break; 669 case 'p': 670 (void) strlcpy(zo->zo_pool, optarg, 671 sizeof (zo->zo_pool)); 672 break; 673 case 'f': 674 path = realpath(optarg, NULL); 675 if (path == NULL) { 676 (void) fprintf(stderr, "error: %s: %s\n", 677 optarg, strerror(errno)); 678 usage(B_FALSE); 679 } else { 680 (void) strlcpy(zo->zo_dir, path, 681 sizeof (zo->zo_dir)); 682 } 683 break; 684 case 'V': 685 zo->zo_verbose++; 686 break; 687 case 'E': 688 zo->zo_init = 0; 689 break; 690 case 'T': 691 zo->zo_time = value; 692 break; 693 case 'P': 694 zo->zo_passtime = MAX(1, value); 695 break; 696 case 'F': 697 zo->zo_maxloops = MAX(1, value); 698 break; 699 case 'B': 700 (void) strlcpy(altdir, optarg, sizeof (altdir)); 701 break; 702 case 'h': 703 usage(B_TRUE); 704 break; 705 case '?': 706 default: 707 usage(B_FALSE); 708 break; 709 } 710 } 711 712 zo->zo_raidz_parity = MIN(zo->zo_raidz_parity, zo->zo_raidz - 1); 713 714 zo->zo_vdevtime = 715 (zo->zo_vdevs > 0 ? zo->zo_time * NANOSEC / zo->zo_vdevs : 716 UINT64_MAX >> 2); 717 718 if (strlen(altdir) > 0) { 719 char *cmd; 720 char *realaltdir; 721 char *bin; 722 char *ztest; 723 char *isa; 724 int isalen; 725 726 cmd = umem_alloc(MAXPATHLEN, UMEM_NOFAIL); 727 realaltdir = umem_alloc(MAXPATHLEN, UMEM_NOFAIL); 728 729 VERIFY(NULL != realpath(getexecname(), cmd)); 730 if (0 != access(altdir, F_OK)) { 731 ztest_dump_core = B_FALSE; 732 fatal(B_TRUE, "invalid alternate ztest path: %s", 733 altdir); 734 } 735 VERIFY(NULL != realpath(altdir, realaltdir)); 736 737 /* 738 * 'cmd' should be of the form "<anything>/usr/bin/<isa>/ztest". 739 * We want to extract <isa> to determine if we should use 740 * 32 or 64 bit binaries. 741 */ 742 bin = strstr(cmd, "/usr/bin/"); 743 ztest = strstr(bin, "/ztest"); 744 isa = bin + 9; 745 isalen = ztest - isa; 746 (void) snprintf(zo->zo_alt_ztest, sizeof (zo->zo_alt_ztest), 747 "%s/usr/bin/%.*s/ztest", realaltdir, isalen, isa); 748 (void) snprintf(zo->zo_alt_libpath, sizeof (zo->zo_alt_libpath), 749 "%s/usr/lib/%.*s", realaltdir, isalen, isa); 750 751 if (0 != access(zo->zo_alt_ztest, X_OK)) { 752 ztest_dump_core = B_FALSE; 753 fatal(B_TRUE, "invalid alternate ztest: %s", 754 zo->zo_alt_ztest); 755 } else if (0 != access(zo->zo_alt_libpath, X_OK)) { 756 ztest_dump_core = B_FALSE; 757 fatal(B_TRUE, "invalid alternate lib directory %s", 758 zo->zo_alt_libpath); 759 } 760 761 umem_free(cmd, MAXPATHLEN); 762 umem_free(realaltdir, MAXPATHLEN); 763 } 764 } 765 766 static void 767 ztest_kill(ztest_shared_t *zs) 768 { 769 zs->zs_alloc = metaslab_class_get_alloc(spa_normal_class(ztest_spa)); 770 zs->zs_space = metaslab_class_get_space(spa_normal_class(ztest_spa)); 771 772 /* 773 * Before we kill off ztest, make sure that the config is updated. 774 * See comment above spa_config_sync(). 775 */ 776 mutex_enter(&spa_namespace_lock); 777 spa_config_sync(ztest_spa, B_FALSE, B_FALSE); 778 mutex_exit(&spa_namespace_lock); 779 780 zfs_dbgmsg_print(FTAG); 781 (void) kill(getpid(), SIGKILL); 782 } 783 784 static uint64_t 785 ztest_random(uint64_t range) 786 { 787 uint64_t r; 788 789 ASSERT3S(ztest_fd_rand, >=, 0); 790 791 if (range == 0) 792 return (0); 793 794 if (read(ztest_fd_rand, &r, sizeof (r)) != sizeof (r)) 795 fatal(1, "short read from /dev/urandom"); 796 797 return (r % range); 798 } 799 800 /* ARGSUSED */ 801 static void 802 ztest_record_enospc(const char *s) 803 { 804 ztest_shared->zs_enospc_count++; 805 } 806 807 static uint64_t 808 ztest_get_ashift(void) 809 { 810 if (ztest_opts.zo_ashift == 0) 811 return (SPA_MINBLOCKSHIFT + ztest_random(5)); 812 return (ztest_opts.zo_ashift); 813 } 814 815 static nvlist_t * 816 make_vdev_file(char *path, char *aux, char *pool, size_t size, uint64_t ashift) 817 { 818 char pathbuf[MAXPATHLEN]; 819 uint64_t vdev; 820 nvlist_t *file; 821 822 if (ashift == 0) 823 ashift = ztest_get_ashift(); 824 825 if (path == NULL) { 826 path = pathbuf; 827 828 if (aux != NULL) { 829 vdev = ztest_shared->zs_vdev_aux; 830 (void) snprintf(path, sizeof (pathbuf), 831 ztest_aux_template, ztest_opts.zo_dir, 832 pool == NULL ? ztest_opts.zo_pool : pool, 833 aux, vdev); 834 } else { 835 vdev = ztest_shared->zs_vdev_next_leaf++; 836 (void) snprintf(path, sizeof (pathbuf), 837 ztest_dev_template, ztest_opts.zo_dir, 838 pool == NULL ? ztest_opts.zo_pool : pool, vdev); 839 } 840 } 841 842 if (size != 0) { 843 int fd = open(path, O_RDWR | O_CREAT | O_TRUNC, 0666); 844 if (fd == -1) 845 fatal(1, "can't open %s", path); 846 if (ftruncate(fd, size) != 0) 847 fatal(1, "can't ftruncate %s", path); 848 (void) close(fd); 849 } 850 851 VERIFY(nvlist_alloc(&file, NV_UNIQUE_NAME, 0) == 0); 852 VERIFY(nvlist_add_string(file, ZPOOL_CONFIG_TYPE, VDEV_TYPE_FILE) == 0); 853 VERIFY(nvlist_add_string(file, ZPOOL_CONFIG_PATH, path) == 0); 854 VERIFY(nvlist_add_uint64(file, ZPOOL_CONFIG_ASHIFT, ashift) == 0); 855 856 return (file); 857 } 858 859 static nvlist_t * 860 make_vdev_raidz(char *path, char *aux, char *pool, size_t size, 861 uint64_t ashift, int r) 862 { 863 nvlist_t *raidz, **child; 864 int c; 865 866 if (r < 2) 867 return (make_vdev_file(path, aux, pool, size, ashift)); 868 child = umem_alloc(r * sizeof (nvlist_t *), UMEM_NOFAIL); 869 870 for (c = 0; c < r; c++) 871 child[c] = make_vdev_file(path, aux, pool, size, ashift); 872 873 VERIFY(nvlist_alloc(&raidz, NV_UNIQUE_NAME, 0) == 0); 874 VERIFY(nvlist_add_string(raidz, ZPOOL_CONFIG_TYPE, 875 VDEV_TYPE_RAIDZ) == 0); 876 VERIFY(nvlist_add_uint64(raidz, ZPOOL_CONFIG_NPARITY, 877 ztest_opts.zo_raidz_parity) == 0); 878 VERIFY(nvlist_add_nvlist_array(raidz, ZPOOL_CONFIG_CHILDREN, 879 child, r) == 0); 880 881 for (c = 0; c < r; c++) 882 nvlist_free(child[c]); 883 884 umem_free(child, r * sizeof (nvlist_t *)); 885 886 return (raidz); 887 } 888 889 static nvlist_t * 890 make_vdev_mirror(char *path, char *aux, char *pool, size_t size, 891 uint64_t ashift, int r, int m) 892 { 893 nvlist_t *mirror, **child; 894 int c; 895 896 if (m < 1) 897 return (make_vdev_raidz(path, aux, pool, size, ashift, r)); 898 899 child = umem_alloc(m * sizeof (nvlist_t *), UMEM_NOFAIL); 900 901 for (c = 0; c < m; c++) 902 child[c] = make_vdev_raidz(path, aux, pool, size, ashift, r); 903 904 VERIFY(nvlist_alloc(&mirror, NV_UNIQUE_NAME, 0) == 0); 905 VERIFY(nvlist_add_string(mirror, ZPOOL_CONFIG_TYPE, 906 VDEV_TYPE_MIRROR) == 0); 907 VERIFY(nvlist_add_nvlist_array(mirror, ZPOOL_CONFIG_CHILDREN, 908 child, m) == 0); 909 910 for (c = 0; c < m; c++) 911 nvlist_free(child[c]); 912 913 umem_free(child, m * sizeof (nvlist_t *)); 914 915 return (mirror); 916 } 917 918 static nvlist_t * 919 make_vdev_root(char *path, char *aux, char *pool, size_t size, uint64_t ashift, 920 int log, int r, int m, int t) 921 { 922 nvlist_t *root, **child; 923 int c; 924 925 ASSERT(t > 0); 926 927 child = umem_alloc(t * sizeof (nvlist_t *), UMEM_NOFAIL); 928 929 for (c = 0; c < t; c++) { 930 child[c] = make_vdev_mirror(path, aux, pool, size, ashift, 931 r, m); 932 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_IS_LOG, 933 log) == 0); 934 } 935 936 VERIFY(nvlist_alloc(&root, NV_UNIQUE_NAME, 0) == 0); 937 VERIFY(nvlist_add_string(root, ZPOOL_CONFIG_TYPE, VDEV_TYPE_ROOT) == 0); 938 VERIFY(nvlist_add_nvlist_array(root, aux ? aux : ZPOOL_CONFIG_CHILDREN, 939 child, t) == 0); 940 941 for (c = 0; c < t; c++) 942 nvlist_free(child[c]); 943 944 umem_free(child, t * sizeof (nvlist_t *)); 945 946 return (root); 947 } 948 949 /* 950 * Find a random spa version. Returns back a random spa version in the 951 * range [initial_version, SPA_VERSION_FEATURES]. 952 */ 953 static uint64_t 954 ztest_random_spa_version(uint64_t initial_version) 955 { 956 uint64_t version = initial_version; 957 958 if (version <= SPA_VERSION_BEFORE_FEATURES) { 959 version = version + 960 ztest_random(SPA_VERSION_BEFORE_FEATURES - version + 1); 961 } 962 963 if (version > SPA_VERSION_BEFORE_FEATURES) 964 version = SPA_VERSION_FEATURES; 965 966 ASSERT(SPA_VERSION_IS_SUPPORTED(version)); 967 return (version); 968 } 969 970 /* 971 * Find the largest ashift used 972 */ 973 static uint64_t 974 ztest_spa_get_ashift() { 975 uint64_t i; 976 uint64_t ashift = SPA_MINBLOCKSHIFT; 977 vdev_t *rvd = ztest_spa->spa_root_vdev; 978 979 for (i = 0; i < rvd->vdev_children; i++) { 980 ashift = MAX(ashift, rvd->vdev_child[i]->vdev_ashift); 981 } 982 return (ashift); 983 } 984 985 static int 986 ztest_random_blocksize(void) 987 { 988 uint64_t block_shift; 989 /* 990 * Choose a block size >= the ashift. 991 * If the SPA supports new MAXBLOCKSIZE, test up to 1MB blocks. 992 */ 993 int maxbs = SPA_OLD_MAXBLOCKSHIFT; 994 if (spa_maxblocksize(ztest_spa) == SPA_MAXBLOCKSIZE) 995 maxbs = 20; 996 block_shift = ztest_random(maxbs - ztest_spa_get_ashift() + 1); 997 return (1 << (SPA_MINBLOCKSHIFT + block_shift)); 998 } 999 1000 static int 1001 ztest_random_ibshift(void) 1002 { 1003 return (DN_MIN_INDBLKSHIFT + 1004 ztest_random(DN_MAX_INDBLKSHIFT - DN_MIN_INDBLKSHIFT + 1)); 1005 } 1006 1007 static uint64_t 1008 ztest_random_vdev_top(spa_t *spa, boolean_t log_ok) 1009 { 1010 uint64_t top; 1011 vdev_t *rvd = spa->spa_root_vdev; 1012 vdev_t *tvd; 1013 1014 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); 1015 1016 do { 1017 top = ztest_random(rvd->vdev_children); 1018 tvd = rvd->vdev_child[top]; 1019 } while (tvd->vdev_ishole || (tvd->vdev_islog && !log_ok) || 1020 tvd->vdev_mg == NULL || tvd->vdev_mg->mg_class == NULL); 1021 1022 return (top); 1023 } 1024 1025 static uint64_t 1026 ztest_random_dsl_prop(zfs_prop_t prop) 1027 { 1028 uint64_t value; 1029 1030 do { 1031 value = zfs_prop_random_value(prop, ztest_random(-1ULL)); 1032 } while (prop == ZFS_PROP_CHECKSUM && value == ZIO_CHECKSUM_OFF); 1033 1034 return (value); 1035 } 1036 1037 static int 1038 ztest_dsl_prop_set_uint64(char *osname, zfs_prop_t prop, uint64_t value, 1039 boolean_t inherit) 1040 { 1041 const char *propname = zfs_prop_to_name(prop); 1042 const char *valname; 1043 char setpoint[MAXPATHLEN]; 1044 uint64_t curval; 1045 int error; 1046 1047 error = dsl_prop_set_int(osname, propname, 1048 (inherit ? ZPROP_SRC_NONE : ZPROP_SRC_LOCAL), value); 1049 1050 if (error == ENOSPC) { 1051 ztest_record_enospc(FTAG); 1052 return (error); 1053 } 1054 ASSERT0(error); 1055 1056 VERIFY0(dsl_prop_get_integer(osname, propname, &curval, setpoint)); 1057 1058 if (ztest_opts.zo_verbose >= 6) { 1059 VERIFY(zfs_prop_index_to_string(prop, curval, &valname) == 0); 1060 (void) printf("%s %s = %s at '%s'\n", 1061 osname, propname, valname, setpoint); 1062 } 1063 1064 return (error); 1065 } 1066 1067 static int 1068 ztest_spa_prop_set_uint64(zpool_prop_t prop, uint64_t value) 1069 { 1070 spa_t *spa = ztest_spa; 1071 nvlist_t *props = NULL; 1072 int error; 1073 1074 VERIFY(nvlist_alloc(&props, NV_UNIQUE_NAME, 0) == 0); 1075 VERIFY(nvlist_add_uint64(props, zpool_prop_to_name(prop), value) == 0); 1076 1077 error = spa_prop_set(spa, props); 1078 1079 nvlist_free(props); 1080 1081 if (error == ENOSPC) { 1082 ztest_record_enospc(FTAG); 1083 return (error); 1084 } 1085 ASSERT0(error); 1086 1087 return (error); 1088 } 1089 1090 static void 1091 ztest_rll_init(rll_t *rll) 1092 { 1093 rll->rll_writer = NULL; 1094 rll->rll_readers = 0; 1095 VERIFY(_mutex_init(&rll->rll_lock, USYNC_THREAD, NULL) == 0); 1096 VERIFY(cond_init(&rll->rll_cv, USYNC_THREAD, NULL) == 0); 1097 } 1098 1099 static void 1100 ztest_rll_destroy(rll_t *rll) 1101 { 1102 ASSERT(rll->rll_writer == NULL); 1103 ASSERT(rll->rll_readers == 0); 1104 VERIFY(_mutex_destroy(&rll->rll_lock) == 0); 1105 VERIFY(cond_destroy(&rll->rll_cv) == 0); 1106 } 1107 1108 static void 1109 ztest_rll_lock(rll_t *rll, rl_type_t type) 1110 { 1111 VERIFY(mutex_lock(&rll->rll_lock) == 0); 1112 1113 if (type == RL_READER) { 1114 while (rll->rll_writer != NULL) 1115 (void) cond_wait(&rll->rll_cv, &rll->rll_lock); 1116 rll->rll_readers++; 1117 } else { 1118 while (rll->rll_writer != NULL || rll->rll_readers) 1119 (void) cond_wait(&rll->rll_cv, &rll->rll_lock); 1120 rll->rll_writer = curthread; 1121 } 1122 1123 VERIFY(mutex_unlock(&rll->rll_lock) == 0); 1124 } 1125 1126 static void 1127 ztest_rll_unlock(rll_t *rll) 1128 { 1129 VERIFY(mutex_lock(&rll->rll_lock) == 0); 1130 1131 if (rll->rll_writer) { 1132 ASSERT(rll->rll_readers == 0); 1133 rll->rll_writer = NULL; 1134 } else { 1135 ASSERT(rll->rll_readers != 0); 1136 ASSERT(rll->rll_writer == NULL); 1137 rll->rll_readers--; 1138 } 1139 1140 if (rll->rll_writer == NULL && rll->rll_readers == 0) 1141 VERIFY(cond_broadcast(&rll->rll_cv) == 0); 1142 1143 VERIFY(mutex_unlock(&rll->rll_lock) == 0); 1144 } 1145 1146 static void 1147 ztest_object_lock(ztest_ds_t *zd, uint64_t object, rl_type_t type) 1148 { 1149 rll_t *rll = &zd->zd_object_lock[object & (ZTEST_OBJECT_LOCKS - 1)]; 1150 1151 ztest_rll_lock(rll, type); 1152 } 1153 1154 static void 1155 ztest_object_unlock(ztest_ds_t *zd, uint64_t object) 1156 { 1157 rll_t *rll = &zd->zd_object_lock[object & (ZTEST_OBJECT_LOCKS - 1)]; 1158 1159 ztest_rll_unlock(rll); 1160 } 1161 1162 static rl_t * 1163 ztest_range_lock(ztest_ds_t *zd, uint64_t object, uint64_t offset, 1164 uint64_t size, rl_type_t type) 1165 { 1166 uint64_t hash = object ^ (offset % (ZTEST_RANGE_LOCKS + 1)); 1167 rll_t *rll = &zd->zd_range_lock[hash & (ZTEST_RANGE_LOCKS - 1)]; 1168 rl_t *rl; 1169 1170 rl = umem_alloc(sizeof (*rl), UMEM_NOFAIL); 1171 rl->rl_object = object; 1172 rl->rl_offset = offset; 1173 rl->rl_size = size; 1174 rl->rl_lock = rll; 1175 1176 ztest_rll_lock(rll, type); 1177 1178 return (rl); 1179 } 1180 1181 static void 1182 ztest_range_unlock(rl_t *rl) 1183 { 1184 rll_t *rll = rl->rl_lock; 1185 1186 ztest_rll_unlock(rll); 1187 1188 umem_free(rl, sizeof (*rl)); 1189 } 1190 1191 static void 1192 ztest_zd_init(ztest_ds_t *zd, ztest_shared_ds_t *szd, objset_t *os) 1193 { 1194 zd->zd_os = os; 1195 zd->zd_zilog = dmu_objset_zil(os); 1196 zd->zd_shared = szd; 1197 dmu_objset_name(os, zd->zd_name); 1198 1199 if (zd->zd_shared != NULL) 1200 zd->zd_shared->zd_seq = 0; 1201 1202 VERIFY(rwlock_init(&zd->zd_zilog_lock, USYNC_THREAD, NULL) == 0); 1203 VERIFY(_mutex_init(&zd->zd_dirobj_lock, USYNC_THREAD, NULL) == 0); 1204 1205 for (int l = 0; l < ZTEST_OBJECT_LOCKS; l++) 1206 ztest_rll_init(&zd->zd_object_lock[l]); 1207 1208 for (int l = 0; l < ZTEST_RANGE_LOCKS; l++) 1209 ztest_rll_init(&zd->zd_range_lock[l]); 1210 } 1211 1212 static void 1213 ztest_zd_fini(ztest_ds_t *zd) 1214 { 1215 VERIFY(_mutex_destroy(&zd->zd_dirobj_lock) == 0); 1216 1217 for (int l = 0; l < ZTEST_OBJECT_LOCKS; l++) 1218 ztest_rll_destroy(&zd->zd_object_lock[l]); 1219 1220 for (int l = 0; l < ZTEST_RANGE_LOCKS; l++) 1221 ztest_rll_destroy(&zd->zd_range_lock[l]); 1222 } 1223 1224 #define TXG_MIGHTWAIT (ztest_random(10) == 0 ? TXG_NOWAIT : TXG_WAIT) 1225 1226 static uint64_t 1227 ztest_tx_assign(dmu_tx_t *tx, uint64_t txg_how, const char *tag) 1228 { 1229 uint64_t txg; 1230 int error; 1231 1232 /* 1233 * Attempt to assign tx to some transaction group. 1234 */ 1235 error = dmu_tx_assign(tx, txg_how); 1236 if (error) { 1237 if (error == ERESTART) { 1238 ASSERT(txg_how == TXG_NOWAIT); 1239 dmu_tx_wait(tx); 1240 } else { 1241 ASSERT3U(error, ==, ENOSPC); 1242 ztest_record_enospc(tag); 1243 } 1244 dmu_tx_abort(tx); 1245 return (0); 1246 } 1247 txg = dmu_tx_get_txg(tx); 1248 ASSERT(txg != 0); 1249 return (txg); 1250 } 1251 1252 static void 1253 ztest_pattern_set(void *buf, uint64_t size, uint64_t value) 1254 { 1255 uint64_t *ip = buf; 1256 uint64_t *ip_end = (uint64_t *)((uintptr_t)buf + (uintptr_t)size); 1257 1258 while (ip < ip_end) 1259 *ip++ = value; 1260 } 1261 1262 static boolean_t 1263 ztest_pattern_match(void *buf, uint64_t size, uint64_t value) 1264 { 1265 uint64_t *ip = buf; 1266 uint64_t *ip_end = (uint64_t *)((uintptr_t)buf + (uintptr_t)size); 1267 uint64_t diff = 0; 1268 1269 while (ip < ip_end) 1270 diff |= (value - *ip++); 1271 1272 return (diff == 0); 1273 } 1274 1275 static void 1276 ztest_bt_generate(ztest_block_tag_t *bt, objset_t *os, uint64_t object, 1277 uint64_t offset, uint64_t gen, uint64_t txg, uint64_t crtxg) 1278 { 1279 bt->bt_magic = BT_MAGIC; 1280 bt->bt_objset = dmu_objset_id(os); 1281 bt->bt_object = object; 1282 bt->bt_offset = offset; 1283 bt->bt_gen = gen; 1284 bt->bt_txg = txg; 1285 bt->bt_crtxg = crtxg; 1286 } 1287 1288 static void 1289 ztest_bt_verify(ztest_block_tag_t *bt, objset_t *os, uint64_t object, 1290 uint64_t offset, uint64_t gen, uint64_t txg, uint64_t crtxg) 1291 { 1292 ASSERT3U(bt->bt_magic, ==, BT_MAGIC); 1293 ASSERT3U(bt->bt_objset, ==, dmu_objset_id(os)); 1294 ASSERT3U(bt->bt_object, ==, object); 1295 ASSERT3U(bt->bt_offset, ==, offset); 1296 ASSERT3U(bt->bt_gen, <=, gen); 1297 ASSERT3U(bt->bt_txg, <=, txg); 1298 ASSERT3U(bt->bt_crtxg, ==, crtxg); 1299 } 1300 1301 static ztest_block_tag_t * 1302 ztest_bt_bonus(dmu_buf_t *db) 1303 { 1304 dmu_object_info_t doi; 1305 ztest_block_tag_t *bt; 1306 1307 dmu_object_info_from_db(db, &doi); 1308 ASSERT3U(doi.doi_bonus_size, <=, db->db_size); 1309 ASSERT3U(doi.doi_bonus_size, >=, sizeof (*bt)); 1310 bt = (void *)((char *)db->db_data + doi.doi_bonus_size - sizeof (*bt)); 1311 1312 return (bt); 1313 } 1314 1315 /* 1316 * ZIL logging ops 1317 */ 1318 1319 #define lrz_type lr_mode 1320 #define lrz_blocksize lr_uid 1321 #define lrz_ibshift lr_gid 1322 #define lrz_bonustype lr_rdev 1323 #define lrz_bonuslen lr_crtime[1] 1324 1325 static void 1326 ztest_log_create(ztest_ds_t *zd, dmu_tx_t *tx, lr_create_t *lr) 1327 { 1328 char *name = (void *)(lr + 1); /* name follows lr */ 1329 size_t namesize = strlen(name) + 1; 1330 itx_t *itx; 1331 1332 if (zil_replaying(zd->zd_zilog, tx)) 1333 return; 1334 1335 itx = zil_itx_create(TX_CREATE, sizeof (*lr) + namesize); 1336 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1, 1337 sizeof (*lr) + namesize - sizeof (lr_t)); 1338 1339 zil_itx_assign(zd->zd_zilog, itx, tx); 1340 } 1341 1342 static void 1343 ztest_log_remove(ztest_ds_t *zd, dmu_tx_t *tx, lr_remove_t *lr, uint64_t object) 1344 { 1345 char *name = (void *)(lr + 1); /* name follows lr */ 1346 size_t namesize = strlen(name) + 1; 1347 itx_t *itx; 1348 1349 if (zil_replaying(zd->zd_zilog, tx)) 1350 return; 1351 1352 itx = zil_itx_create(TX_REMOVE, sizeof (*lr) + namesize); 1353 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1, 1354 sizeof (*lr) + namesize - sizeof (lr_t)); 1355 1356 itx->itx_oid = object; 1357 zil_itx_assign(zd->zd_zilog, itx, tx); 1358 } 1359 1360 static void 1361 ztest_log_write(ztest_ds_t *zd, dmu_tx_t *tx, lr_write_t *lr) 1362 { 1363 itx_t *itx; 1364 itx_wr_state_t write_state = ztest_random(WR_NUM_STATES); 1365 1366 if (zil_replaying(zd->zd_zilog, tx)) 1367 return; 1368 1369 if (lr->lr_length > ZIL_MAX_LOG_DATA) 1370 write_state = WR_INDIRECT; 1371 1372 itx = zil_itx_create(TX_WRITE, 1373 sizeof (*lr) + (write_state == WR_COPIED ? lr->lr_length : 0)); 1374 1375 if (write_state == WR_COPIED && 1376 dmu_read(zd->zd_os, lr->lr_foid, lr->lr_offset, lr->lr_length, 1377 ((lr_write_t *)&itx->itx_lr) + 1, DMU_READ_NO_PREFETCH) != 0) { 1378 zil_itx_destroy(itx); 1379 itx = zil_itx_create(TX_WRITE, sizeof (*lr)); 1380 write_state = WR_NEED_COPY; 1381 } 1382 itx->itx_private = zd; 1383 itx->itx_wr_state = write_state; 1384 itx->itx_sync = (ztest_random(8) == 0); 1385 itx->itx_sod += (write_state == WR_NEED_COPY ? lr->lr_length : 0); 1386 1387 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1, 1388 sizeof (*lr) - sizeof (lr_t)); 1389 1390 zil_itx_assign(zd->zd_zilog, itx, tx); 1391 } 1392 1393 static void 1394 ztest_log_truncate(ztest_ds_t *zd, dmu_tx_t *tx, lr_truncate_t *lr) 1395 { 1396 itx_t *itx; 1397 1398 if (zil_replaying(zd->zd_zilog, tx)) 1399 return; 1400 1401 itx = zil_itx_create(TX_TRUNCATE, sizeof (*lr)); 1402 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1, 1403 sizeof (*lr) - sizeof (lr_t)); 1404 1405 itx->itx_sync = B_FALSE; 1406 zil_itx_assign(zd->zd_zilog, itx, tx); 1407 } 1408 1409 static void 1410 ztest_log_setattr(ztest_ds_t *zd, dmu_tx_t *tx, lr_setattr_t *lr) 1411 { 1412 itx_t *itx; 1413 1414 if (zil_replaying(zd->zd_zilog, tx)) 1415 return; 1416 1417 itx = zil_itx_create(TX_SETATTR, sizeof (*lr)); 1418 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1, 1419 sizeof (*lr) - sizeof (lr_t)); 1420 1421 itx->itx_sync = B_FALSE; 1422 zil_itx_assign(zd->zd_zilog, itx, tx); 1423 } 1424 1425 /* 1426 * ZIL replay ops 1427 */ 1428 static int 1429 ztest_replay_create(ztest_ds_t *zd, lr_create_t *lr, boolean_t byteswap) 1430 { 1431 char *name = (void *)(lr + 1); /* name follows lr */ 1432 objset_t *os = zd->zd_os; 1433 ztest_block_tag_t *bbt; 1434 dmu_buf_t *db; 1435 dmu_tx_t *tx; 1436 uint64_t txg; 1437 int error = 0; 1438 1439 if (byteswap) 1440 byteswap_uint64_array(lr, sizeof (*lr)); 1441 1442 ASSERT(lr->lr_doid == ZTEST_DIROBJ); 1443 ASSERT(name[0] != '\0'); 1444 1445 tx = dmu_tx_create(os); 1446 1447 dmu_tx_hold_zap(tx, lr->lr_doid, B_TRUE, name); 1448 1449 if (lr->lrz_type == DMU_OT_ZAP_OTHER) { 1450 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, B_TRUE, NULL); 1451 } else { 1452 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); 1453 } 1454 1455 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); 1456 if (txg == 0) 1457 return (ENOSPC); 1458 1459 ASSERT(dmu_objset_zil(os)->zl_replay == !!lr->lr_foid); 1460 1461 if (lr->lrz_type == DMU_OT_ZAP_OTHER) { 1462 if (lr->lr_foid == 0) { 1463 lr->lr_foid = zap_create(os, 1464 lr->lrz_type, lr->lrz_bonustype, 1465 lr->lrz_bonuslen, tx); 1466 } else { 1467 error = zap_create_claim(os, lr->lr_foid, 1468 lr->lrz_type, lr->lrz_bonustype, 1469 lr->lrz_bonuslen, tx); 1470 } 1471 } else { 1472 if (lr->lr_foid == 0) { 1473 lr->lr_foid = dmu_object_alloc(os, 1474 lr->lrz_type, 0, lr->lrz_bonustype, 1475 lr->lrz_bonuslen, tx); 1476 } else { 1477 error = dmu_object_claim(os, lr->lr_foid, 1478 lr->lrz_type, 0, lr->lrz_bonustype, 1479 lr->lrz_bonuslen, tx); 1480 } 1481 } 1482 1483 if (error) { 1484 ASSERT3U(error, ==, EEXIST); 1485 ASSERT(zd->zd_zilog->zl_replay); 1486 dmu_tx_commit(tx); 1487 return (error); 1488 } 1489 1490 ASSERT(lr->lr_foid != 0); 1491 1492 if (lr->lrz_type != DMU_OT_ZAP_OTHER) 1493 VERIFY3U(0, ==, dmu_object_set_blocksize(os, lr->lr_foid, 1494 lr->lrz_blocksize, lr->lrz_ibshift, tx)); 1495 1496 VERIFY3U(0, ==, dmu_bonus_hold(os, lr->lr_foid, FTAG, &db)); 1497 bbt = ztest_bt_bonus(db); 1498 dmu_buf_will_dirty(db, tx); 1499 ztest_bt_generate(bbt, os, lr->lr_foid, -1ULL, lr->lr_gen, txg, txg); 1500 dmu_buf_rele(db, FTAG); 1501 1502 VERIFY3U(0, ==, zap_add(os, lr->lr_doid, name, sizeof (uint64_t), 1, 1503 &lr->lr_foid, tx)); 1504 1505 (void) ztest_log_create(zd, tx, lr); 1506 1507 dmu_tx_commit(tx); 1508 1509 return (0); 1510 } 1511 1512 static int 1513 ztest_replay_remove(ztest_ds_t *zd, lr_remove_t *lr, boolean_t byteswap) 1514 { 1515 char *name = (void *)(lr + 1); /* name follows lr */ 1516 objset_t *os = zd->zd_os; 1517 dmu_object_info_t doi; 1518 dmu_tx_t *tx; 1519 uint64_t object, txg; 1520 1521 if (byteswap) 1522 byteswap_uint64_array(lr, sizeof (*lr)); 1523 1524 ASSERT(lr->lr_doid == ZTEST_DIROBJ); 1525 ASSERT(name[0] != '\0'); 1526 1527 VERIFY3U(0, ==, 1528 zap_lookup(os, lr->lr_doid, name, sizeof (object), 1, &object)); 1529 ASSERT(object != 0); 1530 1531 ztest_object_lock(zd, object, RL_WRITER); 1532 1533 VERIFY3U(0, ==, dmu_object_info(os, object, &doi)); 1534 1535 tx = dmu_tx_create(os); 1536 1537 dmu_tx_hold_zap(tx, lr->lr_doid, B_FALSE, name); 1538 dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END); 1539 1540 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); 1541 if (txg == 0) { 1542 ztest_object_unlock(zd, object); 1543 return (ENOSPC); 1544 } 1545 1546 if (doi.doi_type == DMU_OT_ZAP_OTHER) { 1547 VERIFY3U(0, ==, zap_destroy(os, object, tx)); 1548 } else { 1549 VERIFY3U(0, ==, dmu_object_free(os, object, tx)); 1550 } 1551 1552 VERIFY3U(0, ==, zap_remove(os, lr->lr_doid, name, tx)); 1553 1554 (void) ztest_log_remove(zd, tx, lr, object); 1555 1556 dmu_tx_commit(tx); 1557 1558 ztest_object_unlock(zd, object); 1559 1560 return (0); 1561 } 1562 1563 static int 1564 ztest_replay_write(ztest_ds_t *zd, lr_write_t *lr, boolean_t byteswap) 1565 { 1566 objset_t *os = zd->zd_os; 1567 void *data = lr + 1; /* data follows lr */ 1568 uint64_t offset, length; 1569 ztest_block_tag_t *bt = data; 1570 ztest_block_tag_t *bbt; 1571 uint64_t gen, txg, lrtxg, crtxg; 1572 dmu_object_info_t doi; 1573 dmu_tx_t *tx; 1574 dmu_buf_t *db; 1575 arc_buf_t *abuf = NULL; 1576 rl_t *rl; 1577 1578 if (byteswap) 1579 byteswap_uint64_array(lr, sizeof (*lr)); 1580 1581 offset = lr->lr_offset; 1582 length = lr->lr_length; 1583 1584 /* If it's a dmu_sync() block, write the whole block */ 1585 if (lr->lr_common.lrc_reclen == sizeof (lr_write_t)) { 1586 uint64_t blocksize = BP_GET_LSIZE(&lr->lr_blkptr); 1587 if (length < blocksize) { 1588 offset -= offset % blocksize; 1589 length = blocksize; 1590 } 1591 } 1592 1593 if (bt->bt_magic == BSWAP_64(BT_MAGIC)) 1594 byteswap_uint64_array(bt, sizeof (*bt)); 1595 1596 if (bt->bt_magic != BT_MAGIC) 1597 bt = NULL; 1598 1599 ztest_object_lock(zd, lr->lr_foid, RL_READER); 1600 rl = ztest_range_lock(zd, lr->lr_foid, offset, length, RL_WRITER); 1601 1602 VERIFY3U(0, ==, dmu_bonus_hold(os, lr->lr_foid, FTAG, &db)); 1603 1604 dmu_object_info_from_db(db, &doi); 1605 1606 bbt = ztest_bt_bonus(db); 1607 ASSERT3U(bbt->bt_magic, ==, BT_MAGIC); 1608 gen = bbt->bt_gen; 1609 crtxg = bbt->bt_crtxg; 1610 lrtxg = lr->lr_common.lrc_txg; 1611 1612 tx = dmu_tx_create(os); 1613 1614 dmu_tx_hold_write(tx, lr->lr_foid, offset, length); 1615 1616 if (ztest_random(8) == 0 && length == doi.doi_data_block_size && 1617 P2PHASE(offset, length) == 0) 1618 abuf = dmu_request_arcbuf(db, length); 1619 1620 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); 1621 if (txg == 0) { 1622 if (abuf != NULL) 1623 dmu_return_arcbuf(abuf); 1624 dmu_buf_rele(db, FTAG); 1625 ztest_range_unlock(rl); 1626 ztest_object_unlock(zd, lr->lr_foid); 1627 return (ENOSPC); 1628 } 1629 1630 if (bt != NULL) { 1631 /* 1632 * Usually, verify the old data before writing new data -- 1633 * but not always, because we also want to verify correct 1634 * behavior when the data was not recently read into cache. 1635 */ 1636 ASSERT(offset % doi.doi_data_block_size == 0); 1637 if (ztest_random(4) != 0) { 1638 int prefetch = ztest_random(2) ? 1639 DMU_READ_PREFETCH : DMU_READ_NO_PREFETCH; 1640 ztest_block_tag_t rbt; 1641 1642 VERIFY(dmu_read(os, lr->lr_foid, offset, 1643 sizeof (rbt), &rbt, prefetch) == 0); 1644 if (rbt.bt_magic == BT_MAGIC) { 1645 ztest_bt_verify(&rbt, os, lr->lr_foid, 1646 offset, gen, txg, crtxg); 1647 } 1648 } 1649 1650 /* 1651 * Writes can appear to be newer than the bonus buffer because 1652 * the ztest_get_data() callback does a dmu_read() of the 1653 * open-context data, which may be different than the data 1654 * as it was when the write was generated. 1655 */ 1656 if (zd->zd_zilog->zl_replay) { 1657 ztest_bt_verify(bt, os, lr->lr_foid, offset, 1658 MAX(gen, bt->bt_gen), MAX(txg, lrtxg), 1659 bt->bt_crtxg); 1660 } 1661 1662 /* 1663 * Set the bt's gen/txg to the bonus buffer's gen/txg 1664 * so that all of the usual ASSERTs will work. 1665 */ 1666 ztest_bt_generate(bt, os, lr->lr_foid, offset, gen, txg, crtxg); 1667 } 1668 1669 if (abuf == NULL) { 1670 dmu_write(os, lr->lr_foid, offset, length, data, tx); 1671 } else { 1672 bcopy(data, abuf->b_data, length); 1673 dmu_assign_arcbuf(db, offset, abuf, tx); 1674 } 1675 1676 (void) ztest_log_write(zd, tx, lr); 1677 1678 dmu_buf_rele(db, FTAG); 1679 1680 dmu_tx_commit(tx); 1681 1682 ztest_range_unlock(rl); 1683 ztest_object_unlock(zd, lr->lr_foid); 1684 1685 return (0); 1686 } 1687 1688 static int 1689 ztest_replay_truncate(ztest_ds_t *zd, lr_truncate_t *lr, boolean_t byteswap) 1690 { 1691 objset_t *os = zd->zd_os; 1692 dmu_tx_t *tx; 1693 uint64_t txg; 1694 rl_t *rl; 1695 1696 if (byteswap) 1697 byteswap_uint64_array(lr, sizeof (*lr)); 1698 1699 ztest_object_lock(zd, lr->lr_foid, RL_READER); 1700 rl = ztest_range_lock(zd, lr->lr_foid, lr->lr_offset, lr->lr_length, 1701 RL_WRITER); 1702 1703 tx = dmu_tx_create(os); 1704 1705 dmu_tx_hold_free(tx, lr->lr_foid, lr->lr_offset, lr->lr_length); 1706 1707 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); 1708 if (txg == 0) { 1709 ztest_range_unlock(rl); 1710 ztest_object_unlock(zd, lr->lr_foid); 1711 return (ENOSPC); 1712 } 1713 1714 VERIFY(dmu_free_range(os, lr->lr_foid, lr->lr_offset, 1715 lr->lr_length, tx) == 0); 1716 1717 (void) ztest_log_truncate(zd, tx, lr); 1718 1719 dmu_tx_commit(tx); 1720 1721 ztest_range_unlock(rl); 1722 ztest_object_unlock(zd, lr->lr_foid); 1723 1724 return (0); 1725 } 1726 1727 static int 1728 ztest_replay_setattr(ztest_ds_t *zd, lr_setattr_t *lr, boolean_t byteswap) 1729 { 1730 objset_t *os = zd->zd_os; 1731 dmu_tx_t *tx; 1732 dmu_buf_t *db; 1733 ztest_block_tag_t *bbt; 1734 uint64_t txg, lrtxg, crtxg; 1735 1736 if (byteswap) 1737 byteswap_uint64_array(lr, sizeof (*lr)); 1738 1739 ztest_object_lock(zd, lr->lr_foid, RL_WRITER); 1740 1741 VERIFY3U(0, ==, dmu_bonus_hold(os, lr->lr_foid, FTAG, &db)); 1742 1743 tx = dmu_tx_create(os); 1744 dmu_tx_hold_bonus(tx, lr->lr_foid); 1745 1746 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); 1747 if (txg == 0) { 1748 dmu_buf_rele(db, FTAG); 1749 ztest_object_unlock(zd, lr->lr_foid); 1750 return (ENOSPC); 1751 } 1752 1753 bbt = ztest_bt_bonus(db); 1754 ASSERT3U(bbt->bt_magic, ==, BT_MAGIC); 1755 crtxg = bbt->bt_crtxg; 1756 lrtxg = lr->lr_common.lrc_txg; 1757 1758 if (zd->zd_zilog->zl_replay) { 1759 ASSERT(lr->lr_size != 0); 1760 ASSERT(lr->lr_mode != 0); 1761 ASSERT(lrtxg != 0); 1762 } else { 1763 /* 1764 * Randomly change the size and increment the generation. 1765 */ 1766 lr->lr_size = (ztest_random(db->db_size / sizeof (*bbt)) + 1) * 1767 sizeof (*bbt); 1768 lr->lr_mode = bbt->bt_gen + 1; 1769 ASSERT(lrtxg == 0); 1770 } 1771 1772 /* 1773 * Verify that the current bonus buffer is not newer than our txg. 1774 */ 1775 ztest_bt_verify(bbt, os, lr->lr_foid, -1ULL, lr->lr_mode, 1776 MAX(txg, lrtxg), crtxg); 1777 1778 dmu_buf_will_dirty(db, tx); 1779 1780 ASSERT3U(lr->lr_size, >=, sizeof (*bbt)); 1781 ASSERT3U(lr->lr_size, <=, db->db_size); 1782 VERIFY0(dmu_set_bonus(db, lr->lr_size, tx)); 1783 bbt = ztest_bt_bonus(db); 1784 1785 ztest_bt_generate(bbt, os, lr->lr_foid, -1ULL, lr->lr_mode, txg, crtxg); 1786 1787 dmu_buf_rele(db, FTAG); 1788 1789 (void) ztest_log_setattr(zd, tx, lr); 1790 1791 dmu_tx_commit(tx); 1792 1793 ztest_object_unlock(zd, lr->lr_foid); 1794 1795 return (0); 1796 } 1797 1798 zil_replay_func_t *ztest_replay_vector[TX_MAX_TYPE] = { 1799 NULL, /* 0 no such transaction type */ 1800 ztest_replay_create, /* TX_CREATE */ 1801 NULL, /* TX_MKDIR */ 1802 NULL, /* TX_MKXATTR */ 1803 NULL, /* TX_SYMLINK */ 1804 ztest_replay_remove, /* TX_REMOVE */ 1805 NULL, /* TX_RMDIR */ 1806 NULL, /* TX_LINK */ 1807 NULL, /* TX_RENAME */ 1808 ztest_replay_write, /* TX_WRITE */ 1809 ztest_replay_truncate, /* TX_TRUNCATE */ 1810 ztest_replay_setattr, /* TX_SETATTR */ 1811 NULL, /* TX_ACL */ 1812 NULL, /* TX_CREATE_ACL */ 1813 NULL, /* TX_CREATE_ATTR */ 1814 NULL, /* TX_CREATE_ACL_ATTR */ 1815 NULL, /* TX_MKDIR_ACL */ 1816 NULL, /* TX_MKDIR_ATTR */ 1817 NULL, /* TX_MKDIR_ACL_ATTR */ 1818 NULL, /* TX_WRITE2 */ 1819 }; 1820 1821 /* 1822 * ZIL get_data callbacks 1823 */ 1824 1825 static void 1826 ztest_get_done(zgd_t *zgd, int error) 1827 { 1828 ztest_ds_t *zd = zgd->zgd_private; 1829 uint64_t object = zgd->zgd_rl->rl_object; 1830 1831 if (zgd->zgd_db) 1832 dmu_buf_rele(zgd->zgd_db, zgd); 1833 1834 ztest_range_unlock(zgd->zgd_rl); 1835 ztest_object_unlock(zd, object); 1836 1837 if (error == 0 && zgd->zgd_bp) 1838 zil_add_block(zgd->zgd_zilog, zgd->zgd_bp); 1839 1840 umem_free(zgd, sizeof (*zgd)); 1841 } 1842 1843 static int 1844 ztest_get_data(void *arg, lr_write_t *lr, char *buf, zio_t *zio) 1845 { 1846 ztest_ds_t *zd = arg; 1847 objset_t *os = zd->zd_os; 1848 uint64_t object = lr->lr_foid; 1849 uint64_t offset = lr->lr_offset; 1850 uint64_t size = lr->lr_length; 1851 blkptr_t *bp = &lr->lr_blkptr; 1852 uint64_t txg = lr->lr_common.lrc_txg; 1853 uint64_t crtxg; 1854 dmu_object_info_t doi; 1855 dmu_buf_t *db; 1856 zgd_t *zgd; 1857 int error; 1858 1859 ztest_object_lock(zd, object, RL_READER); 1860 error = dmu_bonus_hold(os, object, FTAG, &db); 1861 if (error) { 1862 ztest_object_unlock(zd, object); 1863 return (error); 1864 } 1865 1866 crtxg = ztest_bt_bonus(db)->bt_crtxg; 1867 1868 if (crtxg == 0 || crtxg > txg) { 1869 dmu_buf_rele(db, FTAG); 1870 ztest_object_unlock(zd, object); 1871 return (ENOENT); 1872 } 1873 1874 dmu_object_info_from_db(db, &doi); 1875 dmu_buf_rele(db, FTAG); 1876 db = NULL; 1877 1878 zgd = umem_zalloc(sizeof (*zgd), UMEM_NOFAIL); 1879 zgd->zgd_zilog = zd->zd_zilog; 1880 zgd->zgd_private = zd; 1881 1882 if (buf != NULL) { /* immediate write */ 1883 zgd->zgd_rl = ztest_range_lock(zd, object, offset, size, 1884 RL_READER); 1885 1886 error = dmu_read(os, object, offset, size, buf, 1887 DMU_READ_NO_PREFETCH); 1888 ASSERT(error == 0); 1889 } else { 1890 size = doi.doi_data_block_size; 1891 if (ISP2(size)) { 1892 offset = P2ALIGN(offset, size); 1893 } else { 1894 ASSERT(offset < size); 1895 offset = 0; 1896 } 1897 1898 zgd->zgd_rl = ztest_range_lock(zd, object, offset, size, 1899 RL_READER); 1900 1901 error = dmu_buf_hold(os, object, offset, zgd, &db, 1902 DMU_READ_NO_PREFETCH); 1903 1904 if (error == 0) { 1905 blkptr_t *obp = dmu_buf_get_blkptr(db); 1906 if (obp) { 1907 ASSERT(BP_IS_HOLE(bp)); 1908 *bp = *obp; 1909 } 1910 1911 zgd->zgd_db = db; 1912 zgd->zgd_bp = bp; 1913 1914 ASSERT(db->db_offset == offset); 1915 ASSERT(db->db_size == size); 1916 1917 error = dmu_sync(zio, lr->lr_common.lrc_txg, 1918 ztest_get_done, zgd); 1919 1920 if (error == 0) 1921 return (0); 1922 } 1923 } 1924 1925 ztest_get_done(zgd, error); 1926 1927 return (error); 1928 } 1929 1930 static void * 1931 ztest_lr_alloc(size_t lrsize, char *name) 1932 { 1933 char *lr; 1934 size_t namesize = name ? strlen(name) + 1 : 0; 1935 1936 lr = umem_zalloc(lrsize + namesize, UMEM_NOFAIL); 1937 1938 if (name) 1939 bcopy(name, lr + lrsize, namesize); 1940 1941 return (lr); 1942 } 1943 1944 void 1945 ztest_lr_free(void *lr, size_t lrsize, char *name) 1946 { 1947 size_t namesize = name ? strlen(name) + 1 : 0; 1948 1949 umem_free(lr, lrsize + namesize); 1950 } 1951 1952 /* 1953 * Lookup a bunch of objects. Returns the number of objects not found. 1954 */ 1955 static int 1956 ztest_lookup(ztest_ds_t *zd, ztest_od_t *od, int count) 1957 { 1958 int missing = 0; 1959 int error; 1960 1961 ASSERT(_mutex_held(&zd->zd_dirobj_lock)); 1962 1963 for (int i = 0; i < count; i++, od++) { 1964 od->od_object = 0; 1965 error = zap_lookup(zd->zd_os, od->od_dir, od->od_name, 1966 sizeof (uint64_t), 1, &od->od_object); 1967 if (error) { 1968 ASSERT(error == ENOENT); 1969 ASSERT(od->od_object == 0); 1970 missing++; 1971 } else { 1972 dmu_buf_t *db; 1973 ztest_block_tag_t *bbt; 1974 dmu_object_info_t doi; 1975 1976 ASSERT(od->od_object != 0); 1977 ASSERT(missing == 0); /* there should be no gaps */ 1978 1979 ztest_object_lock(zd, od->od_object, RL_READER); 1980 VERIFY3U(0, ==, dmu_bonus_hold(zd->zd_os, 1981 od->od_object, FTAG, &db)); 1982 dmu_object_info_from_db(db, &doi); 1983 bbt = ztest_bt_bonus(db); 1984 ASSERT3U(bbt->bt_magic, ==, BT_MAGIC); 1985 od->od_type = doi.doi_type; 1986 od->od_blocksize = doi.doi_data_block_size; 1987 od->od_gen = bbt->bt_gen; 1988 dmu_buf_rele(db, FTAG); 1989 ztest_object_unlock(zd, od->od_object); 1990 } 1991 } 1992 1993 return (missing); 1994 } 1995 1996 static int 1997 ztest_create(ztest_ds_t *zd, ztest_od_t *od, int count) 1998 { 1999 int missing = 0; 2000 2001 ASSERT(_mutex_held(&zd->zd_dirobj_lock)); 2002 2003 for (int i = 0; i < count; i++, od++) { 2004 if (missing) { 2005 od->od_object = 0; 2006 missing++; 2007 continue; 2008 } 2009 2010 lr_create_t *lr = ztest_lr_alloc(sizeof (*lr), od->od_name); 2011 2012 lr->lr_doid = od->od_dir; 2013 lr->lr_foid = 0; /* 0 to allocate, > 0 to claim */ 2014 lr->lrz_type = od->od_crtype; 2015 lr->lrz_blocksize = od->od_crblocksize; 2016 lr->lrz_ibshift = ztest_random_ibshift(); 2017 lr->lrz_bonustype = DMU_OT_UINT64_OTHER; 2018 lr->lrz_bonuslen = dmu_bonus_max(); 2019 lr->lr_gen = od->od_crgen; 2020 lr->lr_crtime[0] = time(NULL); 2021 2022 if (ztest_replay_create(zd, lr, B_FALSE) != 0) { 2023 ASSERT(missing == 0); 2024 od->od_object = 0; 2025 missing++; 2026 } else { 2027 od->od_object = lr->lr_foid; 2028 od->od_type = od->od_crtype; 2029 od->od_blocksize = od->od_crblocksize; 2030 od->od_gen = od->od_crgen; 2031 ASSERT(od->od_object != 0); 2032 } 2033 2034 ztest_lr_free(lr, sizeof (*lr), od->od_name); 2035 } 2036 2037 return (missing); 2038 } 2039 2040 static int 2041 ztest_remove(ztest_ds_t *zd, ztest_od_t *od, int count) 2042 { 2043 int missing = 0; 2044 int error; 2045 2046 ASSERT(_mutex_held(&zd->zd_dirobj_lock)); 2047 2048 od += count - 1; 2049 2050 for (int i = count - 1; i >= 0; i--, od--) { 2051 if (missing) { 2052 missing++; 2053 continue; 2054 } 2055 2056 /* 2057 * No object was found. 2058 */ 2059 if (od->od_object == 0) 2060 continue; 2061 2062 lr_remove_t *lr = ztest_lr_alloc(sizeof (*lr), od->od_name); 2063 2064 lr->lr_doid = od->od_dir; 2065 2066 if ((error = ztest_replay_remove(zd, lr, B_FALSE)) != 0) { 2067 ASSERT3U(error, ==, ENOSPC); 2068 missing++; 2069 } else { 2070 od->od_object = 0; 2071 } 2072 ztest_lr_free(lr, sizeof (*lr), od->od_name); 2073 } 2074 2075 return (missing); 2076 } 2077 2078 static int 2079 ztest_write(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size, 2080 void *data) 2081 { 2082 lr_write_t *lr; 2083 int error; 2084 2085 lr = ztest_lr_alloc(sizeof (*lr) + size, NULL); 2086 2087 lr->lr_foid = object; 2088 lr->lr_offset = offset; 2089 lr->lr_length = size; 2090 lr->lr_blkoff = 0; 2091 BP_ZERO(&lr->lr_blkptr); 2092 2093 bcopy(data, lr + 1, size); 2094 2095 error = ztest_replay_write(zd, lr, B_FALSE); 2096 2097 ztest_lr_free(lr, sizeof (*lr) + size, NULL); 2098 2099 return (error); 2100 } 2101 2102 static int 2103 ztest_truncate(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size) 2104 { 2105 lr_truncate_t *lr; 2106 int error; 2107 2108 lr = ztest_lr_alloc(sizeof (*lr), NULL); 2109 2110 lr->lr_foid = object; 2111 lr->lr_offset = offset; 2112 lr->lr_length = size; 2113 2114 error = ztest_replay_truncate(zd, lr, B_FALSE); 2115 2116 ztest_lr_free(lr, sizeof (*lr), NULL); 2117 2118 return (error); 2119 } 2120 2121 static int 2122 ztest_setattr(ztest_ds_t *zd, uint64_t object) 2123 { 2124 lr_setattr_t *lr; 2125 int error; 2126 2127 lr = ztest_lr_alloc(sizeof (*lr), NULL); 2128 2129 lr->lr_foid = object; 2130 lr->lr_size = 0; 2131 lr->lr_mode = 0; 2132 2133 error = ztest_replay_setattr(zd, lr, B_FALSE); 2134 2135 ztest_lr_free(lr, sizeof (*lr), NULL); 2136 2137 return (error); 2138 } 2139 2140 static void 2141 ztest_prealloc(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size) 2142 { 2143 objset_t *os = zd->zd_os; 2144 dmu_tx_t *tx; 2145 uint64_t txg; 2146 rl_t *rl; 2147 2148 txg_wait_synced(dmu_objset_pool(os), 0); 2149 2150 ztest_object_lock(zd, object, RL_READER); 2151 rl = ztest_range_lock(zd, object, offset, size, RL_WRITER); 2152 2153 tx = dmu_tx_create(os); 2154 2155 dmu_tx_hold_write(tx, object, offset, size); 2156 2157 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); 2158 2159 if (txg != 0) { 2160 dmu_prealloc(os, object, offset, size, tx); 2161 dmu_tx_commit(tx); 2162 txg_wait_synced(dmu_objset_pool(os), txg); 2163 } else { 2164 (void) dmu_free_long_range(os, object, offset, size); 2165 } 2166 2167 ztest_range_unlock(rl); 2168 ztest_object_unlock(zd, object); 2169 } 2170 2171 static void 2172 ztest_io(ztest_ds_t *zd, uint64_t object, uint64_t offset) 2173 { 2174 int err; 2175 ztest_block_tag_t wbt; 2176 dmu_object_info_t doi; 2177 enum ztest_io_type io_type; 2178 uint64_t blocksize; 2179 void *data; 2180 2181 VERIFY(dmu_object_info(zd->zd_os, object, &doi) == 0); 2182 blocksize = doi.doi_data_block_size; 2183 data = umem_alloc(blocksize, UMEM_NOFAIL); 2184 2185 /* 2186 * Pick an i/o type at random, biased toward writing block tags. 2187 */ 2188 io_type = ztest_random(ZTEST_IO_TYPES); 2189 if (ztest_random(2) == 0) 2190 io_type = ZTEST_IO_WRITE_TAG; 2191 2192 (void) rw_rdlock(&zd->zd_zilog_lock); 2193 2194 switch (io_type) { 2195 2196 case ZTEST_IO_WRITE_TAG: 2197 ztest_bt_generate(&wbt, zd->zd_os, object, offset, 0, 0, 0); 2198 (void) ztest_write(zd, object, offset, sizeof (wbt), &wbt); 2199 break; 2200 2201 case ZTEST_IO_WRITE_PATTERN: 2202 (void) memset(data, 'a' + (object + offset) % 5, blocksize); 2203 if (ztest_random(2) == 0) { 2204 /* 2205 * Induce fletcher2 collisions to ensure that 2206 * zio_ddt_collision() detects and resolves them 2207 * when using fletcher2-verify for deduplication. 2208 */ 2209 ((uint64_t *)data)[0] ^= 1ULL << 63; 2210 ((uint64_t *)data)[4] ^= 1ULL << 63; 2211 } 2212 (void) ztest_write(zd, object, offset, blocksize, data); 2213 break; 2214 2215 case ZTEST_IO_WRITE_ZEROES: 2216 bzero(data, blocksize); 2217 (void) ztest_write(zd, object, offset, blocksize, data); 2218 break; 2219 2220 case ZTEST_IO_TRUNCATE: 2221 (void) ztest_truncate(zd, object, offset, blocksize); 2222 break; 2223 2224 case ZTEST_IO_SETATTR: 2225 (void) ztest_setattr(zd, object); 2226 break; 2227 2228 case ZTEST_IO_REWRITE: 2229 (void) rw_rdlock(&ztest_name_lock); 2230 err = ztest_dsl_prop_set_uint64(zd->zd_name, 2231 ZFS_PROP_CHECKSUM, spa_dedup_checksum(ztest_spa), 2232 B_FALSE); 2233 VERIFY(err == 0 || err == ENOSPC); 2234 err = ztest_dsl_prop_set_uint64(zd->zd_name, 2235 ZFS_PROP_COMPRESSION, 2236 ztest_random_dsl_prop(ZFS_PROP_COMPRESSION), 2237 B_FALSE); 2238 VERIFY(err == 0 || err == ENOSPC); 2239 (void) rw_unlock(&ztest_name_lock); 2240 2241 VERIFY0(dmu_read(zd->zd_os, object, offset, blocksize, data, 2242 DMU_READ_NO_PREFETCH)); 2243 2244 (void) ztest_write(zd, object, offset, blocksize, data); 2245 break; 2246 } 2247 2248 (void) rw_unlock(&zd->zd_zilog_lock); 2249 2250 umem_free(data, blocksize); 2251 } 2252 2253 /* 2254 * Initialize an object description template. 2255 */ 2256 static void 2257 ztest_od_init(ztest_od_t *od, uint64_t id, char *tag, uint64_t index, 2258 dmu_object_type_t type, uint64_t blocksize, uint64_t gen) 2259 { 2260 od->od_dir = ZTEST_DIROBJ; 2261 od->od_object = 0; 2262 2263 od->od_crtype = type; 2264 od->od_crblocksize = blocksize ? blocksize : ztest_random_blocksize(); 2265 od->od_crgen = gen; 2266 2267 od->od_type = DMU_OT_NONE; 2268 od->od_blocksize = 0; 2269 od->od_gen = 0; 2270 2271 (void) snprintf(od->od_name, sizeof (od->od_name), "%s(%lld)[%llu]", 2272 tag, (int64_t)id, index); 2273 } 2274 2275 /* 2276 * Lookup or create the objects for a test using the od template. 2277 * If the objects do not all exist, or if 'remove' is specified, 2278 * remove any existing objects and create new ones. Otherwise, 2279 * use the existing objects. 2280 */ 2281 static int 2282 ztest_object_init(ztest_ds_t *zd, ztest_od_t *od, size_t size, boolean_t remove) 2283 { 2284 int count = size / sizeof (*od); 2285 int rv = 0; 2286 2287 VERIFY(mutex_lock(&zd->zd_dirobj_lock) == 0); 2288 if ((ztest_lookup(zd, od, count) != 0 || remove) && 2289 (ztest_remove(zd, od, count) != 0 || 2290 ztest_create(zd, od, count) != 0)) 2291 rv = -1; 2292 zd->zd_od = od; 2293 VERIFY(mutex_unlock(&zd->zd_dirobj_lock) == 0); 2294 2295 return (rv); 2296 } 2297 2298 /* ARGSUSED */ 2299 void 2300 ztest_zil_commit(ztest_ds_t *zd, uint64_t id) 2301 { 2302 zilog_t *zilog = zd->zd_zilog; 2303 2304 (void) rw_rdlock(&zd->zd_zilog_lock); 2305 2306 zil_commit(zilog, ztest_random(ZTEST_OBJECTS)); 2307 2308 /* 2309 * Remember the committed values in zd, which is in parent/child 2310 * shared memory. If we die, the next iteration of ztest_run() 2311 * will verify that the log really does contain this record. 2312 */ 2313 mutex_enter(&zilog->zl_lock); 2314 ASSERT(zd->zd_shared != NULL); 2315 ASSERT3U(zd->zd_shared->zd_seq, <=, zilog->zl_commit_lr_seq); 2316 zd->zd_shared->zd_seq = zilog->zl_commit_lr_seq; 2317 mutex_exit(&zilog->zl_lock); 2318 2319 (void) rw_unlock(&zd->zd_zilog_lock); 2320 } 2321 2322 /* 2323 * This function is designed to simulate the operations that occur during a 2324 * mount/unmount operation. We hold the dataset across these operations in an 2325 * attempt to expose any implicit assumptions about ZIL management. 2326 */ 2327 /* ARGSUSED */ 2328 void 2329 ztest_zil_remount(ztest_ds_t *zd, uint64_t id) 2330 { 2331 objset_t *os = zd->zd_os; 2332 2333 /* 2334 * We grab the zd_dirobj_lock to ensure that no other thread is 2335 * updating the zil (i.e. adding in-memory log records) and the 2336 * zd_zilog_lock to block any I/O. 2337 */ 2338 VERIFY0(mutex_lock(&zd->zd_dirobj_lock)); 2339 (void) rw_wrlock(&zd->zd_zilog_lock); 2340 2341 /* zfsvfs_teardown() */ 2342 zil_close(zd->zd_zilog); 2343 2344 /* zfsvfs_setup() */ 2345 VERIFY(zil_open(os, ztest_get_data) == zd->zd_zilog); 2346 zil_replay(os, zd, ztest_replay_vector); 2347 2348 (void) rw_unlock(&zd->zd_zilog_lock); 2349 VERIFY(mutex_unlock(&zd->zd_dirobj_lock) == 0); 2350 } 2351 2352 /* 2353 * Verify that we can't destroy an active pool, create an existing pool, 2354 * or create a pool with a bad vdev spec. 2355 */ 2356 /* ARGSUSED */ 2357 void 2358 ztest_spa_create_destroy(ztest_ds_t *zd, uint64_t id) 2359 { 2360 ztest_shared_opts_t *zo = &ztest_opts; 2361 spa_t *spa; 2362 nvlist_t *nvroot; 2363 2364 /* 2365 * Attempt to create using a bad file. 2366 */ 2367 nvroot = make_vdev_root("/dev/bogus", NULL, NULL, 0, 0, 0, 0, 0, 1); 2368 VERIFY3U(ENOENT, ==, 2369 spa_create("ztest_bad_file", nvroot, NULL, NULL)); 2370 nvlist_free(nvroot); 2371 2372 /* 2373 * Attempt to create using a bad mirror. 2374 */ 2375 nvroot = make_vdev_root("/dev/bogus", NULL, NULL, 0, 0, 0, 0, 2, 1); 2376 VERIFY3U(ENOENT, ==, 2377 spa_create("ztest_bad_mirror", nvroot, NULL, NULL)); 2378 nvlist_free(nvroot); 2379 2380 /* 2381 * Attempt to create an existing pool. It shouldn't matter 2382 * what's in the nvroot; we should fail with EEXIST. 2383 */ 2384 (void) rw_rdlock(&ztest_name_lock); 2385 nvroot = make_vdev_root("/dev/bogus", NULL, NULL, 0, 0, 0, 0, 0, 1); 2386 VERIFY3U(EEXIST, ==, spa_create(zo->zo_pool, nvroot, NULL, NULL)); 2387 nvlist_free(nvroot); 2388 VERIFY3U(0, ==, spa_open(zo->zo_pool, &spa, FTAG)); 2389 VERIFY3U(EBUSY, ==, spa_destroy(zo->zo_pool)); 2390 spa_close(spa, FTAG); 2391 2392 (void) rw_unlock(&ztest_name_lock); 2393 } 2394 2395 /* ARGSUSED */ 2396 void 2397 ztest_spa_upgrade(ztest_ds_t *zd, uint64_t id) 2398 { 2399 spa_t *spa; 2400 uint64_t initial_version = SPA_VERSION_INITIAL; 2401 uint64_t version, newversion; 2402 nvlist_t *nvroot, *props; 2403 char *name; 2404 2405 VERIFY0(mutex_lock(&ztest_vdev_lock)); 2406 name = kmem_asprintf("%s_upgrade", ztest_opts.zo_pool); 2407 2408 /* 2409 * Clean up from previous runs. 2410 */ 2411 (void) spa_destroy(name); 2412 2413 nvroot = make_vdev_root(NULL, NULL, name, ztest_opts.zo_vdev_size, 0, 2414 0, ztest_opts.zo_raidz, ztest_opts.zo_mirrors, 1); 2415 2416 /* 2417 * If we're configuring a RAIDZ device then make sure that the 2418 * the initial version is capable of supporting that feature. 2419 */ 2420 switch (ztest_opts.zo_raidz_parity) { 2421 case 0: 2422 case 1: 2423 initial_version = SPA_VERSION_INITIAL; 2424 break; 2425 case 2: 2426 initial_version = SPA_VERSION_RAIDZ2; 2427 break; 2428 case 3: 2429 initial_version = SPA_VERSION_RAIDZ3; 2430 break; 2431 } 2432 2433 /* 2434 * Create a pool with a spa version that can be upgraded. Pick 2435 * a value between initial_version and SPA_VERSION_BEFORE_FEATURES. 2436 */ 2437 do { 2438 version = ztest_random_spa_version(initial_version); 2439 } while (version > SPA_VERSION_BEFORE_FEATURES); 2440 2441 props = fnvlist_alloc(); 2442 fnvlist_add_uint64(props, 2443 zpool_prop_to_name(ZPOOL_PROP_VERSION), version); 2444 VERIFY0(spa_create(name, nvroot, props, NULL)); 2445 fnvlist_free(nvroot); 2446 fnvlist_free(props); 2447 2448 VERIFY0(spa_open(name, &spa, FTAG)); 2449 VERIFY3U(spa_version(spa), ==, version); 2450 newversion = ztest_random_spa_version(version + 1); 2451 2452 if (ztest_opts.zo_verbose >= 4) { 2453 (void) printf("upgrading spa version from %llu to %llu\n", 2454 (u_longlong_t)version, (u_longlong_t)newversion); 2455 } 2456 2457 spa_upgrade(spa, newversion); 2458 VERIFY3U(spa_version(spa), >, version); 2459 VERIFY3U(spa_version(spa), ==, fnvlist_lookup_uint64(spa->spa_config, 2460 zpool_prop_to_name(ZPOOL_PROP_VERSION))); 2461 spa_close(spa, FTAG); 2462 2463 strfree(name); 2464 VERIFY0(mutex_unlock(&ztest_vdev_lock)); 2465 } 2466 2467 static vdev_t * 2468 vdev_lookup_by_path(vdev_t *vd, const char *path) 2469 { 2470 vdev_t *mvd; 2471 2472 if (vd->vdev_path != NULL && strcmp(path, vd->vdev_path) == 0) 2473 return (vd); 2474 2475 for (int c = 0; c < vd->vdev_children; c++) 2476 if ((mvd = vdev_lookup_by_path(vd->vdev_child[c], path)) != 2477 NULL) 2478 return (mvd); 2479 2480 return (NULL); 2481 } 2482 2483 /* 2484 * Find the first available hole which can be used as a top-level. 2485 */ 2486 int 2487 find_vdev_hole(spa_t *spa) 2488 { 2489 vdev_t *rvd = spa->spa_root_vdev; 2490 int c; 2491 2492 ASSERT(spa_config_held(spa, SCL_VDEV, RW_READER) == SCL_VDEV); 2493 2494 for (c = 0; c < rvd->vdev_children; c++) { 2495 vdev_t *cvd = rvd->vdev_child[c]; 2496 2497 if (cvd->vdev_ishole) 2498 break; 2499 } 2500 return (c); 2501 } 2502 2503 /* 2504 * Verify that vdev_add() works as expected. 2505 */ 2506 /* ARGSUSED */ 2507 void 2508 ztest_vdev_add_remove(ztest_ds_t *zd, uint64_t id) 2509 { 2510 ztest_shared_t *zs = ztest_shared; 2511 spa_t *spa = ztest_spa; 2512 uint64_t leaves; 2513 uint64_t guid; 2514 nvlist_t *nvroot; 2515 int error; 2516 2517 VERIFY(mutex_lock(&ztest_vdev_lock) == 0); 2518 leaves = MAX(zs->zs_mirrors + zs->zs_splits, 1) * ztest_opts.zo_raidz; 2519 2520 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 2521 2522 ztest_shared->zs_vdev_next_leaf = find_vdev_hole(spa) * leaves; 2523 2524 /* 2525 * If we have slogs then remove them 1/4 of the time. 2526 */ 2527 if (spa_has_slogs(spa) && ztest_random(4) == 0) { 2528 /* 2529 * Grab the guid from the head of the log class rotor. 2530 */ 2531 guid = spa_log_class(spa)->mc_rotor->mg_vd->vdev_guid; 2532 2533 spa_config_exit(spa, SCL_VDEV, FTAG); 2534 2535 /* 2536 * We have to grab the zs_name_lock as writer to 2537 * prevent a race between removing a slog (dmu_objset_find) 2538 * and destroying a dataset. Removing the slog will 2539 * grab a reference on the dataset which may cause 2540 * dmu_objset_destroy() to fail with EBUSY thus 2541 * leaving the dataset in an inconsistent state. 2542 */ 2543 VERIFY(rw_wrlock(&ztest_name_lock) == 0); 2544 error = spa_vdev_remove(spa, guid, B_FALSE); 2545 VERIFY(rw_unlock(&ztest_name_lock) == 0); 2546 2547 if (error && error != EEXIST) 2548 fatal(0, "spa_vdev_remove() = %d", error); 2549 } else { 2550 spa_config_exit(spa, SCL_VDEV, FTAG); 2551 2552 /* 2553 * Make 1/4 of the devices be log devices. 2554 */ 2555 nvroot = make_vdev_root(NULL, NULL, NULL, 2556 ztest_opts.zo_vdev_size, 0, 2557 ztest_random(4) == 0, ztest_opts.zo_raidz, 2558 zs->zs_mirrors, 1); 2559 2560 error = spa_vdev_add(spa, nvroot); 2561 nvlist_free(nvroot); 2562 2563 if (error == ENOSPC) 2564 ztest_record_enospc("spa_vdev_add"); 2565 else if (error != 0) 2566 fatal(0, "spa_vdev_add() = %d", error); 2567 } 2568 2569 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 2570 } 2571 2572 /* 2573 * Verify that adding/removing aux devices (l2arc, hot spare) works as expected. 2574 */ 2575 /* ARGSUSED */ 2576 void 2577 ztest_vdev_aux_add_remove(ztest_ds_t *zd, uint64_t id) 2578 { 2579 ztest_shared_t *zs = ztest_shared; 2580 spa_t *spa = ztest_spa; 2581 vdev_t *rvd = spa->spa_root_vdev; 2582 spa_aux_vdev_t *sav; 2583 char *aux; 2584 uint64_t guid = 0; 2585 int error; 2586 2587 if (ztest_random(2) == 0) { 2588 sav = &spa->spa_spares; 2589 aux = ZPOOL_CONFIG_SPARES; 2590 } else { 2591 sav = &spa->spa_l2cache; 2592 aux = ZPOOL_CONFIG_L2CACHE; 2593 } 2594 2595 VERIFY(mutex_lock(&ztest_vdev_lock) == 0); 2596 2597 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 2598 2599 if (sav->sav_count != 0 && ztest_random(4) == 0) { 2600 /* 2601 * Pick a random device to remove. 2602 */ 2603 guid = sav->sav_vdevs[ztest_random(sav->sav_count)]->vdev_guid; 2604 } else { 2605 /* 2606 * Find an unused device we can add. 2607 */ 2608 zs->zs_vdev_aux = 0; 2609 for (;;) { 2610 char path[MAXPATHLEN]; 2611 int c; 2612 (void) snprintf(path, sizeof (path), ztest_aux_template, 2613 ztest_opts.zo_dir, ztest_opts.zo_pool, aux, 2614 zs->zs_vdev_aux); 2615 for (c = 0; c < sav->sav_count; c++) 2616 if (strcmp(sav->sav_vdevs[c]->vdev_path, 2617 path) == 0) 2618 break; 2619 if (c == sav->sav_count && 2620 vdev_lookup_by_path(rvd, path) == NULL) 2621 break; 2622 zs->zs_vdev_aux++; 2623 } 2624 } 2625 2626 spa_config_exit(spa, SCL_VDEV, FTAG); 2627 2628 if (guid == 0) { 2629 /* 2630 * Add a new device. 2631 */ 2632 nvlist_t *nvroot = make_vdev_root(NULL, aux, NULL, 2633 (ztest_opts.zo_vdev_size * 5) / 4, 0, 0, 0, 0, 1); 2634 error = spa_vdev_add(spa, nvroot); 2635 if (error != 0) 2636 fatal(0, "spa_vdev_add(%p) = %d", nvroot, error); 2637 nvlist_free(nvroot); 2638 } else { 2639 /* 2640 * Remove an existing device. Sometimes, dirty its 2641 * vdev state first to make sure we handle removal 2642 * of devices that have pending state changes. 2643 */ 2644 if (ztest_random(2) == 0) 2645 (void) vdev_online(spa, guid, 0, NULL); 2646 2647 error = spa_vdev_remove(spa, guid, B_FALSE); 2648 if (error != 0 && error != EBUSY) 2649 fatal(0, "spa_vdev_remove(%llu) = %d", guid, error); 2650 } 2651 2652 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 2653 } 2654 2655 /* 2656 * split a pool if it has mirror tlvdevs 2657 */ 2658 /* ARGSUSED */ 2659 void 2660 ztest_split_pool(ztest_ds_t *zd, uint64_t id) 2661 { 2662 ztest_shared_t *zs = ztest_shared; 2663 spa_t *spa = ztest_spa; 2664 vdev_t *rvd = spa->spa_root_vdev; 2665 nvlist_t *tree, **child, *config, *split, **schild; 2666 uint_t c, children, schildren = 0, lastlogid = 0; 2667 int error = 0; 2668 2669 VERIFY(mutex_lock(&ztest_vdev_lock) == 0); 2670 2671 /* ensure we have a useable config; mirrors of raidz aren't supported */ 2672 if (zs->zs_mirrors < 3 || ztest_opts.zo_raidz > 1) { 2673 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 2674 return; 2675 } 2676 2677 /* clean up the old pool, if any */ 2678 (void) spa_destroy("splitp"); 2679 2680 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 2681 2682 /* generate a config from the existing config */ 2683 mutex_enter(&spa->spa_props_lock); 2684 VERIFY(nvlist_lookup_nvlist(spa->spa_config, ZPOOL_CONFIG_VDEV_TREE, 2685 &tree) == 0); 2686 mutex_exit(&spa->spa_props_lock); 2687 2688 VERIFY(nvlist_lookup_nvlist_array(tree, ZPOOL_CONFIG_CHILDREN, &child, 2689 &children) == 0); 2690 2691 schild = malloc(rvd->vdev_children * sizeof (nvlist_t *)); 2692 for (c = 0; c < children; c++) { 2693 vdev_t *tvd = rvd->vdev_child[c]; 2694 nvlist_t **mchild; 2695 uint_t mchildren; 2696 2697 if (tvd->vdev_islog || tvd->vdev_ops == &vdev_hole_ops) { 2698 VERIFY(nvlist_alloc(&schild[schildren], NV_UNIQUE_NAME, 2699 0) == 0); 2700 VERIFY(nvlist_add_string(schild[schildren], 2701 ZPOOL_CONFIG_TYPE, VDEV_TYPE_HOLE) == 0); 2702 VERIFY(nvlist_add_uint64(schild[schildren], 2703 ZPOOL_CONFIG_IS_HOLE, 1) == 0); 2704 if (lastlogid == 0) 2705 lastlogid = schildren; 2706 ++schildren; 2707 continue; 2708 } 2709 lastlogid = 0; 2710 VERIFY(nvlist_lookup_nvlist_array(child[c], 2711 ZPOOL_CONFIG_CHILDREN, &mchild, &mchildren) == 0); 2712 VERIFY(nvlist_dup(mchild[0], &schild[schildren++], 0) == 0); 2713 } 2714 2715 /* OK, create a config that can be used to split */ 2716 VERIFY(nvlist_alloc(&split, NV_UNIQUE_NAME, 0) == 0); 2717 VERIFY(nvlist_add_string(split, ZPOOL_CONFIG_TYPE, 2718 VDEV_TYPE_ROOT) == 0); 2719 VERIFY(nvlist_add_nvlist_array(split, ZPOOL_CONFIG_CHILDREN, schild, 2720 lastlogid != 0 ? lastlogid : schildren) == 0); 2721 2722 VERIFY(nvlist_alloc(&config, NV_UNIQUE_NAME, 0) == 0); 2723 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, split) == 0); 2724 2725 for (c = 0; c < schildren; c++) 2726 nvlist_free(schild[c]); 2727 free(schild); 2728 nvlist_free(split); 2729 2730 spa_config_exit(spa, SCL_VDEV, FTAG); 2731 2732 (void) rw_wrlock(&ztest_name_lock); 2733 error = spa_vdev_split_mirror(spa, "splitp", config, NULL, B_FALSE); 2734 (void) rw_unlock(&ztest_name_lock); 2735 2736 nvlist_free(config); 2737 2738 if (error == 0) { 2739 (void) printf("successful split - results:\n"); 2740 mutex_enter(&spa_namespace_lock); 2741 show_pool_stats(spa); 2742 show_pool_stats(spa_lookup("splitp")); 2743 mutex_exit(&spa_namespace_lock); 2744 ++zs->zs_splits; 2745 --zs->zs_mirrors; 2746 } 2747 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 2748 2749 } 2750 2751 /* 2752 * Verify that we can attach and detach devices. 2753 */ 2754 /* ARGSUSED */ 2755 void 2756 ztest_vdev_attach_detach(ztest_ds_t *zd, uint64_t id) 2757 { 2758 ztest_shared_t *zs = ztest_shared; 2759 spa_t *spa = ztest_spa; 2760 spa_aux_vdev_t *sav = &spa->spa_spares; 2761 vdev_t *rvd = spa->spa_root_vdev; 2762 vdev_t *oldvd, *newvd, *pvd; 2763 nvlist_t *root; 2764 uint64_t leaves; 2765 uint64_t leaf, top; 2766 uint64_t ashift = ztest_get_ashift(); 2767 uint64_t oldguid, pguid; 2768 uint64_t oldsize, newsize; 2769 char oldpath[MAXPATHLEN], newpath[MAXPATHLEN]; 2770 int replacing; 2771 int oldvd_has_siblings = B_FALSE; 2772 int newvd_is_spare = B_FALSE; 2773 int oldvd_is_log; 2774 int error, expected_error; 2775 2776 VERIFY(mutex_lock(&ztest_vdev_lock) == 0); 2777 leaves = MAX(zs->zs_mirrors, 1) * ztest_opts.zo_raidz; 2778 2779 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 2780 2781 /* 2782 * Decide whether to do an attach or a replace. 2783 */ 2784 replacing = ztest_random(2); 2785 2786 /* 2787 * Pick a random top-level vdev. 2788 */ 2789 top = ztest_random_vdev_top(spa, B_TRUE); 2790 2791 /* 2792 * Pick a random leaf within it. 2793 */ 2794 leaf = ztest_random(leaves); 2795 2796 /* 2797 * Locate this vdev. 2798 */ 2799 oldvd = rvd->vdev_child[top]; 2800 if (zs->zs_mirrors >= 1) { 2801 ASSERT(oldvd->vdev_ops == &vdev_mirror_ops); 2802 ASSERT(oldvd->vdev_children >= zs->zs_mirrors); 2803 oldvd = oldvd->vdev_child[leaf / ztest_opts.zo_raidz]; 2804 } 2805 if (ztest_opts.zo_raidz > 1) { 2806 ASSERT(oldvd->vdev_ops == &vdev_raidz_ops); 2807 ASSERT(oldvd->vdev_children == ztest_opts.zo_raidz); 2808 oldvd = oldvd->vdev_child[leaf % ztest_opts.zo_raidz]; 2809 } 2810 2811 /* 2812 * If we're already doing an attach or replace, oldvd may be a 2813 * mirror vdev -- in which case, pick a random child. 2814 */ 2815 while (oldvd->vdev_children != 0) { 2816 oldvd_has_siblings = B_TRUE; 2817 ASSERT(oldvd->vdev_children >= 2); 2818 oldvd = oldvd->vdev_child[ztest_random(oldvd->vdev_children)]; 2819 } 2820 2821 oldguid = oldvd->vdev_guid; 2822 oldsize = vdev_get_min_asize(oldvd); 2823 oldvd_is_log = oldvd->vdev_top->vdev_islog; 2824 (void) strcpy(oldpath, oldvd->vdev_path); 2825 pvd = oldvd->vdev_parent; 2826 pguid = pvd->vdev_guid; 2827 2828 /* 2829 * If oldvd has siblings, then half of the time, detach it. 2830 */ 2831 if (oldvd_has_siblings && ztest_random(2) == 0) { 2832 spa_config_exit(spa, SCL_VDEV, FTAG); 2833 error = spa_vdev_detach(spa, oldguid, pguid, B_FALSE); 2834 if (error != 0 && error != ENODEV && error != EBUSY && 2835 error != ENOTSUP) 2836 fatal(0, "detach (%s) returned %d", oldpath, error); 2837 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 2838 return; 2839 } 2840 2841 /* 2842 * For the new vdev, choose with equal probability between the two 2843 * standard paths (ending in either 'a' or 'b') or a random hot spare. 2844 */ 2845 if (sav->sav_count != 0 && ztest_random(3) == 0) { 2846 newvd = sav->sav_vdevs[ztest_random(sav->sav_count)]; 2847 newvd_is_spare = B_TRUE; 2848 (void) strcpy(newpath, newvd->vdev_path); 2849 } else { 2850 (void) snprintf(newpath, sizeof (newpath), ztest_dev_template, 2851 ztest_opts.zo_dir, ztest_opts.zo_pool, 2852 top * leaves + leaf); 2853 if (ztest_random(2) == 0) 2854 newpath[strlen(newpath) - 1] = 'b'; 2855 newvd = vdev_lookup_by_path(rvd, newpath); 2856 } 2857 2858 if (newvd) { 2859 newsize = vdev_get_min_asize(newvd); 2860 } else { 2861 /* 2862 * Make newsize a little bigger or smaller than oldsize. 2863 * If it's smaller, the attach should fail. 2864 * If it's larger, and we're doing a replace, 2865 * we should get dynamic LUN growth when we're done. 2866 */ 2867 newsize = 10 * oldsize / (9 + ztest_random(3)); 2868 } 2869 2870 /* 2871 * If pvd is not a mirror or root, the attach should fail with ENOTSUP, 2872 * unless it's a replace; in that case any non-replacing parent is OK. 2873 * 2874 * If newvd is already part of the pool, it should fail with EBUSY. 2875 * 2876 * If newvd is too small, it should fail with EOVERFLOW. 2877 */ 2878 if (pvd->vdev_ops != &vdev_mirror_ops && 2879 pvd->vdev_ops != &vdev_root_ops && (!replacing || 2880 pvd->vdev_ops == &vdev_replacing_ops || 2881 pvd->vdev_ops == &vdev_spare_ops)) 2882 expected_error = ENOTSUP; 2883 else if (newvd_is_spare && (!replacing || oldvd_is_log)) 2884 expected_error = ENOTSUP; 2885 else if (newvd == oldvd) 2886 expected_error = replacing ? 0 : EBUSY; 2887 else if (vdev_lookup_by_path(rvd, newpath) != NULL) 2888 expected_error = EBUSY; 2889 else if (newsize < oldsize) 2890 expected_error = EOVERFLOW; 2891 else if (ashift > oldvd->vdev_top->vdev_ashift) 2892 expected_error = EDOM; 2893 else 2894 expected_error = 0; 2895 2896 spa_config_exit(spa, SCL_VDEV, FTAG); 2897 2898 /* 2899 * Build the nvlist describing newpath. 2900 */ 2901 root = make_vdev_root(newpath, NULL, NULL, newvd == NULL ? newsize : 0, 2902 ashift, 0, 0, 0, 1); 2903 2904 error = spa_vdev_attach(spa, oldguid, root, replacing); 2905 2906 nvlist_free(root); 2907 2908 /* 2909 * If our parent was the replacing vdev, but the replace completed, 2910 * then instead of failing with ENOTSUP we may either succeed, 2911 * fail with ENODEV, or fail with EOVERFLOW. 2912 */ 2913 if (expected_error == ENOTSUP && 2914 (error == 0 || error == ENODEV || error == EOVERFLOW)) 2915 expected_error = error; 2916 2917 /* 2918 * If someone grew the LUN, the replacement may be too small. 2919 */ 2920 if (error == EOVERFLOW || error == EBUSY) 2921 expected_error = error; 2922 2923 /* XXX workaround 6690467 */ 2924 if (error != expected_error && expected_error != EBUSY) { 2925 fatal(0, "attach (%s %llu, %s %llu, %d) " 2926 "returned %d, expected %d", 2927 oldpath, oldsize, newpath, 2928 newsize, replacing, error, expected_error); 2929 } 2930 2931 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 2932 } 2933 2934 /* 2935 * Callback function which expands the physical size of the vdev. 2936 */ 2937 vdev_t * 2938 grow_vdev(vdev_t *vd, void *arg) 2939 { 2940 spa_t *spa = vd->vdev_spa; 2941 size_t *newsize = arg; 2942 size_t fsize; 2943 int fd; 2944 2945 ASSERT(spa_config_held(spa, SCL_STATE, RW_READER) == SCL_STATE); 2946 ASSERT(vd->vdev_ops->vdev_op_leaf); 2947 2948 if ((fd = open(vd->vdev_path, O_RDWR)) == -1) 2949 return (vd); 2950 2951 fsize = lseek(fd, 0, SEEK_END); 2952 (void) ftruncate(fd, *newsize); 2953 2954 if (ztest_opts.zo_verbose >= 6) { 2955 (void) printf("%s grew from %lu to %lu bytes\n", 2956 vd->vdev_path, (ulong_t)fsize, (ulong_t)*newsize); 2957 } 2958 (void) close(fd); 2959 return (NULL); 2960 } 2961 2962 /* 2963 * Callback function which expands a given vdev by calling vdev_online(). 2964 */ 2965 /* ARGSUSED */ 2966 vdev_t * 2967 online_vdev(vdev_t *vd, void *arg) 2968 { 2969 spa_t *spa = vd->vdev_spa; 2970 vdev_t *tvd = vd->vdev_top; 2971 uint64_t guid = vd->vdev_guid; 2972 uint64_t generation = spa->spa_config_generation + 1; 2973 vdev_state_t newstate = VDEV_STATE_UNKNOWN; 2974 int error; 2975 2976 ASSERT(spa_config_held(spa, SCL_STATE, RW_READER) == SCL_STATE); 2977 ASSERT(vd->vdev_ops->vdev_op_leaf); 2978 2979 /* Calling vdev_online will initialize the new metaslabs */ 2980 spa_config_exit(spa, SCL_STATE, spa); 2981 error = vdev_online(spa, guid, ZFS_ONLINE_EXPAND, &newstate); 2982 spa_config_enter(spa, SCL_STATE, spa, RW_READER); 2983 2984 /* 2985 * If vdev_online returned an error or the underlying vdev_open 2986 * failed then we abort the expand. The only way to know that 2987 * vdev_open fails is by checking the returned newstate. 2988 */ 2989 if (error || newstate != VDEV_STATE_HEALTHY) { 2990 if (ztest_opts.zo_verbose >= 5) { 2991 (void) printf("Unable to expand vdev, state %llu, " 2992 "error %d\n", (u_longlong_t)newstate, error); 2993 } 2994 return (vd); 2995 } 2996 ASSERT3U(newstate, ==, VDEV_STATE_HEALTHY); 2997 2998 /* 2999 * Since we dropped the lock we need to ensure that we're 3000 * still talking to the original vdev. It's possible this 3001 * vdev may have been detached/replaced while we were 3002 * trying to online it. 3003 */ 3004 if (generation != spa->spa_config_generation) { 3005 if (ztest_opts.zo_verbose >= 5) { 3006 (void) printf("vdev configuration has changed, " 3007 "guid %llu, state %llu, expected gen %llu, " 3008 "got gen %llu\n", 3009 (u_longlong_t)guid, 3010 (u_longlong_t)tvd->vdev_state, 3011 (u_longlong_t)generation, 3012 (u_longlong_t)spa->spa_config_generation); 3013 } 3014 return (vd); 3015 } 3016 return (NULL); 3017 } 3018 3019 /* 3020 * Traverse the vdev tree calling the supplied function. 3021 * We continue to walk the tree until we either have walked all 3022 * children or we receive a non-NULL return from the callback. 3023 * If a NULL callback is passed, then we just return back the first 3024 * leaf vdev we encounter. 3025 */ 3026 vdev_t * 3027 vdev_walk_tree(vdev_t *vd, vdev_t *(*func)(vdev_t *, void *), void *arg) 3028 { 3029 if (vd->vdev_ops->vdev_op_leaf) { 3030 if (func == NULL) 3031 return (vd); 3032 else 3033 return (func(vd, arg)); 3034 } 3035 3036 for (uint_t c = 0; c < vd->vdev_children; c++) { 3037 vdev_t *cvd = vd->vdev_child[c]; 3038 if ((cvd = vdev_walk_tree(cvd, func, arg)) != NULL) 3039 return (cvd); 3040 } 3041 return (NULL); 3042 } 3043 3044 /* 3045 * Verify that dynamic LUN growth works as expected. 3046 */ 3047 /* ARGSUSED */ 3048 void 3049 ztest_vdev_LUN_growth(ztest_ds_t *zd, uint64_t id) 3050 { 3051 spa_t *spa = ztest_spa; 3052 vdev_t *vd, *tvd; 3053 metaslab_class_t *mc; 3054 metaslab_group_t *mg; 3055 size_t psize, newsize; 3056 uint64_t top; 3057 uint64_t old_class_space, new_class_space, old_ms_count, new_ms_count; 3058 3059 VERIFY(mutex_lock(&ztest_vdev_lock) == 0); 3060 spa_config_enter(spa, SCL_STATE, spa, RW_READER); 3061 3062 top = ztest_random_vdev_top(spa, B_TRUE); 3063 3064 tvd = spa->spa_root_vdev->vdev_child[top]; 3065 mg = tvd->vdev_mg; 3066 mc = mg->mg_class; 3067 old_ms_count = tvd->vdev_ms_count; 3068 old_class_space = metaslab_class_get_space(mc); 3069 3070 /* 3071 * Determine the size of the first leaf vdev associated with 3072 * our top-level device. 3073 */ 3074 vd = vdev_walk_tree(tvd, NULL, NULL); 3075 ASSERT3P(vd, !=, NULL); 3076 ASSERT(vd->vdev_ops->vdev_op_leaf); 3077 3078 psize = vd->vdev_psize; 3079 3080 /* 3081 * We only try to expand the vdev if it's healthy, less than 4x its 3082 * original size, and it has a valid psize. 3083 */ 3084 if (tvd->vdev_state != VDEV_STATE_HEALTHY || 3085 psize == 0 || psize >= 4 * ztest_opts.zo_vdev_size) { 3086 spa_config_exit(spa, SCL_STATE, spa); 3087 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 3088 return; 3089 } 3090 ASSERT(psize > 0); 3091 newsize = psize + psize / 8; 3092 ASSERT3U(newsize, >, psize); 3093 3094 if (ztest_opts.zo_verbose >= 6) { 3095 (void) printf("Expanding LUN %s from %lu to %lu\n", 3096 vd->vdev_path, (ulong_t)psize, (ulong_t)newsize); 3097 } 3098 3099 /* 3100 * Growing the vdev is a two step process: 3101 * 1). expand the physical size (i.e. relabel) 3102 * 2). online the vdev to create the new metaslabs 3103 */ 3104 if (vdev_walk_tree(tvd, grow_vdev, &newsize) != NULL || 3105 vdev_walk_tree(tvd, online_vdev, NULL) != NULL || 3106 tvd->vdev_state != VDEV_STATE_HEALTHY) { 3107 if (ztest_opts.zo_verbose >= 5) { 3108 (void) printf("Could not expand LUN because " 3109 "the vdev configuration changed.\n"); 3110 } 3111 spa_config_exit(spa, SCL_STATE, spa); 3112 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 3113 return; 3114 } 3115 3116 spa_config_exit(spa, SCL_STATE, spa); 3117 3118 /* 3119 * Expanding the LUN will update the config asynchronously, 3120 * thus we must wait for the async thread to complete any 3121 * pending tasks before proceeding. 3122 */ 3123 for (;;) { 3124 boolean_t done; 3125 mutex_enter(&spa->spa_async_lock); 3126 done = (spa->spa_async_thread == NULL && !spa->spa_async_tasks); 3127 mutex_exit(&spa->spa_async_lock); 3128 if (done) 3129 break; 3130 txg_wait_synced(spa_get_dsl(spa), 0); 3131 (void) poll(NULL, 0, 100); 3132 } 3133 3134 spa_config_enter(spa, SCL_STATE, spa, RW_READER); 3135 3136 tvd = spa->spa_root_vdev->vdev_child[top]; 3137 new_ms_count = tvd->vdev_ms_count; 3138 new_class_space = metaslab_class_get_space(mc); 3139 3140 if (tvd->vdev_mg != mg || mg->mg_class != mc) { 3141 if (ztest_opts.zo_verbose >= 5) { 3142 (void) printf("Could not verify LUN expansion due to " 3143 "intervening vdev offline or remove.\n"); 3144 } 3145 spa_config_exit(spa, SCL_STATE, spa); 3146 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 3147 return; 3148 } 3149 3150 /* 3151 * Make sure we were able to grow the vdev. 3152 */ 3153 if (new_ms_count <= old_ms_count) 3154 fatal(0, "LUN expansion failed: ms_count %llu <= %llu\n", 3155 old_ms_count, new_ms_count); 3156 3157 /* 3158 * Make sure we were able to grow the pool. 3159 */ 3160 if (new_class_space <= old_class_space) 3161 fatal(0, "LUN expansion failed: class_space %llu <= %llu\n", 3162 old_class_space, new_class_space); 3163 3164 if (ztest_opts.zo_verbose >= 5) { 3165 char oldnumbuf[6], newnumbuf[6]; 3166 3167 nicenum(old_class_space, oldnumbuf); 3168 nicenum(new_class_space, newnumbuf); 3169 (void) printf("%s grew from %s to %s\n", 3170 spa->spa_name, oldnumbuf, newnumbuf); 3171 } 3172 3173 spa_config_exit(spa, SCL_STATE, spa); 3174 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 3175 } 3176 3177 /* 3178 * Verify that dmu_objset_{create,destroy,open,close} work as expected. 3179 */ 3180 /* ARGSUSED */ 3181 static void 3182 ztest_objset_create_cb(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx) 3183 { 3184 /* 3185 * Create the objects common to all ztest datasets. 3186 */ 3187 VERIFY(zap_create_claim(os, ZTEST_DIROBJ, 3188 DMU_OT_ZAP_OTHER, DMU_OT_NONE, 0, tx) == 0); 3189 } 3190 3191 static int 3192 ztest_dataset_create(char *dsname) 3193 { 3194 uint64_t zilset = ztest_random(100); 3195 int err = dmu_objset_create(dsname, DMU_OST_OTHER, 0, 3196 ztest_objset_create_cb, NULL); 3197 3198 if (err || zilset < 80) 3199 return (err); 3200 3201 if (ztest_opts.zo_verbose >= 6) 3202 (void) printf("Setting dataset %s to sync always\n", dsname); 3203 return (ztest_dsl_prop_set_uint64(dsname, ZFS_PROP_SYNC, 3204 ZFS_SYNC_ALWAYS, B_FALSE)); 3205 } 3206 3207 /* ARGSUSED */ 3208 static int 3209 ztest_objset_destroy_cb(const char *name, void *arg) 3210 { 3211 objset_t *os; 3212 dmu_object_info_t doi; 3213 int error; 3214 3215 /* 3216 * Verify that the dataset contains a directory object. 3217 */ 3218 VERIFY0(dmu_objset_own(name, DMU_OST_OTHER, B_TRUE, FTAG, &os)); 3219 error = dmu_object_info(os, ZTEST_DIROBJ, &doi); 3220 if (error != ENOENT) { 3221 /* We could have crashed in the middle of destroying it */ 3222 ASSERT0(error); 3223 ASSERT3U(doi.doi_type, ==, DMU_OT_ZAP_OTHER); 3224 ASSERT3S(doi.doi_physical_blocks_512, >=, 0); 3225 } 3226 dmu_objset_disown(os, FTAG); 3227 3228 /* 3229 * Destroy the dataset. 3230 */ 3231 if (strchr(name, '@') != NULL) { 3232 VERIFY0(dsl_destroy_snapshot(name, B_FALSE)); 3233 } else { 3234 VERIFY0(dsl_destroy_head(name)); 3235 } 3236 return (0); 3237 } 3238 3239 static boolean_t 3240 ztest_snapshot_create(char *osname, uint64_t id) 3241 { 3242 char snapname[MAXNAMELEN]; 3243 int error; 3244 3245 (void) snprintf(snapname, sizeof (snapname), "%llu", (u_longlong_t)id); 3246 3247 error = dmu_objset_snapshot_one(osname, snapname); 3248 if (error == ENOSPC) { 3249 ztest_record_enospc(FTAG); 3250 return (B_FALSE); 3251 } 3252 if (error != 0 && error != EEXIST) { 3253 fatal(0, "ztest_snapshot_create(%s@%s) = %d", osname, 3254 snapname, error); 3255 } 3256 return (B_TRUE); 3257 } 3258 3259 static boolean_t 3260 ztest_snapshot_destroy(char *osname, uint64_t id) 3261 { 3262 char snapname[MAXNAMELEN]; 3263 int error; 3264 3265 (void) snprintf(snapname, MAXNAMELEN, "%s@%llu", osname, 3266 (u_longlong_t)id); 3267 3268 error = dsl_destroy_snapshot(snapname, B_FALSE); 3269 if (error != 0 && error != ENOENT) 3270 fatal(0, "ztest_snapshot_destroy(%s) = %d", snapname, error); 3271 return (B_TRUE); 3272 } 3273 3274 /* ARGSUSED */ 3275 void 3276 ztest_dmu_objset_create_destroy(ztest_ds_t *zd, uint64_t id) 3277 { 3278 ztest_ds_t zdtmp; 3279 int iters; 3280 int error; 3281 objset_t *os, *os2; 3282 char name[MAXNAMELEN]; 3283 zilog_t *zilog; 3284 3285 (void) rw_rdlock(&ztest_name_lock); 3286 3287 (void) snprintf(name, MAXNAMELEN, "%s/temp_%llu", 3288 ztest_opts.zo_pool, (u_longlong_t)id); 3289 3290 /* 3291 * If this dataset exists from a previous run, process its replay log 3292 * half of the time. If we don't replay it, then dmu_objset_destroy() 3293 * (invoked from ztest_objset_destroy_cb()) should just throw it away. 3294 */ 3295 if (ztest_random(2) == 0 && 3296 dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, FTAG, &os) == 0) { 3297 ztest_zd_init(&zdtmp, NULL, os); 3298 zil_replay(os, &zdtmp, ztest_replay_vector); 3299 ztest_zd_fini(&zdtmp); 3300 dmu_objset_disown(os, FTAG); 3301 } 3302 3303 /* 3304 * There may be an old instance of the dataset we're about to 3305 * create lying around from a previous run. If so, destroy it 3306 * and all of its snapshots. 3307 */ 3308 (void) dmu_objset_find(name, ztest_objset_destroy_cb, NULL, 3309 DS_FIND_CHILDREN | DS_FIND_SNAPSHOTS); 3310 3311 /* 3312 * Verify that the destroyed dataset is no longer in the namespace. 3313 */ 3314 VERIFY3U(ENOENT, ==, dmu_objset_own(name, DMU_OST_OTHER, B_TRUE, 3315 FTAG, &os)); 3316 3317 /* 3318 * Verify that we can create a new dataset. 3319 */ 3320 error = ztest_dataset_create(name); 3321 if (error) { 3322 if (error == ENOSPC) { 3323 ztest_record_enospc(FTAG); 3324 (void) rw_unlock(&ztest_name_lock); 3325 return; 3326 } 3327 fatal(0, "dmu_objset_create(%s) = %d", name, error); 3328 } 3329 3330 VERIFY0(dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, FTAG, &os)); 3331 3332 ztest_zd_init(&zdtmp, NULL, os); 3333 3334 /* 3335 * Open the intent log for it. 3336 */ 3337 zilog = zil_open(os, ztest_get_data); 3338 3339 /* 3340 * Put some objects in there, do a little I/O to them, 3341 * and randomly take a couple of snapshots along the way. 3342 */ 3343 iters = ztest_random(5); 3344 for (int i = 0; i < iters; i++) { 3345 ztest_dmu_object_alloc_free(&zdtmp, id); 3346 if (ztest_random(iters) == 0) 3347 (void) ztest_snapshot_create(name, i); 3348 } 3349 3350 /* 3351 * Verify that we cannot create an existing dataset. 3352 */ 3353 VERIFY3U(EEXIST, ==, 3354 dmu_objset_create(name, DMU_OST_OTHER, 0, NULL, NULL)); 3355 3356 /* 3357 * Verify that we can hold an objset that is also owned. 3358 */ 3359 VERIFY3U(0, ==, dmu_objset_hold(name, FTAG, &os2)); 3360 dmu_objset_rele(os2, FTAG); 3361 3362 /* 3363 * Verify that we cannot own an objset that is already owned. 3364 */ 3365 VERIFY3U(EBUSY, ==, 3366 dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, FTAG, &os2)); 3367 3368 zil_close(zilog); 3369 dmu_objset_disown(os, FTAG); 3370 ztest_zd_fini(&zdtmp); 3371 3372 (void) rw_unlock(&ztest_name_lock); 3373 } 3374 3375 /* 3376 * Verify that dmu_snapshot_{create,destroy,open,close} work as expected. 3377 */ 3378 void 3379 ztest_dmu_snapshot_create_destroy(ztest_ds_t *zd, uint64_t id) 3380 { 3381 (void) rw_rdlock(&ztest_name_lock); 3382 (void) ztest_snapshot_destroy(zd->zd_name, id); 3383 (void) ztest_snapshot_create(zd->zd_name, id); 3384 (void) rw_unlock(&ztest_name_lock); 3385 } 3386 3387 /* 3388 * Cleanup non-standard snapshots and clones. 3389 */ 3390 void 3391 ztest_dsl_dataset_cleanup(char *osname, uint64_t id) 3392 { 3393 char snap1name[MAXNAMELEN]; 3394 char clone1name[MAXNAMELEN]; 3395 char snap2name[MAXNAMELEN]; 3396 char clone2name[MAXNAMELEN]; 3397 char snap3name[MAXNAMELEN]; 3398 int error; 3399 3400 (void) snprintf(snap1name, MAXNAMELEN, "%s@s1_%llu", osname, id); 3401 (void) snprintf(clone1name, MAXNAMELEN, "%s/c1_%llu", osname, id); 3402 (void) snprintf(snap2name, MAXNAMELEN, "%s@s2_%llu", clone1name, id); 3403 (void) snprintf(clone2name, MAXNAMELEN, "%s/c2_%llu", osname, id); 3404 (void) snprintf(snap3name, MAXNAMELEN, "%s@s3_%llu", clone1name, id); 3405 3406 error = dsl_destroy_head(clone2name); 3407 if (error && error != ENOENT) 3408 fatal(0, "dsl_destroy_head(%s) = %d", clone2name, error); 3409 error = dsl_destroy_snapshot(snap3name, B_FALSE); 3410 if (error && error != ENOENT) 3411 fatal(0, "dsl_destroy_snapshot(%s) = %d", snap3name, error); 3412 error = dsl_destroy_snapshot(snap2name, B_FALSE); 3413 if (error && error != ENOENT) 3414 fatal(0, "dsl_destroy_snapshot(%s) = %d", snap2name, error); 3415 error = dsl_destroy_head(clone1name); 3416 if (error && error != ENOENT) 3417 fatal(0, "dsl_destroy_head(%s) = %d", clone1name, error); 3418 error = dsl_destroy_snapshot(snap1name, B_FALSE); 3419 if (error && error != ENOENT) 3420 fatal(0, "dsl_destroy_snapshot(%s) = %d", snap1name, error); 3421 } 3422 3423 /* 3424 * Verify dsl_dataset_promote handles EBUSY 3425 */ 3426 void 3427 ztest_dsl_dataset_promote_busy(ztest_ds_t *zd, uint64_t id) 3428 { 3429 objset_t *os; 3430 char snap1name[MAXNAMELEN]; 3431 char clone1name[MAXNAMELEN]; 3432 char snap2name[MAXNAMELEN]; 3433 char clone2name[MAXNAMELEN]; 3434 char snap3name[MAXNAMELEN]; 3435 char *osname = zd->zd_name; 3436 int error; 3437 3438 (void) rw_rdlock(&ztest_name_lock); 3439 3440 ztest_dsl_dataset_cleanup(osname, id); 3441 3442 (void) snprintf(snap1name, MAXNAMELEN, "%s@s1_%llu", osname, id); 3443 (void) snprintf(clone1name, MAXNAMELEN, "%s/c1_%llu", osname, id); 3444 (void) snprintf(snap2name, MAXNAMELEN, "%s@s2_%llu", clone1name, id); 3445 (void) snprintf(clone2name, MAXNAMELEN, "%s/c2_%llu", osname, id); 3446 (void) snprintf(snap3name, MAXNAMELEN, "%s@s3_%llu", clone1name, id); 3447 3448 error = dmu_objset_snapshot_one(osname, strchr(snap1name, '@') + 1); 3449 if (error && error != EEXIST) { 3450 if (error == ENOSPC) { 3451 ztest_record_enospc(FTAG); 3452 goto out; 3453 } 3454 fatal(0, "dmu_take_snapshot(%s) = %d", snap1name, error); 3455 } 3456 3457 error = dmu_objset_clone(clone1name, snap1name); 3458 if (error) { 3459 if (error == ENOSPC) { 3460 ztest_record_enospc(FTAG); 3461 goto out; 3462 } 3463 fatal(0, "dmu_objset_create(%s) = %d", clone1name, error); 3464 } 3465 3466 error = dmu_objset_snapshot_one(clone1name, strchr(snap2name, '@') + 1); 3467 if (error && error != EEXIST) { 3468 if (error == ENOSPC) { 3469 ztest_record_enospc(FTAG); 3470 goto out; 3471 } 3472 fatal(0, "dmu_open_snapshot(%s) = %d", snap2name, error); 3473 } 3474 3475 error = dmu_objset_snapshot_one(clone1name, strchr(snap3name, '@') + 1); 3476 if (error && error != EEXIST) { 3477 if (error == ENOSPC) { 3478 ztest_record_enospc(FTAG); 3479 goto out; 3480 } 3481 fatal(0, "dmu_open_snapshot(%s) = %d", snap3name, error); 3482 } 3483 3484 error = dmu_objset_clone(clone2name, snap3name); 3485 if (error) { 3486 if (error == ENOSPC) { 3487 ztest_record_enospc(FTAG); 3488 goto out; 3489 } 3490 fatal(0, "dmu_objset_create(%s) = %d", clone2name, error); 3491 } 3492 3493 error = dmu_objset_own(snap2name, DMU_OST_ANY, B_TRUE, FTAG, &os); 3494 if (error) 3495 fatal(0, "dmu_objset_own(%s) = %d", snap2name, error); 3496 error = dsl_dataset_promote(clone2name, NULL); 3497 if (error == ENOSPC) { 3498 dmu_objset_disown(os, FTAG); 3499 ztest_record_enospc(FTAG); 3500 goto out; 3501 } 3502 if (error != EBUSY) 3503 fatal(0, "dsl_dataset_promote(%s), %d, not EBUSY", clone2name, 3504 error); 3505 dmu_objset_disown(os, FTAG); 3506 3507 out: 3508 ztest_dsl_dataset_cleanup(osname, id); 3509 3510 (void) rw_unlock(&ztest_name_lock); 3511 } 3512 3513 /* 3514 * Verify that dmu_object_{alloc,free} work as expected. 3515 */ 3516 void 3517 ztest_dmu_object_alloc_free(ztest_ds_t *zd, uint64_t id) 3518 { 3519 ztest_od_t od[4]; 3520 int batchsize = sizeof (od) / sizeof (od[0]); 3521 3522 for (int b = 0; b < batchsize; b++) 3523 ztest_od_init(&od[b], id, FTAG, b, DMU_OT_UINT64_OTHER, 0, 0); 3524 3525 /* 3526 * Destroy the previous batch of objects, create a new batch, 3527 * and do some I/O on the new objects. 3528 */ 3529 if (ztest_object_init(zd, od, sizeof (od), B_TRUE) != 0) 3530 return; 3531 3532 while (ztest_random(4 * batchsize) != 0) 3533 ztest_io(zd, od[ztest_random(batchsize)].od_object, 3534 ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT); 3535 } 3536 3537 /* 3538 * Verify that dmu_{read,write} work as expected. 3539 */ 3540 void 3541 ztest_dmu_read_write(ztest_ds_t *zd, uint64_t id) 3542 { 3543 objset_t *os = zd->zd_os; 3544 ztest_od_t od[2]; 3545 dmu_tx_t *tx; 3546 int i, freeit, error; 3547 uint64_t n, s, txg; 3548 bufwad_t *packbuf, *bigbuf, *pack, *bigH, *bigT; 3549 uint64_t packobj, packoff, packsize, bigobj, bigoff, bigsize; 3550 uint64_t chunksize = (1000 + ztest_random(1000)) * sizeof (uint64_t); 3551 uint64_t regions = 997; 3552 uint64_t stride = 123456789ULL; 3553 uint64_t width = 40; 3554 int free_percent = 5; 3555 3556 /* 3557 * This test uses two objects, packobj and bigobj, that are always 3558 * updated together (i.e. in the same tx) so that their contents are 3559 * in sync and can be compared. Their contents relate to each other 3560 * in a simple way: packobj is a dense array of 'bufwad' structures, 3561 * while bigobj is a sparse array of the same bufwads. Specifically, 3562 * for any index n, there are three bufwads that should be identical: 3563 * 3564 * packobj, at offset n * sizeof (bufwad_t) 3565 * bigobj, at the head of the nth chunk 3566 * bigobj, at the tail of the nth chunk 3567 * 3568 * The chunk size is arbitrary. It doesn't have to be a power of two, 3569 * and it doesn't have any relation to the object blocksize. 3570 * The only requirement is that it can hold at least two bufwads. 3571 * 3572 * Normally, we write the bufwad to each of these locations. 3573 * However, free_percent of the time we instead write zeroes to 3574 * packobj and perform a dmu_free_range() on bigobj. By comparing 3575 * bigobj to packobj, we can verify that the DMU is correctly 3576 * tracking which parts of an object are allocated and free, 3577 * and that the contents of the allocated blocks are correct. 3578 */ 3579 3580 /* 3581 * Read the directory info. If it's the first time, set things up. 3582 */ 3583 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, 0, chunksize); 3584 ztest_od_init(&od[1], id, FTAG, 1, DMU_OT_UINT64_OTHER, 0, chunksize); 3585 3586 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0) 3587 return; 3588 3589 bigobj = od[0].od_object; 3590 packobj = od[1].od_object; 3591 chunksize = od[0].od_gen; 3592 ASSERT(chunksize == od[1].od_gen); 3593 3594 /* 3595 * Prefetch a random chunk of the big object. 3596 * Our aim here is to get some async reads in flight 3597 * for blocks that we may free below; the DMU should 3598 * handle this race correctly. 3599 */ 3600 n = ztest_random(regions) * stride + ztest_random(width); 3601 s = 1 + ztest_random(2 * width - 1); 3602 dmu_prefetch(os, bigobj, n * chunksize, s * chunksize); 3603 3604 /* 3605 * Pick a random index and compute the offsets into packobj and bigobj. 3606 */ 3607 n = ztest_random(regions) * stride + ztest_random(width); 3608 s = 1 + ztest_random(width - 1); 3609 3610 packoff = n * sizeof (bufwad_t); 3611 packsize = s * sizeof (bufwad_t); 3612 3613 bigoff = n * chunksize; 3614 bigsize = s * chunksize; 3615 3616 packbuf = umem_alloc(packsize, UMEM_NOFAIL); 3617 bigbuf = umem_alloc(bigsize, UMEM_NOFAIL); 3618 3619 /* 3620 * free_percent of the time, free a range of bigobj rather than 3621 * overwriting it. 3622 */ 3623 freeit = (ztest_random(100) < free_percent); 3624 3625 /* 3626 * Read the current contents of our objects. 3627 */ 3628 error = dmu_read(os, packobj, packoff, packsize, packbuf, 3629 DMU_READ_PREFETCH); 3630 ASSERT0(error); 3631 error = dmu_read(os, bigobj, bigoff, bigsize, bigbuf, 3632 DMU_READ_PREFETCH); 3633 ASSERT0(error); 3634 3635 /* 3636 * Get a tx for the mods to both packobj and bigobj. 3637 */ 3638 tx = dmu_tx_create(os); 3639 3640 dmu_tx_hold_write(tx, packobj, packoff, packsize); 3641 3642 if (freeit) 3643 dmu_tx_hold_free(tx, bigobj, bigoff, bigsize); 3644 else 3645 dmu_tx_hold_write(tx, bigobj, bigoff, bigsize); 3646 3647 /* This accounts for setting the checksum/compression. */ 3648 dmu_tx_hold_bonus(tx, bigobj); 3649 3650 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); 3651 if (txg == 0) { 3652 umem_free(packbuf, packsize); 3653 umem_free(bigbuf, bigsize); 3654 return; 3655 } 3656 3657 enum zio_checksum cksum; 3658 do { 3659 cksum = (enum zio_checksum) 3660 ztest_random_dsl_prop(ZFS_PROP_CHECKSUM); 3661 } while (cksum >= ZIO_CHECKSUM_LEGACY_FUNCTIONS); 3662 dmu_object_set_checksum(os, bigobj, cksum, tx); 3663 3664 enum zio_compress comp; 3665 do { 3666 comp = (enum zio_compress) 3667 ztest_random_dsl_prop(ZFS_PROP_COMPRESSION); 3668 } while (comp >= ZIO_COMPRESS_LEGACY_FUNCTIONS); 3669 dmu_object_set_compress(os, bigobj, comp, tx); 3670 3671 /* 3672 * For each index from n to n + s, verify that the existing bufwad 3673 * in packobj matches the bufwads at the head and tail of the 3674 * corresponding chunk in bigobj. Then update all three bufwads 3675 * with the new values we want to write out. 3676 */ 3677 for (i = 0; i < s; i++) { 3678 /* LINTED */ 3679 pack = (bufwad_t *)((char *)packbuf + i * sizeof (bufwad_t)); 3680 /* LINTED */ 3681 bigH = (bufwad_t *)((char *)bigbuf + i * chunksize); 3682 /* LINTED */ 3683 bigT = (bufwad_t *)((char *)bigH + chunksize) - 1; 3684 3685 ASSERT((uintptr_t)bigH - (uintptr_t)bigbuf < bigsize); 3686 ASSERT((uintptr_t)bigT - (uintptr_t)bigbuf < bigsize); 3687 3688 if (pack->bw_txg > txg) 3689 fatal(0, "future leak: got %llx, open txg is %llx", 3690 pack->bw_txg, txg); 3691 3692 if (pack->bw_data != 0 && pack->bw_index != n + i) 3693 fatal(0, "wrong index: got %llx, wanted %llx+%llx", 3694 pack->bw_index, n, i); 3695 3696 if (bcmp(pack, bigH, sizeof (bufwad_t)) != 0) 3697 fatal(0, "pack/bigH mismatch in %p/%p", pack, bigH); 3698 3699 if (bcmp(pack, bigT, sizeof (bufwad_t)) != 0) 3700 fatal(0, "pack/bigT mismatch in %p/%p", pack, bigT); 3701 3702 if (freeit) { 3703 bzero(pack, sizeof (bufwad_t)); 3704 } else { 3705 pack->bw_index = n + i; 3706 pack->bw_txg = txg; 3707 pack->bw_data = 1 + ztest_random(-2ULL); 3708 } 3709 *bigH = *pack; 3710 *bigT = *pack; 3711 } 3712 3713 /* 3714 * We've verified all the old bufwads, and made new ones. 3715 * Now write them out. 3716 */ 3717 dmu_write(os, packobj, packoff, packsize, packbuf, tx); 3718 3719 if (freeit) { 3720 if (ztest_opts.zo_verbose >= 7) { 3721 (void) printf("freeing offset %llx size %llx" 3722 " txg %llx\n", 3723 (u_longlong_t)bigoff, 3724 (u_longlong_t)bigsize, 3725 (u_longlong_t)txg); 3726 } 3727 VERIFY(0 == dmu_free_range(os, bigobj, bigoff, bigsize, tx)); 3728 } else { 3729 if (ztest_opts.zo_verbose >= 7) { 3730 (void) printf("writing offset %llx size %llx" 3731 " txg %llx\n", 3732 (u_longlong_t)bigoff, 3733 (u_longlong_t)bigsize, 3734 (u_longlong_t)txg); 3735 } 3736 dmu_write(os, bigobj, bigoff, bigsize, bigbuf, tx); 3737 } 3738 3739 dmu_tx_commit(tx); 3740 3741 /* 3742 * Sanity check the stuff we just wrote. 3743 */ 3744 { 3745 void *packcheck = umem_alloc(packsize, UMEM_NOFAIL); 3746 void *bigcheck = umem_alloc(bigsize, UMEM_NOFAIL); 3747 3748 VERIFY(0 == dmu_read(os, packobj, packoff, 3749 packsize, packcheck, DMU_READ_PREFETCH)); 3750 VERIFY(0 == dmu_read(os, bigobj, bigoff, 3751 bigsize, bigcheck, DMU_READ_PREFETCH)); 3752 3753 ASSERT(bcmp(packbuf, packcheck, packsize) == 0); 3754 ASSERT(bcmp(bigbuf, bigcheck, bigsize) == 0); 3755 3756 umem_free(packcheck, packsize); 3757 umem_free(bigcheck, bigsize); 3758 } 3759 3760 umem_free(packbuf, packsize); 3761 umem_free(bigbuf, bigsize); 3762 } 3763 3764 void 3765 compare_and_update_pbbufs(uint64_t s, bufwad_t *packbuf, bufwad_t *bigbuf, 3766 uint64_t bigsize, uint64_t n, uint64_t chunksize, uint64_t txg) 3767 { 3768 uint64_t i; 3769 bufwad_t *pack; 3770 bufwad_t *bigH; 3771 bufwad_t *bigT; 3772 3773 /* 3774 * For each index from n to n + s, verify that the existing bufwad 3775 * in packobj matches the bufwads at the head and tail of the 3776 * corresponding chunk in bigobj. Then update all three bufwads 3777 * with the new values we want to write out. 3778 */ 3779 for (i = 0; i < s; i++) { 3780 /* LINTED */ 3781 pack = (bufwad_t *)((char *)packbuf + i * sizeof (bufwad_t)); 3782 /* LINTED */ 3783 bigH = (bufwad_t *)((char *)bigbuf + i * chunksize); 3784 /* LINTED */ 3785 bigT = (bufwad_t *)((char *)bigH + chunksize) - 1; 3786 3787 ASSERT((uintptr_t)bigH - (uintptr_t)bigbuf < bigsize); 3788 ASSERT((uintptr_t)bigT - (uintptr_t)bigbuf < bigsize); 3789 3790 if (pack->bw_txg > txg) 3791 fatal(0, "future leak: got %llx, open txg is %llx", 3792 pack->bw_txg, txg); 3793 3794 if (pack->bw_data != 0 && pack->bw_index != n + i) 3795 fatal(0, "wrong index: got %llx, wanted %llx+%llx", 3796 pack->bw_index, n, i); 3797 3798 if (bcmp(pack, bigH, sizeof (bufwad_t)) != 0) 3799 fatal(0, "pack/bigH mismatch in %p/%p", pack, bigH); 3800 3801 if (bcmp(pack, bigT, sizeof (bufwad_t)) != 0) 3802 fatal(0, "pack/bigT mismatch in %p/%p", pack, bigT); 3803 3804 pack->bw_index = n + i; 3805 pack->bw_txg = txg; 3806 pack->bw_data = 1 + ztest_random(-2ULL); 3807 3808 *bigH = *pack; 3809 *bigT = *pack; 3810 } 3811 } 3812 3813 void 3814 ztest_dmu_read_write_zcopy(ztest_ds_t *zd, uint64_t id) 3815 { 3816 objset_t *os = zd->zd_os; 3817 ztest_od_t od[2]; 3818 dmu_tx_t *tx; 3819 uint64_t i; 3820 int error; 3821 uint64_t n, s, txg; 3822 bufwad_t *packbuf, *bigbuf; 3823 uint64_t packobj, packoff, packsize, bigobj, bigoff, bigsize; 3824 uint64_t blocksize = ztest_random_blocksize(); 3825 uint64_t chunksize = blocksize; 3826 uint64_t regions = 997; 3827 uint64_t stride = 123456789ULL; 3828 uint64_t width = 9; 3829 dmu_buf_t *bonus_db; 3830 arc_buf_t **bigbuf_arcbufs; 3831 dmu_object_info_t doi; 3832 3833 /* 3834 * This test uses two objects, packobj and bigobj, that are always 3835 * updated together (i.e. in the same tx) so that their contents are 3836 * in sync and can be compared. Their contents relate to each other 3837 * in a simple way: packobj is a dense array of 'bufwad' structures, 3838 * while bigobj is a sparse array of the same bufwads. Specifically, 3839 * for any index n, there are three bufwads that should be identical: 3840 * 3841 * packobj, at offset n * sizeof (bufwad_t) 3842 * bigobj, at the head of the nth chunk 3843 * bigobj, at the tail of the nth chunk 3844 * 3845 * The chunk size is set equal to bigobj block size so that 3846 * dmu_assign_arcbuf() can be tested for object updates. 3847 */ 3848 3849 /* 3850 * Read the directory info. If it's the first time, set things up. 3851 */ 3852 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0); 3853 ztest_od_init(&od[1], id, FTAG, 1, DMU_OT_UINT64_OTHER, 0, chunksize); 3854 3855 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0) 3856 return; 3857 3858 bigobj = od[0].od_object; 3859 packobj = od[1].od_object; 3860 blocksize = od[0].od_blocksize; 3861 chunksize = blocksize; 3862 ASSERT(chunksize == od[1].od_gen); 3863 3864 VERIFY(dmu_object_info(os, bigobj, &doi) == 0); 3865 VERIFY(ISP2(doi.doi_data_block_size)); 3866 VERIFY(chunksize == doi.doi_data_block_size); 3867 VERIFY(chunksize >= 2 * sizeof (bufwad_t)); 3868 3869 /* 3870 * Pick a random index and compute the offsets into packobj and bigobj. 3871 */ 3872 n = ztest_random(regions) * stride + ztest_random(width); 3873 s = 1 + ztest_random(width - 1); 3874 3875 packoff = n * sizeof (bufwad_t); 3876 packsize = s * sizeof (bufwad_t); 3877 3878 bigoff = n * chunksize; 3879 bigsize = s * chunksize; 3880 3881 packbuf = umem_zalloc(packsize, UMEM_NOFAIL); 3882 bigbuf = umem_zalloc(bigsize, UMEM_NOFAIL); 3883 3884 VERIFY3U(0, ==, dmu_bonus_hold(os, bigobj, FTAG, &bonus_db)); 3885 3886 bigbuf_arcbufs = umem_zalloc(2 * s * sizeof (arc_buf_t *), UMEM_NOFAIL); 3887 3888 /* 3889 * Iteration 0 test zcopy for DB_UNCACHED dbufs. 3890 * Iteration 1 test zcopy to already referenced dbufs. 3891 * Iteration 2 test zcopy to dirty dbuf in the same txg. 3892 * Iteration 3 test zcopy to dbuf dirty in previous txg. 3893 * Iteration 4 test zcopy when dbuf is no longer dirty. 3894 * Iteration 5 test zcopy when it can't be done. 3895 * Iteration 6 one more zcopy write. 3896 */ 3897 for (i = 0; i < 7; i++) { 3898 uint64_t j; 3899 uint64_t off; 3900 3901 /* 3902 * In iteration 5 (i == 5) use arcbufs 3903 * that don't match bigobj blksz to test 3904 * dmu_assign_arcbuf() when it can't directly 3905 * assign an arcbuf to a dbuf. 3906 */ 3907 for (j = 0; j < s; j++) { 3908 if (i != 5 || chunksize < (SPA_MINBLOCKSIZE * 2)) { 3909 bigbuf_arcbufs[j] = 3910 dmu_request_arcbuf(bonus_db, chunksize); 3911 } else { 3912 bigbuf_arcbufs[2 * j] = 3913 dmu_request_arcbuf(bonus_db, chunksize / 2); 3914 bigbuf_arcbufs[2 * j + 1] = 3915 dmu_request_arcbuf(bonus_db, chunksize / 2); 3916 } 3917 } 3918 3919 /* 3920 * Get a tx for the mods to both packobj and bigobj. 3921 */ 3922 tx = dmu_tx_create(os); 3923 3924 dmu_tx_hold_write(tx, packobj, packoff, packsize); 3925 dmu_tx_hold_write(tx, bigobj, bigoff, bigsize); 3926 3927 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); 3928 if (txg == 0) { 3929 umem_free(packbuf, packsize); 3930 umem_free(bigbuf, bigsize); 3931 for (j = 0; j < s; j++) { 3932 if (i != 5 || 3933 chunksize < (SPA_MINBLOCKSIZE * 2)) { 3934 dmu_return_arcbuf(bigbuf_arcbufs[j]); 3935 } else { 3936 dmu_return_arcbuf( 3937 bigbuf_arcbufs[2 * j]); 3938 dmu_return_arcbuf( 3939 bigbuf_arcbufs[2 * j + 1]); 3940 } 3941 } 3942 umem_free(bigbuf_arcbufs, 2 * s * sizeof (arc_buf_t *)); 3943 dmu_buf_rele(bonus_db, FTAG); 3944 return; 3945 } 3946 3947 /* 3948 * 50% of the time don't read objects in the 1st iteration to 3949 * test dmu_assign_arcbuf() for the case when there're no 3950 * existing dbufs for the specified offsets. 3951 */ 3952 if (i != 0 || ztest_random(2) != 0) { 3953 error = dmu_read(os, packobj, packoff, 3954 packsize, packbuf, DMU_READ_PREFETCH); 3955 ASSERT0(error); 3956 error = dmu_read(os, bigobj, bigoff, bigsize, 3957 bigbuf, DMU_READ_PREFETCH); 3958 ASSERT0(error); 3959 } 3960 compare_and_update_pbbufs(s, packbuf, bigbuf, bigsize, 3961 n, chunksize, txg); 3962 3963 /* 3964 * We've verified all the old bufwads, and made new ones. 3965 * Now write them out. 3966 */ 3967 dmu_write(os, packobj, packoff, packsize, packbuf, tx); 3968 if (ztest_opts.zo_verbose >= 7) { 3969 (void) printf("writing offset %llx size %llx" 3970 " txg %llx\n", 3971 (u_longlong_t)bigoff, 3972 (u_longlong_t)bigsize, 3973 (u_longlong_t)txg); 3974 } 3975 for (off = bigoff, j = 0; j < s; j++, off += chunksize) { 3976 dmu_buf_t *dbt; 3977 if (i != 5 || chunksize < (SPA_MINBLOCKSIZE * 2)) { 3978 bcopy((caddr_t)bigbuf + (off - bigoff), 3979 bigbuf_arcbufs[j]->b_data, chunksize); 3980 } else { 3981 bcopy((caddr_t)bigbuf + (off - bigoff), 3982 bigbuf_arcbufs[2 * j]->b_data, 3983 chunksize / 2); 3984 bcopy((caddr_t)bigbuf + (off - bigoff) + 3985 chunksize / 2, 3986 bigbuf_arcbufs[2 * j + 1]->b_data, 3987 chunksize / 2); 3988 } 3989 3990 if (i == 1) { 3991 VERIFY(dmu_buf_hold(os, bigobj, off, 3992 FTAG, &dbt, DMU_READ_NO_PREFETCH) == 0); 3993 } 3994 if (i != 5 || chunksize < (SPA_MINBLOCKSIZE * 2)) { 3995 dmu_assign_arcbuf(bonus_db, off, 3996 bigbuf_arcbufs[j], tx); 3997 } else { 3998 dmu_assign_arcbuf(bonus_db, off, 3999 bigbuf_arcbufs[2 * j], tx); 4000 dmu_assign_arcbuf(bonus_db, 4001 off + chunksize / 2, 4002 bigbuf_arcbufs[2 * j + 1], tx); 4003 } 4004 if (i == 1) { 4005 dmu_buf_rele(dbt, FTAG); 4006 } 4007 } 4008 dmu_tx_commit(tx); 4009 4010 /* 4011 * Sanity check the stuff we just wrote. 4012 */ 4013 { 4014 void *packcheck = umem_alloc(packsize, UMEM_NOFAIL); 4015 void *bigcheck = umem_alloc(bigsize, UMEM_NOFAIL); 4016 4017 VERIFY(0 == dmu_read(os, packobj, packoff, 4018 packsize, packcheck, DMU_READ_PREFETCH)); 4019 VERIFY(0 == dmu_read(os, bigobj, bigoff, 4020 bigsize, bigcheck, DMU_READ_PREFETCH)); 4021 4022 ASSERT(bcmp(packbuf, packcheck, packsize) == 0); 4023 ASSERT(bcmp(bigbuf, bigcheck, bigsize) == 0); 4024 4025 umem_free(packcheck, packsize); 4026 umem_free(bigcheck, bigsize); 4027 } 4028 if (i == 2) { 4029 txg_wait_open(dmu_objset_pool(os), 0); 4030 } else if (i == 3) { 4031 txg_wait_synced(dmu_objset_pool(os), 0); 4032 } 4033 } 4034 4035 dmu_buf_rele(bonus_db, FTAG); 4036 umem_free(packbuf, packsize); 4037 umem_free(bigbuf, bigsize); 4038 umem_free(bigbuf_arcbufs, 2 * s * sizeof (arc_buf_t *)); 4039 } 4040 4041 /* ARGSUSED */ 4042 void 4043 ztest_dmu_write_parallel(ztest_ds_t *zd, uint64_t id) 4044 { 4045 ztest_od_t od[1]; 4046 uint64_t offset = (1ULL << (ztest_random(20) + 43)) + 4047 (ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT); 4048 4049 /* 4050 * Have multiple threads write to large offsets in an object 4051 * to verify that parallel writes to an object -- even to the 4052 * same blocks within the object -- doesn't cause any trouble. 4053 */ 4054 ztest_od_init(&od[0], ID_PARALLEL, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0); 4055 4056 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0) 4057 return; 4058 4059 while (ztest_random(10) != 0) 4060 ztest_io(zd, od[0].od_object, offset); 4061 } 4062 4063 void 4064 ztest_dmu_prealloc(ztest_ds_t *zd, uint64_t id) 4065 { 4066 ztest_od_t od[1]; 4067 uint64_t offset = (1ULL << (ztest_random(4) + SPA_MAXBLOCKSHIFT)) + 4068 (ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT); 4069 uint64_t count = ztest_random(20) + 1; 4070 uint64_t blocksize = ztest_random_blocksize(); 4071 void *data; 4072 4073 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0); 4074 4075 if (ztest_object_init(zd, od, sizeof (od), !ztest_random(2)) != 0) 4076 return; 4077 4078 if (ztest_truncate(zd, od[0].od_object, offset, count * blocksize) != 0) 4079 return; 4080 4081 ztest_prealloc(zd, od[0].od_object, offset, count * blocksize); 4082 4083 data = umem_zalloc(blocksize, UMEM_NOFAIL); 4084 4085 while (ztest_random(count) != 0) { 4086 uint64_t randoff = offset + (ztest_random(count) * blocksize); 4087 if (ztest_write(zd, od[0].od_object, randoff, blocksize, 4088 data) != 0) 4089 break; 4090 while (ztest_random(4) != 0) 4091 ztest_io(zd, od[0].od_object, randoff); 4092 } 4093 4094 umem_free(data, blocksize); 4095 } 4096 4097 /* 4098 * Verify that zap_{create,destroy,add,remove,update} work as expected. 4099 */ 4100 #define ZTEST_ZAP_MIN_INTS 1 4101 #define ZTEST_ZAP_MAX_INTS 4 4102 #define ZTEST_ZAP_MAX_PROPS 1000 4103 4104 void 4105 ztest_zap(ztest_ds_t *zd, uint64_t id) 4106 { 4107 objset_t *os = zd->zd_os; 4108 ztest_od_t od[1]; 4109 uint64_t object; 4110 uint64_t txg, last_txg; 4111 uint64_t value[ZTEST_ZAP_MAX_INTS]; 4112 uint64_t zl_ints, zl_intsize, prop; 4113 int i, ints; 4114 dmu_tx_t *tx; 4115 char propname[100], txgname[100]; 4116 int error; 4117 char *hc[2] = { "s.acl.h", ".s.open.h.hyLZlg" }; 4118 4119 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_ZAP_OTHER, 0, 0); 4120 4121 if (ztest_object_init(zd, od, sizeof (od), !ztest_random(2)) != 0) 4122 return; 4123 4124 object = od[0].od_object; 4125 4126 /* 4127 * Generate a known hash collision, and verify that 4128 * we can lookup and remove both entries. 4129 */ 4130 tx = dmu_tx_create(os); 4131 dmu_tx_hold_zap(tx, object, B_TRUE, NULL); 4132 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); 4133 if (txg == 0) 4134 return; 4135 for (i = 0; i < 2; i++) { 4136 value[i] = i; 4137 VERIFY3U(0, ==, zap_add(os, object, hc[i], sizeof (uint64_t), 4138 1, &value[i], tx)); 4139 } 4140 for (i = 0; i < 2; i++) { 4141 VERIFY3U(EEXIST, ==, zap_add(os, object, hc[i], 4142 sizeof (uint64_t), 1, &value[i], tx)); 4143 VERIFY3U(0, ==, 4144 zap_length(os, object, hc[i], &zl_intsize, &zl_ints)); 4145 ASSERT3U(zl_intsize, ==, sizeof (uint64_t)); 4146 ASSERT3U(zl_ints, ==, 1); 4147 } 4148 for (i = 0; i < 2; i++) { 4149 VERIFY3U(0, ==, zap_remove(os, object, hc[i], tx)); 4150 } 4151 dmu_tx_commit(tx); 4152 4153 /* 4154 * Generate a buch of random entries. 4155 */ 4156 ints = MAX(ZTEST_ZAP_MIN_INTS, object % ZTEST_ZAP_MAX_INTS); 4157 4158 prop = ztest_random(ZTEST_ZAP_MAX_PROPS); 4159 (void) sprintf(propname, "prop_%llu", (u_longlong_t)prop); 4160 (void) sprintf(txgname, "txg_%llu", (u_longlong_t)prop); 4161 bzero(value, sizeof (value)); 4162 last_txg = 0; 4163 4164 /* 4165 * If these zap entries already exist, validate their contents. 4166 */ 4167 error = zap_length(os, object, txgname, &zl_intsize, &zl_ints); 4168 if (error == 0) { 4169 ASSERT3U(zl_intsize, ==, sizeof (uint64_t)); 4170 ASSERT3U(zl_ints, ==, 1); 4171 4172 VERIFY(zap_lookup(os, object, txgname, zl_intsize, 4173 zl_ints, &last_txg) == 0); 4174 4175 VERIFY(zap_length(os, object, propname, &zl_intsize, 4176 &zl_ints) == 0); 4177 4178 ASSERT3U(zl_intsize, ==, sizeof (uint64_t)); 4179 ASSERT3U(zl_ints, ==, ints); 4180 4181 VERIFY(zap_lookup(os, object, propname, zl_intsize, 4182 zl_ints, value) == 0); 4183 4184 for (i = 0; i < ints; i++) { 4185 ASSERT3U(value[i], ==, last_txg + object + i); 4186 } 4187 } else { 4188 ASSERT3U(error, ==, ENOENT); 4189 } 4190 4191 /* 4192 * Atomically update two entries in our zap object. 4193 * The first is named txg_%llu, and contains the txg 4194 * in which the property was last updated. The second 4195 * is named prop_%llu, and the nth element of its value 4196 * should be txg + object + n. 4197 */ 4198 tx = dmu_tx_create(os); 4199 dmu_tx_hold_zap(tx, object, B_TRUE, NULL); 4200 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); 4201 if (txg == 0) 4202 return; 4203 4204 if (last_txg > txg) 4205 fatal(0, "zap future leak: old %llu new %llu", last_txg, txg); 4206 4207 for (i = 0; i < ints; i++) 4208 value[i] = txg + object + i; 4209 4210 VERIFY3U(0, ==, zap_update(os, object, txgname, sizeof (uint64_t), 4211 1, &txg, tx)); 4212 VERIFY3U(0, ==, zap_update(os, object, propname, sizeof (uint64_t), 4213 ints, value, tx)); 4214 4215 dmu_tx_commit(tx); 4216 4217 /* 4218 * Remove a random pair of entries. 4219 */ 4220 prop = ztest_random(ZTEST_ZAP_MAX_PROPS); 4221 (void) sprintf(propname, "prop_%llu", (u_longlong_t)prop); 4222 (void) sprintf(txgname, "txg_%llu", (u_longlong_t)prop); 4223 4224 error = zap_length(os, object, txgname, &zl_intsize, &zl_ints); 4225 4226 if (error == ENOENT) 4227 return; 4228 4229 ASSERT0(error); 4230 4231 tx = dmu_tx_create(os); 4232 dmu_tx_hold_zap(tx, object, B_TRUE, NULL); 4233 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); 4234 if (txg == 0) 4235 return; 4236 VERIFY3U(0, ==, zap_remove(os, object, txgname, tx)); 4237 VERIFY3U(0, ==, zap_remove(os, object, propname, tx)); 4238 dmu_tx_commit(tx); 4239 } 4240 4241 /* 4242 * Testcase to test the upgrading of a microzap to fatzap. 4243 */ 4244 void 4245 ztest_fzap(ztest_ds_t *zd, uint64_t id) 4246 { 4247 objset_t *os = zd->zd_os; 4248 ztest_od_t od[1]; 4249 uint64_t object, txg; 4250 4251 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_ZAP_OTHER, 0, 0); 4252 4253 if (ztest_object_init(zd, od, sizeof (od), !ztest_random(2)) != 0) 4254 return; 4255 4256 object = od[0].od_object; 4257 4258 /* 4259 * Add entries to this ZAP and make sure it spills over 4260 * and gets upgraded to a fatzap. Also, since we are adding 4261 * 2050 entries we should see ptrtbl growth and leaf-block split. 4262 */ 4263 for (int i = 0; i < 2050; i++) { 4264 char name[MAXNAMELEN]; 4265 uint64_t value = i; 4266 dmu_tx_t *tx; 4267 int error; 4268 4269 (void) snprintf(name, sizeof (name), "fzap-%llu-%llu", 4270 id, value); 4271 4272 tx = dmu_tx_create(os); 4273 dmu_tx_hold_zap(tx, object, B_TRUE, name); 4274 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); 4275 if (txg == 0) 4276 return; 4277 error = zap_add(os, object, name, sizeof (uint64_t), 1, 4278 &value, tx); 4279 ASSERT(error == 0 || error == EEXIST); 4280 dmu_tx_commit(tx); 4281 } 4282 } 4283 4284 /* ARGSUSED */ 4285 void 4286 ztest_zap_parallel(ztest_ds_t *zd, uint64_t id) 4287 { 4288 objset_t *os = zd->zd_os; 4289 ztest_od_t od[1]; 4290 uint64_t txg, object, count, wsize, wc, zl_wsize, zl_wc; 4291 dmu_tx_t *tx; 4292 int i, namelen, error; 4293 int micro = ztest_random(2); 4294 char name[20], string_value[20]; 4295 void *data; 4296 4297 ztest_od_init(&od[0], ID_PARALLEL, FTAG, micro, DMU_OT_ZAP_OTHER, 0, 0); 4298 4299 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0) 4300 return; 4301 4302 object = od[0].od_object; 4303 4304 /* 4305 * Generate a random name of the form 'xxx.....' where each 4306 * x is a random printable character and the dots are dots. 4307 * There are 94 such characters, and the name length goes from 4308 * 6 to 20, so there are 94^3 * 15 = 12,458,760 possible names. 4309 */ 4310 namelen = ztest_random(sizeof (name) - 5) + 5 + 1; 4311 4312 for (i = 0; i < 3; i++) 4313 name[i] = '!' + ztest_random('~' - '!' + 1); 4314 for (; i < namelen - 1; i++) 4315 name[i] = '.'; 4316 name[i] = '\0'; 4317 4318 if ((namelen & 1) || micro) { 4319 wsize = sizeof (txg); 4320 wc = 1; 4321 data = &txg; 4322 } else { 4323 wsize = 1; 4324 wc = namelen; 4325 data = string_value; 4326 } 4327 4328 count = -1ULL; 4329 VERIFY0(zap_count(os, object, &count)); 4330 ASSERT(count != -1ULL); 4331 4332 /* 4333 * Select an operation: length, lookup, add, update, remove. 4334 */ 4335 i = ztest_random(5); 4336 4337 if (i >= 2) { 4338 tx = dmu_tx_create(os); 4339 dmu_tx_hold_zap(tx, object, B_TRUE, NULL); 4340 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); 4341 if (txg == 0) 4342 return; 4343 bcopy(name, string_value, namelen); 4344 } else { 4345 tx = NULL; 4346 txg = 0; 4347 bzero(string_value, namelen); 4348 } 4349 4350 switch (i) { 4351 4352 case 0: 4353 error = zap_length(os, object, name, &zl_wsize, &zl_wc); 4354 if (error == 0) { 4355 ASSERT3U(wsize, ==, zl_wsize); 4356 ASSERT3U(wc, ==, zl_wc); 4357 } else { 4358 ASSERT3U(error, ==, ENOENT); 4359 } 4360 break; 4361 4362 case 1: 4363 error = zap_lookup(os, object, name, wsize, wc, data); 4364 if (error == 0) { 4365 if (data == string_value && 4366 bcmp(name, data, namelen) != 0) 4367 fatal(0, "name '%s' != val '%s' len %d", 4368 name, data, namelen); 4369 } else { 4370 ASSERT3U(error, ==, ENOENT); 4371 } 4372 break; 4373 4374 case 2: 4375 error = zap_add(os, object, name, wsize, wc, data, tx); 4376 ASSERT(error == 0 || error == EEXIST); 4377 break; 4378 4379 case 3: 4380 VERIFY(zap_update(os, object, name, wsize, wc, data, tx) == 0); 4381 break; 4382 4383 case 4: 4384 error = zap_remove(os, object, name, tx); 4385 ASSERT(error == 0 || error == ENOENT); 4386 break; 4387 } 4388 4389 if (tx != NULL) 4390 dmu_tx_commit(tx); 4391 } 4392 4393 /* 4394 * Commit callback data. 4395 */ 4396 typedef struct ztest_cb_data { 4397 list_node_t zcd_node; 4398 uint64_t zcd_txg; 4399 int zcd_expected_err; 4400 boolean_t zcd_added; 4401 boolean_t zcd_called; 4402 spa_t *zcd_spa; 4403 } ztest_cb_data_t; 4404 4405 /* This is the actual commit callback function */ 4406 static void 4407 ztest_commit_callback(void *arg, int error) 4408 { 4409 ztest_cb_data_t *data = arg; 4410 uint64_t synced_txg; 4411 4412 VERIFY(data != NULL); 4413 VERIFY3S(data->zcd_expected_err, ==, error); 4414 VERIFY(!data->zcd_called); 4415 4416 synced_txg = spa_last_synced_txg(data->zcd_spa); 4417 if (data->zcd_txg > synced_txg) 4418 fatal(0, "commit callback of txg %" PRIu64 " called prematurely" 4419 ", last synced txg = %" PRIu64 "\n", data->zcd_txg, 4420 synced_txg); 4421 4422 data->zcd_called = B_TRUE; 4423 4424 if (error == ECANCELED) { 4425 ASSERT0(data->zcd_txg); 4426 ASSERT(!data->zcd_added); 4427 4428 /* 4429 * The private callback data should be destroyed here, but 4430 * since we are going to check the zcd_called field after 4431 * dmu_tx_abort(), we will destroy it there. 4432 */ 4433 return; 4434 } 4435 4436 /* Was this callback added to the global callback list? */ 4437 if (!data->zcd_added) 4438 goto out; 4439 4440 ASSERT3U(data->zcd_txg, !=, 0); 4441 4442 /* Remove our callback from the list */ 4443 (void) mutex_lock(&zcl.zcl_callbacks_lock); 4444 list_remove(&zcl.zcl_callbacks, data); 4445 (void) mutex_unlock(&zcl.zcl_callbacks_lock); 4446 4447 out: 4448 umem_free(data, sizeof (ztest_cb_data_t)); 4449 } 4450 4451 /* Allocate and initialize callback data structure */ 4452 static ztest_cb_data_t * 4453 ztest_create_cb_data(objset_t *os, uint64_t txg) 4454 { 4455 ztest_cb_data_t *cb_data; 4456 4457 cb_data = umem_zalloc(sizeof (ztest_cb_data_t), UMEM_NOFAIL); 4458 4459 cb_data->zcd_txg = txg; 4460 cb_data->zcd_spa = dmu_objset_spa(os); 4461 4462 return (cb_data); 4463 } 4464 4465 /* 4466 * If a number of txgs equal to this threshold have been created after a commit 4467 * callback has been registered but not called, then we assume there is an 4468 * implementation bug. 4469 */ 4470 #define ZTEST_COMMIT_CALLBACK_THRESH (TXG_CONCURRENT_STATES + 2) 4471 4472 /* 4473 * Commit callback test. 4474 */ 4475 void 4476 ztest_dmu_commit_callbacks(ztest_ds_t *zd, uint64_t id) 4477 { 4478 objset_t *os = zd->zd_os; 4479 ztest_od_t od[1]; 4480 dmu_tx_t *tx; 4481 ztest_cb_data_t *cb_data[3], *tmp_cb; 4482 uint64_t old_txg, txg; 4483 int i, error; 4484 4485 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0); 4486 4487 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0) 4488 return; 4489 4490 tx = dmu_tx_create(os); 4491 4492 cb_data[0] = ztest_create_cb_data(os, 0); 4493 dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[0]); 4494 4495 dmu_tx_hold_write(tx, od[0].od_object, 0, sizeof (uint64_t)); 4496 4497 /* Every once in a while, abort the transaction on purpose */ 4498 if (ztest_random(100) == 0) 4499 error = -1; 4500 4501 if (!error) 4502 error = dmu_tx_assign(tx, TXG_NOWAIT); 4503 4504 txg = error ? 0 : dmu_tx_get_txg(tx); 4505 4506 cb_data[0]->zcd_txg = txg; 4507 cb_data[1] = ztest_create_cb_data(os, txg); 4508 dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[1]); 4509 4510 if (error) { 4511 /* 4512 * It's not a strict requirement to call the registered 4513 * callbacks from inside dmu_tx_abort(), but that's what 4514 * it's supposed to happen in the current implementation 4515 * so we will check for that. 4516 */ 4517 for (i = 0; i < 2; i++) { 4518 cb_data[i]->zcd_expected_err = ECANCELED; 4519 VERIFY(!cb_data[i]->zcd_called); 4520 } 4521 4522 dmu_tx_abort(tx); 4523 4524 for (i = 0; i < 2; i++) { 4525 VERIFY(cb_data[i]->zcd_called); 4526 umem_free(cb_data[i], sizeof (ztest_cb_data_t)); 4527 } 4528 4529 return; 4530 } 4531 4532 cb_data[2] = ztest_create_cb_data(os, txg); 4533 dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[2]); 4534 4535 /* 4536 * Read existing data to make sure there isn't a future leak. 4537 */ 4538 VERIFY(0 == dmu_read(os, od[0].od_object, 0, sizeof (uint64_t), 4539 &old_txg, DMU_READ_PREFETCH)); 4540 4541 if (old_txg > txg) 4542 fatal(0, "future leak: got %" PRIu64 ", open txg is %" PRIu64, 4543 old_txg, txg); 4544 4545 dmu_write(os, od[0].od_object, 0, sizeof (uint64_t), &txg, tx); 4546 4547 (void) mutex_lock(&zcl.zcl_callbacks_lock); 4548 4549 /* 4550 * Since commit callbacks don't have any ordering requirement and since 4551 * it is theoretically possible for a commit callback to be called 4552 * after an arbitrary amount of time has elapsed since its txg has been 4553 * synced, it is difficult to reliably determine whether a commit 4554 * callback hasn't been called due to high load or due to a flawed 4555 * implementation. 4556 * 4557 * In practice, we will assume that if after a certain number of txgs a 4558 * commit callback hasn't been called, then most likely there's an 4559 * implementation bug.. 4560 */ 4561 tmp_cb = list_head(&zcl.zcl_callbacks); 4562 if (tmp_cb != NULL && 4563 (txg - ZTEST_COMMIT_CALLBACK_THRESH) > tmp_cb->zcd_txg) { 4564 fatal(0, "Commit callback threshold exceeded, oldest txg: %" 4565 PRIu64 ", open txg: %" PRIu64 "\n", tmp_cb->zcd_txg, txg); 4566 } 4567 4568 /* 4569 * Let's find the place to insert our callbacks. 4570 * 4571 * Even though the list is ordered by txg, it is possible for the 4572 * insertion point to not be the end because our txg may already be 4573 * quiescing at this point and other callbacks in the open txg 4574 * (from other objsets) may have sneaked in. 4575 */ 4576 tmp_cb = list_tail(&zcl.zcl_callbacks); 4577 while (tmp_cb != NULL && tmp_cb->zcd_txg > txg) 4578 tmp_cb = list_prev(&zcl.zcl_callbacks, tmp_cb); 4579 4580 /* Add the 3 callbacks to the list */ 4581 for (i = 0; i < 3; i++) { 4582 if (tmp_cb == NULL) 4583 list_insert_head(&zcl.zcl_callbacks, cb_data[i]); 4584 else 4585 list_insert_after(&zcl.zcl_callbacks, tmp_cb, 4586 cb_data[i]); 4587 4588 cb_data[i]->zcd_added = B_TRUE; 4589 VERIFY(!cb_data[i]->zcd_called); 4590 4591 tmp_cb = cb_data[i]; 4592 } 4593 4594 (void) mutex_unlock(&zcl.zcl_callbacks_lock); 4595 4596 dmu_tx_commit(tx); 4597 } 4598 4599 /* ARGSUSED */ 4600 void 4601 ztest_dsl_prop_get_set(ztest_ds_t *zd, uint64_t id) 4602 { 4603 zfs_prop_t proplist[] = { 4604 ZFS_PROP_CHECKSUM, 4605 ZFS_PROP_COMPRESSION, 4606 ZFS_PROP_COPIES, 4607 ZFS_PROP_DEDUP 4608 }; 4609 4610 (void) rw_rdlock(&ztest_name_lock); 4611 4612 for (int p = 0; p < sizeof (proplist) / sizeof (proplist[0]); p++) 4613 (void) ztest_dsl_prop_set_uint64(zd->zd_name, proplist[p], 4614 ztest_random_dsl_prop(proplist[p]), (int)ztest_random(2)); 4615 4616 (void) rw_unlock(&ztest_name_lock); 4617 } 4618 4619 /* ARGSUSED */ 4620 void 4621 ztest_spa_prop_get_set(ztest_ds_t *zd, uint64_t id) 4622 { 4623 nvlist_t *props = NULL; 4624 4625 (void) rw_rdlock(&ztest_name_lock); 4626 4627 (void) ztest_spa_prop_set_uint64(ZPOOL_PROP_DEDUPDITTO, 4628 ZIO_DEDUPDITTO_MIN + ztest_random(ZIO_DEDUPDITTO_MIN)); 4629 4630 VERIFY0(spa_prop_get(ztest_spa, &props)); 4631 4632 if (ztest_opts.zo_verbose >= 6) 4633 dump_nvlist(props, 4); 4634 4635 nvlist_free(props); 4636 4637 (void) rw_unlock(&ztest_name_lock); 4638 } 4639 4640 static int 4641 user_release_one(const char *snapname, const char *holdname) 4642 { 4643 nvlist_t *snaps, *holds; 4644 int error; 4645 4646 snaps = fnvlist_alloc(); 4647 holds = fnvlist_alloc(); 4648 fnvlist_add_boolean(holds, holdname); 4649 fnvlist_add_nvlist(snaps, snapname, holds); 4650 fnvlist_free(holds); 4651 error = dsl_dataset_user_release(snaps, NULL); 4652 fnvlist_free(snaps); 4653 return (error); 4654 } 4655 4656 /* 4657 * Test snapshot hold/release and deferred destroy. 4658 */ 4659 void 4660 ztest_dmu_snapshot_hold(ztest_ds_t *zd, uint64_t id) 4661 { 4662 int error; 4663 objset_t *os = zd->zd_os; 4664 objset_t *origin; 4665 char snapname[100]; 4666 char fullname[100]; 4667 char clonename[100]; 4668 char tag[100]; 4669 char osname[MAXNAMELEN]; 4670 nvlist_t *holds; 4671 4672 (void) rw_rdlock(&ztest_name_lock); 4673 4674 dmu_objset_name(os, osname); 4675 4676 (void) snprintf(snapname, sizeof (snapname), "sh1_%llu", id); 4677 (void) snprintf(fullname, sizeof (fullname), "%s@%s", osname, snapname); 4678 (void) snprintf(clonename, sizeof (clonename), 4679 "%s/ch1_%llu", osname, id); 4680 (void) snprintf(tag, sizeof (tag), "tag_%llu", id); 4681 4682 /* 4683 * Clean up from any previous run. 4684 */ 4685 error = dsl_destroy_head(clonename); 4686 if (error != ENOENT) 4687 ASSERT0(error); 4688 error = user_release_one(fullname, tag); 4689 if (error != ESRCH && error != ENOENT) 4690 ASSERT0(error); 4691 error = dsl_destroy_snapshot(fullname, B_FALSE); 4692 if (error != ENOENT) 4693 ASSERT0(error); 4694 4695 /* 4696 * Create snapshot, clone it, mark snap for deferred destroy, 4697 * destroy clone, verify snap was also destroyed. 4698 */ 4699 error = dmu_objset_snapshot_one(osname, snapname); 4700 if (error) { 4701 if (error == ENOSPC) { 4702 ztest_record_enospc("dmu_objset_snapshot"); 4703 goto out; 4704 } 4705 fatal(0, "dmu_objset_snapshot(%s) = %d", fullname, error); 4706 } 4707 4708 error = dmu_objset_clone(clonename, fullname); 4709 if (error) { 4710 if (error == ENOSPC) { 4711 ztest_record_enospc("dmu_objset_clone"); 4712 goto out; 4713 } 4714 fatal(0, "dmu_objset_clone(%s) = %d", clonename, error); 4715 } 4716 4717 error = dsl_destroy_snapshot(fullname, B_TRUE); 4718 if (error) { 4719 fatal(0, "dsl_destroy_snapshot(%s, B_TRUE) = %d", 4720 fullname, error); 4721 } 4722 4723 error = dsl_destroy_head(clonename); 4724 if (error) 4725 fatal(0, "dsl_destroy_head(%s) = %d", clonename, error); 4726 4727 error = dmu_objset_hold(fullname, FTAG, &origin); 4728 if (error != ENOENT) 4729 fatal(0, "dmu_objset_hold(%s) = %d", fullname, error); 4730 4731 /* 4732 * Create snapshot, add temporary hold, verify that we can't 4733 * destroy a held snapshot, mark for deferred destroy, 4734 * release hold, verify snapshot was destroyed. 4735 */ 4736 error = dmu_objset_snapshot_one(osname, snapname); 4737 if (error) { 4738 if (error == ENOSPC) { 4739 ztest_record_enospc("dmu_objset_snapshot"); 4740 goto out; 4741 } 4742 fatal(0, "dmu_objset_snapshot(%s) = %d", fullname, error); 4743 } 4744 4745 holds = fnvlist_alloc(); 4746 fnvlist_add_string(holds, fullname, tag); 4747 error = dsl_dataset_user_hold(holds, 0, NULL); 4748 fnvlist_free(holds); 4749 4750 if (error == ENOSPC) { 4751 ztest_record_enospc("dsl_dataset_user_hold"); 4752 goto out; 4753 } else if (error) { 4754 fatal(0, "dsl_dataset_user_hold(%s, %s) = %u", 4755 fullname, tag, error); 4756 } 4757 4758 error = dsl_destroy_snapshot(fullname, B_FALSE); 4759 if (error != EBUSY) { 4760 fatal(0, "dsl_destroy_snapshot(%s, B_FALSE) = %d", 4761 fullname, error); 4762 } 4763 4764 error = dsl_destroy_snapshot(fullname, B_TRUE); 4765 if (error) { 4766 fatal(0, "dsl_destroy_snapshot(%s, B_TRUE) = %d", 4767 fullname, error); 4768 } 4769 4770 error = user_release_one(fullname, tag); 4771 if (error) 4772 fatal(0, "user_release_one(%s, %s) = %d", fullname, tag, error); 4773 4774 VERIFY3U(dmu_objset_hold(fullname, FTAG, &origin), ==, ENOENT); 4775 4776 out: 4777 (void) rw_unlock(&ztest_name_lock); 4778 } 4779 4780 /* 4781 * Inject random faults into the on-disk data. 4782 */ 4783 /* ARGSUSED */ 4784 void 4785 ztest_fault_inject(ztest_ds_t *zd, uint64_t id) 4786 { 4787 ztest_shared_t *zs = ztest_shared; 4788 spa_t *spa = ztest_spa; 4789 int fd; 4790 uint64_t offset; 4791 uint64_t leaves; 4792 uint64_t bad = 0x1990c0ffeedecade; 4793 uint64_t top, leaf; 4794 char path0[MAXPATHLEN]; 4795 char pathrand[MAXPATHLEN]; 4796 size_t fsize; 4797 int bshift = SPA_OLD_MAXBLOCKSHIFT + 2; /* don't scrog all labels */ 4798 int iters = 1000; 4799 int maxfaults; 4800 int mirror_save; 4801 vdev_t *vd0 = NULL; 4802 uint64_t guid0 = 0; 4803 boolean_t islog = B_FALSE; 4804 4805 VERIFY(mutex_lock(&ztest_vdev_lock) == 0); 4806 maxfaults = MAXFAULTS(); 4807 leaves = MAX(zs->zs_mirrors, 1) * ztest_opts.zo_raidz; 4808 mirror_save = zs->zs_mirrors; 4809 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 4810 4811 ASSERT(leaves >= 1); 4812 4813 /* 4814 * Grab the name lock as reader. There are some operations 4815 * which don't like to have their vdevs changed while 4816 * they are in progress (i.e. spa_change_guid). Those 4817 * operations will have grabbed the name lock as writer. 4818 */ 4819 (void) rw_rdlock(&ztest_name_lock); 4820 4821 /* 4822 * We need SCL_STATE here because we're going to look at vd0->vdev_tsd. 4823 */ 4824 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 4825 4826 if (ztest_random(2) == 0) { 4827 /* 4828 * Inject errors on a normal data device or slog device. 4829 */ 4830 top = ztest_random_vdev_top(spa, B_TRUE); 4831 leaf = ztest_random(leaves) + zs->zs_splits; 4832 4833 /* 4834 * Generate paths to the first leaf in this top-level vdev, 4835 * and to the random leaf we selected. We'll induce transient 4836 * write failures and random online/offline activity on leaf 0, 4837 * and we'll write random garbage to the randomly chosen leaf. 4838 */ 4839 (void) snprintf(path0, sizeof (path0), ztest_dev_template, 4840 ztest_opts.zo_dir, ztest_opts.zo_pool, 4841 top * leaves + zs->zs_splits); 4842 (void) snprintf(pathrand, sizeof (pathrand), ztest_dev_template, 4843 ztest_opts.zo_dir, ztest_opts.zo_pool, 4844 top * leaves + leaf); 4845 4846 vd0 = vdev_lookup_by_path(spa->spa_root_vdev, path0); 4847 if (vd0 != NULL && vd0->vdev_top->vdev_islog) 4848 islog = B_TRUE; 4849 4850 /* 4851 * If the top-level vdev needs to be resilvered 4852 * then we only allow faults on the device that is 4853 * resilvering. 4854 */ 4855 if (vd0 != NULL && maxfaults != 1 && 4856 (!vdev_resilver_needed(vd0->vdev_top, NULL, NULL) || 4857 vd0->vdev_resilver_txg != 0)) { 4858 /* 4859 * Make vd0 explicitly claim to be unreadable, 4860 * or unwriteable, or reach behind its back 4861 * and close the underlying fd. We can do this if 4862 * maxfaults == 0 because we'll fail and reexecute, 4863 * and we can do it if maxfaults >= 2 because we'll 4864 * have enough redundancy. If maxfaults == 1, the 4865 * combination of this with injection of random data 4866 * corruption below exceeds the pool's fault tolerance. 4867 */ 4868 vdev_file_t *vf = vd0->vdev_tsd; 4869 4870 if (vf != NULL && ztest_random(3) == 0) { 4871 (void) close(vf->vf_vnode->v_fd); 4872 vf->vf_vnode->v_fd = -1; 4873 } else if (ztest_random(2) == 0) { 4874 vd0->vdev_cant_read = B_TRUE; 4875 } else { 4876 vd0->vdev_cant_write = B_TRUE; 4877 } 4878 guid0 = vd0->vdev_guid; 4879 } 4880 } else { 4881 /* 4882 * Inject errors on an l2cache device. 4883 */ 4884 spa_aux_vdev_t *sav = &spa->spa_l2cache; 4885 4886 if (sav->sav_count == 0) { 4887 spa_config_exit(spa, SCL_STATE, FTAG); 4888 (void) rw_unlock(&ztest_name_lock); 4889 return; 4890 } 4891 vd0 = sav->sav_vdevs[ztest_random(sav->sav_count)]; 4892 guid0 = vd0->vdev_guid; 4893 (void) strcpy(path0, vd0->vdev_path); 4894 (void) strcpy(pathrand, vd0->vdev_path); 4895 4896 leaf = 0; 4897 leaves = 1; 4898 maxfaults = INT_MAX; /* no limit on cache devices */ 4899 } 4900 4901 spa_config_exit(spa, SCL_STATE, FTAG); 4902 (void) rw_unlock(&ztest_name_lock); 4903 4904 /* 4905 * If we can tolerate two or more faults, or we're dealing 4906 * with a slog, randomly online/offline vd0. 4907 */ 4908 if ((maxfaults >= 2 || islog) && guid0 != 0) { 4909 if (ztest_random(10) < 6) { 4910 int flags = (ztest_random(2) == 0 ? 4911 ZFS_OFFLINE_TEMPORARY : 0); 4912 4913 /* 4914 * We have to grab the zs_name_lock as writer to 4915 * prevent a race between offlining a slog and 4916 * destroying a dataset. Offlining the slog will 4917 * grab a reference on the dataset which may cause 4918 * dmu_objset_destroy() to fail with EBUSY thus 4919 * leaving the dataset in an inconsistent state. 4920 */ 4921 if (islog) 4922 (void) rw_wrlock(&ztest_name_lock); 4923 4924 VERIFY(vdev_offline(spa, guid0, flags) != EBUSY); 4925 4926 if (islog) 4927 (void) rw_unlock(&ztest_name_lock); 4928 } else { 4929 /* 4930 * Ideally we would like to be able to randomly 4931 * call vdev_[on|off]line without holding locks 4932 * to force unpredictable failures but the side 4933 * effects of vdev_[on|off]line prevent us from 4934 * doing so. We grab the ztest_vdev_lock here to 4935 * prevent a race between injection testing and 4936 * aux_vdev removal. 4937 */ 4938 VERIFY(mutex_lock(&ztest_vdev_lock) == 0); 4939 (void) vdev_online(spa, guid0, 0, NULL); 4940 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 4941 } 4942 } 4943 4944 if (maxfaults == 0) 4945 return; 4946 4947 /* 4948 * We have at least single-fault tolerance, so inject data corruption. 4949 */ 4950 fd = open(pathrand, O_RDWR); 4951 4952 if (fd == -1) /* we hit a gap in the device namespace */ 4953 return; 4954 4955 fsize = lseek(fd, 0, SEEK_END); 4956 4957 while (--iters != 0) { 4958 offset = ztest_random(fsize / (leaves << bshift)) * 4959 (leaves << bshift) + (leaf << bshift) + 4960 (ztest_random(1ULL << (bshift - 1)) & -8ULL); 4961 4962 if (offset >= fsize) 4963 continue; 4964 4965 VERIFY(mutex_lock(&ztest_vdev_lock) == 0); 4966 if (mirror_save != zs->zs_mirrors) { 4967 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 4968 (void) close(fd); 4969 return; 4970 } 4971 4972 if (pwrite(fd, &bad, sizeof (bad), offset) != sizeof (bad)) 4973 fatal(1, "can't inject bad word at 0x%llx in %s", 4974 offset, pathrand); 4975 4976 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 4977 4978 if (ztest_opts.zo_verbose >= 7) 4979 (void) printf("injected bad word into %s," 4980 " offset 0x%llx\n", pathrand, (u_longlong_t)offset); 4981 } 4982 4983 (void) close(fd); 4984 } 4985 4986 /* 4987 * Verify that DDT repair works as expected. 4988 */ 4989 void 4990 ztest_ddt_repair(ztest_ds_t *zd, uint64_t id) 4991 { 4992 ztest_shared_t *zs = ztest_shared; 4993 spa_t *spa = ztest_spa; 4994 objset_t *os = zd->zd_os; 4995 ztest_od_t od[1]; 4996 uint64_t object, blocksize, txg, pattern, psize; 4997 enum zio_checksum checksum = spa_dedup_checksum(spa); 4998 dmu_buf_t *db; 4999 dmu_tx_t *tx; 5000 void *buf; 5001 blkptr_t blk; 5002 int copies = 2 * ZIO_DEDUPDITTO_MIN; 5003 5004 blocksize = ztest_random_blocksize(); 5005 blocksize = MIN(blocksize, 2048); /* because we write so many */ 5006 5007 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0); 5008 5009 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0) 5010 return; 5011 5012 /* 5013 * Take the name lock as writer to prevent anyone else from changing 5014 * the pool and dataset properies we need to maintain during this test. 5015 */ 5016 (void) rw_wrlock(&ztest_name_lock); 5017 5018 if (ztest_dsl_prop_set_uint64(zd->zd_name, ZFS_PROP_DEDUP, checksum, 5019 B_FALSE) != 0 || 5020 ztest_dsl_prop_set_uint64(zd->zd_name, ZFS_PROP_COPIES, 1, 5021 B_FALSE) != 0) { 5022 (void) rw_unlock(&ztest_name_lock); 5023 return; 5024 } 5025 5026 object = od[0].od_object; 5027 blocksize = od[0].od_blocksize; 5028 pattern = zs->zs_guid ^ dmu_objset_fsid_guid(os); 5029 5030 ASSERT(object != 0); 5031 5032 tx = dmu_tx_create(os); 5033 dmu_tx_hold_write(tx, object, 0, copies * blocksize); 5034 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); 5035 if (txg == 0) { 5036 (void) rw_unlock(&ztest_name_lock); 5037 return; 5038 } 5039 5040 /* 5041 * Write all the copies of our block. 5042 */ 5043 for (int i = 0; i < copies; i++) { 5044 uint64_t offset = i * blocksize; 5045 int error = dmu_buf_hold(os, object, offset, FTAG, &db, 5046 DMU_READ_NO_PREFETCH); 5047 if (error != 0) { 5048 fatal(B_FALSE, "dmu_buf_hold(%p, %llu, %llu) = %u", 5049 os, (long long)object, (long long) offset, error); 5050 } 5051 ASSERT(db->db_offset == offset); 5052 ASSERT(db->db_size == blocksize); 5053 ASSERT(ztest_pattern_match(db->db_data, db->db_size, pattern) || 5054 ztest_pattern_match(db->db_data, db->db_size, 0ULL)); 5055 dmu_buf_will_fill(db, tx); 5056 ztest_pattern_set(db->db_data, db->db_size, pattern); 5057 dmu_buf_rele(db, FTAG); 5058 } 5059 5060 dmu_tx_commit(tx); 5061 txg_wait_synced(spa_get_dsl(spa), txg); 5062 5063 /* 5064 * Find out what block we got. 5065 */ 5066 VERIFY0(dmu_buf_hold(os, object, 0, FTAG, &db, 5067 DMU_READ_NO_PREFETCH)); 5068 blk = *((dmu_buf_impl_t *)db)->db_blkptr; 5069 dmu_buf_rele(db, FTAG); 5070 5071 /* 5072 * Damage the block. Dedup-ditto will save us when we read it later. 5073 */ 5074 psize = BP_GET_PSIZE(&blk); 5075 buf = zio_buf_alloc(psize); 5076 ztest_pattern_set(buf, psize, ~pattern); 5077 5078 (void) zio_wait(zio_rewrite(NULL, spa, 0, &blk, 5079 buf, psize, NULL, NULL, ZIO_PRIORITY_SYNC_WRITE, 5080 ZIO_FLAG_CANFAIL | ZIO_FLAG_INDUCE_DAMAGE, NULL)); 5081 5082 zio_buf_free(buf, psize); 5083 5084 (void) rw_unlock(&ztest_name_lock); 5085 } 5086 5087 /* 5088 * Scrub the pool. 5089 */ 5090 /* ARGSUSED */ 5091 void 5092 ztest_scrub(ztest_ds_t *zd, uint64_t id) 5093 { 5094 spa_t *spa = ztest_spa; 5095 5096 (void) spa_scan(spa, POOL_SCAN_SCRUB); 5097 (void) poll(NULL, 0, 100); /* wait a moment, then force a restart */ 5098 (void) spa_scan(spa, POOL_SCAN_SCRUB); 5099 } 5100 5101 /* 5102 * Change the guid for the pool. 5103 */ 5104 /* ARGSUSED */ 5105 void 5106 ztest_reguid(ztest_ds_t *zd, uint64_t id) 5107 { 5108 spa_t *spa = ztest_spa; 5109 uint64_t orig, load; 5110 int error; 5111 5112 orig = spa_guid(spa); 5113 load = spa_load_guid(spa); 5114 5115 (void) rw_wrlock(&ztest_name_lock); 5116 error = spa_change_guid(spa); 5117 (void) rw_unlock(&ztest_name_lock); 5118 5119 if (error != 0) 5120 return; 5121 5122 if (ztest_opts.zo_verbose >= 4) { 5123 (void) printf("Changed guid old %llu -> %llu\n", 5124 (u_longlong_t)orig, (u_longlong_t)spa_guid(spa)); 5125 } 5126 5127 VERIFY3U(orig, !=, spa_guid(spa)); 5128 VERIFY3U(load, ==, spa_load_guid(spa)); 5129 } 5130 5131 /* 5132 * Rename the pool to a different name and then rename it back. 5133 */ 5134 /* ARGSUSED */ 5135 void 5136 ztest_spa_rename(ztest_ds_t *zd, uint64_t id) 5137 { 5138 char *oldname, *newname; 5139 spa_t *spa; 5140 5141 (void) rw_wrlock(&ztest_name_lock); 5142 5143 oldname = ztest_opts.zo_pool; 5144 newname = umem_alloc(strlen(oldname) + 5, UMEM_NOFAIL); 5145 (void) strcpy(newname, oldname); 5146 (void) strcat(newname, "_tmp"); 5147 5148 /* 5149 * Do the rename 5150 */ 5151 VERIFY3U(0, ==, spa_rename(oldname, newname)); 5152 5153 /* 5154 * Try to open it under the old name, which shouldn't exist 5155 */ 5156 VERIFY3U(ENOENT, ==, spa_open(oldname, &spa, FTAG)); 5157 5158 /* 5159 * Open it under the new name and make sure it's still the same spa_t. 5160 */ 5161 VERIFY3U(0, ==, spa_open(newname, &spa, FTAG)); 5162 5163 ASSERT(spa == ztest_spa); 5164 spa_close(spa, FTAG); 5165 5166 /* 5167 * Rename it back to the original 5168 */ 5169 VERIFY3U(0, ==, spa_rename(newname, oldname)); 5170 5171 /* 5172 * Make sure it can still be opened 5173 */ 5174 VERIFY3U(0, ==, spa_open(oldname, &spa, FTAG)); 5175 5176 ASSERT(spa == ztest_spa); 5177 spa_close(spa, FTAG); 5178 5179 umem_free(newname, strlen(newname) + 1); 5180 5181 (void) rw_unlock(&ztest_name_lock); 5182 } 5183 5184 /* 5185 * Verify pool integrity by running zdb. 5186 */ 5187 static void 5188 ztest_run_zdb(char *pool) 5189 { 5190 int status; 5191 char zdb[MAXPATHLEN + MAXNAMELEN + 20]; 5192 char zbuf[1024]; 5193 char *bin; 5194 char *ztest; 5195 char *isa; 5196 int isalen; 5197 FILE *fp; 5198 5199 (void) realpath(getexecname(), zdb); 5200 5201 /* zdb lives in /usr/sbin, while ztest lives in /usr/bin */ 5202 bin = strstr(zdb, "/usr/bin/"); 5203 ztest = strstr(bin, "/ztest"); 5204 isa = bin + 8; 5205 isalen = ztest - isa; 5206 isa = strdup(isa); 5207 /* LINTED */ 5208 (void) sprintf(bin, 5209 "/usr/sbin%.*s/zdb -bcc%s%s -d -U %s %s", 5210 isalen, 5211 isa, 5212 ztest_opts.zo_verbose >= 3 ? "s" : "", 5213 ztest_opts.zo_verbose >= 4 ? "v" : "", 5214 spa_config_path, 5215 pool); 5216 free(isa); 5217 5218 if (ztest_opts.zo_verbose >= 5) 5219 (void) printf("Executing %s\n", strstr(zdb, "zdb ")); 5220 5221 fp = popen(zdb, "r"); 5222 5223 while (fgets(zbuf, sizeof (zbuf), fp) != NULL) 5224 if (ztest_opts.zo_verbose >= 3) 5225 (void) printf("%s", zbuf); 5226 5227 status = pclose(fp); 5228 5229 if (status == 0) 5230 return; 5231 5232 ztest_dump_core = 0; 5233 if (WIFEXITED(status)) 5234 fatal(0, "'%s' exit code %d", zdb, WEXITSTATUS(status)); 5235 else 5236 fatal(0, "'%s' died with signal %d", zdb, WTERMSIG(status)); 5237 } 5238 5239 static void 5240 ztest_walk_pool_directory(char *header) 5241 { 5242 spa_t *spa = NULL; 5243 5244 if (ztest_opts.zo_verbose >= 6) 5245 (void) printf("%s\n", header); 5246 5247 mutex_enter(&spa_namespace_lock); 5248 while ((spa = spa_next(spa)) != NULL) 5249 if (ztest_opts.zo_verbose >= 6) 5250 (void) printf("\t%s\n", spa_name(spa)); 5251 mutex_exit(&spa_namespace_lock); 5252 } 5253 5254 static void 5255 ztest_spa_import_export(char *oldname, char *newname) 5256 { 5257 nvlist_t *config, *newconfig; 5258 uint64_t pool_guid; 5259 spa_t *spa; 5260 int error; 5261 5262 if (ztest_opts.zo_verbose >= 4) { 5263 (void) printf("import/export: old = %s, new = %s\n", 5264 oldname, newname); 5265 } 5266 5267 /* 5268 * Clean up from previous runs. 5269 */ 5270 (void) spa_destroy(newname); 5271 5272 /* 5273 * Get the pool's configuration and guid. 5274 */ 5275 VERIFY3U(0, ==, spa_open(oldname, &spa, FTAG)); 5276 5277 /* 5278 * Kick off a scrub to tickle scrub/export races. 5279 */ 5280 if (ztest_random(2) == 0) 5281 (void) spa_scan(spa, POOL_SCAN_SCRUB); 5282 5283 pool_guid = spa_guid(spa); 5284 spa_close(spa, FTAG); 5285 5286 ztest_walk_pool_directory("pools before export"); 5287 5288 /* 5289 * Export it. 5290 */ 5291 VERIFY3U(0, ==, spa_export(oldname, &config, B_FALSE, B_FALSE)); 5292 5293 ztest_walk_pool_directory("pools after export"); 5294 5295 /* 5296 * Try to import it. 5297 */ 5298 newconfig = spa_tryimport(config); 5299 ASSERT(newconfig != NULL); 5300 nvlist_free(newconfig); 5301 5302 /* 5303 * Import it under the new name. 5304 */ 5305 error = spa_import(newname, config, NULL, 0); 5306 if (error != 0) { 5307 dump_nvlist(config, 0); 5308 fatal(B_FALSE, "couldn't import pool %s as %s: error %u", 5309 oldname, newname, error); 5310 } 5311 5312 ztest_walk_pool_directory("pools after import"); 5313 5314 /* 5315 * Try to import it again -- should fail with EEXIST. 5316 */ 5317 VERIFY3U(EEXIST, ==, spa_import(newname, config, NULL, 0)); 5318 5319 /* 5320 * Try to import it under a different name -- should fail with EEXIST. 5321 */ 5322 VERIFY3U(EEXIST, ==, spa_import(oldname, config, NULL, 0)); 5323 5324 /* 5325 * Verify that the pool is no longer visible under the old name. 5326 */ 5327 VERIFY3U(ENOENT, ==, spa_open(oldname, &spa, FTAG)); 5328 5329 /* 5330 * Verify that we can open and close the pool using the new name. 5331 */ 5332 VERIFY3U(0, ==, spa_open(newname, &spa, FTAG)); 5333 ASSERT(pool_guid == spa_guid(spa)); 5334 spa_close(spa, FTAG); 5335 5336 nvlist_free(config); 5337 } 5338 5339 static void 5340 ztest_resume(spa_t *spa) 5341 { 5342 if (spa_suspended(spa) && ztest_opts.zo_verbose >= 6) 5343 (void) printf("resuming from suspended state\n"); 5344 spa_vdev_state_enter(spa, SCL_NONE); 5345 vdev_clear(spa, NULL); 5346 (void) spa_vdev_state_exit(spa, NULL, 0); 5347 (void) zio_resume(spa); 5348 } 5349 5350 static void * 5351 ztest_resume_thread(void *arg) 5352 { 5353 spa_t *spa = arg; 5354 5355 while (!ztest_exiting) { 5356 if (spa_suspended(spa)) 5357 ztest_resume(spa); 5358 (void) poll(NULL, 0, 100); 5359 } 5360 return (NULL); 5361 } 5362 5363 static void * 5364 ztest_deadman_thread(void *arg) 5365 { 5366 ztest_shared_t *zs = arg; 5367 spa_t *spa = ztest_spa; 5368 hrtime_t delta, total = 0; 5369 5370 for (;;) { 5371 delta = zs->zs_thread_stop - zs->zs_thread_start + 5372 MSEC2NSEC(zfs_deadman_synctime_ms); 5373 5374 (void) poll(NULL, 0, (int)NSEC2MSEC(delta)); 5375 5376 /* 5377 * If the pool is suspended then fail immediately. Otherwise, 5378 * check to see if the pool is making any progress. If 5379 * vdev_deadman() discovers that there hasn't been any recent 5380 * I/Os then it will end up aborting the tests. 5381 */ 5382 if (spa_suspended(spa) || spa->spa_root_vdev == NULL) { 5383 fatal(0, "aborting test after %llu seconds because " 5384 "pool has transitioned to a suspended state.", 5385 zfs_deadman_synctime_ms / 1000); 5386 return (NULL); 5387 } 5388 vdev_deadman(spa->spa_root_vdev); 5389 5390 total += zfs_deadman_synctime_ms/1000; 5391 (void) printf("ztest has been running for %lld seconds\n", 5392 total); 5393 } 5394 } 5395 5396 static void 5397 ztest_execute(int test, ztest_info_t *zi, uint64_t id) 5398 { 5399 ztest_ds_t *zd = &ztest_ds[id % ztest_opts.zo_datasets]; 5400 ztest_shared_callstate_t *zc = ZTEST_GET_SHARED_CALLSTATE(test); 5401 hrtime_t functime = gethrtime(); 5402 5403 for (int i = 0; i < zi->zi_iters; i++) 5404 zi->zi_func(zd, id); 5405 5406 functime = gethrtime() - functime; 5407 5408 atomic_add_64(&zc->zc_count, 1); 5409 atomic_add_64(&zc->zc_time, functime); 5410 5411 if (ztest_opts.zo_verbose >= 4) { 5412 Dl_info dli; 5413 (void) dladdr((void *)zi->zi_func, &dli); 5414 (void) printf("%6.2f sec in %s\n", 5415 (double)functime / NANOSEC, dli.dli_sname); 5416 } 5417 } 5418 5419 static void * 5420 ztest_thread(void *arg) 5421 { 5422 int rand; 5423 uint64_t id = (uintptr_t)arg; 5424 ztest_shared_t *zs = ztest_shared; 5425 uint64_t call_next; 5426 hrtime_t now; 5427 ztest_info_t *zi; 5428 ztest_shared_callstate_t *zc; 5429 5430 while ((now = gethrtime()) < zs->zs_thread_stop) { 5431 /* 5432 * See if it's time to force a crash. 5433 */ 5434 if (now > zs->zs_thread_kill) 5435 ztest_kill(zs); 5436 5437 /* 5438 * If we're getting ENOSPC with some regularity, stop. 5439 */ 5440 if (zs->zs_enospc_count > 10) 5441 break; 5442 5443 /* 5444 * Pick a random function to execute. 5445 */ 5446 rand = ztest_random(ZTEST_FUNCS); 5447 zi = &ztest_info[rand]; 5448 zc = ZTEST_GET_SHARED_CALLSTATE(rand); 5449 call_next = zc->zc_next; 5450 5451 if (now >= call_next && 5452 atomic_cas_64(&zc->zc_next, call_next, call_next + 5453 ztest_random(2 * zi->zi_interval[0] + 1)) == call_next) { 5454 ztest_execute(rand, zi, id); 5455 } 5456 } 5457 5458 return (NULL); 5459 } 5460 5461 static void 5462 ztest_dataset_name(char *dsname, char *pool, int d) 5463 { 5464 (void) snprintf(dsname, MAXNAMELEN, "%s/ds_%d", pool, d); 5465 } 5466 5467 static void 5468 ztest_dataset_destroy(int d) 5469 { 5470 char name[MAXNAMELEN]; 5471 5472 ztest_dataset_name(name, ztest_opts.zo_pool, d); 5473 5474 if (ztest_opts.zo_verbose >= 3) 5475 (void) printf("Destroying %s to free up space\n", name); 5476 5477 /* 5478 * Cleanup any non-standard clones and snapshots. In general, 5479 * ztest thread t operates on dataset (t % zopt_datasets), 5480 * so there may be more than one thing to clean up. 5481 */ 5482 for (int t = d; t < ztest_opts.zo_threads; 5483 t += ztest_opts.zo_datasets) { 5484 ztest_dsl_dataset_cleanup(name, t); 5485 } 5486 5487 (void) dmu_objset_find(name, ztest_objset_destroy_cb, NULL, 5488 DS_FIND_SNAPSHOTS | DS_FIND_CHILDREN); 5489 } 5490 5491 static void 5492 ztest_dataset_dirobj_verify(ztest_ds_t *zd) 5493 { 5494 uint64_t usedobjs, dirobjs, scratch; 5495 5496 /* 5497 * ZTEST_DIROBJ is the object directory for the entire dataset. 5498 * Therefore, the number of objects in use should equal the 5499 * number of ZTEST_DIROBJ entries, +1 for ZTEST_DIROBJ itself. 5500 * If not, we have an object leak. 5501 * 5502 * Note that we can only check this in ztest_dataset_open(), 5503 * when the open-context and syncing-context values agree. 5504 * That's because zap_count() returns the open-context value, 5505 * while dmu_objset_space() returns the rootbp fill count. 5506 */ 5507 VERIFY3U(0, ==, zap_count(zd->zd_os, ZTEST_DIROBJ, &dirobjs)); 5508 dmu_objset_space(zd->zd_os, &scratch, &scratch, &usedobjs, &scratch); 5509 ASSERT3U(dirobjs + 1, ==, usedobjs); 5510 } 5511 5512 static int 5513 ztest_dataset_open(int d) 5514 { 5515 ztest_ds_t *zd = &ztest_ds[d]; 5516 uint64_t committed_seq = ZTEST_GET_SHARED_DS(d)->zd_seq; 5517 objset_t *os; 5518 zilog_t *zilog; 5519 char name[MAXNAMELEN]; 5520 int error; 5521 5522 ztest_dataset_name(name, ztest_opts.zo_pool, d); 5523 5524 (void) rw_rdlock(&ztest_name_lock); 5525 5526 error = ztest_dataset_create(name); 5527 if (error == ENOSPC) { 5528 (void) rw_unlock(&ztest_name_lock); 5529 ztest_record_enospc(FTAG); 5530 return (error); 5531 } 5532 ASSERT(error == 0 || error == EEXIST); 5533 5534 VERIFY0(dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, zd, &os)); 5535 (void) rw_unlock(&ztest_name_lock); 5536 5537 ztest_zd_init(zd, ZTEST_GET_SHARED_DS(d), os); 5538 5539 zilog = zd->zd_zilog; 5540 5541 if (zilog->zl_header->zh_claim_lr_seq != 0 && 5542 zilog->zl_header->zh_claim_lr_seq < committed_seq) 5543 fatal(0, "missing log records: claimed %llu < committed %llu", 5544 zilog->zl_header->zh_claim_lr_seq, committed_seq); 5545 5546 ztest_dataset_dirobj_verify(zd); 5547 5548 zil_replay(os, zd, ztest_replay_vector); 5549 5550 ztest_dataset_dirobj_verify(zd); 5551 5552 if (ztest_opts.zo_verbose >= 6) 5553 (void) printf("%s replay %llu blocks, %llu records, seq %llu\n", 5554 zd->zd_name, 5555 (u_longlong_t)zilog->zl_parse_blk_count, 5556 (u_longlong_t)zilog->zl_parse_lr_count, 5557 (u_longlong_t)zilog->zl_replaying_seq); 5558 5559 zilog = zil_open(os, ztest_get_data); 5560 5561 if (zilog->zl_replaying_seq != 0 && 5562 zilog->zl_replaying_seq < committed_seq) 5563 fatal(0, "missing log records: replayed %llu < committed %llu", 5564 zilog->zl_replaying_seq, committed_seq); 5565 5566 return (0); 5567 } 5568 5569 static void 5570 ztest_dataset_close(int d) 5571 { 5572 ztest_ds_t *zd = &ztest_ds[d]; 5573 5574 zil_close(zd->zd_zilog); 5575 dmu_objset_disown(zd->zd_os, zd); 5576 5577 ztest_zd_fini(zd); 5578 } 5579 5580 /* 5581 * Kick off threads to run tests on all datasets in parallel. 5582 */ 5583 static void 5584 ztest_run(ztest_shared_t *zs) 5585 { 5586 thread_t *tid; 5587 spa_t *spa; 5588 objset_t *os; 5589 thread_t resume_tid; 5590 int error; 5591 5592 ztest_exiting = B_FALSE; 5593 5594 /* 5595 * Initialize parent/child shared state. 5596 */ 5597 VERIFY(_mutex_init(&ztest_vdev_lock, USYNC_THREAD, NULL) == 0); 5598 VERIFY(rwlock_init(&ztest_name_lock, USYNC_THREAD, NULL) == 0); 5599 5600 zs->zs_thread_start = gethrtime(); 5601 zs->zs_thread_stop = 5602 zs->zs_thread_start + ztest_opts.zo_passtime * NANOSEC; 5603 zs->zs_thread_stop = MIN(zs->zs_thread_stop, zs->zs_proc_stop); 5604 zs->zs_thread_kill = zs->zs_thread_stop; 5605 if (ztest_random(100) < ztest_opts.zo_killrate) { 5606 zs->zs_thread_kill -= 5607 ztest_random(ztest_opts.zo_passtime * NANOSEC); 5608 } 5609 5610 (void) _mutex_init(&zcl.zcl_callbacks_lock, USYNC_THREAD, NULL); 5611 5612 list_create(&zcl.zcl_callbacks, sizeof (ztest_cb_data_t), 5613 offsetof(ztest_cb_data_t, zcd_node)); 5614 5615 /* 5616 * Open our pool. 5617 */ 5618 kernel_init(FREAD | FWRITE); 5619 VERIFY0(spa_open(ztest_opts.zo_pool, &spa, FTAG)); 5620 spa->spa_debug = B_TRUE; 5621 metaslab_preload_limit = ztest_random(20) + 1; 5622 ztest_spa = spa; 5623 5624 VERIFY0(dmu_objset_own(ztest_opts.zo_pool, 5625 DMU_OST_ANY, B_TRUE, FTAG, &os)); 5626 zs->zs_guid = dmu_objset_fsid_guid(os); 5627 dmu_objset_disown(os, FTAG); 5628 5629 spa->spa_dedup_ditto = 2 * ZIO_DEDUPDITTO_MIN; 5630 5631 /* 5632 * We don't expect the pool to suspend unless maxfaults == 0, 5633 * in which case ztest_fault_inject() temporarily takes away 5634 * the only valid replica. 5635 */ 5636 if (MAXFAULTS() == 0) 5637 spa->spa_failmode = ZIO_FAILURE_MODE_WAIT; 5638 else 5639 spa->spa_failmode = ZIO_FAILURE_MODE_PANIC; 5640 5641 /* 5642 * Create a thread to periodically resume suspended I/O. 5643 */ 5644 VERIFY(thr_create(0, 0, ztest_resume_thread, spa, THR_BOUND, 5645 &resume_tid) == 0); 5646 5647 /* 5648 * Create a deadman thread to abort() if we hang. 5649 */ 5650 VERIFY(thr_create(0, 0, ztest_deadman_thread, zs, THR_BOUND, 5651 NULL) == 0); 5652 5653 /* 5654 * Verify that we can safely inquire about about any object, 5655 * whether it's allocated or not. To make it interesting, 5656 * we probe a 5-wide window around each power of two. 5657 * This hits all edge cases, including zero and the max. 5658 */ 5659 for (int t = 0; t < 64; t++) { 5660 for (int d = -5; d <= 5; d++) { 5661 error = dmu_object_info(spa->spa_meta_objset, 5662 (1ULL << t) + d, NULL); 5663 ASSERT(error == 0 || error == ENOENT || 5664 error == EINVAL); 5665 } 5666 } 5667 5668 /* 5669 * If we got any ENOSPC errors on the previous run, destroy something. 5670 */ 5671 if (zs->zs_enospc_count != 0) { 5672 int d = ztest_random(ztest_opts.zo_datasets); 5673 ztest_dataset_destroy(d); 5674 } 5675 zs->zs_enospc_count = 0; 5676 5677 tid = umem_zalloc(ztest_opts.zo_threads * sizeof (thread_t), 5678 UMEM_NOFAIL); 5679 5680 if (ztest_opts.zo_verbose >= 4) 5681 (void) printf("starting main threads...\n"); 5682 5683 /* 5684 * Kick off all the tests that run in parallel. 5685 */ 5686 for (int t = 0; t < ztest_opts.zo_threads; t++) { 5687 if (t < ztest_opts.zo_datasets && 5688 ztest_dataset_open(t) != 0) 5689 return; 5690 VERIFY(thr_create(0, 0, ztest_thread, (void *)(uintptr_t)t, 5691 THR_BOUND, &tid[t]) == 0); 5692 } 5693 5694 /* 5695 * Wait for all of the tests to complete. We go in reverse order 5696 * so we don't close datasets while threads are still using them. 5697 */ 5698 for (int t = ztest_opts.zo_threads - 1; t >= 0; t--) { 5699 VERIFY(thr_join(tid[t], NULL, NULL) == 0); 5700 if (t < ztest_opts.zo_datasets) 5701 ztest_dataset_close(t); 5702 } 5703 5704 txg_wait_synced(spa_get_dsl(spa), 0); 5705 5706 zs->zs_alloc = metaslab_class_get_alloc(spa_normal_class(spa)); 5707 zs->zs_space = metaslab_class_get_space(spa_normal_class(spa)); 5708 zfs_dbgmsg_print(FTAG); 5709 5710 umem_free(tid, ztest_opts.zo_threads * sizeof (thread_t)); 5711 5712 /* Kill the resume thread */ 5713 ztest_exiting = B_TRUE; 5714 VERIFY(thr_join(resume_tid, NULL, NULL) == 0); 5715 ztest_resume(spa); 5716 5717 /* 5718 * Right before closing the pool, kick off a bunch of async I/O; 5719 * spa_close() should wait for it to complete. 5720 */ 5721 for (uint64_t object = 1; object < 50; object++) 5722 dmu_prefetch(spa->spa_meta_objset, object, 0, 1ULL << 20); 5723 5724 spa_close(spa, FTAG); 5725 5726 /* 5727 * Verify that we can loop over all pools. 5728 */ 5729 mutex_enter(&spa_namespace_lock); 5730 for (spa = spa_next(NULL); spa != NULL; spa = spa_next(spa)) 5731 if (ztest_opts.zo_verbose > 3) 5732 (void) printf("spa_next: found %s\n", spa_name(spa)); 5733 mutex_exit(&spa_namespace_lock); 5734 5735 /* 5736 * Verify that we can export the pool and reimport it under a 5737 * different name. 5738 */ 5739 if (ztest_random(2) == 0) { 5740 char name[MAXNAMELEN]; 5741 (void) snprintf(name, MAXNAMELEN, "%s_import", 5742 ztest_opts.zo_pool); 5743 ztest_spa_import_export(ztest_opts.zo_pool, name); 5744 ztest_spa_import_export(name, ztest_opts.zo_pool); 5745 } 5746 5747 kernel_fini(); 5748 5749 list_destroy(&zcl.zcl_callbacks); 5750 5751 (void) _mutex_destroy(&zcl.zcl_callbacks_lock); 5752 5753 (void) rwlock_destroy(&ztest_name_lock); 5754 (void) _mutex_destroy(&ztest_vdev_lock); 5755 } 5756 5757 static void 5758 ztest_freeze(void) 5759 { 5760 ztest_ds_t *zd = &ztest_ds[0]; 5761 spa_t *spa; 5762 int numloops = 0; 5763 5764 if (ztest_opts.zo_verbose >= 3) 5765 (void) printf("testing spa_freeze()...\n"); 5766 5767 kernel_init(FREAD | FWRITE); 5768 VERIFY3U(0, ==, spa_open(ztest_opts.zo_pool, &spa, FTAG)); 5769 VERIFY3U(0, ==, ztest_dataset_open(0)); 5770 spa->spa_debug = B_TRUE; 5771 ztest_spa = spa; 5772 5773 /* 5774 * Force the first log block to be transactionally allocated. 5775 * We have to do this before we freeze the pool -- otherwise 5776 * the log chain won't be anchored. 5777 */ 5778 while (BP_IS_HOLE(&zd->zd_zilog->zl_header->zh_log)) { 5779 ztest_dmu_object_alloc_free(zd, 0); 5780 zil_commit(zd->zd_zilog, 0); 5781 } 5782 5783 txg_wait_synced(spa_get_dsl(spa), 0); 5784 5785 /* 5786 * Freeze the pool. This stops spa_sync() from doing anything, 5787 * so that the only way to record changes from now on is the ZIL. 5788 */ 5789 spa_freeze(spa); 5790 5791 /* 5792 * Because it is hard to predict how much space a write will actually 5793 * require beforehand, we leave ourselves some fudge space to write over 5794 * capacity. 5795 */ 5796 uint64_t capacity = metaslab_class_get_space(spa_normal_class(spa)) / 2; 5797 5798 /* 5799 * Run tests that generate log records but don't alter the pool config 5800 * or depend on DSL sync tasks (snapshots, objset create/destroy, etc). 5801 * We do a txg_wait_synced() after each iteration to force the txg 5802 * to increase well beyond the last synced value in the uberblock. 5803 * The ZIL should be OK with that. 5804 * 5805 * Run a random number of times less than zo_maxloops and ensure we do 5806 * not run out of space on the pool. 5807 */ 5808 while (ztest_random(10) != 0 && 5809 numloops++ < ztest_opts.zo_maxloops && 5810 metaslab_class_get_alloc(spa_normal_class(spa)) < capacity) { 5811 ztest_od_t od; 5812 ztest_od_init(&od, 0, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0); 5813 VERIFY0(ztest_object_init(zd, &od, sizeof (od), B_FALSE)); 5814 ztest_io(zd, od.od_object, 5815 ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT); 5816 txg_wait_synced(spa_get_dsl(spa), 0); 5817 } 5818 5819 /* 5820 * Commit all of the changes we just generated. 5821 */ 5822 zil_commit(zd->zd_zilog, 0); 5823 txg_wait_synced(spa_get_dsl(spa), 0); 5824 5825 /* 5826 * Close our dataset and close the pool. 5827 */ 5828 ztest_dataset_close(0); 5829 spa_close(spa, FTAG); 5830 kernel_fini(); 5831 5832 /* 5833 * Open and close the pool and dataset to induce log replay. 5834 */ 5835 kernel_init(FREAD | FWRITE); 5836 VERIFY3U(0, ==, spa_open(ztest_opts.zo_pool, &spa, FTAG)); 5837 ASSERT(spa_freeze_txg(spa) == UINT64_MAX); 5838 VERIFY3U(0, ==, ztest_dataset_open(0)); 5839 ztest_dataset_close(0); 5840 5841 spa->spa_debug = B_TRUE; 5842 ztest_spa = spa; 5843 txg_wait_synced(spa_get_dsl(spa), 0); 5844 ztest_reguid(NULL, 0); 5845 5846 spa_close(spa, FTAG); 5847 kernel_fini(); 5848 } 5849 5850 void 5851 print_time(hrtime_t t, char *timebuf) 5852 { 5853 hrtime_t s = t / NANOSEC; 5854 hrtime_t m = s / 60; 5855 hrtime_t h = m / 60; 5856 hrtime_t d = h / 24; 5857 5858 s -= m * 60; 5859 m -= h * 60; 5860 h -= d * 24; 5861 5862 timebuf[0] = '\0'; 5863 5864 if (d) 5865 (void) sprintf(timebuf, 5866 "%llud%02lluh%02llum%02llus", d, h, m, s); 5867 else if (h) 5868 (void) sprintf(timebuf, "%lluh%02llum%02llus", h, m, s); 5869 else if (m) 5870 (void) sprintf(timebuf, "%llum%02llus", m, s); 5871 else 5872 (void) sprintf(timebuf, "%llus", s); 5873 } 5874 5875 static nvlist_t * 5876 make_random_props() 5877 { 5878 nvlist_t *props; 5879 5880 VERIFY(nvlist_alloc(&props, NV_UNIQUE_NAME, 0) == 0); 5881 if (ztest_random(2) == 0) 5882 return (props); 5883 VERIFY(nvlist_add_uint64(props, "autoreplace", 1) == 0); 5884 5885 return (props); 5886 } 5887 5888 /* 5889 * Create a storage pool with the given name and initial vdev size. 5890 * Then test spa_freeze() functionality. 5891 */ 5892 static void 5893 ztest_init(ztest_shared_t *zs) 5894 { 5895 spa_t *spa; 5896 nvlist_t *nvroot, *props; 5897 5898 VERIFY(_mutex_init(&ztest_vdev_lock, USYNC_THREAD, NULL) == 0); 5899 VERIFY(rwlock_init(&ztest_name_lock, USYNC_THREAD, NULL) == 0); 5900 5901 kernel_init(FREAD | FWRITE); 5902 5903 /* 5904 * Create the storage pool. 5905 */ 5906 (void) spa_destroy(ztest_opts.zo_pool); 5907 ztest_shared->zs_vdev_next_leaf = 0; 5908 zs->zs_splits = 0; 5909 zs->zs_mirrors = ztest_opts.zo_mirrors; 5910 nvroot = make_vdev_root(NULL, NULL, NULL, ztest_opts.zo_vdev_size, 0, 5911 0, ztest_opts.zo_raidz, zs->zs_mirrors, 1); 5912 props = make_random_props(); 5913 for (int i = 0; i < SPA_FEATURES; i++) { 5914 char buf[1024]; 5915 (void) snprintf(buf, sizeof (buf), "feature@%s", 5916 spa_feature_table[i].fi_uname); 5917 VERIFY3U(0, ==, nvlist_add_uint64(props, buf, 0)); 5918 } 5919 VERIFY3U(0, ==, spa_create(ztest_opts.zo_pool, nvroot, props, NULL)); 5920 nvlist_free(nvroot); 5921 5922 VERIFY3U(0, ==, spa_open(ztest_opts.zo_pool, &spa, FTAG)); 5923 zs->zs_metaslab_sz = 5924 1ULL << spa->spa_root_vdev->vdev_child[0]->vdev_ms_shift; 5925 5926 spa_close(spa, FTAG); 5927 5928 kernel_fini(); 5929 5930 ztest_run_zdb(ztest_opts.zo_pool); 5931 5932 ztest_freeze(); 5933 5934 ztest_run_zdb(ztest_opts.zo_pool); 5935 5936 (void) rwlock_destroy(&ztest_name_lock); 5937 (void) _mutex_destroy(&ztest_vdev_lock); 5938 } 5939 5940 static void 5941 setup_data_fd(void) 5942 { 5943 static char ztest_name_data[] = "/tmp/ztest.data.XXXXXX"; 5944 5945 ztest_fd_data = mkstemp(ztest_name_data); 5946 ASSERT3S(ztest_fd_data, >=, 0); 5947 (void) unlink(ztest_name_data); 5948 } 5949 5950 5951 static int 5952 shared_data_size(ztest_shared_hdr_t *hdr) 5953 { 5954 int size; 5955 5956 size = hdr->zh_hdr_size; 5957 size += hdr->zh_opts_size; 5958 size += hdr->zh_size; 5959 size += hdr->zh_stats_size * hdr->zh_stats_count; 5960 size += hdr->zh_ds_size * hdr->zh_ds_count; 5961 5962 return (size); 5963 } 5964 5965 static void 5966 setup_hdr(void) 5967 { 5968 int size; 5969 ztest_shared_hdr_t *hdr; 5970 5971 hdr = (void *)mmap(0, P2ROUNDUP(sizeof (*hdr), getpagesize()), 5972 PROT_READ | PROT_WRITE, MAP_SHARED, ztest_fd_data, 0); 5973 ASSERT(hdr != MAP_FAILED); 5974 5975 VERIFY3U(0, ==, ftruncate(ztest_fd_data, sizeof (ztest_shared_hdr_t))); 5976 5977 hdr->zh_hdr_size = sizeof (ztest_shared_hdr_t); 5978 hdr->zh_opts_size = sizeof (ztest_shared_opts_t); 5979 hdr->zh_size = sizeof (ztest_shared_t); 5980 hdr->zh_stats_size = sizeof (ztest_shared_callstate_t); 5981 hdr->zh_stats_count = ZTEST_FUNCS; 5982 hdr->zh_ds_size = sizeof (ztest_shared_ds_t); 5983 hdr->zh_ds_count = ztest_opts.zo_datasets; 5984 5985 size = shared_data_size(hdr); 5986 VERIFY3U(0, ==, ftruncate(ztest_fd_data, size)); 5987 5988 (void) munmap((caddr_t)hdr, P2ROUNDUP(sizeof (*hdr), getpagesize())); 5989 } 5990 5991 static void 5992 setup_data(void) 5993 { 5994 int size, offset; 5995 ztest_shared_hdr_t *hdr; 5996 uint8_t *buf; 5997 5998 hdr = (void *)mmap(0, P2ROUNDUP(sizeof (*hdr), getpagesize()), 5999 PROT_READ, MAP_SHARED, ztest_fd_data, 0); 6000 ASSERT(hdr != MAP_FAILED); 6001 6002 size = shared_data_size(hdr); 6003 6004 (void) munmap((caddr_t)hdr, P2ROUNDUP(sizeof (*hdr), getpagesize())); 6005 hdr = ztest_shared_hdr = (void *)mmap(0, P2ROUNDUP(size, getpagesize()), 6006 PROT_READ | PROT_WRITE, MAP_SHARED, ztest_fd_data, 0); 6007 ASSERT(hdr != MAP_FAILED); 6008 buf = (uint8_t *)hdr; 6009 6010 offset = hdr->zh_hdr_size; 6011 ztest_shared_opts = (void *)&buf[offset]; 6012 offset += hdr->zh_opts_size; 6013 ztest_shared = (void *)&buf[offset]; 6014 offset += hdr->zh_size; 6015 ztest_shared_callstate = (void *)&buf[offset]; 6016 offset += hdr->zh_stats_size * hdr->zh_stats_count; 6017 ztest_shared_ds = (void *)&buf[offset]; 6018 } 6019 6020 static boolean_t 6021 exec_child(char *cmd, char *libpath, boolean_t ignorekill, int *statusp) 6022 { 6023 pid_t pid; 6024 int status; 6025 char *cmdbuf = NULL; 6026 6027 pid = fork(); 6028 6029 if (cmd == NULL) { 6030 cmdbuf = umem_alloc(MAXPATHLEN, UMEM_NOFAIL); 6031 (void) strlcpy(cmdbuf, getexecname(), MAXPATHLEN); 6032 cmd = cmdbuf; 6033 } 6034 6035 if (pid == -1) 6036 fatal(1, "fork failed"); 6037 6038 if (pid == 0) { /* child */ 6039 char *emptyargv[2] = { cmd, NULL }; 6040 char fd_data_str[12]; 6041 6042 struct rlimit rl = { 1024, 1024 }; 6043 (void) setrlimit(RLIMIT_NOFILE, &rl); 6044 6045 (void) close(ztest_fd_rand); 6046 VERIFY3U(11, >=, 6047 snprintf(fd_data_str, 12, "%d", ztest_fd_data)); 6048 VERIFY0(setenv("ZTEST_FD_DATA", fd_data_str, 1)); 6049 6050 (void) enable_extended_FILE_stdio(-1, -1); 6051 if (libpath != NULL) 6052 VERIFY(0 == setenv("LD_LIBRARY_PATH", libpath, 1)); 6053 (void) execv(cmd, emptyargv); 6054 ztest_dump_core = B_FALSE; 6055 fatal(B_TRUE, "exec failed: %s", cmd); 6056 } 6057 6058 if (cmdbuf != NULL) { 6059 umem_free(cmdbuf, MAXPATHLEN); 6060 cmd = NULL; 6061 } 6062 6063 while (waitpid(pid, &status, 0) != pid) 6064 continue; 6065 if (statusp != NULL) 6066 *statusp = status; 6067 6068 if (WIFEXITED(status)) { 6069 if (WEXITSTATUS(status) != 0) { 6070 (void) fprintf(stderr, "child exited with code %d\n", 6071 WEXITSTATUS(status)); 6072 exit(2); 6073 } 6074 return (B_FALSE); 6075 } else if (WIFSIGNALED(status)) { 6076 if (!ignorekill || WTERMSIG(status) != SIGKILL) { 6077 (void) fprintf(stderr, "child died with signal %d\n", 6078 WTERMSIG(status)); 6079 exit(3); 6080 } 6081 return (B_TRUE); 6082 } else { 6083 (void) fprintf(stderr, "something strange happened to child\n"); 6084 exit(4); 6085 /* NOTREACHED */ 6086 } 6087 } 6088 6089 static void 6090 ztest_run_init(void) 6091 { 6092 ztest_shared_t *zs = ztest_shared; 6093 6094 ASSERT(ztest_opts.zo_init != 0); 6095 6096 /* 6097 * Blow away any existing copy of zpool.cache 6098 */ 6099 (void) remove(spa_config_path); 6100 6101 /* 6102 * Create and initialize our storage pool. 6103 */ 6104 for (int i = 1; i <= ztest_opts.zo_init; i++) { 6105 bzero(zs, sizeof (ztest_shared_t)); 6106 if (ztest_opts.zo_verbose >= 3 && 6107 ztest_opts.zo_init != 1) { 6108 (void) printf("ztest_init(), pass %d\n", i); 6109 } 6110 ztest_init(zs); 6111 } 6112 } 6113 6114 int 6115 main(int argc, char **argv) 6116 { 6117 int kills = 0; 6118 int iters = 0; 6119 int older = 0; 6120 int newer = 0; 6121 ztest_shared_t *zs; 6122 ztest_info_t *zi; 6123 ztest_shared_callstate_t *zc; 6124 char timebuf[100]; 6125 char numbuf[6]; 6126 spa_t *spa; 6127 char *cmd; 6128 boolean_t hasalt; 6129 char *fd_data_str = getenv("ZTEST_FD_DATA"); 6130 6131 (void) setvbuf(stdout, NULL, _IOLBF, 0); 6132 6133 dprintf_setup(&argc, argv); 6134 zfs_deadman_synctime_ms = 300000; 6135 6136 ztest_fd_rand = open("/dev/urandom", O_RDONLY); 6137 ASSERT3S(ztest_fd_rand, >=, 0); 6138 6139 if (!fd_data_str) { 6140 process_options(argc, argv); 6141 6142 setup_data_fd(); 6143 setup_hdr(); 6144 setup_data(); 6145 bcopy(&ztest_opts, ztest_shared_opts, 6146 sizeof (*ztest_shared_opts)); 6147 } else { 6148 ztest_fd_data = atoi(fd_data_str); 6149 setup_data(); 6150 bcopy(ztest_shared_opts, &ztest_opts, sizeof (ztest_opts)); 6151 } 6152 ASSERT3U(ztest_opts.zo_datasets, ==, ztest_shared_hdr->zh_ds_count); 6153 6154 /* Override location of zpool.cache */ 6155 VERIFY3U(asprintf((char **)&spa_config_path, "%s/zpool.cache", 6156 ztest_opts.zo_dir), !=, -1); 6157 6158 ztest_ds = umem_alloc(ztest_opts.zo_datasets * sizeof (ztest_ds_t), 6159 UMEM_NOFAIL); 6160 zs = ztest_shared; 6161 6162 if (fd_data_str) { 6163 metaslab_gang_bang = ztest_opts.zo_metaslab_gang_bang; 6164 metaslab_df_alloc_threshold = 6165 zs->zs_metaslab_df_alloc_threshold; 6166 6167 if (zs->zs_do_init) 6168 ztest_run_init(); 6169 else 6170 ztest_run(zs); 6171 exit(0); 6172 } 6173 6174 hasalt = (strlen(ztest_opts.zo_alt_ztest) != 0); 6175 6176 if (ztest_opts.zo_verbose >= 1) { 6177 (void) printf("%llu vdevs, %d datasets, %d threads," 6178 " %llu seconds...\n", 6179 (u_longlong_t)ztest_opts.zo_vdevs, 6180 ztest_opts.zo_datasets, 6181 ztest_opts.zo_threads, 6182 (u_longlong_t)ztest_opts.zo_time); 6183 } 6184 6185 cmd = umem_alloc(MAXNAMELEN, UMEM_NOFAIL); 6186 (void) strlcpy(cmd, getexecname(), MAXNAMELEN); 6187 6188 zs->zs_do_init = B_TRUE; 6189 if (strlen(ztest_opts.zo_alt_ztest) != 0) { 6190 if (ztest_opts.zo_verbose >= 1) { 6191 (void) printf("Executing older ztest for " 6192 "initialization: %s\n", ztest_opts.zo_alt_ztest); 6193 } 6194 VERIFY(!exec_child(ztest_opts.zo_alt_ztest, 6195 ztest_opts.zo_alt_libpath, B_FALSE, NULL)); 6196 } else { 6197 VERIFY(!exec_child(NULL, NULL, B_FALSE, NULL)); 6198 } 6199 zs->zs_do_init = B_FALSE; 6200 6201 zs->zs_proc_start = gethrtime(); 6202 zs->zs_proc_stop = zs->zs_proc_start + ztest_opts.zo_time * NANOSEC; 6203 6204 for (int f = 0; f < ZTEST_FUNCS; f++) { 6205 zi = &ztest_info[f]; 6206 zc = ZTEST_GET_SHARED_CALLSTATE(f); 6207 if (zs->zs_proc_start + zi->zi_interval[0] > zs->zs_proc_stop) 6208 zc->zc_next = UINT64_MAX; 6209 else 6210 zc->zc_next = zs->zs_proc_start + 6211 ztest_random(2 * zi->zi_interval[0] + 1); 6212 } 6213 6214 /* 6215 * Run the tests in a loop. These tests include fault injection 6216 * to verify that self-healing data works, and forced crashes 6217 * to verify that we never lose on-disk consistency. 6218 */ 6219 while (gethrtime() < zs->zs_proc_stop) { 6220 int status; 6221 boolean_t killed; 6222 6223 /* 6224 * Initialize the workload counters for each function. 6225 */ 6226 for (int f = 0; f < ZTEST_FUNCS; f++) { 6227 zc = ZTEST_GET_SHARED_CALLSTATE(f); 6228 zc->zc_count = 0; 6229 zc->zc_time = 0; 6230 } 6231 6232 /* Set the allocation switch size */ 6233 zs->zs_metaslab_df_alloc_threshold = 6234 ztest_random(zs->zs_metaslab_sz / 4) + 1; 6235 6236 if (!hasalt || ztest_random(2) == 0) { 6237 if (hasalt && ztest_opts.zo_verbose >= 1) { 6238 (void) printf("Executing newer ztest: %s\n", 6239 cmd); 6240 } 6241 newer++; 6242 killed = exec_child(cmd, NULL, B_TRUE, &status); 6243 } else { 6244 if (hasalt && ztest_opts.zo_verbose >= 1) { 6245 (void) printf("Executing older ztest: %s\n", 6246 ztest_opts.zo_alt_ztest); 6247 } 6248 older++; 6249 killed = exec_child(ztest_opts.zo_alt_ztest, 6250 ztest_opts.zo_alt_libpath, B_TRUE, &status); 6251 } 6252 6253 if (killed) 6254 kills++; 6255 iters++; 6256 6257 if (ztest_opts.zo_verbose >= 1) { 6258 hrtime_t now = gethrtime(); 6259 6260 now = MIN(now, zs->zs_proc_stop); 6261 print_time(zs->zs_proc_stop - now, timebuf); 6262 nicenum(zs->zs_space, numbuf); 6263 6264 (void) printf("Pass %3d, %8s, %3llu ENOSPC, " 6265 "%4.1f%% of %5s used, %3.0f%% done, %8s to go\n", 6266 iters, 6267 WIFEXITED(status) ? "Complete" : "SIGKILL", 6268 (u_longlong_t)zs->zs_enospc_count, 6269 100.0 * zs->zs_alloc / zs->zs_space, 6270 numbuf, 6271 100.0 * (now - zs->zs_proc_start) / 6272 (ztest_opts.zo_time * NANOSEC), timebuf); 6273 } 6274 6275 if (ztest_opts.zo_verbose >= 2) { 6276 (void) printf("\nWorkload summary:\n\n"); 6277 (void) printf("%7s %9s %s\n", 6278 "Calls", "Time", "Function"); 6279 (void) printf("%7s %9s %s\n", 6280 "-----", "----", "--------"); 6281 for (int f = 0; f < ZTEST_FUNCS; f++) { 6282 Dl_info dli; 6283 6284 zi = &ztest_info[f]; 6285 zc = ZTEST_GET_SHARED_CALLSTATE(f); 6286 print_time(zc->zc_time, timebuf); 6287 (void) dladdr((void *)zi->zi_func, &dli); 6288 (void) printf("%7llu %9s %s\n", 6289 (u_longlong_t)zc->zc_count, timebuf, 6290 dli.dli_sname); 6291 } 6292 (void) printf("\n"); 6293 } 6294 6295 /* 6296 * It's possible that we killed a child during a rename test, 6297 * in which case we'll have a 'ztest_tmp' pool lying around 6298 * instead of 'ztest'. Do a blind rename in case this happened. 6299 */ 6300 kernel_init(FREAD); 6301 if (spa_open(ztest_opts.zo_pool, &spa, FTAG) == 0) { 6302 spa_close(spa, FTAG); 6303 } else { 6304 char tmpname[MAXNAMELEN]; 6305 kernel_fini(); 6306 kernel_init(FREAD | FWRITE); 6307 (void) snprintf(tmpname, sizeof (tmpname), "%s_tmp", 6308 ztest_opts.zo_pool); 6309 (void) spa_rename(tmpname, ztest_opts.zo_pool); 6310 } 6311 kernel_fini(); 6312 6313 ztest_run_zdb(ztest_opts.zo_pool); 6314 } 6315 6316 if (ztest_opts.zo_verbose >= 1) { 6317 if (hasalt) { 6318 (void) printf("%d runs of older ztest: %s\n", older, 6319 ztest_opts.zo_alt_ztest); 6320 (void) printf("%d runs of newer ztest: %s\n", newer, 6321 cmd); 6322 } 6323 (void) printf("%d killed, %d completed, %.0f%% kill rate\n", 6324 kills, iters - kills, (100.0 * kills) / MAX(1, iters)); 6325 } 6326 6327 umem_free(cmd, MAXNAMELEN); 6328 6329 return (0); 6330 } 6331