1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2012 by Delphix. All rights reserved. 24 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 25 */ 26 27 /* 28 * The objective of this program is to provide a DMU/ZAP/SPA stress test 29 * that runs entirely in userland, is easy to use, and easy to extend. 30 * 31 * The overall design of the ztest program is as follows: 32 * 33 * (1) For each major functional area (e.g. adding vdevs to a pool, 34 * creating and destroying datasets, reading and writing objects, etc) 35 * we have a simple routine to test that functionality. These 36 * individual routines do not have to do anything "stressful". 37 * 38 * (2) We turn these simple functionality tests into a stress test by 39 * running them all in parallel, with as many threads as desired, 40 * and spread across as many datasets, objects, and vdevs as desired. 41 * 42 * (3) While all this is happening, we inject faults into the pool to 43 * verify that self-healing data really works. 44 * 45 * (4) Every time we open a dataset, we change its checksum and compression 46 * functions. Thus even individual objects vary from block to block 47 * in which checksum they use and whether they're compressed. 48 * 49 * (5) To verify that we never lose on-disk consistency after a crash, 50 * we run the entire test in a child of the main process. 51 * At random times, the child self-immolates with a SIGKILL. 52 * This is the software equivalent of pulling the power cord. 53 * The parent then runs the test again, using the existing 54 * storage pool, as many times as desired. If backwards compatability 55 * testing is enabled ztest will sometimes run the "older" version 56 * of ztest after a SIGKILL. 57 * 58 * (6) To verify that we don't have future leaks or temporal incursions, 59 * many of the functional tests record the transaction group number 60 * as part of their data. When reading old data, they verify that 61 * the transaction group number is less than the current, open txg. 62 * If you add a new test, please do this if applicable. 63 * 64 * When run with no arguments, ztest runs for about five minutes and 65 * produces no output if successful. To get a little bit of information, 66 * specify -V. To get more information, specify -VV, and so on. 67 * 68 * To turn this into an overnight stress test, use -T to specify run time. 69 * 70 * You can ask more more vdevs [-v], datasets [-d], or threads [-t] 71 * to increase the pool capacity, fanout, and overall stress level. 72 * 73 * Use the -k option to set the desired frequency of kills. 74 * 75 * When ztest invokes itself it passes all relevant information through a 76 * temporary file which is mmap-ed in the child process. This allows shared 77 * memory to survive the exec syscall. The ztest_shared_hdr_t struct is always 78 * stored at offset 0 of this file and contains information on the size and 79 * number of shared structures in the file. The information stored in this file 80 * must remain backwards compatible with older versions of ztest so that 81 * ztest can invoke them during backwards compatibility testing (-B). 82 */ 83 84 #include <sys/zfs_context.h> 85 #include <sys/spa.h> 86 #include <sys/dmu.h> 87 #include <sys/txg.h> 88 #include <sys/dbuf.h> 89 #include <sys/zap.h> 90 #include <sys/dmu_objset.h> 91 #include <sys/poll.h> 92 #include <sys/stat.h> 93 #include <sys/time.h> 94 #include <sys/wait.h> 95 #include <sys/mman.h> 96 #include <sys/resource.h> 97 #include <sys/zio.h> 98 #include <sys/zil.h> 99 #include <sys/zil_impl.h> 100 #include <sys/vdev_impl.h> 101 #include <sys/vdev_file.h> 102 #include <sys/spa_impl.h> 103 #include <sys/metaslab_impl.h> 104 #include <sys/dsl_prop.h> 105 #include <sys/dsl_dataset.h> 106 #include <sys/dsl_scan.h> 107 #include <sys/zio_checksum.h> 108 #include <sys/refcount.h> 109 #include <sys/zfeature.h> 110 #include <stdio.h> 111 #include <stdio_ext.h> 112 #include <stdlib.h> 113 #include <unistd.h> 114 #include <signal.h> 115 #include <umem.h> 116 #include <dlfcn.h> 117 #include <ctype.h> 118 #include <math.h> 119 #include <sys/fs/zfs.h> 120 #include <libnvpair.h> 121 122 #define ZTEST_FD_DATA 3 123 #define ZTEST_FD_RAND 4 124 125 typedef struct ztest_shared_hdr { 126 uint64_t zh_hdr_size; 127 uint64_t zh_opts_size; 128 uint64_t zh_size; 129 uint64_t zh_stats_size; 130 uint64_t zh_stats_count; 131 uint64_t zh_ds_size; 132 uint64_t zh_ds_count; 133 } ztest_shared_hdr_t; 134 135 static ztest_shared_hdr_t *ztest_shared_hdr; 136 137 typedef struct ztest_shared_opts { 138 char zo_pool[MAXNAMELEN]; 139 char zo_dir[MAXNAMELEN]; 140 char zo_alt_ztest[MAXNAMELEN]; 141 char zo_alt_libpath[MAXNAMELEN]; 142 uint64_t zo_vdevs; 143 uint64_t zo_vdevtime; 144 size_t zo_vdev_size; 145 int zo_ashift; 146 int zo_mirrors; 147 int zo_raidz; 148 int zo_raidz_parity; 149 int zo_datasets; 150 int zo_threads; 151 uint64_t zo_passtime; 152 uint64_t zo_killrate; 153 int zo_verbose; 154 int zo_init; 155 uint64_t zo_time; 156 uint64_t zo_maxloops; 157 uint64_t zo_metaslab_gang_bang; 158 } ztest_shared_opts_t; 159 160 static const ztest_shared_opts_t ztest_opts_defaults = { 161 .zo_pool = { 'z', 't', 'e', 's', 't', '\0' }, 162 .zo_dir = { '/', 't', 'm', 'p', '\0' }, 163 .zo_alt_ztest = { '\0' }, 164 .zo_alt_libpath = { '\0' }, 165 .zo_vdevs = 5, 166 .zo_ashift = SPA_MINBLOCKSHIFT, 167 .zo_mirrors = 2, 168 .zo_raidz = 4, 169 .zo_raidz_parity = 1, 170 .zo_vdev_size = SPA_MINDEVSIZE, 171 .zo_datasets = 7, 172 .zo_threads = 23, 173 .zo_passtime = 60, /* 60 seconds */ 174 .zo_killrate = 70, /* 70% kill rate */ 175 .zo_verbose = 0, 176 .zo_init = 1, 177 .zo_time = 300, /* 5 minutes */ 178 .zo_maxloops = 50, /* max loops during spa_freeze() */ 179 .zo_metaslab_gang_bang = 32 << 10 180 }; 181 182 extern uint64_t metaslab_gang_bang; 183 extern uint64_t metaslab_df_alloc_threshold; 184 185 static ztest_shared_opts_t *ztest_shared_opts; 186 static ztest_shared_opts_t ztest_opts; 187 188 typedef struct ztest_shared_ds { 189 uint64_t zd_seq; 190 } ztest_shared_ds_t; 191 192 static ztest_shared_ds_t *ztest_shared_ds; 193 #define ZTEST_GET_SHARED_DS(d) (&ztest_shared_ds[d]) 194 195 #define BT_MAGIC 0x123456789abcdefULL 196 #define MAXFAULTS() \ 197 (MAX(zs->zs_mirrors, 1) * (ztest_opts.zo_raidz_parity + 1) - 1) 198 199 enum ztest_io_type { 200 ZTEST_IO_WRITE_TAG, 201 ZTEST_IO_WRITE_PATTERN, 202 ZTEST_IO_WRITE_ZEROES, 203 ZTEST_IO_TRUNCATE, 204 ZTEST_IO_SETATTR, 205 ZTEST_IO_TYPES 206 }; 207 208 typedef struct ztest_block_tag { 209 uint64_t bt_magic; 210 uint64_t bt_objset; 211 uint64_t bt_object; 212 uint64_t bt_offset; 213 uint64_t bt_gen; 214 uint64_t bt_txg; 215 uint64_t bt_crtxg; 216 } ztest_block_tag_t; 217 218 typedef struct bufwad { 219 uint64_t bw_index; 220 uint64_t bw_txg; 221 uint64_t bw_data; 222 } bufwad_t; 223 224 /* 225 * XXX -- fix zfs range locks to be generic so we can use them here. 226 */ 227 typedef enum { 228 RL_READER, 229 RL_WRITER, 230 RL_APPEND 231 } rl_type_t; 232 233 typedef struct rll { 234 void *rll_writer; 235 int rll_readers; 236 mutex_t rll_lock; 237 cond_t rll_cv; 238 } rll_t; 239 240 typedef struct rl { 241 uint64_t rl_object; 242 uint64_t rl_offset; 243 uint64_t rl_size; 244 rll_t *rl_lock; 245 } rl_t; 246 247 #define ZTEST_RANGE_LOCKS 64 248 #define ZTEST_OBJECT_LOCKS 64 249 250 /* 251 * Object descriptor. Used as a template for object lookup/create/remove. 252 */ 253 typedef struct ztest_od { 254 uint64_t od_dir; 255 uint64_t od_object; 256 dmu_object_type_t od_type; 257 dmu_object_type_t od_crtype; 258 uint64_t od_blocksize; 259 uint64_t od_crblocksize; 260 uint64_t od_gen; 261 uint64_t od_crgen; 262 char od_name[MAXNAMELEN]; 263 } ztest_od_t; 264 265 /* 266 * Per-dataset state. 267 */ 268 typedef struct ztest_ds { 269 ztest_shared_ds_t *zd_shared; 270 objset_t *zd_os; 271 rwlock_t zd_zilog_lock; 272 zilog_t *zd_zilog; 273 ztest_od_t *zd_od; /* debugging aid */ 274 char zd_name[MAXNAMELEN]; 275 mutex_t zd_dirobj_lock; 276 rll_t zd_object_lock[ZTEST_OBJECT_LOCKS]; 277 rll_t zd_range_lock[ZTEST_RANGE_LOCKS]; 278 } ztest_ds_t; 279 280 /* 281 * Per-iteration state. 282 */ 283 typedef void ztest_func_t(ztest_ds_t *zd, uint64_t id); 284 285 typedef struct ztest_info { 286 ztest_func_t *zi_func; /* test function */ 287 uint64_t zi_iters; /* iterations per execution */ 288 uint64_t *zi_interval; /* execute every <interval> seconds */ 289 } ztest_info_t; 290 291 typedef struct ztest_shared_callstate { 292 uint64_t zc_count; /* per-pass count */ 293 uint64_t zc_time; /* per-pass time */ 294 uint64_t zc_next; /* next time to call this function */ 295 } ztest_shared_callstate_t; 296 297 static ztest_shared_callstate_t *ztest_shared_callstate; 298 #define ZTEST_GET_SHARED_CALLSTATE(c) (&ztest_shared_callstate[c]) 299 300 /* 301 * Note: these aren't static because we want dladdr() to work. 302 */ 303 ztest_func_t ztest_dmu_read_write; 304 ztest_func_t ztest_dmu_write_parallel; 305 ztest_func_t ztest_dmu_object_alloc_free; 306 ztest_func_t ztest_dmu_commit_callbacks; 307 ztest_func_t ztest_zap; 308 ztest_func_t ztest_zap_parallel; 309 ztest_func_t ztest_zil_commit; 310 ztest_func_t ztest_zil_remount; 311 ztest_func_t ztest_dmu_read_write_zcopy; 312 ztest_func_t ztest_dmu_objset_create_destroy; 313 ztest_func_t ztest_dmu_prealloc; 314 ztest_func_t ztest_fzap; 315 ztest_func_t ztest_dmu_snapshot_create_destroy; 316 ztest_func_t ztest_dsl_prop_get_set; 317 ztest_func_t ztest_spa_prop_get_set; 318 ztest_func_t ztest_spa_create_destroy; 319 ztest_func_t ztest_fault_inject; 320 ztest_func_t ztest_ddt_repair; 321 ztest_func_t ztest_dmu_snapshot_hold; 322 ztest_func_t ztest_spa_rename; 323 ztest_func_t ztest_scrub; 324 ztest_func_t ztest_dsl_dataset_promote_busy; 325 ztest_func_t ztest_vdev_attach_detach; 326 ztest_func_t ztest_vdev_LUN_growth; 327 ztest_func_t ztest_vdev_add_remove; 328 ztest_func_t ztest_vdev_aux_add_remove; 329 ztest_func_t ztest_split_pool; 330 ztest_func_t ztest_reguid; 331 332 uint64_t zopt_always = 0ULL * NANOSEC; /* all the time */ 333 uint64_t zopt_incessant = 1ULL * NANOSEC / 10; /* every 1/10 second */ 334 uint64_t zopt_often = 1ULL * NANOSEC; /* every second */ 335 uint64_t zopt_sometimes = 10ULL * NANOSEC; /* every 10 seconds */ 336 uint64_t zopt_rarely = 60ULL * NANOSEC; /* every 60 seconds */ 337 338 ztest_info_t ztest_info[] = { 339 { ztest_dmu_read_write, 1, &zopt_always }, 340 { ztest_dmu_write_parallel, 10, &zopt_always }, 341 { ztest_dmu_object_alloc_free, 1, &zopt_always }, 342 { ztest_dmu_commit_callbacks, 1, &zopt_always }, 343 { ztest_zap, 30, &zopt_always }, 344 { ztest_zap_parallel, 100, &zopt_always }, 345 { ztest_split_pool, 1, &zopt_always }, 346 { ztest_zil_commit, 1, &zopt_incessant }, 347 { ztest_zil_remount, 1, &zopt_sometimes }, 348 { ztest_dmu_read_write_zcopy, 1, &zopt_often }, 349 { ztest_dmu_objset_create_destroy, 1, &zopt_often }, 350 { ztest_dsl_prop_get_set, 1, &zopt_often }, 351 { ztest_spa_prop_get_set, 1, &zopt_sometimes }, 352 #if 0 353 { ztest_dmu_prealloc, 1, &zopt_sometimes }, 354 #endif 355 { ztest_fzap, 1, &zopt_sometimes }, 356 { ztest_dmu_snapshot_create_destroy, 1, &zopt_sometimes }, 357 { ztest_spa_create_destroy, 1, &zopt_sometimes }, 358 { ztest_fault_inject, 1, &zopt_sometimes }, 359 { ztest_ddt_repair, 1, &zopt_sometimes }, 360 { ztest_dmu_snapshot_hold, 1, &zopt_sometimes }, 361 { ztest_reguid, 1, &zopt_sometimes }, 362 { ztest_spa_rename, 1, &zopt_rarely }, 363 { ztest_scrub, 1, &zopt_rarely }, 364 { ztest_dsl_dataset_promote_busy, 1, &zopt_rarely }, 365 { ztest_vdev_attach_detach, 1, &zopt_rarely }, 366 { ztest_vdev_LUN_growth, 1, &zopt_rarely }, 367 { ztest_vdev_add_remove, 1, 368 &ztest_opts.zo_vdevtime }, 369 { ztest_vdev_aux_add_remove, 1, 370 &ztest_opts.zo_vdevtime }, 371 }; 372 373 #define ZTEST_FUNCS (sizeof (ztest_info) / sizeof (ztest_info_t)) 374 375 /* 376 * The following struct is used to hold a list of uncalled commit callbacks. 377 * The callbacks are ordered by txg number. 378 */ 379 typedef struct ztest_cb_list { 380 mutex_t zcl_callbacks_lock; 381 list_t zcl_callbacks; 382 } ztest_cb_list_t; 383 384 /* 385 * Stuff we need to share writably between parent and child. 386 */ 387 typedef struct ztest_shared { 388 boolean_t zs_do_init; 389 hrtime_t zs_proc_start; 390 hrtime_t zs_proc_stop; 391 hrtime_t zs_thread_start; 392 hrtime_t zs_thread_stop; 393 hrtime_t zs_thread_kill; 394 uint64_t zs_enospc_count; 395 uint64_t zs_vdev_next_leaf; 396 uint64_t zs_vdev_aux; 397 uint64_t zs_alloc; 398 uint64_t zs_space; 399 uint64_t zs_splits; 400 uint64_t zs_mirrors; 401 uint64_t zs_metaslab_sz; 402 uint64_t zs_metaslab_df_alloc_threshold; 403 uint64_t zs_guid; 404 } ztest_shared_t; 405 406 #define ID_PARALLEL -1ULL 407 408 static char ztest_dev_template[] = "%s/%s.%llua"; 409 static char ztest_aux_template[] = "%s/%s.%s.%llu"; 410 ztest_shared_t *ztest_shared; 411 412 static spa_t *ztest_spa = NULL; 413 static ztest_ds_t *ztest_ds; 414 415 static mutex_t ztest_vdev_lock; 416 417 /* 418 * The ztest_name_lock protects the pool and dataset namespace used by 419 * the individual tests. To modify the namespace, consumers must grab 420 * this lock as writer. Grabbing the lock as reader will ensure that the 421 * namespace does not change while the lock is held. 422 */ 423 static rwlock_t ztest_name_lock; 424 425 static boolean_t ztest_dump_core = B_TRUE; 426 static boolean_t ztest_exiting; 427 428 /* Global commit callback list */ 429 static ztest_cb_list_t zcl; 430 431 enum ztest_object { 432 ZTEST_META_DNODE = 0, 433 ZTEST_DIROBJ, 434 ZTEST_OBJECTS 435 }; 436 437 static void usage(boolean_t) __NORETURN; 438 439 /* 440 * These libumem hooks provide a reasonable set of defaults for the allocator's 441 * debugging facilities. 442 */ 443 const char * 444 _umem_debug_init() 445 { 446 return ("default,verbose"); /* $UMEM_DEBUG setting */ 447 } 448 449 const char * 450 _umem_logging_init(void) 451 { 452 return ("fail,contents"); /* $UMEM_LOGGING setting */ 453 } 454 455 #define FATAL_MSG_SZ 1024 456 457 char *fatal_msg; 458 459 static void 460 fatal(int do_perror, char *message, ...) 461 { 462 va_list args; 463 int save_errno = errno; 464 char buf[FATAL_MSG_SZ]; 465 466 (void) fflush(stdout); 467 468 va_start(args, message); 469 (void) sprintf(buf, "ztest: "); 470 /* LINTED */ 471 (void) vsprintf(buf + strlen(buf), message, args); 472 va_end(args); 473 if (do_perror) { 474 (void) snprintf(buf + strlen(buf), FATAL_MSG_SZ - strlen(buf), 475 ": %s", strerror(save_errno)); 476 } 477 (void) fprintf(stderr, "%s\n", buf); 478 fatal_msg = buf; /* to ease debugging */ 479 if (ztest_dump_core) 480 abort(); 481 exit(3); 482 } 483 484 static int 485 str2shift(const char *buf) 486 { 487 const char *ends = "BKMGTPEZ"; 488 int i; 489 490 if (buf[0] == '\0') 491 return (0); 492 for (i = 0; i < strlen(ends); i++) { 493 if (toupper(buf[0]) == ends[i]) 494 break; 495 } 496 if (i == strlen(ends)) { 497 (void) fprintf(stderr, "ztest: invalid bytes suffix: %s\n", 498 buf); 499 usage(B_FALSE); 500 } 501 if (buf[1] == '\0' || (toupper(buf[1]) == 'B' && buf[2] == '\0')) { 502 return (10*i); 503 } 504 (void) fprintf(stderr, "ztest: invalid bytes suffix: %s\n", buf); 505 usage(B_FALSE); 506 /* NOTREACHED */ 507 } 508 509 static uint64_t 510 nicenumtoull(const char *buf) 511 { 512 char *end; 513 uint64_t val; 514 515 val = strtoull(buf, &end, 0); 516 if (end == buf) { 517 (void) fprintf(stderr, "ztest: bad numeric value: %s\n", buf); 518 usage(B_FALSE); 519 } else if (end[0] == '.') { 520 double fval = strtod(buf, &end); 521 fval *= pow(2, str2shift(end)); 522 if (fval > UINT64_MAX) { 523 (void) fprintf(stderr, "ztest: value too large: %s\n", 524 buf); 525 usage(B_FALSE); 526 } 527 val = (uint64_t)fval; 528 } else { 529 int shift = str2shift(end); 530 if (shift >= 64 || (val << shift) >> shift != val) { 531 (void) fprintf(stderr, "ztest: value too large: %s\n", 532 buf); 533 usage(B_FALSE); 534 } 535 val <<= shift; 536 } 537 return (val); 538 } 539 540 static void 541 usage(boolean_t requested) 542 { 543 const ztest_shared_opts_t *zo = &ztest_opts_defaults; 544 545 char nice_vdev_size[10]; 546 char nice_gang_bang[10]; 547 FILE *fp = requested ? stdout : stderr; 548 549 nicenum(zo->zo_vdev_size, nice_vdev_size); 550 nicenum(zo->zo_metaslab_gang_bang, nice_gang_bang); 551 552 (void) fprintf(fp, "Usage: %s\n" 553 "\t[-v vdevs (default: %llu)]\n" 554 "\t[-s size_of_each_vdev (default: %s)]\n" 555 "\t[-a alignment_shift (default: %d)] use 0 for random\n" 556 "\t[-m mirror_copies (default: %d)]\n" 557 "\t[-r raidz_disks (default: %d)]\n" 558 "\t[-R raidz_parity (default: %d)]\n" 559 "\t[-d datasets (default: %d)]\n" 560 "\t[-t threads (default: %d)]\n" 561 "\t[-g gang_block_threshold (default: %s)]\n" 562 "\t[-i init_count (default: %d)] initialize pool i times\n" 563 "\t[-k kill_percentage (default: %llu%%)]\n" 564 "\t[-p pool_name (default: %s)]\n" 565 "\t[-f dir (default: %s)] file directory for vdev files\n" 566 "\t[-V] verbose (use multiple times for ever more blather)\n" 567 "\t[-E] use existing pool instead of creating new one\n" 568 "\t[-T time (default: %llu sec)] total run time\n" 569 "\t[-F freezeloops (default: %llu)] max loops in spa_freeze()\n" 570 "\t[-P passtime (default: %llu sec)] time per pass\n" 571 "\t[-B alt_ztest (default: <none>)] alternate ztest path\n" 572 "\t[-h] (print help)\n" 573 "", 574 zo->zo_pool, 575 (u_longlong_t)zo->zo_vdevs, /* -v */ 576 nice_vdev_size, /* -s */ 577 zo->zo_ashift, /* -a */ 578 zo->zo_mirrors, /* -m */ 579 zo->zo_raidz, /* -r */ 580 zo->zo_raidz_parity, /* -R */ 581 zo->zo_datasets, /* -d */ 582 zo->zo_threads, /* -t */ 583 nice_gang_bang, /* -g */ 584 zo->zo_init, /* -i */ 585 (u_longlong_t)zo->zo_killrate, /* -k */ 586 zo->zo_pool, /* -p */ 587 zo->zo_dir, /* -f */ 588 (u_longlong_t)zo->zo_time, /* -T */ 589 (u_longlong_t)zo->zo_maxloops, /* -F */ 590 (u_longlong_t)zo->zo_passtime); 591 exit(requested ? 0 : 1); 592 } 593 594 static void 595 process_options(int argc, char **argv) 596 { 597 char *path; 598 ztest_shared_opts_t *zo = &ztest_opts; 599 600 int opt; 601 uint64_t value; 602 char altdir[MAXNAMELEN] = { 0 }; 603 604 bcopy(&ztest_opts_defaults, zo, sizeof (*zo)); 605 606 while ((opt = getopt(argc, argv, 607 "v:s:a:m:r:R:d:t:g:i:k:p:f:VET:P:hF:B:")) != EOF) { 608 value = 0; 609 switch (opt) { 610 case 'v': 611 case 's': 612 case 'a': 613 case 'm': 614 case 'r': 615 case 'R': 616 case 'd': 617 case 't': 618 case 'g': 619 case 'i': 620 case 'k': 621 case 'T': 622 case 'P': 623 case 'F': 624 value = nicenumtoull(optarg); 625 } 626 switch (opt) { 627 case 'v': 628 zo->zo_vdevs = value; 629 break; 630 case 's': 631 zo->zo_vdev_size = MAX(SPA_MINDEVSIZE, value); 632 break; 633 case 'a': 634 zo->zo_ashift = value; 635 break; 636 case 'm': 637 zo->zo_mirrors = value; 638 break; 639 case 'r': 640 zo->zo_raidz = MAX(1, value); 641 break; 642 case 'R': 643 zo->zo_raidz_parity = MIN(MAX(value, 1), 3); 644 break; 645 case 'd': 646 zo->zo_datasets = MAX(1, value); 647 break; 648 case 't': 649 zo->zo_threads = MAX(1, value); 650 break; 651 case 'g': 652 zo->zo_metaslab_gang_bang = MAX(SPA_MINBLOCKSIZE << 1, 653 value); 654 break; 655 case 'i': 656 zo->zo_init = value; 657 break; 658 case 'k': 659 zo->zo_killrate = value; 660 break; 661 case 'p': 662 (void) strlcpy(zo->zo_pool, optarg, 663 sizeof (zo->zo_pool)); 664 break; 665 case 'f': 666 path = realpath(optarg, NULL); 667 if (path == NULL) { 668 (void) fprintf(stderr, "error: %s: %s\n", 669 optarg, strerror(errno)); 670 usage(B_FALSE); 671 } else { 672 (void) strlcpy(zo->zo_dir, path, 673 sizeof (zo->zo_dir)); 674 } 675 break; 676 case 'V': 677 zo->zo_verbose++; 678 break; 679 case 'E': 680 zo->zo_init = 0; 681 break; 682 case 'T': 683 zo->zo_time = value; 684 break; 685 case 'P': 686 zo->zo_passtime = MAX(1, value); 687 break; 688 case 'F': 689 zo->zo_maxloops = MAX(1, value); 690 break; 691 case 'B': 692 (void) strlcpy(altdir, optarg, sizeof (altdir)); 693 break; 694 case 'h': 695 usage(B_TRUE); 696 break; 697 case '?': 698 default: 699 usage(B_FALSE); 700 break; 701 } 702 } 703 704 zo->zo_raidz_parity = MIN(zo->zo_raidz_parity, zo->zo_raidz - 1); 705 706 zo->zo_vdevtime = 707 (zo->zo_vdevs > 0 ? zo->zo_time * NANOSEC / zo->zo_vdevs : 708 UINT64_MAX >> 2); 709 710 if (strlen(altdir) > 0) { 711 char cmd[MAXNAMELEN]; 712 char realaltdir[MAXNAMELEN]; 713 char *bin; 714 char *ztest; 715 char *isa; 716 int isalen; 717 718 (void) realpath(getexecname(), cmd); 719 if (0 != access(altdir, F_OK)) { 720 ztest_dump_core = B_FALSE; 721 fatal(B_TRUE, "invalid alternate ztest path: %s", 722 altdir); 723 } 724 VERIFY(NULL != realpath(altdir, realaltdir)); 725 726 /* 727 * 'cmd' should be of the form "<anything>/usr/bin/<isa>/ztest". 728 * We want to extract <isa> to determine if we should use 729 * 32 or 64 bit binaries. 730 */ 731 bin = strstr(cmd, "/usr/bin/"); 732 ztest = strstr(bin, "/ztest"); 733 isa = bin + 9; 734 isalen = ztest - isa; 735 (void) snprintf(zo->zo_alt_ztest, sizeof (zo->zo_alt_ztest), 736 "%s/usr/bin/%.*s/ztest", realaltdir, isalen, isa); 737 (void) snprintf(zo->zo_alt_libpath, sizeof (zo->zo_alt_libpath), 738 "%s/usr/lib/%.*s", realaltdir, isalen, isa); 739 740 if (0 != access(zo->zo_alt_ztest, X_OK)) { 741 ztest_dump_core = B_FALSE; 742 fatal(B_TRUE, "invalid alternate ztest: %s", 743 zo->zo_alt_ztest); 744 } else if (0 != access(zo->zo_alt_libpath, X_OK)) { 745 ztest_dump_core = B_FALSE; 746 fatal(B_TRUE, "invalid alternate lib directory %s", 747 zo->zo_alt_libpath); 748 } 749 } 750 } 751 752 static void 753 ztest_kill(ztest_shared_t *zs) 754 { 755 zs->zs_alloc = metaslab_class_get_alloc(spa_normal_class(ztest_spa)); 756 zs->zs_space = metaslab_class_get_space(spa_normal_class(ztest_spa)); 757 (void) kill(getpid(), SIGKILL); 758 } 759 760 static uint64_t 761 ztest_random(uint64_t range) 762 { 763 uint64_t r; 764 765 if (range == 0) 766 return (0); 767 768 if (read(ZTEST_FD_RAND, &r, sizeof (r)) != sizeof (r)) 769 fatal(1, "short read from /dev/urandom"); 770 771 return (r % range); 772 } 773 774 /* ARGSUSED */ 775 static void 776 ztest_record_enospc(const char *s) 777 { 778 ztest_shared->zs_enospc_count++; 779 } 780 781 static uint64_t 782 ztest_get_ashift(void) 783 { 784 if (ztest_opts.zo_ashift == 0) 785 return (SPA_MINBLOCKSHIFT + ztest_random(3)); 786 return (ztest_opts.zo_ashift); 787 } 788 789 static nvlist_t * 790 make_vdev_file(char *path, char *aux, size_t size, uint64_t ashift) 791 { 792 char pathbuf[MAXPATHLEN]; 793 uint64_t vdev; 794 nvlist_t *file; 795 796 if (ashift == 0) 797 ashift = ztest_get_ashift(); 798 799 if (path == NULL) { 800 path = pathbuf; 801 802 if (aux != NULL) { 803 vdev = ztest_shared->zs_vdev_aux; 804 (void) snprintf(path, sizeof (pathbuf), 805 ztest_aux_template, ztest_opts.zo_dir, 806 ztest_opts.zo_pool, aux, vdev); 807 } else { 808 vdev = ztest_shared->zs_vdev_next_leaf++; 809 (void) snprintf(path, sizeof (pathbuf), 810 ztest_dev_template, ztest_opts.zo_dir, 811 ztest_opts.zo_pool, vdev); 812 } 813 } 814 815 if (size != 0) { 816 int fd = open(path, O_RDWR | O_CREAT | O_TRUNC, 0666); 817 if (fd == -1) 818 fatal(1, "can't open %s", path); 819 if (ftruncate(fd, size) != 0) 820 fatal(1, "can't ftruncate %s", path); 821 (void) close(fd); 822 } 823 824 VERIFY(nvlist_alloc(&file, NV_UNIQUE_NAME, 0) == 0); 825 VERIFY(nvlist_add_string(file, ZPOOL_CONFIG_TYPE, VDEV_TYPE_FILE) == 0); 826 VERIFY(nvlist_add_string(file, ZPOOL_CONFIG_PATH, path) == 0); 827 VERIFY(nvlist_add_uint64(file, ZPOOL_CONFIG_ASHIFT, ashift) == 0); 828 829 return (file); 830 } 831 832 static nvlist_t * 833 make_vdev_raidz(char *path, char *aux, size_t size, uint64_t ashift, int r) 834 { 835 nvlist_t *raidz, **child; 836 int c; 837 838 if (r < 2) 839 return (make_vdev_file(path, aux, size, ashift)); 840 child = umem_alloc(r * sizeof (nvlist_t *), UMEM_NOFAIL); 841 842 for (c = 0; c < r; c++) 843 child[c] = make_vdev_file(path, aux, size, ashift); 844 845 VERIFY(nvlist_alloc(&raidz, NV_UNIQUE_NAME, 0) == 0); 846 VERIFY(nvlist_add_string(raidz, ZPOOL_CONFIG_TYPE, 847 VDEV_TYPE_RAIDZ) == 0); 848 VERIFY(nvlist_add_uint64(raidz, ZPOOL_CONFIG_NPARITY, 849 ztest_opts.zo_raidz_parity) == 0); 850 VERIFY(nvlist_add_nvlist_array(raidz, ZPOOL_CONFIG_CHILDREN, 851 child, r) == 0); 852 853 for (c = 0; c < r; c++) 854 nvlist_free(child[c]); 855 856 umem_free(child, r * sizeof (nvlist_t *)); 857 858 return (raidz); 859 } 860 861 static nvlist_t * 862 make_vdev_mirror(char *path, char *aux, size_t size, uint64_t ashift, 863 int r, int m) 864 { 865 nvlist_t *mirror, **child; 866 int c; 867 868 if (m < 1) 869 return (make_vdev_raidz(path, aux, size, ashift, r)); 870 871 child = umem_alloc(m * sizeof (nvlist_t *), UMEM_NOFAIL); 872 873 for (c = 0; c < m; c++) 874 child[c] = make_vdev_raidz(path, aux, size, ashift, r); 875 876 VERIFY(nvlist_alloc(&mirror, NV_UNIQUE_NAME, 0) == 0); 877 VERIFY(nvlist_add_string(mirror, ZPOOL_CONFIG_TYPE, 878 VDEV_TYPE_MIRROR) == 0); 879 VERIFY(nvlist_add_nvlist_array(mirror, ZPOOL_CONFIG_CHILDREN, 880 child, m) == 0); 881 882 for (c = 0; c < m; c++) 883 nvlist_free(child[c]); 884 885 umem_free(child, m * sizeof (nvlist_t *)); 886 887 return (mirror); 888 } 889 890 static nvlist_t * 891 make_vdev_root(char *path, char *aux, size_t size, uint64_t ashift, 892 int log, int r, int m, int t) 893 { 894 nvlist_t *root, **child; 895 int c; 896 897 ASSERT(t > 0); 898 899 child = umem_alloc(t * sizeof (nvlist_t *), UMEM_NOFAIL); 900 901 for (c = 0; c < t; c++) { 902 child[c] = make_vdev_mirror(path, aux, size, ashift, r, m); 903 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_IS_LOG, 904 log) == 0); 905 } 906 907 VERIFY(nvlist_alloc(&root, NV_UNIQUE_NAME, 0) == 0); 908 VERIFY(nvlist_add_string(root, ZPOOL_CONFIG_TYPE, VDEV_TYPE_ROOT) == 0); 909 VERIFY(nvlist_add_nvlist_array(root, aux ? aux : ZPOOL_CONFIG_CHILDREN, 910 child, t) == 0); 911 912 for (c = 0; c < t; c++) 913 nvlist_free(child[c]); 914 915 umem_free(child, t * sizeof (nvlist_t *)); 916 917 return (root); 918 } 919 920 static int 921 ztest_random_blocksize(void) 922 { 923 return (1 << (SPA_MINBLOCKSHIFT + 924 ztest_random(SPA_MAXBLOCKSHIFT - SPA_MINBLOCKSHIFT + 1))); 925 } 926 927 static int 928 ztest_random_ibshift(void) 929 { 930 return (DN_MIN_INDBLKSHIFT + 931 ztest_random(DN_MAX_INDBLKSHIFT - DN_MIN_INDBLKSHIFT + 1)); 932 } 933 934 static uint64_t 935 ztest_random_vdev_top(spa_t *spa, boolean_t log_ok) 936 { 937 uint64_t top; 938 vdev_t *rvd = spa->spa_root_vdev; 939 vdev_t *tvd; 940 941 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); 942 943 do { 944 top = ztest_random(rvd->vdev_children); 945 tvd = rvd->vdev_child[top]; 946 } while (tvd->vdev_ishole || (tvd->vdev_islog && !log_ok) || 947 tvd->vdev_mg == NULL || tvd->vdev_mg->mg_class == NULL); 948 949 return (top); 950 } 951 952 static uint64_t 953 ztest_random_dsl_prop(zfs_prop_t prop) 954 { 955 uint64_t value; 956 957 do { 958 value = zfs_prop_random_value(prop, ztest_random(-1ULL)); 959 } while (prop == ZFS_PROP_CHECKSUM && value == ZIO_CHECKSUM_OFF); 960 961 return (value); 962 } 963 964 static int 965 ztest_dsl_prop_set_uint64(char *osname, zfs_prop_t prop, uint64_t value, 966 boolean_t inherit) 967 { 968 const char *propname = zfs_prop_to_name(prop); 969 const char *valname; 970 char setpoint[MAXPATHLEN]; 971 uint64_t curval; 972 int error; 973 974 error = dsl_prop_set(osname, propname, 975 (inherit ? ZPROP_SRC_NONE : ZPROP_SRC_LOCAL), 976 sizeof (value), 1, &value); 977 978 if (error == ENOSPC) { 979 ztest_record_enospc(FTAG); 980 return (error); 981 } 982 ASSERT0(error); 983 984 VERIFY3U(dsl_prop_get(osname, propname, sizeof (curval), 985 1, &curval, setpoint), ==, 0); 986 987 if (ztest_opts.zo_verbose >= 6) { 988 VERIFY(zfs_prop_index_to_string(prop, curval, &valname) == 0); 989 (void) printf("%s %s = %s at '%s'\n", 990 osname, propname, valname, setpoint); 991 } 992 993 return (error); 994 } 995 996 static int 997 ztest_spa_prop_set_uint64(zpool_prop_t prop, uint64_t value) 998 { 999 spa_t *spa = ztest_spa; 1000 nvlist_t *props = NULL; 1001 int error; 1002 1003 VERIFY(nvlist_alloc(&props, NV_UNIQUE_NAME, 0) == 0); 1004 VERIFY(nvlist_add_uint64(props, zpool_prop_to_name(prop), value) == 0); 1005 1006 error = spa_prop_set(spa, props); 1007 1008 nvlist_free(props); 1009 1010 if (error == ENOSPC) { 1011 ztest_record_enospc(FTAG); 1012 return (error); 1013 } 1014 ASSERT0(error); 1015 1016 return (error); 1017 } 1018 1019 static void 1020 ztest_rll_init(rll_t *rll) 1021 { 1022 rll->rll_writer = NULL; 1023 rll->rll_readers = 0; 1024 VERIFY(_mutex_init(&rll->rll_lock, USYNC_THREAD, NULL) == 0); 1025 VERIFY(cond_init(&rll->rll_cv, USYNC_THREAD, NULL) == 0); 1026 } 1027 1028 static void 1029 ztest_rll_destroy(rll_t *rll) 1030 { 1031 ASSERT(rll->rll_writer == NULL); 1032 ASSERT(rll->rll_readers == 0); 1033 VERIFY(_mutex_destroy(&rll->rll_lock) == 0); 1034 VERIFY(cond_destroy(&rll->rll_cv) == 0); 1035 } 1036 1037 static void 1038 ztest_rll_lock(rll_t *rll, rl_type_t type) 1039 { 1040 VERIFY(mutex_lock(&rll->rll_lock) == 0); 1041 1042 if (type == RL_READER) { 1043 while (rll->rll_writer != NULL) 1044 (void) cond_wait(&rll->rll_cv, &rll->rll_lock); 1045 rll->rll_readers++; 1046 } else { 1047 while (rll->rll_writer != NULL || rll->rll_readers) 1048 (void) cond_wait(&rll->rll_cv, &rll->rll_lock); 1049 rll->rll_writer = curthread; 1050 } 1051 1052 VERIFY(mutex_unlock(&rll->rll_lock) == 0); 1053 } 1054 1055 static void 1056 ztest_rll_unlock(rll_t *rll) 1057 { 1058 VERIFY(mutex_lock(&rll->rll_lock) == 0); 1059 1060 if (rll->rll_writer) { 1061 ASSERT(rll->rll_readers == 0); 1062 rll->rll_writer = NULL; 1063 } else { 1064 ASSERT(rll->rll_readers != 0); 1065 ASSERT(rll->rll_writer == NULL); 1066 rll->rll_readers--; 1067 } 1068 1069 if (rll->rll_writer == NULL && rll->rll_readers == 0) 1070 VERIFY(cond_broadcast(&rll->rll_cv) == 0); 1071 1072 VERIFY(mutex_unlock(&rll->rll_lock) == 0); 1073 } 1074 1075 static void 1076 ztest_object_lock(ztest_ds_t *zd, uint64_t object, rl_type_t type) 1077 { 1078 rll_t *rll = &zd->zd_object_lock[object & (ZTEST_OBJECT_LOCKS - 1)]; 1079 1080 ztest_rll_lock(rll, type); 1081 } 1082 1083 static void 1084 ztest_object_unlock(ztest_ds_t *zd, uint64_t object) 1085 { 1086 rll_t *rll = &zd->zd_object_lock[object & (ZTEST_OBJECT_LOCKS - 1)]; 1087 1088 ztest_rll_unlock(rll); 1089 } 1090 1091 static rl_t * 1092 ztest_range_lock(ztest_ds_t *zd, uint64_t object, uint64_t offset, 1093 uint64_t size, rl_type_t type) 1094 { 1095 uint64_t hash = object ^ (offset % (ZTEST_RANGE_LOCKS + 1)); 1096 rll_t *rll = &zd->zd_range_lock[hash & (ZTEST_RANGE_LOCKS - 1)]; 1097 rl_t *rl; 1098 1099 rl = umem_alloc(sizeof (*rl), UMEM_NOFAIL); 1100 rl->rl_object = object; 1101 rl->rl_offset = offset; 1102 rl->rl_size = size; 1103 rl->rl_lock = rll; 1104 1105 ztest_rll_lock(rll, type); 1106 1107 return (rl); 1108 } 1109 1110 static void 1111 ztest_range_unlock(rl_t *rl) 1112 { 1113 rll_t *rll = rl->rl_lock; 1114 1115 ztest_rll_unlock(rll); 1116 1117 umem_free(rl, sizeof (*rl)); 1118 } 1119 1120 static void 1121 ztest_zd_init(ztest_ds_t *zd, ztest_shared_ds_t *szd, objset_t *os) 1122 { 1123 zd->zd_os = os; 1124 zd->zd_zilog = dmu_objset_zil(os); 1125 zd->zd_shared = szd; 1126 dmu_objset_name(os, zd->zd_name); 1127 1128 if (zd->zd_shared != NULL) 1129 zd->zd_shared->zd_seq = 0; 1130 1131 VERIFY(rwlock_init(&zd->zd_zilog_lock, USYNC_THREAD, NULL) == 0); 1132 VERIFY(_mutex_init(&zd->zd_dirobj_lock, USYNC_THREAD, NULL) == 0); 1133 1134 for (int l = 0; l < ZTEST_OBJECT_LOCKS; l++) 1135 ztest_rll_init(&zd->zd_object_lock[l]); 1136 1137 for (int l = 0; l < ZTEST_RANGE_LOCKS; l++) 1138 ztest_rll_init(&zd->zd_range_lock[l]); 1139 } 1140 1141 static void 1142 ztest_zd_fini(ztest_ds_t *zd) 1143 { 1144 VERIFY(_mutex_destroy(&zd->zd_dirobj_lock) == 0); 1145 1146 for (int l = 0; l < ZTEST_OBJECT_LOCKS; l++) 1147 ztest_rll_destroy(&zd->zd_object_lock[l]); 1148 1149 for (int l = 0; l < ZTEST_RANGE_LOCKS; l++) 1150 ztest_rll_destroy(&zd->zd_range_lock[l]); 1151 } 1152 1153 #define TXG_MIGHTWAIT (ztest_random(10) == 0 ? TXG_NOWAIT : TXG_WAIT) 1154 1155 static uint64_t 1156 ztest_tx_assign(dmu_tx_t *tx, uint64_t txg_how, const char *tag) 1157 { 1158 uint64_t txg; 1159 int error; 1160 1161 /* 1162 * Attempt to assign tx to some transaction group. 1163 */ 1164 error = dmu_tx_assign(tx, txg_how); 1165 if (error) { 1166 if (error == ERESTART) { 1167 ASSERT(txg_how == TXG_NOWAIT); 1168 dmu_tx_wait(tx); 1169 } else { 1170 ASSERT3U(error, ==, ENOSPC); 1171 ztest_record_enospc(tag); 1172 } 1173 dmu_tx_abort(tx); 1174 return (0); 1175 } 1176 txg = dmu_tx_get_txg(tx); 1177 ASSERT(txg != 0); 1178 return (txg); 1179 } 1180 1181 static void 1182 ztest_pattern_set(void *buf, uint64_t size, uint64_t value) 1183 { 1184 uint64_t *ip = buf; 1185 uint64_t *ip_end = (uint64_t *)((uintptr_t)buf + (uintptr_t)size); 1186 1187 while (ip < ip_end) 1188 *ip++ = value; 1189 } 1190 1191 static boolean_t 1192 ztest_pattern_match(void *buf, uint64_t size, uint64_t value) 1193 { 1194 uint64_t *ip = buf; 1195 uint64_t *ip_end = (uint64_t *)((uintptr_t)buf + (uintptr_t)size); 1196 uint64_t diff = 0; 1197 1198 while (ip < ip_end) 1199 diff |= (value - *ip++); 1200 1201 return (diff == 0); 1202 } 1203 1204 static void 1205 ztest_bt_generate(ztest_block_tag_t *bt, objset_t *os, uint64_t object, 1206 uint64_t offset, uint64_t gen, uint64_t txg, uint64_t crtxg) 1207 { 1208 bt->bt_magic = BT_MAGIC; 1209 bt->bt_objset = dmu_objset_id(os); 1210 bt->bt_object = object; 1211 bt->bt_offset = offset; 1212 bt->bt_gen = gen; 1213 bt->bt_txg = txg; 1214 bt->bt_crtxg = crtxg; 1215 } 1216 1217 static void 1218 ztest_bt_verify(ztest_block_tag_t *bt, objset_t *os, uint64_t object, 1219 uint64_t offset, uint64_t gen, uint64_t txg, uint64_t crtxg) 1220 { 1221 ASSERT(bt->bt_magic == BT_MAGIC); 1222 ASSERT(bt->bt_objset == dmu_objset_id(os)); 1223 ASSERT(bt->bt_object == object); 1224 ASSERT(bt->bt_offset == offset); 1225 ASSERT(bt->bt_gen <= gen); 1226 ASSERT(bt->bt_txg <= txg); 1227 ASSERT(bt->bt_crtxg == crtxg); 1228 } 1229 1230 static ztest_block_tag_t * 1231 ztest_bt_bonus(dmu_buf_t *db) 1232 { 1233 dmu_object_info_t doi; 1234 ztest_block_tag_t *bt; 1235 1236 dmu_object_info_from_db(db, &doi); 1237 ASSERT3U(doi.doi_bonus_size, <=, db->db_size); 1238 ASSERT3U(doi.doi_bonus_size, >=, sizeof (*bt)); 1239 bt = (void *)((char *)db->db_data + doi.doi_bonus_size - sizeof (*bt)); 1240 1241 return (bt); 1242 } 1243 1244 /* 1245 * ZIL logging ops 1246 */ 1247 1248 #define lrz_type lr_mode 1249 #define lrz_blocksize lr_uid 1250 #define lrz_ibshift lr_gid 1251 #define lrz_bonustype lr_rdev 1252 #define lrz_bonuslen lr_crtime[1] 1253 1254 static void 1255 ztest_log_create(ztest_ds_t *zd, dmu_tx_t *tx, lr_create_t *lr) 1256 { 1257 char *name = (void *)(lr + 1); /* name follows lr */ 1258 size_t namesize = strlen(name) + 1; 1259 itx_t *itx; 1260 1261 if (zil_replaying(zd->zd_zilog, tx)) 1262 return; 1263 1264 itx = zil_itx_create(TX_CREATE, sizeof (*lr) + namesize); 1265 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1, 1266 sizeof (*lr) + namesize - sizeof (lr_t)); 1267 1268 zil_itx_assign(zd->zd_zilog, itx, tx); 1269 } 1270 1271 static void 1272 ztest_log_remove(ztest_ds_t *zd, dmu_tx_t *tx, lr_remove_t *lr, uint64_t object) 1273 { 1274 char *name = (void *)(lr + 1); /* name follows lr */ 1275 size_t namesize = strlen(name) + 1; 1276 itx_t *itx; 1277 1278 if (zil_replaying(zd->zd_zilog, tx)) 1279 return; 1280 1281 itx = zil_itx_create(TX_REMOVE, sizeof (*lr) + namesize); 1282 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1, 1283 sizeof (*lr) + namesize - sizeof (lr_t)); 1284 1285 itx->itx_oid = object; 1286 zil_itx_assign(zd->zd_zilog, itx, tx); 1287 } 1288 1289 static void 1290 ztest_log_write(ztest_ds_t *zd, dmu_tx_t *tx, lr_write_t *lr) 1291 { 1292 itx_t *itx; 1293 itx_wr_state_t write_state = ztest_random(WR_NUM_STATES); 1294 1295 if (zil_replaying(zd->zd_zilog, tx)) 1296 return; 1297 1298 if (lr->lr_length > ZIL_MAX_LOG_DATA) 1299 write_state = WR_INDIRECT; 1300 1301 itx = zil_itx_create(TX_WRITE, 1302 sizeof (*lr) + (write_state == WR_COPIED ? lr->lr_length : 0)); 1303 1304 if (write_state == WR_COPIED && 1305 dmu_read(zd->zd_os, lr->lr_foid, lr->lr_offset, lr->lr_length, 1306 ((lr_write_t *)&itx->itx_lr) + 1, DMU_READ_NO_PREFETCH) != 0) { 1307 zil_itx_destroy(itx); 1308 itx = zil_itx_create(TX_WRITE, sizeof (*lr)); 1309 write_state = WR_NEED_COPY; 1310 } 1311 itx->itx_private = zd; 1312 itx->itx_wr_state = write_state; 1313 itx->itx_sync = (ztest_random(8) == 0); 1314 itx->itx_sod += (write_state == WR_NEED_COPY ? lr->lr_length : 0); 1315 1316 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1, 1317 sizeof (*lr) - sizeof (lr_t)); 1318 1319 zil_itx_assign(zd->zd_zilog, itx, tx); 1320 } 1321 1322 static void 1323 ztest_log_truncate(ztest_ds_t *zd, dmu_tx_t *tx, lr_truncate_t *lr) 1324 { 1325 itx_t *itx; 1326 1327 if (zil_replaying(zd->zd_zilog, tx)) 1328 return; 1329 1330 itx = zil_itx_create(TX_TRUNCATE, sizeof (*lr)); 1331 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1, 1332 sizeof (*lr) - sizeof (lr_t)); 1333 1334 itx->itx_sync = B_FALSE; 1335 zil_itx_assign(zd->zd_zilog, itx, tx); 1336 } 1337 1338 static void 1339 ztest_log_setattr(ztest_ds_t *zd, dmu_tx_t *tx, lr_setattr_t *lr) 1340 { 1341 itx_t *itx; 1342 1343 if (zil_replaying(zd->zd_zilog, tx)) 1344 return; 1345 1346 itx = zil_itx_create(TX_SETATTR, sizeof (*lr)); 1347 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1, 1348 sizeof (*lr) - sizeof (lr_t)); 1349 1350 itx->itx_sync = B_FALSE; 1351 zil_itx_assign(zd->zd_zilog, itx, tx); 1352 } 1353 1354 /* 1355 * ZIL replay ops 1356 */ 1357 static int 1358 ztest_replay_create(ztest_ds_t *zd, lr_create_t *lr, boolean_t byteswap) 1359 { 1360 char *name = (void *)(lr + 1); /* name follows lr */ 1361 objset_t *os = zd->zd_os; 1362 ztest_block_tag_t *bbt; 1363 dmu_buf_t *db; 1364 dmu_tx_t *tx; 1365 uint64_t txg; 1366 int error = 0; 1367 1368 if (byteswap) 1369 byteswap_uint64_array(lr, sizeof (*lr)); 1370 1371 ASSERT(lr->lr_doid == ZTEST_DIROBJ); 1372 ASSERT(name[0] != '\0'); 1373 1374 tx = dmu_tx_create(os); 1375 1376 dmu_tx_hold_zap(tx, lr->lr_doid, B_TRUE, name); 1377 1378 if (lr->lrz_type == DMU_OT_ZAP_OTHER) { 1379 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, B_TRUE, NULL); 1380 } else { 1381 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); 1382 } 1383 1384 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); 1385 if (txg == 0) 1386 return (ENOSPC); 1387 1388 ASSERT(dmu_objset_zil(os)->zl_replay == !!lr->lr_foid); 1389 1390 if (lr->lrz_type == DMU_OT_ZAP_OTHER) { 1391 if (lr->lr_foid == 0) { 1392 lr->lr_foid = zap_create(os, 1393 lr->lrz_type, lr->lrz_bonustype, 1394 lr->lrz_bonuslen, tx); 1395 } else { 1396 error = zap_create_claim(os, lr->lr_foid, 1397 lr->lrz_type, lr->lrz_bonustype, 1398 lr->lrz_bonuslen, tx); 1399 } 1400 } else { 1401 if (lr->lr_foid == 0) { 1402 lr->lr_foid = dmu_object_alloc(os, 1403 lr->lrz_type, 0, lr->lrz_bonustype, 1404 lr->lrz_bonuslen, tx); 1405 } else { 1406 error = dmu_object_claim(os, lr->lr_foid, 1407 lr->lrz_type, 0, lr->lrz_bonustype, 1408 lr->lrz_bonuslen, tx); 1409 } 1410 } 1411 1412 if (error) { 1413 ASSERT3U(error, ==, EEXIST); 1414 ASSERT(zd->zd_zilog->zl_replay); 1415 dmu_tx_commit(tx); 1416 return (error); 1417 } 1418 1419 ASSERT(lr->lr_foid != 0); 1420 1421 if (lr->lrz_type != DMU_OT_ZAP_OTHER) 1422 VERIFY3U(0, ==, dmu_object_set_blocksize(os, lr->lr_foid, 1423 lr->lrz_blocksize, lr->lrz_ibshift, tx)); 1424 1425 VERIFY3U(0, ==, dmu_bonus_hold(os, lr->lr_foid, FTAG, &db)); 1426 bbt = ztest_bt_bonus(db); 1427 dmu_buf_will_dirty(db, tx); 1428 ztest_bt_generate(bbt, os, lr->lr_foid, -1ULL, lr->lr_gen, txg, txg); 1429 dmu_buf_rele(db, FTAG); 1430 1431 VERIFY3U(0, ==, zap_add(os, lr->lr_doid, name, sizeof (uint64_t), 1, 1432 &lr->lr_foid, tx)); 1433 1434 (void) ztest_log_create(zd, tx, lr); 1435 1436 dmu_tx_commit(tx); 1437 1438 return (0); 1439 } 1440 1441 static int 1442 ztest_replay_remove(ztest_ds_t *zd, lr_remove_t *lr, boolean_t byteswap) 1443 { 1444 char *name = (void *)(lr + 1); /* name follows lr */ 1445 objset_t *os = zd->zd_os; 1446 dmu_object_info_t doi; 1447 dmu_tx_t *tx; 1448 uint64_t object, txg; 1449 1450 if (byteswap) 1451 byteswap_uint64_array(lr, sizeof (*lr)); 1452 1453 ASSERT(lr->lr_doid == ZTEST_DIROBJ); 1454 ASSERT(name[0] != '\0'); 1455 1456 VERIFY3U(0, ==, 1457 zap_lookup(os, lr->lr_doid, name, sizeof (object), 1, &object)); 1458 ASSERT(object != 0); 1459 1460 ztest_object_lock(zd, object, RL_WRITER); 1461 1462 VERIFY3U(0, ==, dmu_object_info(os, object, &doi)); 1463 1464 tx = dmu_tx_create(os); 1465 1466 dmu_tx_hold_zap(tx, lr->lr_doid, B_FALSE, name); 1467 dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END); 1468 1469 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); 1470 if (txg == 0) { 1471 ztest_object_unlock(zd, object); 1472 return (ENOSPC); 1473 } 1474 1475 if (doi.doi_type == DMU_OT_ZAP_OTHER) { 1476 VERIFY3U(0, ==, zap_destroy(os, object, tx)); 1477 } else { 1478 VERIFY3U(0, ==, dmu_object_free(os, object, tx)); 1479 } 1480 1481 VERIFY3U(0, ==, zap_remove(os, lr->lr_doid, name, tx)); 1482 1483 (void) ztest_log_remove(zd, tx, lr, object); 1484 1485 dmu_tx_commit(tx); 1486 1487 ztest_object_unlock(zd, object); 1488 1489 return (0); 1490 } 1491 1492 static int 1493 ztest_replay_write(ztest_ds_t *zd, lr_write_t *lr, boolean_t byteswap) 1494 { 1495 objset_t *os = zd->zd_os; 1496 void *data = lr + 1; /* data follows lr */ 1497 uint64_t offset, length; 1498 ztest_block_tag_t *bt = data; 1499 ztest_block_tag_t *bbt; 1500 uint64_t gen, txg, lrtxg, crtxg; 1501 dmu_object_info_t doi; 1502 dmu_tx_t *tx; 1503 dmu_buf_t *db; 1504 arc_buf_t *abuf = NULL; 1505 rl_t *rl; 1506 1507 if (byteswap) 1508 byteswap_uint64_array(lr, sizeof (*lr)); 1509 1510 offset = lr->lr_offset; 1511 length = lr->lr_length; 1512 1513 /* If it's a dmu_sync() block, write the whole block */ 1514 if (lr->lr_common.lrc_reclen == sizeof (lr_write_t)) { 1515 uint64_t blocksize = BP_GET_LSIZE(&lr->lr_blkptr); 1516 if (length < blocksize) { 1517 offset -= offset % blocksize; 1518 length = blocksize; 1519 } 1520 } 1521 1522 if (bt->bt_magic == BSWAP_64(BT_MAGIC)) 1523 byteswap_uint64_array(bt, sizeof (*bt)); 1524 1525 if (bt->bt_magic != BT_MAGIC) 1526 bt = NULL; 1527 1528 ztest_object_lock(zd, lr->lr_foid, RL_READER); 1529 rl = ztest_range_lock(zd, lr->lr_foid, offset, length, RL_WRITER); 1530 1531 VERIFY3U(0, ==, dmu_bonus_hold(os, lr->lr_foid, FTAG, &db)); 1532 1533 dmu_object_info_from_db(db, &doi); 1534 1535 bbt = ztest_bt_bonus(db); 1536 ASSERT3U(bbt->bt_magic, ==, BT_MAGIC); 1537 gen = bbt->bt_gen; 1538 crtxg = bbt->bt_crtxg; 1539 lrtxg = lr->lr_common.lrc_txg; 1540 1541 tx = dmu_tx_create(os); 1542 1543 dmu_tx_hold_write(tx, lr->lr_foid, offset, length); 1544 1545 if (ztest_random(8) == 0 && length == doi.doi_data_block_size && 1546 P2PHASE(offset, length) == 0) 1547 abuf = dmu_request_arcbuf(db, length); 1548 1549 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); 1550 if (txg == 0) { 1551 if (abuf != NULL) 1552 dmu_return_arcbuf(abuf); 1553 dmu_buf_rele(db, FTAG); 1554 ztest_range_unlock(rl); 1555 ztest_object_unlock(zd, lr->lr_foid); 1556 return (ENOSPC); 1557 } 1558 1559 if (bt != NULL) { 1560 /* 1561 * Usually, verify the old data before writing new data -- 1562 * but not always, because we also want to verify correct 1563 * behavior when the data was not recently read into cache. 1564 */ 1565 ASSERT(offset % doi.doi_data_block_size == 0); 1566 if (ztest_random(4) != 0) { 1567 int prefetch = ztest_random(2) ? 1568 DMU_READ_PREFETCH : DMU_READ_NO_PREFETCH; 1569 ztest_block_tag_t rbt; 1570 1571 VERIFY(dmu_read(os, lr->lr_foid, offset, 1572 sizeof (rbt), &rbt, prefetch) == 0); 1573 if (rbt.bt_magic == BT_MAGIC) { 1574 ztest_bt_verify(&rbt, os, lr->lr_foid, 1575 offset, gen, txg, crtxg); 1576 } 1577 } 1578 1579 /* 1580 * Writes can appear to be newer than the bonus buffer because 1581 * the ztest_get_data() callback does a dmu_read() of the 1582 * open-context data, which may be different than the data 1583 * as it was when the write was generated. 1584 */ 1585 if (zd->zd_zilog->zl_replay) { 1586 ztest_bt_verify(bt, os, lr->lr_foid, offset, 1587 MAX(gen, bt->bt_gen), MAX(txg, lrtxg), 1588 bt->bt_crtxg); 1589 } 1590 1591 /* 1592 * Set the bt's gen/txg to the bonus buffer's gen/txg 1593 * so that all of the usual ASSERTs will work. 1594 */ 1595 ztest_bt_generate(bt, os, lr->lr_foid, offset, gen, txg, crtxg); 1596 } 1597 1598 if (abuf == NULL) { 1599 dmu_write(os, lr->lr_foid, offset, length, data, tx); 1600 } else { 1601 bcopy(data, abuf->b_data, length); 1602 dmu_assign_arcbuf(db, offset, abuf, tx); 1603 } 1604 1605 (void) ztest_log_write(zd, tx, lr); 1606 1607 dmu_buf_rele(db, FTAG); 1608 1609 dmu_tx_commit(tx); 1610 1611 ztest_range_unlock(rl); 1612 ztest_object_unlock(zd, lr->lr_foid); 1613 1614 return (0); 1615 } 1616 1617 static int 1618 ztest_replay_truncate(ztest_ds_t *zd, lr_truncate_t *lr, boolean_t byteswap) 1619 { 1620 objset_t *os = zd->zd_os; 1621 dmu_tx_t *tx; 1622 uint64_t txg; 1623 rl_t *rl; 1624 1625 if (byteswap) 1626 byteswap_uint64_array(lr, sizeof (*lr)); 1627 1628 ztest_object_lock(zd, lr->lr_foid, RL_READER); 1629 rl = ztest_range_lock(zd, lr->lr_foid, lr->lr_offset, lr->lr_length, 1630 RL_WRITER); 1631 1632 tx = dmu_tx_create(os); 1633 1634 dmu_tx_hold_free(tx, lr->lr_foid, lr->lr_offset, lr->lr_length); 1635 1636 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); 1637 if (txg == 0) { 1638 ztest_range_unlock(rl); 1639 ztest_object_unlock(zd, lr->lr_foid); 1640 return (ENOSPC); 1641 } 1642 1643 VERIFY(dmu_free_range(os, lr->lr_foid, lr->lr_offset, 1644 lr->lr_length, tx) == 0); 1645 1646 (void) ztest_log_truncate(zd, tx, lr); 1647 1648 dmu_tx_commit(tx); 1649 1650 ztest_range_unlock(rl); 1651 ztest_object_unlock(zd, lr->lr_foid); 1652 1653 return (0); 1654 } 1655 1656 static int 1657 ztest_replay_setattr(ztest_ds_t *zd, lr_setattr_t *lr, boolean_t byteswap) 1658 { 1659 objset_t *os = zd->zd_os; 1660 dmu_tx_t *tx; 1661 dmu_buf_t *db; 1662 ztest_block_tag_t *bbt; 1663 uint64_t txg, lrtxg, crtxg; 1664 1665 if (byteswap) 1666 byteswap_uint64_array(lr, sizeof (*lr)); 1667 1668 ztest_object_lock(zd, lr->lr_foid, RL_WRITER); 1669 1670 VERIFY3U(0, ==, dmu_bonus_hold(os, lr->lr_foid, FTAG, &db)); 1671 1672 tx = dmu_tx_create(os); 1673 dmu_tx_hold_bonus(tx, lr->lr_foid); 1674 1675 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); 1676 if (txg == 0) { 1677 dmu_buf_rele(db, FTAG); 1678 ztest_object_unlock(zd, lr->lr_foid); 1679 return (ENOSPC); 1680 } 1681 1682 bbt = ztest_bt_bonus(db); 1683 ASSERT3U(bbt->bt_magic, ==, BT_MAGIC); 1684 crtxg = bbt->bt_crtxg; 1685 lrtxg = lr->lr_common.lrc_txg; 1686 1687 if (zd->zd_zilog->zl_replay) { 1688 ASSERT(lr->lr_size != 0); 1689 ASSERT(lr->lr_mode != 0); 1690 ASSERT(lrtxg != 0); 1691 } else { 1692 /* 1693 * Randomly change the size and increment the generation. 1694 */ 1695 lr->lr_size = (ztest_random(db->db_size / sizeof (*bbt)) + 1) * 1696 sizeof (*bbt); 1697 lr->lr_mode = bbt->bt_gen + 1; 1698 ASSERT(lrtxg == 0); 1699 } 1700 1701 /* 1702 * Verify that the current bonus buffer is not newer than our txg. 1703 */ 1704 ztest_bt_verify(bbt, os, lr->lr_foid, -1ULL, lr->lr_mode, 1705 MAX(txg, lrtxg), crtxg); 1706 1707 dmu_buf_will_dirty(db, tx); 1708 1709 ASSERT3U(lr->lr_size, >=, sizeof (*bbt)); 1710 ASSERT3U(lr->lr_size, <=, db->db_size); 1711 VERIFY0(dmu_set_bonus(db, lr->lr_size, tx)); 1712 bbt = ztest_bt_bonus(db); 1713 1714 ztest_bt_generate(bbt, os, lr->lr_foid, -1ULL, lr->lr_mode, txg, crtxg); 1715 1716 dmu_buf_rele(db, FTAG); 1717 1718 (void) ztest_log_setattr(zd, tx, lr); 1719 1720 dmu_tx_commit(tx); 1721 1722 ztest_object_unlock(zd, lr->lr_foid); 1723 1724 return (0); 1725 } 1726 1727 zil_replay_func_t *ztest_replay_vector[TX_MAX_TYPE] = { 1728 NULL, /* 0 no such transaction type */ 1729 ztest_replay_create, /* TX_CREATE */ 1730 NULL, /* TX_MKDIR */ 1731 NULL, /* TX_MKXATTR */ 1732 NULL, /* TX_SYMLINK */ 1733 ztest_replay_remove, /* TX_REMOVE */ 1734 NULL, /* TX_RMDIR */ 1735 NULL, /* TX_LINK */ 1736 NULL, /* TX_RENAME */ 1737 ztest_replay_write, /* TX_WRITE */ 1738 ztest_replay_truncate, /* TX_TRUNCATE */ 1739 ztest_replay_setattr, /* TX_SETATTR */ 1740 NULL, /* TX_ACL */ 1741 NULL, /* TX_CREATE_ACL */ 1742 NULL, /* TX_CREATE_ATTR */ 1743 NULL, /* TX_CREATE_ACL_ATTR */ 1744 NULL, /* TX_MKDIR_ACL */ 1745 NULL, /* TX_MKDIR_ATTR */ 1746 NULL, /* TX_MKDIR_ACL_ATTR */ 1747 NULL, /* TX_WRITE2 */ 1748 }; 1749 1750 /* 1751 * ZIL get_data callbacks 1752 */ 1753 1754 static void 1755 ztest_get_done(zgd_t *zgd, int error) 1756 { 1757 ztest_ds_t *zd = zgd->zgd_private; 1758 uint64_t object = zgd->zgd_rl->rl_object; 1759 1760 if (zgd->zgd_db) 1761 dmu_buf_rele(zgd->zgd_db, zgd); 1762 1763 ztest_range_unlock(zgd->zgd_rl); 1764 ztest_object_unlock(zd, object); 1765 1766 if (error == 0 && zgd->zgd_bp) 1767 zil_add_block(zgd->zgd_zilog, zgd->zgd_bp); 1768 1769 umem_free(zgd, sizeof (*zgd)); 1770 } 1771 1772 static int 1773 ztest_get_data(void *arg, lr_write_t *lr, char *buf, zio_t *zio) 1774 { 1775 ztest_ds_t *zd = arg; 1776 objset_t *os = zd->zd_os; 1777 uint64_t object = lr->lr_foid; 1778 uint64_t offset = lr->lr_offset; 1779 uint64_t size = lr->lr_length; 1780 blkptr_t *bp = &lr->lr_blkptr; 1781 uint64_t txg = lr->lr_common.lrc_txg; 1782 uint64_t crtxg; 1783 dmu_object_info_t doi; 1784 dmu_buf_t *db; 1785 zgd_t *zgd; 1786 int error; 1787 1788 ztest_object_lock(zd, object, RL_READER); 1789 error = dmu_bonus_hold(os, object, FTAG, &db); 1790 if (error) { 1791 ztest_object_unlock(zd, object); 1792 return (error); 1793 } 1794 1795 crtxg = ztest_bt_bonus(db)->bt_crtxg; 1796 1797 if (crtxg == 0 || crtxg > txg) { 1798 dmu_buf_rele(db, FTAG); 1799 ztest_object_unlock(zd, object); 1800 return (ENOENT); 1801 } 1802 1803 dmu_object_info_from_db(db, &doi); 1804 dmu_buf_rele(db, FTAG); 1805 db = NULL; 1806 1807 zgd = umem_zalloc(sizeof (*zgd), UMEM_NOFAIL); 1808 zgd->zgd_zilog = zd->zd_zilog; 1809 zgd->zgd_private = zd; 1810 1811 if (buf != NULL) { /* immediate write */ 1812 zgd->zgd_rl = ztest_range_lock(zd, object, offset, size, 1813 RL_READER); 1814 1815 error = dmu_read(os, object, offset, size, buf, 1816 DMU_READ_NO_PREFETCH); 1817 ASSERT(error == 0); 1818 } else { 1819 size = doi.doi_data_block_size; 1820 if (ISP2(size)) { 1821 offset = P2ALIGN(offset, size); 1822 } else { 1823 ASSERT(offset < size); 1824 offset = 0; 1825 } 1826 1827 zgd->zgd_rl = ztest_range_lock(zd, object, offset, size, 1828 RL_READER); 1829 1830 error = dmu_buf_hold(os, object, offset, zgd, &db, 1831 DMU_READ_NO_PREFETCH); 1832 1833 if (error == 0) { 1834 zgd->zgd_db = db; 1835 zgd->zgd_bp = bp; 1836 1837 ASSERT(db->db_offset == offset); 1838 ASSERT(db->db_size == size); 1839 1840 error = dmu_sync(zio, lr->lr_common.lrc_txg, 1841 ztest_get_done, zgd); 1842 1843 if (error == 0) 1844 return (0); 1845 } 1846 } 1847 1848 ztest_get_done(zgd, error); 1849 1850 return (error); 1851 } 1852 1853 static void * 1854 ztest_lr_alloc(size_t lrsize, char *name) 1855 { 1856 char *lr; 1857 size_t namesize = name ? strlen(name) + 1 : 0; 1858 1859 lr = umem_zalloc(lrsize + namesize, UMEM_NOFAIL); 1860 1861 if (name) 1862 bcopy(name, lr + lrsize, namesize); 1863 1864 return (lr); 1865 } 1866 1867 void 1868 ztest_lr_free(void *lr, size_t lrsize, char *name) 1869 { 1870 size_t namesize = name ? strlen(name) + 1 : 0; 1871 1872 umem_free(lr, lrsize + namesize); 1873 } 1874 1875 /* 1876 * Lookup a bunch of objects. Returns the number of objects not found. 1877 */ 1878 static int 1879 ztest_lookup(ztest_ds_t *zd, ztest_od_t *od, int count) 1880 { 1881 int missing = 0; 1882 int error; 1883 1884 ASSERT(_mutex_held(&zd->zd_dirobj_lock)); 1885 1886 for (int i = 0; i < count; i++, od++) { 1887 od->od_object = 0; 1888 error = zap_lookup(zd->zd_os, od->od_dir, od->od_name, 1889 sizeof (uint64_t), 1, &od->od_object); 1890 if (error) { 1891 ASSERT(error == ENOENT); 1892 ASSERT(od->od_object == 0); 1893 missing++; 1894 } else { 1895 dmu_buf_t *db; 1896 ztest_block_tag_t *bbt; 1897 dmu_object_info_t doi; 1898 1899 ASSERT(od->od_object != 0); 1900 ASSERT(missing == 0); /* there should be no gaps */ 1901 1902 ztest_object_lock(zd, od->od_object, RL_READER); 1903 VERIFY3U(0, ==, dmu_bonus_hold(zd->zd_os, 1904 od->od_object, FTAG, &db)); 1905 dmu_object_info_from_db(db, &doi); 1906 bbt = ztest_bt_bonus(db); 1907 ASSERT3U(bbt->bt_magic, ==, BT_MAGIC); 1908 od->od_type = doi.doi_type; 1909 od->od_blocksize = doi.doi_data_block_size; 1910 od->od_gen = bbt->bt_gen; 1911 dmu_buf_rele(db, FTAG); 1912 ztest_object_unlock(zd, od->od_object); 1913 } 1914 } 1915 1916 return (missing); 1917 } 1918 1919 static int 1920 ztest_create(ztest_ds_t *zd, ztest_od_t *od, int count) 1921 { 1922 int missing = 0; 1923 1924 ASSERT(_mutex_held(&zd->zd_dirobj_lock)); 1925 1926 for (int i = 0; i < count; i++, od++) { 1927 if (missing) { 1928 od->od_object = 0; 1929 missing++; 1930 continue; 1931 } 1932 1933 lr_create_t *lr = ztest_lr_alloc(sizeof (*lr), od->od_name); 1934 1935 lr->lr_doid = od->od_dir; 1936 lr->lr_foid = 0; /* 0 to allocate, > 0 to claim */ 1937 lr->lrz_type = od->od_crtype; 1938 lr->lrz_blocksize = od->od_crblocksize; 1939 lr->lrz_ibshift = ztest_random_ibshift(); 1940 lr->lrz_bonustype = DMU_OT_UINT64_OTHER; 1941 lr->lrz_bonuslen = dmu_bonus_max(); 1942 lr->lr_gen = od->od_crgen; 1943 lr->lr_crtime[0] = time(NULL); 1944 1945 if (ztest_replay_create(zd, lr, B_FALSE) != 0) { 1946 ASSERT(missing == 0); 1947 od->od_object = 0; 1948 missing++; 1949 } else { 1950 od->od_object = lr->lr_foid; 1951 od->od_type = od->od_crtype; 1952 od->od_blocksize = od->od_crblocksize; 1953 od->od_gen = od->od_crgen; 1954 ASSERT(od->od_object != 0); 1955 } 1956 1957 ztest_lr_free(lr, sizeof (*lr), od->od_name); 1958 } 1959 1960 return (missing); 1961 } 1962 1963 static int 1964 ztest_remove(ztest_ds_t *zd, ztest_od_t *od, int count) 1965 { 1966 int missing = 0; 1967 int error; 1968 1969 ASSERT(_mutex_held(&zd->zd_dirobj_lock)); 1970 1971 od += count - 1; 1972 1973 for (int i = count - 1; i >= 0; i--, od--) { 1974 if (missing) { 1975 missing++; 1976 continue; 1977 } 1978 1979 if (od->od_object == 0) 1980 continue; 1981 1982 lr_remove_t *lr = ztest_lr_alloc(sizeof (*lr), od->od_name); 1983 1984 lr->lr_doid = od->od_dir; 1985 1986 if ((error = ztest_replay_remove(zd, lr, B_FALSE)) != 0) { 1987 ASSERT3U(error, ==, ENOSPC); 1988 missing++; 1989 } else { 1990 od->od_object = 0; 1991 } 1992 ztest_lr_free(lr, sizeof (*lr), od->od_name); 1993 } 1994 1995 return (missing); 1996 } 1997 1998 static int 1999 ztest_write(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size, 2000 void *data) 2001 { 2002 lr_write_t *lr; 2003 int error; 2004 2005 lr = ztest_lr_alloc(sizeof (*lr) + size, NULL); 2006 2007 lr->lr_foid = object; 2008 lr->lr_offset = offset; 2009 lr->lr_length = size; 2010 lr->lr_blkoff = 0; 2011 BP_ZERO(&lr->lr_blkptr); 2012 2013 bcopy(data, lr + 1, size); 2014 2015 error = ztest_replay_write(zd, lr, B_FALSE); 2016 2017 ztest_lr_free(lr, sizeof (*lr) + size, NULL); 2018 2019 return (error); 2020 } 2021 2022 static int 2023 ztest_truncate(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size) 2024 { 2025 lr_truncate_t *lr; 2026 int error; 2027 2028 lr = ztest_lr_alloc(sizeof (*lr), NULL); 2029 2030 lr->lr_foid = object; 2031 lr->lr_offset = offset; 2032 lr->lr_length = size; 2033 2034 error = ztest_replay_truncate(zd, lr, B_FALSE); 2035 2036 ztest_lr_free(lr, sizeof (*lr), NULL); 2037 2038 return (error); 2039 } 2040 2041 static int 2042 ztest_setattr(ztest_ds_t *zd, uint64_t object) 2043 { 2044 lr_setattr_t *lr; 2045 int error; 2046 2047 lr = ztest_lr_alloc(sizeof (*lr), NULL); 2048 2049 lr->lr_foid = object; 2050 lr->lr_size = 0; 2051 lr->lr_mode = 0; 2052 2053 error = ztest_replay_setattr(zd, lr, B_FALSE); 2054 2055 ztest_lr_free(lr, sizeof (*lr), NULL); 2056 2057 return (error); 2058 } 2059 2060 static void 2061 ztest_prealloc(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size) 2062 { 2063 objset_t *os = zd->zd_os; 2064 dmu_tx_t *tx; 2065 uint64_t txg; 2066 rl_t *rl; 2067 2068 txg_wait_synced(dmu_objset_pool(os), 0); 2069 2070 ztest_object_lock(zd, object, RL_READER); 2071 rl = ztest_range_lock(zd, object, offset, size, RL_WRITER); 2072 2073 tx = dmu_tx_create(os); 2074 2075 dmu_tx_hold_write(tx, object, offset, size); 2076 2077 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); 2078 2079 if (txg != 0) { 2080 dmu_prealloc(os, object, offset, size, tx); 2081 dmu_tx_commit(tx); 2082 txg_wait_synced(dmu_objset_pool(os), txg); 2083 } else { 2084 (void) dmu_free_long_range(os, object, offset, size); 2085 } 2086 2087 ztest_range_unlock(rl); 2088 ztest_object_unlock(zd, object); 2089 } 2090 2091 static void 2092 ztest_io(ztest_ds_t *zd, uint64_t object, uint64_t offset) 2093 { 2094 ztest_block_tag_t wbt; 2095 dmu_object_info_t doi; 2096 enum ztest_io_type io_type; 2097 uint64_t blocksize; 2098 void *data; 2099 2100 VERIFY(dmu_object_info(zd->zd_os, object, &doi) == 0); 2101 blocksize = doi.doi_data_block_size; 2102 data = umem_alloc(blocksize, UMEM_NOFAIL); 2103 2104 /* 2105 * Pick an i/o type at random, biased toward writing block tags. 2106 */ 2107 io_type = ztest_random(ZTEST_IO_TYPES); 2108 if (ztest_random(2) == 0) 2109 io_type = ZTEST_IO_WRITE_TAG; 2110 2111 (void) rw_rdlock(&zd->zd_zilog_lock); 2112 2113 switch (io_type) { 2114 2115 case ZTEST_IO_WRITE_TAG: 2116 ztest_bt_generate(&wbt, zd->zd_os, object, offset, 0, 0, 0); 2117 (void) ztest_write(zd, object, offset, sizeof (wbt), &wbt); 2118 break; 2119 2120 case ZTEST_IO_WRITE_PATTERN: 2121 (void) memset(data, 'a' + (object + offset) % 5, blocksize); 2122 if (ztest_random(2) == 0) { 2123 /* 2124 * Induce fletcher2 collisions to ensure that 2125 * zio_ddt_collision() detects and resolves them 2126 * when using fletcher2-verify for deduplication. 2127 */ 2128 ((uint64_t *)data)[0] ^= 1ULL << 63; 2129 ((uint64_t *)data)[4] ^= 1ULL << 63; 2130 } 2131 (void) ztest_write(zd, object, offset, blocksize, data); 2132 break; 2133 2134 case ZTEST_IO_WRITE_ZEROES: 2135 bzero(data, blocksize); 2136 (void) ztest_write(zd, object, offset, blocksize, data); 2137 break; 2138 2139 case ZTEST_IO_TRUNCATE: 2140 (void) ztest_truncate(zd, object, offset, blocksize); 2141 break; 2142 2143 case ZTEST_IO_SETATTR: 2144 (void) ztest_setattr(zd, object); 2145 break; 2146 } 2147 2148 (void) rw_unlock(&zd->zd_zilog_lock); 2149 2150 umem_free(data, blocksize); 2151 } 2152 2153 /* 2154 * Initialize an object description template. 2155 */ 2156 static void 2157 ztest_od_init(ztest_od_t *od, uint64_t id, char *tag, uint64_t index, 2158 dmu_object_type_t type, uint64_t blocksize, uint64_t gen) 2159 { 2160 od->od_dir = ZTEST_DIROBJ; 2161 od->od_object = 0; 2162 2163 od->od_crtype = type; 2164 od->od_crblocksize = blocksize ? blocksize : ztest_random_blocksize(); 2165 od->od_crgen = gen; 2166 2167 od->od_type = DMU_OT_NONE; 2168 od->od_blocksize = 0; 2169 od->od_gen = 0; 2170 2171 (void) snprintf(od->od_name, sizeof (od->od_name), "%s(%lld)[%llu]", 2172 tag, (int64_t)id, index); 2173 } 2174 2175 /* 2176 * Lookup or create the objects for a test using the od template. 2177 * If the objects do not all exist, or if 'remove' is specified, 2178 * remove any existing objects and create new ones. Otherwise, 2179 * use the existing objects. 2180 */ 2181 static int 2182 ztest_object_init(ztest_ds_t *zd, ztest_od_t *od, size_t size, boolean_t remove) 2183 { 2184 int count = size / sizeof (*od); 2185 int rv = 0; 2186 2187 VERIFY(mutex_lock(&zd->zd_dirobj_lock) == 0); 2188 if ((ztest_lookup(zd, od, count) != 0 || remove) && 2189 (ztest_remove(zd, od, count) != 0 || 2190 ztest_create(zd, od, count) != 0)) 2191 rv = -1; 2192 zd->zd_od = od; 2193 VERIFY(mutex_unlock(&zd->zd_dirobj_lock) == 0); 2194 2195 return (rv); 2196 } 2197 2198 /* ARGSUSED */ 2199 void 2200 ztest_zil_commit(ztest_ds_t *zd, uint64_t id) 2201 { 2202 zilog_t *zilog = zd->zd_zilog; 2203 2204 (void) rw_rdlock(&zd->zd_zilog_lock); 2205 2206 zil_commit(zilog, ztest_random(ZTEST_OBJECTS)); 2207 2208 /* 2209 * Remember the committed values in zd, which is in parent/child 2210 * shared memory. If we die, the next iteration of ztest_run() 2211 * will verify that the log really does contain this record. 2212 */ 2213 mutex_enter(&zilog->zl_lock); 2214 ASSERT(zd->zd_shared != NULL); 2215 ASSERT3U(zd->zd_shared->zd_seq, <=, zilog->zl_commit_lr_seq); 2216 zd->zd_shared->zd_seq = zilog->zl_commit_lr_seq; 2217 mutex_exit(&zilog->zl_lock); 2218 2219 (void) rw_unlock(&zd->zd_zilog_lock); 2220 } 2221 2222 /* 2223 * This function is designed to simulate the operations that occur during a 2224 * mount/unmount operation. We hold the dataset across these operations in an 2225 * attempt to expose any implicit assumptions about ZIL management. 2226 */ 2227 /* ARGSUSED */ 2228 void 2229 ztest_zil_remount(ztest_ds_t *zd, uint64_t id) 2230 { 2231 objset_t *os = zd->zd_os; 2232 2233 VERIFY(mutex_lock(&zd->zd_dirobj_lock) == 0); 2234 (void) rw_wrlock(&zd->zd_zilog_lock); 2235 2236 /* zfsvfs_teardown() */ 2237 zil_close(zd->zd_zilog); 2238 2239 /* zfsvfs_setup() */ 2240 VERIFY(zil_open(os, ztest_get_data) == zd->zd_zilog); 2241 zil_replay(os, zd, ztest_replay_vector); 2242 2243 (void) rw_unlock(&zd->zd_zilog_lock); 2244 VERIFY(mutex_unlock(&zd->zd_dirobj_lock) == 0); 2245 } 2246 2247 /* 2248 * Verify that we can't destroy an active pool, create an existing pool, 2249 * or create a pool with a bad vdev spec. 2250 */ 2251 /* ARGSUSED */ 2252 void 2253 ztest_spa_create_destroy(ztest_ds_t *zd, uint64_t id) 2254 { 2255 ztest_shared_opts_t *zo = &ztest_opts; 2256 spa_t *spa; 2257 nvlist_t *nvroot; 2258 2259 /* 2260 * Attempt to create using a bad file. 2261 */ 2262 nvroot = make_vdev_root("/dev/bogus", NULL, 0, 0, 0, 0, 0, 1); 2263 VERIFY3U(ENOENT, ==, 2264 spa_create("ztest_bad_file", nvroot, NULL, NULL)); 2265 nvlist_free(nvroot); 2266 2267 /* 2268 * Attempt to create using a bad mirror. 2269 */ 2270 nvroot = make_vdev_root("/dev/bogus", NULL, 0, 0, 0, 0, 2, 1); 2271 VERIFY3U(ENOENT, ==, 2272 spa_create("ztest_bad_mirror", nvroot, NULL, NULL)); 2273 nvlist_free(nvroot); 2274 2275 /* 2276 * Attempt to create an existing pool. It shouldn't matter 2277 * what's in the nvroot; we should fail with EEXIST. 2278 */ 2279 (void) rw_rdlock(&ztest_name_lock); 2280 nvroot = make_vdev_root("/dev/bogus", NULL, 0, 0, 0, 0, 0, 1); 2281 VERIFY3U(EEXIST, ==, spa_create(zo->zo_pool, nvroot, NULL, NULL)); 2282 nvlist_free(nvroot); 2283 VERIFY3U(0, ==, spa_open(zo->zo_pool, &spa, FTAG)); 2284 VERIFY3U(EBUSY, ==, spa_destroy(zo->zo_pool)); 2285 spa_close(spa, FTAG); 2286 2287 (void) rw_unlock(&ztest_name_lock); 2288 } 2289 2290 static vdev_t * 2291 vdev_lookup_by_path(vdev_t *vd, const char *path) 2292 { 2293 vdev_t *mvd; 2294 2295 if (vd->vdev_path != NULL && strcmp(path, vd->vdev_path) == 0) 2296 return (vd); 2297 2298 for (int c = 0; c < vd->vdev_children; c++) 2299 if ((mvd = vdev_lookup_by_path(vd->vdev_child[c], path)) != 2300 NULL) 2301 return (mvd); 2302 2303 return (NULL); 2304 } 2305 2306 /* 2307 * Find the first available hole which can be used as a top-level. 2308 */ 2309 int 2310 find_vdev_hole(spa_t *spa) 2311 { 2312 vdev_t *rvd = spa->spa_root_vdev; 2313 int c; 2314 2315 ASSERT(spa_config_held(spa, SCL_VDEV, RW_READER) == SCL_VDEV); 2316 2317 for (c = 0; c < rvd->vdev_children; c++) { 2318 vdev_t *cvd = rvd->vdev_child[c]; 2319 2320 if (cvd->vdev_ishole) 2321 break; 2322 } 2323 return (c); 2324 } 2325 2326 /* 2327 * Verify that vdev_add() works as expected. 2328 */ 2329 /* ARGSUSED */ 2330 void 2331 ztest_vdev_add_remove(ztest_ds_t *zd, uint64_t id) 2332 { 2333 ztest_shared_t *zs = ztest_shared; 2334 spa_t *spa = ztest_spa; 2335 uint64_t leaves; 2336 uint64_t guid; 2337 nvlist_t *nvroot; 2338 int error; 2339 2340 VERIFY(mutex_lock(&ztest_vdev_lock) == 0); 2341 leaves = 2342 MAX(zs->zs_mirrors + zs->zs_splits, 1) * ztest_opts.zo_raidz; 2343 2344 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 2345 2346 ztest_shared->zs_vdev_next_leaf = find_vdev_hole(spa) * leaves; 2347 2348 /* 2349 * If we have slogs then remove them 1/4 of the time. 2350 */ 2351 if (spa_has_slogs(spa) && ztest_random(4) == 0) { 2352 /* 2353 * Grab the guid from the head of the log class rotor. 2354 */ 2355 guid = spa_log_class(spa)->mc_rotor->mg_vd->vdev_guid; 2356 2357 spa_config_exit(spa, SCL_VDEV, FTAG); 2358 2359 /* 2360 * We have to grab the zs_name_lock as writer to 2361 * prevent a race between removing a slog (dmu_objset_find) 2362 * and destroying a dataset. Removing the slog will 2363 * grab a reference on the dataset which may cause 2364 * dmu_objset_destroy() to fail with EBUSY thus 2365 * leaving the dataset in an inconsistent state. 2366 */ 2367 VERIFY(rw_wrlock(&ztest_name_lock) == 0); 2368 error = spa_vdev_remove(spa, guid, B_FALSE); 2369 VERIFY(rw_unlock(&ztest_name_lock) == 0); 2370 2371 if (error && error != EEXIST) 2372 fatal(0, "spa_vdev_remove() = %d", error); 2373 } else { 2374 spa_config_exit(spa, SCL_VDEV, FTAG); 2375 2376 /* 2377 * Make 1/4 of the devices be log devices. 2378 */ 2379 nvroot = make_vdev_root(NULL, NULL, 2380 ztest_opts.zo_vdev_size, 0, 2381 ztest_random(4) == 0, ztest_opts.zo_raidz, 2382 zs->zs_mirrors, 1); 2383 2384 error = spa_vdev_add(spa, nvroot); 2385 nvlist_free(nvroot); 2386 2387 if (error == ENOSPC) 2388 ztest_record_enospc("spa_vdev_add"); 2389 else if (error != 0) 2390 fatal(0, "spa_vdev_add() = %d", error); 2391 } 2392 2393 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 2394 } 2395 2396 /* 2397 * Verify that adding/removing aux devices (l2arc, hot spare) works as expected. 2398 */ 2399 /* ARGSUSED */ 2400 void 2401 ztest_vdev_aux_add_remove(ztest_ds_t *zd, uint64_t id) 2402 { 2403 ztest_shared_t *zs = ztest_shared; 2404 spa_t *spa = ztest_spa; 2405 vdev_t *rvd = spa->spa_root_vdev; 2406 spa_aux_vdev_t *sav; 2407 char *aux; 2408 uint64_t guid = 0; 2409 int error; 2410 2411 if (ztest_random(2) == 0) { 2412 sav = &spa->spa_spares; 2413 aux = ZPOOL_CONFIG_SPARES; 2414 } else { 2415 sav = &spa->spa_l2cache; 2416 aux = ZPOOL_CONFIG_L2CACHE; 2417 } 2418 2419 VERIFY(mutex_lock(&ztest_vdev_lock) == 0); 2420 2421 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 2422 2423 if (sav->sav_count != 0 && ztest_random(4) == 0) { 2424 /* 2425 * Pick a random device to remove. 2426 */ 2427 guid = sav->sav_vdevs[ztest_random(sav->sav_count)]->vdev_guid; 2428 } else { 2429 /* 2430 * Find an unused device we can add. 2431 */ 2432 zs->zs_vdev_aux = 0; 2433 for (;;) { 2434 char path[MAXPATHLEN]; 2435 int c; 2436 (void) snprintf(path, sizeof (path), ztest_aux_template, 2437 ztest_opts.zo_dir, ztest_opts.zo_pool, aux, 2438 zs->zs_vdev_aux); 2439 for (c = 0; c < sav->sav_count; c++) 2440 if (strcmp(sav->sav_vdevs[c]->vdev_path, 2441 path) == 0) 2442 break; 2443 if (c == sav->sav_count && 2444 vdev_lookup_by_path(rvd, path) == NULL) 2445 break; 2446 zs->zs_vdev_aux++; 2447 } 2448 } 2449 2450 spa_config_exit(spa, SCL_VDEV, FTAG); 2451 2452 if (guid == 0) { 2453 /* 2454 * Add a new device. 2455 */ 2456 nvlist_t *nvroot = make_vdev_root(NULL, aux, 2457 (ztest_opts.zo_vdev_size * 5) / 4, 0, 0, 0, 0, 1); 2458 error = spa_vdev_add(spa, nvroot); 2459 if (error != 0) 2460 fatal(0, "spa_vdev_add(%p) = %d", nvroot, error); 2461 nvlist_free(nvroot); 2462 } else { 2463 /* 2464 * Remove an existing device. Sometimes, dirty its 2465 * vdev state first to make sure we handle removal 2466 * of devices that have pending state changes. 2467 */ 2468 if (ztest_random(2) == 0) 2469 (void) vdev_online(spa, guid, 0, NULL); 2470 2471 error = spa_vdev_remove(spa, guid, B_FALSE); 2472 if (error != 0 && error != EBUSY) 2473 fatal(0, "spa_vdev_remove(%llu) = %d", guid, error); 2474 } 2475 2476 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 2477 } 2478 2479 /* 2480 * split a pool if it has mirror tlvdevs 2481 */ 2482 /* ARGSUSED */ 2483 void 2484 ztest_split_pool(ztest_ds_t *zd, uint64_t id) 2485 { 2486 ztest_shared_t *zs = ztest_shared; 2487 spa_t *spa = ztest_spa; 2488 vdev_t *rvd = spa->spa_root_vdev; 2489 nvlist_t *tree, **child, *config, *split, **schild; 2490 uint_t c, children, schildren = 0, lastlogid = 0; 2491 int error = 0; 2492 2493 VERIFY(mutex_lock(&ztest_vdev_lock) == 0); 2494 2495 /* ensure we have a useable config; mirrors of raidz aren't supported */ 2496 if (zs->zs_mirrors < 3 || ztest_opts.zo_raidz > 1) { 2497 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 2498 return; 2499 } 2500 2501 /* clean up the old pool, if any */ 2502 (void) spa_destroy("splitp"); 2503 2504 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 2505 2506 /* generate a config from the existing config */ 2507 mutex_enter(&spa->spa_props_lock); 2508 VERIFY(nvlist_lookup_nvlist(spa->spa_config, ZPOOL_CONFIG_VDEV_TREE, 2509 &tree) == 0); 2510 mutex_exit(&spa->spa_props_lock); 2511 2512 VERIFY(nvlist_lookup_nvlist_array(tree, ZPOOL_CONFIG_CHILDREN, &child, 2513 &children) == 0); 2514 2515 schild = malloc(rvd->vdev_children * sizeof (nvlist_t *)); 2516 for (c = 0; c < children; c++) { 2517 vdev_t *tvd = rvd->vdev_child[c]; 2518 nvlist_t **mchild; 2519 uint_t mchildren; 2520 2521 if (tvd->vdev_islog || tvd->vdev_ops == &vdev_hole_ops) { 2522 VERIFY(nvlist_alloc(&schild[schildren], NV_UNIQUE_NAME, 2523 0) == 0); 2524 VERIFY(nvlist_add_string(schild[schildren], 2525 ZPOOL_CONFIG_TYPE, VDEV_TYPE_HOLE) == 0); 2526 VERIFY(nvlist_add_uint64(schild[schildren], 2527 ZPOOL_CONFIG_IS_HOLE, 1) == 0); 2528 if (lastlogid == 0) 2529 lastlogid = schildren; 2530 ++schildren; 2531 continue; 2532 } 2533 lastlogid = 0; 2534 VERIFY(nvlist_lookup_nvlist_array(child[c], 2535 ZPOOL_CONFIG_CHILDREN, &mchild, &mchildren) == 0); 2536 VERIFY(nvlist_dup(mchild[0], &schild[schildren++], 0) == 0); 2537 } 2538 2539 /* OK, create a config that can be used to split */ 2540 VERIFY(nvlist_alloc(&split, NV_UNIQUE_NAME, 0) == 0); 2541 VERIFY(nvlist_add_string(split, ZPOOL_CONFIG_TYPE, 2542 VDEV_TYPE_ROOT) == 0); 2543 VERIFY(nvlist_add_nvlist_array(split, ZPOOL_CONFIG_CHILDREN, schild, 2544 lastlogid != 0 ? lastlogid : schildren) == 0); 2545 2546 VERIFY(nvlist_alloc(&config, NV_UNIQUE_NAME, 0) == 0); 2547 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, split) == 0); 2548 2549 for (c = 0; c < schildren; c++) 2550 nvlist_free(schild[c]); 2551 free(schild); 2552 nvlist_free(split); 2553 2554 spa_config_exit(spa, SCL_VDEV, FTAG); 2555 2556 (void) rw_wrlock(&ztest_name_lock); 2557 error = spa_vdev_split_mirror(spa, "splitp", config, NULL, B_FALSE); 2558 (void) rw_unlock(&ztest_name_lock); 2559 2560 nvlist_free(config); 2561 2562 if (error == 0) { 2563 (void) printf("successful split - results:\n"); 2564 mutex_enter(&spa_namespace_lock); 2565 show_pool_stats(spa); 2566 show_pool_stats(spa_lookup("splitp")); 2567 mutex_exit(&spa_namespace_lock); 2568 ++zs->zs_splits; 2569 --zs->zs_mirrors; 2570 } 2571 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 2572 2573 } 2574 2575 /* 2576 * Verify that we can attach and detach devices. 2577 */ 2578 /* ARGSUSED */ 2579 void 2580 ztest_vdev_attach_detach(ztest_ds_t *zd, uint64_t id) 2581 { 2582 ztest_shared_t *zs = ztest_shared; 2583 spa_t *spa = ztest_spa; 2584 spa_aux_vdev_t *sav = &spa->spa_spares; 2585 vdev_t *rvd = spa->spa_root_vdev; 2586 vdev_t *oldvd, *newvd, *pvd; 2587 nvlist_t *root; 2588 uint64_t leaves; 2589 uint64_t leaf, top; 2590 uint64_t ashift = ztest_get_ashift(); 2591 uint64_t oldguid, pguid; 2592 size_t oldsize, newsize; 2593 char oldpath[MAXPATHLEN], newpath[MAXPATHLEN]; 2594 int replacing; 2595 int oldvd_has_siblings = B_FALSE; 2596 int newvd_is_spare = B_FALSE; 2597 int oldvd_is_log; 2598 int error, expected_error; 2599 2600 VERIFY(mutex_lock(&ztest_vdev_lock) == 0); 2601 leaves = MAX(zs->zs_mirrors, 1) * ztest_opts.zo_raidz; 2602 2603 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 2604 2605 /* 2606 * Decide whether to do an attach or a replace. 2607 */ 2608 replacing = ztest_random(2); 2609 2610 /* 2611 * Pick a random top-level vdev. 2612 */ 2613 top = ztest_random_vdev_top(spa, B_TRUE); 2614 2615 /* 2616 * Pick a random leaf within it. 2617 */ 2618 leaf = ztest_random(leaves); 2619 2620 /* 2621 * Locate this vdev. 2622 */ 2623 oldvd = rvd->vdev_child[top]; 2624 if (zs->zs_mirrors >= 1) { 2625 ASSERT(oldvd->vdev_ops == &vdev_mirror_ops); 2626 ASSERT(oldvd->vdev_children >= zs->zs_mirrors); 2627 oldvd = oldvd->vdev_child[leaf / ztest_opts.zo_raidz]; 2628 } 2629 if (ztest_opts.zo_raidz > 1) { 2630 ASSERT(oldvd->vdev_ops == &vdev_raidz_ops); 2631 ASSERT(oldvd->vdev_children == ztest_opts.zo_raidz); 2632 oldvd = oldvd->vdev_child[leaf % ztest_opts.zo_raidz]; 2633 } 2634 2635 /* 2636 * If we're already doing an attach or replace, oldvd may be a 2637 * mirror vdev -- in which case, pick a random child. 2638 */ 2639 while (oldvd->vdev_children != 0) { 2640 oldvd_has_siblings = B_TRUE; 2641 ASSERT(oldvd->vdev_children >= 2); 2642 oldvd = oldvd->vdev_child[ztest_random(oldvd->vdev_children)]; 2643 } 2644 2645 oldguid = oldvd->vdev_guid; 2646 oldsize = vdev_get_min_asize(oldvd); 2647 oldvd_is_log = oldvd->vdev_top->vdev_islog; 2648 (void) strcpy(oldpath, oldvd->vdev_path); 2649 pvd = oldvd->vdev_parent; 2650 pguid = pvd->vdev_guid; 2651 2652 /* 2653 * If oldvd has siblings, then half of the time, detach it. 2654 */ 2655 if (oldvd_has_siblings && ztest_random(2) == 0) { 2656 spa_config_exit(spa, SCL_VDEV, FTAG); 2657 error = spa_vdev_detach(spa, oldguid, pguid, B_FALSE); 2658 if (error != 0 && error != ENODEV && error != EBUSY && 2659 error != ENOTSUP) 2660 fatal(0, "detach (%s) returned %d", oldpath, error); 2661 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 2662 return; 2663 } 2664 2665 /* 2666 * For the new vdev, choose with equal probability between the two 2667 * standard paths (ending in either 'a' or 'b') or a random hot spare. 2668 */ 2669 if (sav->sav_count != 0 && ztest_random(3) == 0) { 2670 newvd = sav->sav_vdevs[ztest_random(sav->sav_count)]; 2671 newvd_is_spare = B_TRUE; 2672 (void) strcpy(newpath, newvd->vdev_path); 2673 } else { 2674 (void) snprintf(newpath, sizeof (newpath), ztest_dev_template, 2675 ztest_opts.zo_dir, ztest_opts.zo_pool, 2676 top * leaves + leaf); 2677 if (ztest_random(2) == 0) 2678 newpath[strlen(newpath) - 1] = 'b'; 2679 newvd = vdev_lookup_by_path(rvd, newpath); 2680 } 2681 2682 if (newvd) { 2683 newsize = vdev_get_min_asize(newvd); 2684 } else { 2685 /* 2686 * Make newsize a little bigger or smaller than oldsize. 2687 * If it's smaller, the attach should fail. 2688 * If it's larger, and we're doing a replace, 2689 * we should get dynamic LUN growth when we're done. 2690 */ 2691 newsize = 10 * oldsize / (9 + ztest_random(3)); 2692 } 2693 2694 /* 2695 * If pvd is not a mirror or root, the attach should fail with ENOTSUP, 2696 * unless it's a replace; in that case any non-replacing parent is OK. 2697 * 2698 * If newvd is already part of the pool, it should fail with EBUSY. 2699 * 2700 * If newvd is too small, it should fail with EOVERFLOW. 2701 */ 2702 if (pvd->vdev_ops != &vdev_mirror_ops && 2703 pvd->vdev_ops != &vdev_root_ops && (!replacing || 2704 pvd->vdev_ops == &vdev_replacing_ops || 2705 pvd->vdev_ops == &vdev_spare_ops)) 2706 expected_error = ENOTSUP; 2707 else if (newvd_is_spare && (!replacing || oldvd_is_log)) 2708 expected_error = ENOTSUP; 2709 else if (newvd == oldvd) 2710 expected_error = replacing ? 0 : EBUSY; 2711 else if (vdev_lookup_by_path(rvd, newpath) != NULL) 2712 expected_error = EBUSY; 2713 else if (newsize < oldsize) 2714 expected_error = EOVERFLOW; 2715 else if (ashift > oldvd->vdev_top->vdev_ashift) 2716 expected_error = EDOM; 2717 else 2718 expected_error = 0; 2719 2720 spa_config_exit(spa, SCL_VDEV, FTAG); 2721 2722 /* 2723 * Build the nvlist describing newpath. 2724 */ 2725 root = make_vdev_root(newpath, NULL, newvd == NULL ? newsize : 0, 2726 ashift, 0, 0, 0, 1); 2727 2728 error = spa_vdev_attach(spa, oldguid, root, replacing); 2729 2730 nvlist_free(root); 2731 2732 /* 2733 * If our parent was the replacing vdev, but the replace completed, 2734 * then instead of failing with ENOTSUP we may either succeed, 2735 * fail with ENODEV, or fail with EOVERFLOW. 2736 */ 2737 if (expected_error == ENOTSUP && 2738 (error == 0 || error == ENODEV || error == EOVERFLOW)) 2739 expected_error = error; 2740 2741 /* 2742 * If someone grew the LUN, the replacement may be too small. 2743 */ 2744 if (error == EOVERFLOW || error == EBUSY) 2745 expected_error = error; 2746 2747 /* XXX workaround 6690467 */ 2748 if (error != expected_error && expected_error != EBUSY) { 2749 fatal(0, "attach (%s %llu, %s %llu, %d) " 2750 "returned %d, expected %d", 2751 oldpath, (longlong_t)oldsize, newpath, 2752 (longlong_t)newsize, replacing, error, expected_error); 2753 } 2754 2755 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 2756 } 2757 2758 /* 2759 * Callback function which expands the physical size of the vdev. 2760 */ 2761 vdev_t * 2762 grow_vdev(vdev_t *vd, void *arg) 2763 { 2764 spa_t *spa = vd->vdev_spa; 2765 size_t *newsize = arg; 2766 size_t fsize; 2767 int fd; 2768 2769 ASSERT(spa_config_held(spa, SCL_STATE, RW_READER) == SCL_STATE); 2770 ASSERT(vd->vdev_ops->vdev_op_leaf); 2771 2772 if ((fd = open(vd->vdev_path, O_RDWR)) == -1) 2773 return (vd); 2774 2775 fsize = lseek(fd, 0, SEEK_END); 2776 (void) ftruncate(fd, *newsize); 2777 2778 if (ztest_opts.zo_verbose >= 6) { 2779 (void) printf("%s grew from %lu to %lu bytes\n", 2780 vd->vdev_path, (ulong_t)fsize, (ulong_t)*newsize); 2781 } 2782 (void) close(fd); 2783 return (NULL); 2784 } 2785 2786 /* 2787 * Callback function which expands a given vdev by calling vdev_online(). 2788 */ 2789 /* ARGSUSED */ 2790 vdev_t * 2791 online_vdev(vdev_t *vd, void *arg) 2792 { 2793 spa_t *spa = vd->vdev_spa; 2794 vdev_t *tvd = vd->vdev_top; 2795 uint64_t guid = vd->vdev_guid; 2796 uint64_t generation = spa->spa_config_generation + 1; 2797 vdev_state_t newstate = VDEV_STATE_UNKNOWN; 2798 int error; 2799 2800 ASSERT(spa_config_held(spa, SCL_STATE, RW_READER) == SCL_STATE); 2801 ASSERT(vd->vdev_ops->vdev_op_leaf); 2802 2803 /* Calling vdev_online will initialize the new metaslabs */ 2804 spa_config_exit(spa, SCL_STATE, spa); 2805 error = vdev_online(spa, guid, ZFS_ONLINE_EXPAND, &newstate); 2806 spa_config_enter(spa, SCL_STATE, spa, RW_READER); 2807 2808 /* 2809 * If vdev_online returned an error or the underlying vdev_open 2810 * failed then we abort the expand. The only way to know that 2811 * vdev_open fails is by checking the returned newstate. 2812 */ 2813 if (error || newstate != VDEV_STATE_HEALTHY) { 2814 if (ztest_opts.zo_verbose >= 5) { 2815 (void) printf("Unable to expand vdev, state %llu, " 2816 "error %d\n", (u_longlong_t)newstate, error); 2817 } 2818 return (vd); 2819 } 2820 ASSERT3U(newstate, ==, VDEV_STATE_HEALTHY); 2821 2822 /* 2823 * Since we dropped the lock we need to ensure that we're 2824 * still talking to the original vdev. It's possible this 2825 * vdev may have been detached/replaced while we were 2826 * trying to online it. 2827 */ 2828 if (generation != spa->spa_config_generation) { 2829 if (ztest_opts.zo_verbose >= 5) { 2830 (void) printf("vdev configuration has changed, " 2831 "guid %llu, state %llu, expected gen %llu, " 2832 "got gen %llu\n", 2833 (u_longlong_t)guid, 2834 (u_longlong_t)tvd->vdev_state, 2835 (u_longlong_t)generation, 2836 (u_longlong_t)spa->spa_config_generation); 2837 } 2838 return (vd); 2839 } 2840 return (NULL); 2841 } 2842 2843 /* 2844 * Traverse the vdev tree calling the supplied function. 2845 * We continue to walk the tree until we either have walked all 2846 * children or we receive a non-NULL return from the callback. 2847 * If a NULL callback is passed, then we just return back the first 2848 * leaf vdev we encounter. 2849 */ 2850 vdev_t * 2851 vdev_walk_tree(vdev_t *vd, vdev_t *(*func)(vdev_t *, void *), void *arg) 2852 { 2853 if (vd->vdev_ops->vdev_op_leaf) { 2854 if (func == NULL) 2855 return (vd); 2856 else 2857 return (func(vd, arg)); 2858 } 2859 2860 for (uint_t c = 0; c < vd->vdev_children; c++) { 2861 vdev_t *cvd = vd->vdev_child[c]; 2862 if ((cvd = vdev_walk_tree(cvd, func, arg)) != NULL) 2863 return (cvd); 2864 } 2865 return (NULL); 2866 } 2867 2868 /* 2869 * Verify that dynamic LUN growth works as expected. 2870 */ 2871 /* ARGSUSED */ 2872 void 2873 ztest_vdev_LUN_growth(ztest_ds_t *zd, uint64_t id) 2874 { 2875 spa_t *spa = ztest_spa; 2876 vdev_t *vd, *tvd; 2877 metaslab_class_t *mc; 2878 metaslab_group_t *mg; 2879 size_t psize, newsize; 2880 uint64_t top; 2881 uint64_t old_class_space, new_class_space, old_ms_count, new_ms_count; 2882 2883 VERIFY(mutex_lock(&ztest_vdev_lock) == 0); 2884 spa_config_enter(spa, SCL_STATE, spa, RW_READER); 2885 2886 top = ztest_random_vdev_top(spa, B_TRUE); 2887 2888 tvd = spa->spa_root_vdev->vdev_child[top]; 2889 mg = tvd->vdev_mg; 2890 mc = mg->mg_class; 2891 old_ms_count = tvd->vdev_ms_count; 2892 old_class_space = metaslab_class_get_space(mc); 2893 2894 /* 2895 * Determine the size of the first leaf vdev associated with 2896 * our top-level device. 2897 */ 2898 vd = vdev_walk_tree(tvd, NULL, NULL); 2899 ASSERT3P(vd, !=, NULL); 2900 ASSERT(vd->vdev_ops->vdev_op_leaf); 2901 2902 psize = vd->vdev_psize; 2903 2904 /* 2905 * We only try to expand the vdev if it's healthy, less than 4x its 2906 * original size, and it has a valid psize. 2907 */ 2908 if (tvd->vdev_state != VDEV_STATE_HEALTHY || 2909 psize == 0 || psize >= 4 * ztest_opts.zo_vdev_size) { 2910 spa_config_exit(spa, SCL_STATE, spa); 2911 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 2912 return; 2913 } 2914 ASSERT(psize > 0); 2915 newsize = psize + psize / 8; 2916 ASSERT3U(newsize, >, psize); 2917 2918 if (ztest_opts.zo_verbose >= 6) { 2919 (void) printf("Expanding LUN %s from %lu to %lu\n", 2920 vd->vdev_path, (ulong_t)psize, (ulong_t)newsize); 2921 } 2922 2923 /* 2924 * Growing the vdev is a two step process: 2925 * 1). expand the physical size (i.e. relabel) 2926 * 2). online the vdev to create the new metaslabs 2927 */ 2928 if (vdev_walk_tree(tvd, grow_vdev, &newsize) != NULL || 2929 vdev_walk_tree(tvd, online_vdev, NULL) != NULL || 2930 tvd->vdev_state != VDEV_STATE_HEALTHY) { 2931 if (ztest_opts.zo_verbose >= 5) { 2932 (void) printf("Could not expand LUN because " 2933 "the vdev configuration changed.\n"); 2934 } 2935 spa_config_exit(spa, SCL_STATE, spa); 2936 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 2937 return; 2938 } 2939 2940 spa_config_exit(spa, SCL_STATE, spa); 2941 2942 /* 2943 * Expanding the LUN will update the config asynchronously, 2944 * thus we must wait for the async thread to complete any 2945 * pending tasks before proceeding. 2946 */ 2947 for (;;) { 2948 boolean_t done; 2949 mutex_enter(&spa->spa_async_lock); 2950 done = (spa->spa_async_thread == NULL && !spa->spa_async_tasks); 2951 mutex_exit(&spa->spa_async_lock); 2952 if (done) 2953 break; 2954 txg_wait_synced(spa_get_dsl(spa), 0); 2955 (void) poll(NULL, 0, 100); 2956 } 2957 2958 spa_config_enter(spa, SCL_STATE, spa, RW_READER); 2959 2960 tvd = spa->spa_root_vdev->vdev_child[top]; 2961 new_ms_count = tvd->vdev_ms_count; 2962 new_class_space = metaslab_class_get_space(mc); 2963 2964 if (tvd->vdev_mg != mg || mg->mg_class != mc) { 2965 if (ztest_opts.zo_verbose >= 5) { 2966 (void) printf("Could not verify LUN expansion due to " 2967 "intervening vdev offline or remove.\n"); 2968 } 2969 spa_config_exit(spa, SCL_STATE, spa); 2970 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 2971 return; 2972 } 2973 2974 /* 2975 * Make sure we were able to grow the vdev. 2976 */ 2977 if (new_ms_count <= old_ms_count) 2978 fatal(0, "LUN expansion failed: ms_count %llu <= %llu\n", 2979 old_ms_count, new_ms_count); 2980 2981 /* 2982 * Make sure we were able to grow the pool. 2983 */ 2984 if (new_class_space <= old_class_space) 2985 fatal(0, "LUN expansion failed: class_space %llu <= %llu\n", 2986 old_class_space, new_class_space); 2987 2988 if (ztest_opts.zo_verbose >= 5) { 2989 char oldnumbuf[6], newnumbuf[6]; 2990 2991 nicenum(old_class_space, oldnumbuf); 2992 nicenum(new_class_space, newnumbuf); 2993 (void) printf("%s grew from %s to %s\n", 2994 spa->spa_name, oldnumbuf, newnumbuf); 2995 } 2996 2997 spa_config_exit(spa, SCL_STATE, spa); 2998 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 2999 } 3000 3001 /* 3002 * Verify that dmu_objset_{create,destroy,open,close} work as expected. 3003 */ 3004 /* ARGSUSED */ 3005 static void 3006 ztest_objset_create_cb(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx) 3007 { 3008 /* 3009 * Create the objects common to all ztest datasets. 3010 */ 3011 VERIFY(zap_create_claim(os, ZTEST_DIROBJ, 3012 DMU_OT_ZAP_OTHER, DMU_OT_NONE, 0, tx) == 0); 3013 } 3014 3015 static int 3016 ztest_dataset_create(char *dsname) 3017 { 3018 uint64_t zilset = ztest_random(100); 3019 int err = dmu_objset_create(dsname, DMU_OST_OTHER, 0, 3020 ztest_objset_create_cb, NULL); 3021 3022 if (err || zilset < 80) 3023 return (err); 3024 3025 if (ztest_opts.zo_verbose >= 6) 3026 (void) printf("Setting dataset %s to sync always\n", dsname); 3027 return (ztest_dsl_prop_set_uint64(dsname, ZFS_PROP_SYNC, 3028 ZFS_SYNC_ALWAYS, B_FALSE)); 3029 } 3030 3031 /* ARGSUSED */ 3032 static int 3033 ztest_objset_destroy_cb(const char *name, void *arg) 3034 { 3035 objset_t *os; 3036 dmu_object_info_t doi; 3037 int error; 3038 3039 /* 3040 * Verify that the dataset contains a directory object. 3041 */ 3042 VERIFY3U(0, ==, dmu_objset_hold(name, FTAG, &os)); 3043 error = dmu_object_info(os, ZTEST_DIROBJ, &doi); 3044 if (error != ENOENT) { 3045 /* We could have crashed in the middle of destroying it */ 3046 ASSERT0(error); 3047 ASSERT3U(doi.doi_type, ==, DMU_OT_ZAP_OTHER); 3048 ASSERT3S(doi.doi_physical_blocks_512, >=, 0); 3049 } 3050 dmu_objset_rele(os, FTAG); 3051 3052 /* 3053 * Destroy the dataset. 3054 */ 3055 VERIFY3U(0, ==, dmu_objset_destroy(name, B_FALSE)); 3056 return (0); 3057 } 3058 3059 static boolean_t 3060 ztest_snapshot_create(char *osname, uint64_t id) 3061 { 3062 char snapname[MAXNAMELEN]; 3063 int error; 3064 3065 (void) snprintf(snapname, MAXNAMELEN, "%s@%llu", osname, 3066 (u_longlong_t)id); 3067 3068 error = dmu_objset_snapshot_one(osname, strchr(snapname, '@') + 1); 3069 if (error == ENOSPC) { 3070 ztest_record_enospc(FTAG); 3071 return (B_FALSE); 3072 } 3073 if (error != 0 && error != EEXIST) 3074 fatal(0, "ztest_snapshot_create(%s) = %d", snapname, error); 3075 return (B_TRUE); 3076 } 3077 3078 static boolean_t 3079 ztest_snapshot_destroy(char *osname, uint64_t id) 3080 { 3081 char snapname[MAXNAMELEN]; 3082 int error; 3083 3084 (void) snprintf(snapname, MAXNAMELEN, "%s@%llu", osname, 3085 (u_longlong_t)id); 3086 3087 error = dmu_objset_destroy(snapname, B_FALSE); 3088 if (error != 0 && error != ENOENT) 3089 fatal(0, "ztest_snapshot_destroy(%s) = %d", snapname, error); 3090 return (B_TRUE); 3091 } 3092 3093 /* ARGSUSED */ 3094 void 3095 ztest_dmu_objset_create_destroy(ztest_ds_t *zd, uint64_t id) 3096 { 3097 ztest_ds_t zdtmp; 3098 int iters; 3099 int error; 3100 objset_t *os, *os2; 3101 char name[MAXNAMELEN]; 3102 zilog_t *zilog; 3103 3104 (void) rw_rdlock(&ztest_name_lock); 3105 3106 (void) snprintf(name, MAXNAMELEN, "%s/temp_%llu", 3107 ztest_opts.zo_pool, (u_longlong_t)id); 3108 3109 /* 3110 * If this dataset exists from a previous run, process its replay log 3111 * half of the time. If we don't replay it, then dmu_objset_destroy() 3112 * (invoked from ztest_objset_destroy_cb()) should just throw it away. 3113 */ 3114 if (ztest_random(2) == 0 && 3115 dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, FTAG, &os) == 0) { 3116 ztest_zd_init(&zdtmp, NULL, os); 3117 zil_replay(os, &zdtmp, ztest_replay_vector); 3118 ztest_zd_fini(&zdtmp); 3119 dmu_objset_disown(os, FTAG); 3120 } 3121 3122 /* 3123 * There may be an old instance of the dataset we're about to 3124 * create lying around from a previous run. If so, destroy it 3125 * and all of its snapshots. 3126 */ 3127 (void) dmu_objset_find(name, ztest_objset_destroy_cb, NULL, 3128 DS_FIND_CHILDREN | DS_FIND_SNAPSHOTS); 3129 3130 /* 3131 * Verify that the destroyed dataset is no longer in the namespace. 3132 */ 3133 VERIFY3U(ENOENT, ==, dmu_objset_hold(name, FTAG, &os)); 3134 3135 /* 3136 * Verify that we can create a new dataset. 3137 */ 3138 error = ztest_dataset_create(name); 3139 if (error) { 3140 if (error == ENOSPC) { 3141 ztest_record_enospc(FTAG); 3142 (void) rw_unlock(&ztest_name_lock); 3143 return; 3144 } 3145 fatal(0, "dmu_objset_create(%s) = %d", name, error); 3146 } 3147 3148 VERIFY3U(0, ==, 3149 dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, FTAG, &os)); 3150 3151 ztest_zd_init(&zdtmp, NULL, os); 3152 3153 /* 3154 * Open the intent log for it. 3155 */ 3156 zilog = zil_open(os, ztest_get_data); 3157 3158 /* 3159 * Put some objects in there, do a little I/O to them, 3160 * and randomly take a couple of snapshots along the way. 3161 */ 3162 iters = ztest_random(5); 3163 for (int i = 0; i < iters; i++) { 3164 ztest_dmu_object_alloc_free(&zdtmp, id); 3165 if (ztest_random(iters) == 0) 3166 (void) ztest_snapshot_create(name, i); 3167 } 3168 3169 /* 3170 * Verify that we cannot create an existing dataset. 3171 */ 3172 VERIFY3U(EEXIST, ==, 3173 dmu_objset_create(name, DMU_OST_OTHER, 0, NULL, NULL)); 3174 3175 /* 3176 * Verify that we can hold an objset that is also owned. 3177 */ 3178 VERIFY3U(0, ==, dmu_objset_hold(name, FTAG, &os2)); 3179 dmu_objset_rele(os2, FTAG); 3180 3181 /* 3182 * Verify that we cannot own an objset that is already owned. 3183 */ 3184 VERIFY3U(EBUSY, ==, 3185 dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, FTAG, &os2)); 3186 3187 zil_close(zilog); 3188 dmu_objset_disown(os, FTAG); 3189 ztest_zd_fini(&zdtmp); 3190 3191 (void) rw_unlock(&ztest_name_lock); 3192 } 3193 3194 /* 3195 * Verify that dmu_snapshot_{create,destroy,open,close} work as expected. 3196 */ 3197 void 3198 ztest_dmu_snapshot_create_destroy(ztest_ds_t *zd, uint64_t id) 3199 { 3200 (void) rw_rdlock(&ztest_name_lock); 3201 (void) ztest_snapshot_destroy(zd->zd_name, id); 3202 (void) ztest_snapshot_create(zd->zd_name, id); 3203 (void) rw_unlock(&ztest_name_lock); 3204 } 3205 3206 /* 3207 * Cleanup non-standard snapshots and clones. 3208 */ 3209 void 3210 ztest_dsl_dataset_cleanup(char *osname, uint64_t id) 3211 { 3212 char snap1name[MAXNAMELEN]; 3213 char clone1name[MAXNAMELEN]; 3214 char snap2name[MAXNAMELEN]; 3215 char clone2name[MAXNAMELEN]; 3216 char snap3name[MAXNAMELEN]; 3217 int error; 3218 3219 (void) snprintf(snap1name, MAXNAMELEN, "%s@s1_%llu", osname, id); 3220 (void) snprintf(clone1name, MAXNAMELEN, "%s/c1_%llu", osname, id); 3221 (void) snprintf(snap2name, MAXNAMELEN, "%s@s2_%llu", clone1name, id); 3222 (void) snprintf(clone2name, MAXNAMELEN, "%s/c2_%llu", osname, id); 3223 (void) snprintf(snap3name, MAXNAMELEN, "%s@s3_%llu", clone1name, id); 3224 3225 error = dmu_objset_destroy(clone2name, B_FALSE); 3226 if (error && error != ENOENT) 3227 fatal(0, "dmu_objset_destroy(%s) = %d", clone2name, error); 3228 error = dmu_objset_destroy(snap3name, B_FALSE); 3229 if (error && error != ENOENT) 3230 fatal(0, "dmu_objset_destroy(%s) = %d", snap3name, error); 3231 error = dmu_objset_destroy(snap2name, B_FALSE); 3232 if (error && error != ENOENT) 3233 fatal(0, "dmu_objset_destroy(%s) = %d", snap2name, error); 3234 error = dmu_objset_destroy(clone1name, B_FALSE); 3235 if (error && error != ENOENT) 3236 fatal(0, "dmu_objset_destroy(%s) = %d", clone1name, error); 3237 error = dmu_objset_destroy(snap1name, B_FALSE); 3238 if (error && error != ENOENT) 3239 fatal(0, "dmu_objset_destroy(%s) = %d", snap1name, error); 3240 } 3241 3242 /* 3243 * Verify dsl_dataset_promote handles EBUSY 3244 */ 3245 void 3246 ztest_dsl_dataset_promote_busy(ztest_ds_t *zd, uint64_t id) 3247 { 3248 objset_t *clone; 3249 dsl_dataset_t *ds; 3250 char snap1name[MAXNAMELEN]; 3251 char clone1name[MAXNAMELEN]; 3252 char snap2name[MAXNAMELEN]; 3253 char clone2name[MAXNAMELEN]; 3254 char snap3name[MAXNAMELEN]; 3255 char *osname = zd->zd_name; 3256 int error; 3257 3258 (void) rw_rdlock(&ztest_name_lock); 3259 3260 ztest_dsl_dataset_cleanup(osname, id); 3261 3262 (void) snprintf(snap1name, MAXNAMELEN, "%s@s1_%llu", osname, id); 3263 (void) snprintf(clone1name, MAXNAMELEN, "%s/c1_%llu", osname, id); 3264 (void) snprintf(snap2name, MAXNAMELEN, "%s@s2_%llu", clone1name, id); 3265 (void) snprintf(clone2name, MAXNAMELEN, "%s/c2_%llu", osname, id); 3266 (void) snprintf(snap3name, MAXNAMELEN, "%s@s3_%llu", clone1name, id); 3267 3268 error = dmu_objset_snapshot_one(osname, strchr(snap1name, '@') + 1); 3269 if (error && error != EEXIST) { 3270 if (error == ENOSPC) { 3271 ztest_record_enospc(FTAG); 3272 goto out; 3273 } 3274 fatal(0, "dmu_take_snapshot(%s) = %d", snap1name, error); 3275 } 3276 3277 error = dmu_objset_hold(snap1name, FTAG, &clone); 3278 if (error) 3279 fatal(0, "dmu_open_snapshot(%s) = %d", snap1name, error); 3280 3281 error = dmu_objset_clone(clone1name, dmu_objset_ds(clone), 0); 3282 dmu_objset_rele(clone, FTAG); 3283 if (error) { 3284 if (error == ENOSPC) { 3285 ztest_record_enospc(FTAG); 3286 goto out; 3287 } 3288 fatal(0, "dmu_objset_create(%s) = %d", clone1name, error); 3289 } 3290 3291 error = dmu_objset_snapshot_one(clone1name, strchr(snap2name, '@') + 1); 3292 if (error && error != EEXIST) { 3293 if (error == ENOSPC) { 3294 ztest_record_enospc(FTAG); 3295 goto out; 3296 } 3297 fatal(0, "dmu_open_snapshot(%s) = %d", snap2name, error); 3298 } 3299 3300 error = dmu_objset_snapshot_one(clone1name, strchr(snap3name, '@') + 1); 3301 if (error && error != EEXIST) { 3302 if (error == ENOSPC) { 3303 ztest_record_enospc(FTAG); 3304 goto out; 3305 } 3306 fatal(0, "dmu_open_snapshot(%s) = %d", snap3name, error); 3307 } 3308 3309 error = dmu_objset_hold(snap3name, FTAG, &clone); 3310 if (error) 3311 fatal(0, "dmu_open_snapshot(%s) = %d", snap3name, error); 3312 3313 error = dmu_objset_clone(clone2name, dmu_objset_ds(clone), 0); 3314 dmu_objset_rele(clone, FTAG); 3315 if (error) { 3316 if (error == ENOSPC) { 3317 ztest_record_enospc(FTAG); 3318 goto out; 3319 } 3320 fatal(0, "dmu_objset_create(%s) = %d", clone2name, error); 3321 } 3322 3323 error = dsl_dataset_own(snap2name, B_FALSE, FTAG, &ds); 3324 if (error) 3325 fatal(0, "dsl_dataset_own(%s) = %d", snap2name, error); 3326 error = dsl_dataset_promote(clone2name, NULL); 3327 if (error != EBUSY) 3328 fatal(0, "dsl_dataset_promote(%s), %d, not EBUSY", clone2name, 3329 error); 3330 dsl_dataset_disown(ds, FTAG); 3331 3332 out: 3333 ztest_dsl_dataset_cleanup(osname, id); 3334 3335 (void) rw_unlock(&ztest_name_lock); 3336 } 3337 3338 /* 3339 * Verify that dmu_object_{alloc,free} work as expected. 3340 */ 3341 void 3342 ztest_dmu_object_alloc_free(ztest_ds_t *zd, uint64_t id) 3343 { 3344 ztest_od_t od[4]; 3345 int batchsize = sizeof (od) / sizeof (od[0]); 3346 3347 for (int b = 0; b < batchsize; b++) 3348 ztest_od_init(&od[b], id, FTAG, b, DMU_OT_UINT64_OTHER, 0, 0); 3349 3350 /* 3351 * Destroy the previous batch of objects, create a new batch, 3352 * and do some I/O on the new objects. 3353 */ 3354 if (ztest_object_init(zd, od, sizeof (od), B_TRUE) != 0) 3355 return; 3356 3357 while (ztest_random(4 * batchsize) != 0) 3358 ztest_io(zd, od[ztest_random(batchsize)].od_object, 3359 ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT); 3360 } 3361 3362 /* 3363 * Verify that dmu_{read,write} work as expected. 3364 */ 3365 void 3366 ztest_dmu_read_write(ztest_ds_t *zd, uint64_t id) 3367 { 3368 objset_t *os = zd->zd_os; 3369 ztest_od_t od[2]; 3370 dmu_tx_t *tx; 3371 int i, freeit, error; 3372 uint64_t n, s, txg; 3373 bufwad_t *packbuf, *bigbuf, *pack, *bigH, *bigT; 3374 uint64_t packobj, packoff, packsize, bigobj, bigoff, bigsize; 3375 uint64_t chunksize = (1000 + ztest_random(1000)) * sizeof (uint64_t); 3376 uint64_t regions = 997; 3377 uint64_t stride = 123456789ULL; 3378 uint64_t width = 40; 3379 int free_percent = 5; 3380 3381 /* 3382 * This test uses two objects, packobj and bigobj, that are always 3383 * updated together (i.e. in the same tx) so that their contents are 3384 * in sync and can be compared. Their contents relate to each other 3385 * in a simple way: packobj is a dense array of 'bufwad' structures, 3386 * while bigobj is a sparse array of the same bufwads. Specifically, 3387 * for any index n, there are three bufwads that should be identical: 3388 * 3389 * packobj, at offset n * sizeof (bufwad_t) 3390 * bigobj, at the head of the nth chunk 3391 * bigobj, at the tail of the nth chunk 3392 * 3393 * The chunk size is arbitrary. It doesn't have to be a power of two, 3394 * and it doesn't have any relation to the object blocksize. 3395 * The only requirement is that it can hold at least two bufwads. 3396 * 3397 * Normally, we write the bufwad to each of these locations. 3398 * However, free_percent of the time we instead write zeroes to 3399 * packobj and perform a dmu_free_range() on bigobj. By comparing 3400 * bigobj to packobj, we can verify that the DMU is correctly 3401 * tracking which parts of an object are allocated and free, 3402 * and that the contents of the allocated blocks are correct. 3403 */ 3404 3405 /* 3406 * Read the directory info. If it's the first time, set things up. 3407 */ 3408 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, 0, chunksize); 3409 ztest_od_init(&od[1], id, FTAG, 1, DMU_OT_UINT64_OTHER, 0, chunksize); 3410 3411 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0) 3412 return; 3413 3414 bigobj = od[0].od_object; 3415 packobj = od[1].od_object; 3416 chunksize = od[0].od_gen; 3417 ASSERT(chunksize == od[1].od_gen); 3418 3419 /* 3420 * Prefetch a random chunk of the big object. 3421 * Our aim here is to get some async reads in flight 3422 * for blocks that we may free below; the DMU should 3423 * handle this race correctly. 3424 */ 3425 n = ztest_random(regions) * stride + ztest_random(width); 3426 s = 1 + ztest_random(2 * width - 1); 3427 dmu_prefetch(os, bigobj, n * chunksize, s * chunksize); 3428 3429 /* 3430 * Pick a random index and compute the offsets into packobj and bigobj. 3431 */ 3432 n = ztest_random(regions) * stride + ztest_random(width); 3433 s = 1 + ztest_random(width - 1); 3434 3435 packoff = n * sizeof (bufwad_t); 3436 packsize = s * sizeof (bufwad_t); 3437 3438 bigoff = n * chunksize; 3439 bigsize = s * chunksize; 3440 3441 packbuf = umem_alloc(packsize, UMEM_NOFAIL); 3442 bigbuf = umem_alloc(bigsize, UMEM_NOFAIL); 3443 3444 /* 3445 * free_percent of the time, free a range of bigobj rather than 3446 * overwriting it. 3447 */ 3448 freeit = (ztest_random(100) < free_percent); 3449 3450 /* 3451 * Read the current contents of our objects. 3452 */ 3453 error = dmu_read(os, packobj, packoff, packsize, packbuf, 3454 DMU_READ_PREFETCH); 3455 ASSERT0(error); 3456 error = dmu_read(os, bigobj, bigoff, bigsize, bigbuf, 3457 DMU_READ_PREFETCH); 3458 ASSERT0(error); 3459 3460 /* 3461 * Get a tx for the mods to both packobj and bigobj. 3462 */ 3463 tx = dmu_tx_create(os); 3464 3465 dmu_tx_hold_write(tx, packobj, packoff, packsize); 3466 3467 if (freeit) 3468 dmu_tx_hold_free(tx, bigobj, bigoff, bigsize); 3469 else 3470 dmu_tx_hold_write(tx, bigobj, bigoff, bigsize); 3471 3472 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); 3473 if (txg == 0) { 3474 umem_free(packbuf, packsize); 3475 umem_free(bigbuf, bigsize); 3476 return; 3477 } 3478 3479 dmu_object_set_checksum(os, bigobj, 3480 (enum zio_checksum)ztest_random_dsl_prop(ZFS_PROP_CHECKSUM), tx); 3481 3482 dmu_object_set_compress(os, bigobj, 3483 (enum zio_compress)ztest_random_dsl_prop(ZFS_PROP_COMPRESSION), tx); 3484 3485 /* 3486 * For each index from n to n + s, verify that the existing bufwad 3487 * in packobj matches the bufwads at the head and tail of the 3488 * corresponding chunk in bigobj. Then update all three bufwads 3489 * with the new values we want to write out. 3490 */ 3491 for (i = 0; i < s; i++) { 3492 /* LINTED */ 3493 pack = (bufwad_t *)((char *)packbuf + i * sizeof (bufwad_t)); 3494 /* LINTED */ 3495 bigH = (bufwad_t *)((char *)bigbuf + i * chunksize); 3496 /* LINTED */ 3497 bigT = (bufwad_t *)((char *)bigH + chunksize) - 1; 3498 3499 ASSERT((uintptr_t)bigH - (uintptr_t)bigbuf < bigsize); 3500 ASSERT((uintptr_t)bigT - (uintptr_t)bigbuf < bigsize); 3501 3502 if (pack->bw_txg > txg) 3503 fatal(0, "future leak: got %llx, open txg is %llx", 3504 pack->bw_txg, txg); 3505 3506 if (pack->bw_data != 0 && pack->bw_index != n + i) 3507 fatal(0, "wrong index: got %llx, wanted %llx+%llx", 3508 pack->bw_index, n, i); 3509 3510 if (bcmp(pack, bigH, sizeof (bufwad_t)) != 0) 3511 fatal(0, "pack/bigH mismatch in %p/%p", pack, bigH); 3512 3513 if (bcmp(pack, bigT, sizeof (bufwad_t)) != 0) 3514 fatal(0, "pack/bigT mismatch in %p/%p", pack, bigT); 3515 3516 if (freeit) { 3517 bzero(pack, sizeof (bufwad_t)); 3518 } else { 3519 pack->bw_index = n + i; 3520 pack->bw_txg = txg; 3521 pack->bw_data = 1 + ztest_random(-2ULL); 3522 } 3523 *bigH = *pack; 3524 *bigT = *pack; 3525 } 3526 3527 /* 3528 * We've verified all the old bufwads, and made new ones. 3529 * Now write them out. 3530 */ 3531 dmu_write(os, packobj, packoff, packsize, packbuf, tx); 3532 3533 if (freeit) { 3534 if (ztest_opts.zo_verbose >= 7) { 3535 (void) printf("freeing offset %llx size %llx" 3536 " txg %llx\n", 3537 (u_longlong_t)bigoff, 3538 (u_longlong_t)bigsize, 3539 (u_longlong_t)txg); 3540 } 3541 VERIFY(0 == dmu_free_range(os, bigobj, bigoff, bigsize, tx)); 3542 } else { 3543 if (ztest_opts.zo_verbose >= 7) { 3544 (void) printf("writing offset %llx size %llx" 3545 " txg %llx\n", 3546 (u_longlong_t)bigoff, 3547 (u_longlong_t)bigsize, 3548 (u_longlong_t)txg); 3549 } 3550 dmu_write(os, bigobj, bigoff, bigsize, bigbuf, tx); 3551 } 3552 3553 dmu_tx_commit(tx); 3554 3555 /* 3556 * Sanity check the stuff we just wrote. 3557 */ 3558 { 3559 void *packcheck = umem_alloc(packsize, UMEM_NOFAIL); 3560 void *bigcheck = umem_alloc(bigsize, UMEM_NOFAIL); 3561 3562 VERIFY(0 == dmu_read(os, packobj, packoff, 3563 packsize, packcheck, DMU_READ_PREFETCH)); 3564 VERIFY(0 == dmu_read(os, bigobj, bigoff, 3565 bigsize, bigcheck, DMU_READ_PREFETCH)); 3566 3567 ASSERT(bcmp(packbuf, packcheck, packsize) == 0); 3568 ASSERT(bcmp(bigbuf, bigcheck, bigsize) == 0); 3569 3570 umem_free(packcheck, packsize); 3571 umem_free(bigcheck, bigsize); 3572 } 3573 3574 umem_free(packbuf, packsize); 3575 umem_free(bigbuf, bigsize); 3576 } 3577 3578 void 3579 compare_and_update_pbbufs(uint64_t s, bufwad_t *packbuf, bufwad_t *bigbuf, 3580 uint64_t bigsize, uint64_t n, uint64_t chunksize, uint64_t txg) 3581 { 3582 uint64_t i; 3583 bufwad_t *pack; 3584 bufwad_t *bigH; 3585 bufwad_t *bigT; 3586 3587 /* 3588 * For each index from n to n + s, verify that the existing bufwad 3589 * in packobj matches the bufwads at the head and tail of the 3590 * corresponding chunk in bigobj. Then update all three bufwads 3591 * with the new values we want to write out. 3592 */ 3593 for (i = 0; i < s; i++) { 3594 /* LINTED */ 3595 pack = (bufwad_t *)((char *)packbuf + i * sizeof (bufwad_t)); 3596 /* LINTED */ 3597 bigH = (bufwad_t *)((char *)bigbuf + i * chunksize); 3598 /* LINTED */ 3599 bigT = (bufwad_t *)((char *)bigH + chunksize) - 1; 3600 3601 ASSERT((uintptr_t)bigH - (uintptr_t)bigbuf < bigsize); 3602 ASSERT((uintptr_t)bigT - (uintptr_t)bigbuf < bigsize); 3603 3604 if (pack->bw_txg > txg) 3605 fatal(0, "future leak: got %llx, open txg is %llx", 3606 pack->bw_txg, txg); 3607 3608 if (pack->bw_data != 0 && pack->bw_index != n + i) 3609 fatal(0, "wrong index: got %llx, wanted %llx+%llx", 3610 pack->bw_index, n, i); 3611 3612 if (bcmp(pack, bigH, sizeof (bufwad_t)) != 0) 3613 fatal(0, "pack/bigH mismatch in %p/%p", pack, bigH); 3614 3615 if (bcmp(pack, bigT, sizeof (bufwad_t)) != 0) 3616 fatal(0, "pack/bigT mismatch in %p/%p", pack, bigT); 3617 3618 pack->bw_index = n + i; 3619 pack->bw_txg = txg; 3620 pack->bw_data = 1 + ztest_random(-2ULL); 3621 3622 *bigH = *pack; 3623 *bigT = *pack; 3624 } 3625 } 3626 3627 void 3628 ztest_dmu_read_write_zcopy(ztest_ds_t *zd, uint64_t id) 3629 { 3630 objset_t *os = zd->zd_os; 3631 ztest_od_t od[2]; 3632 dmu_tx_t *tx; 3633 uint64_t i; 3634 int error; 3635 uint64_t n, s, txg; 3636 bufwad_t *packbuf, *bigbuf; 3637 uint64_t packobj, packoff, packsize, bigobj, bigoff, bigsize; 3638 uint64_t blocksize = ztest_random_blocksize(); 3639 uint64_t chunksize = blocksize; 3640 uint64_t regions = 997; 3641 uint64_t stride = 123456789ULL; 3642 uint64_t width = 9; 3643 dmu_buf_t *bonus_db; 3644 arc_buf_t **bigbuf_arcbufs; 3645 dmu_object_info_t doi; 3646 3647 /* 3648 * This test uses two objects, packobj and bigobj, that are always 3649 * updated together (i.e. in the same tx) so that their contents are 3650 * in sync and can be compared. Their contents relate to each other 3651 * in a simple way: packobj is a dense array of 'bufwad' structures, 3652 * while bigobj is a sparse array of the same bufwads. Specifically, 3653 * for any index n, there are three bufwads that should be identical: 3654 * 3655 * packobj, at offset n * sizeof (bufwad_t) 3656 * bigobj, at the head of the nth chunk 3657 * bigobj, at the tail of the nth chunk 3658 * 3659 * The chunk size is set equal to bigobj block size so that 3660 * dmu_assign_arcbuf() can be tested for object updates. 3661 */ 3662 3663 /* 3664 * Read the directory info. If it's the first time, set things up. 3665 */ 3666 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0); 3667 ztest_od_init(&od[1], id, FTAG, 1, DMU_OT_UINT64_OTHER, 0, chunksize); 3668 3669 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0) 3670 return; 3671 3672 bigobj = od[0].od_object; 3673 packobj = od[1].od_object; 3674 blocksize = od[0].od_blocksize; 3675 chunksize = blocksize; 3676 ASSERT(chunksize == od[1].od_gen); 3677 3678 VERIFY(dmu_object_info(os, bigobj, &doi) == 0); 3679 VERIFY(ISP2(doi.doi_data_block_size)); 3680 VERIFY(chunksize == doi.doi_data_block_size); 3681 VERIFY(chunksize >= 2 * sizeof (bufwad_t)); 3682 3683 /* 3684 * Pick a random index and compute the offsets into packobj and bigobj. 3685 */ 3686 n = ztest_random(regions) * stride + ztest_random(width); 3687 s = 1 + ztest_random(width - 1); 3688 3689 packoff = n * sizeof (bufwad_t); 3690 packsize = s * sizeof (bufwad_t); 3691 3692 bigoff = n * chunksize; 3693 bigsize = s * chunksize; 3694 3695 packbuf = umem_zalloc(packsize, UMEM_NOFAIL); 3696 bigbuf = umem_zalloc(bigsize, UMEM_NOFAIL); 3697 3698 VERIFY3U(0, ==, dmu_bonus_hold(os, bigobj, FTAG, &bonus_db)); 3699 3700 bigbuf_arcbufs = umem_zalloc(2 * s * sizeof (arc_buf_t *), UMEM_NOFAIL); 3701 3702 /* 3703 * Iteration 0 test zcopy for DB_UNCACHED dbufs. 3704 * Iteration 1 test zcopy to already referenced dbufs. 3705 * Iteration 2 test zcopy to dirty dbuf in the same txg. 3706 * Iteration 3 test zcopy to dbuf dirty in previous txg. 3707 * Iteration 4 test zcopy when dbuf is no longer dirty. 3708 * Iteration 5 test zcopy when it can't be done. 3709 * Iteration 6 one more zcopy write. 3710 */ 3711 for (i = 0; i < 7; i++) { 3712 uint64_t j; 3713 uint64_t off; 3714 3715 /* 3716 * In iteration 5 (i == 5) use arcbufs 3717 * that don't match bigobj blksz to test 3718 * dmu_assign_arcbuf() when it can't directly 3719 * assign an arcbuf to a dbuf. 3720 */ 3721 for (j = 0; j < s; j++) { 3722 if (i != 5) { 3723 bigbuf_arcbufs[j] = 3724 dmu_request_arcbuf(bonus_db, chunksize); 3725 } else { 3726 bigbuf_arcbufs[2 * j] = 3727 dmu_request_arcbuf(bonus_db, chunksize / 2); 3728 bigbuf_arcbufs[2 * j + 1] = 3729 dmu_request_arcbuf(bonus_db, chunksize / 2); 3730 } 3731 } 3732 3733 /* 3734 * Get a tx for the mods to both packobj and bigobj. 3735 */ 3736 tx = dmu_tx_create(os); 3737 3738 dmu_tx_hold_write(tx, packobj, packoff, packsize); 3739 dmu_tx_hold_write(tx, bigobj, bigoff, bigsize); 3740 3741 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); 3742 if (txg == 0) { 3743 umem_free(packbuf, packsize); 3744 umem_free(bigbuf, bigsize); 3745 for (j = 0; j < s; j++) { 3746 if (i != 5) { 3747 dmu_return_arcbuf(bigbuf_arcbufs[j]); 3748 } else { 3749 dmu_return_arcbuf( 3750 bigbuf_arcbufs[2 * j]); 3751 dmu_return_arcbuf( 3752 bigbuf_arcbufs[2 * j + 1]); 3753 } 3754 } 3755 umem_free(bigbuf_arcbufs, 2 * s * sizeof (arc_buf_t *)); 3756 dmu_buf_rele(bonus_db, FTAG); 3757 return; 3758 } 3759 3760 /* 3761 * 50% of the time don't read objects in the 1st iteration to 3762 * test dmu_assign_arcbuf() for the case when there're no 3763 * existing dbufs for the specified offsets. 3764 */ 3765 if (i != 0 || ztest_random(2) != 0) { 3766 error = dmu_read(os, packobj, packoff, 3767 packsize, packbuf, DMU_READ_PREFETCH); 3768 ASSERT0(error); 3769 error = dmu_read(os, bigobj, bigoff, bigsize, 3770 bigbuf, DMU_READ_PREFETCH); 3771 ASSERT0(error); 3772 } 3773 compare_and_update_pbbufs(s, packbuf, bigbuf, bigsize, 3774 n, chunksize, txg); 3775 3776 /* 3777 * We've verified all the old bufwads, and made new ones. 3778 * Now write them out. 3779 */ 3780 dmu_write(os, packobj, packoff, packsize, packbuf, tx); 3781 if (ztest_opts.zo_verbose >= 7) { 3782 (void) printf("writing offset %llx size %llx" 3783 " txg %llx\n", 3784 (u_longlong_t)bigoff, 3785 (u_longlong_t)bigsize, 3786 (u_longlong_t)txg); 3787 } 3788 for (off = bigoff, j = 0; j < s; j++, off += chunksize) { 3789 dmu_buf_t *dbt; 3790 if (i != 5) { 3791 bcopy((caddr_t)bigbuf + (off - bigoff), 3792 bigbuf_arcbufs[j]->b_data, chunksize); 3793 } else { 3794 bcopy((caddr_t)bigbuf + (off - bigoff), 3795 bigbuf_arcbufs[2 * j]->b_data, 3796 chunksize / 2); 3797 bcopy((caddr_t)bigbuf + (off - bigoff) + 3798 chunksize / 2, 3799 bigbuf_arcbufs[2 * j + 1]->b_data, 3800 chunksize / 2); 3801 } 3802 3803 if (i == 1) { 3804 VERIFY(dmu_buf_hold(os, bigobj, off, 3805 FTAG, &dbt, DMU_READ_NO_PREFETCH) == 0); 3806 } 3807 if (i != 5) { 3808 dmu_assign_arcbuf(bonus_db, off, 3809 bigbuf_arcbufs[j], tx); 3810 } else { 3811 dmu_assign_arcbuf(bonus_db, off, 3812 bigbuf_arcbufs[2 * j], tx); 3813 dmu_assign_arcbuf(bonus_db, 3814 off + chunksize / 2, 3815 bigbuf_arcbufs[2 * j + 1], tx); 3816 } 3817 if (i == 1) { 3818 dmu_buf_rele(dbt, FTAG); 3819 } 3820 } 3821 dmu_tx_commit(tx); 3822 3823 /* 3824 * Sanity check the stuff we just wrote. 3825 */ 3826 { 3827 void *packcheck = umem_alloc(packsize, UMEM_NOFAIL); 3828 void *bigcheck = umem_alloc(bigsize, UMEM_NOFAIL); 3829 3830 VERIFY(0 == dmu_read(os, packobj, packoff, 3831 packsize, packcheck, DMU_READ_PREFETCH)); 3832 VERIFY(0 == dmu_read(os, bigobj, bigoff, 3833 bigsize, bigcheck, DMU_READ_PREFETCH)); 3834 3835 ASSERT(bcmp(packbuf, packcheck, packsize) == 0); 3836 ASSERT(bcmp(bigbuf, bigcheck, bigsize) == 0); 3837 3838 umem_free(packcheck, packsize); 3839 umem_free(bigcheck, bigsize); 3840 } 3841 if (i == 2) { 3842 txg_wait_open(dmu_objset_pool(os), 0); 3843 } else if (i == 3) { 3844 txg_wait_synced(dmu_objset_pool(os), 0); 3845 } 3846 } 3847 3848 dmu_buf_rele(bonus_db, FTAG); 3849 umem_free(packbuf, packsize); 3850 umem_free(bigbuf, bigsize); 3851 umem_free(bigbuf_arcbufs, 2 * s * sizeof (arc_buf_t *)); 3852 } 3853 3854 /* ARGSUSED */ 3855 void 3856 ztest_dmu_write_parallel(ztest_ds_t *zd, uint64_t id) 3857 { 3858 ztest_od_t od[1]; 3859 uint64_t offset = (1ULL << (ztest_random(20) + 43)) + 3860 (ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT); 3861 3862 /* 3863 * Have multiple threads write to large offsets in an object 3864 * to verify that parallel writes to an object -- even to the 3865 * same blocks within the object -- doesn't cause any trouble. 3866 */ 3867 ztest_od_init(&od[0], ID_PARALLEL, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0); 3868 3869 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0) 3870 return; 3871 3872 while (ztest_random(10) != 0) 3873 ztest_io(zd, od[0].od_object, offset); 3874 } 3875 3876 void 3877 ztest_dmu_prealloc(ztest_ds_t *zd, uint64_t id) 3878 { 3879 ztest_od_t od[1]; 3880 uint64_t offset = (1ULL << (ztest_random(4) + SPA_MAXBLOCKSHIFT)) + 3881 (ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT); 3882 uint64_t count = ztest_random(20) + 1; 3883 uint64_t blocksize = ztest_random_blocksize(); 3884 void *data; 3885 3886 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0); 3887 3888 if (ztest_object_init(zd, od, sizeof (od), !ztest_random(2)) != 0) 3889 return; 3890 3891 if (ztest_truncate(zd, od[0].od_object, offset, count * blocksize) != 0) 3892 return; 3893 3894 ztest_prealloc(zd, od[0].od_object, offset, count * blocksize); 3895 3896 data = umem_zalloc(blocksize, UMEM_NOFAIL); 3897 3898 while (ztest_random(count) != 0) { 3899 uint64_t randoff = offset + (ztest_random(count) * blocksize); 3900 if (ztest_write(zd, od[0].od_object, randoff, blocksize, 3901 data) != 0) 3902 break; 3903 while (ztest_random(4) != 0) 3904 ztest_io(zd, od[0].od_object, randoff); 3905 } 3906 3907 umem_free(data, blocksize); 3908 } 3909 3910 /* 3911 * Verify that zap_{create,destroy,add,remove,update} work as expected. 3912 */ 3913 #define ZTEST_ZAP_MIN_INTS 1 3914 #define ZTEST_ZAP_MAX_INTS 4 3915 #define ZTEST_ZAP_MAX_PROPS 1000 3916 3917 void 3918 ztest_zap(ztest_ds_t *zd, uint64_t id) 3919 { 3920 objset_t *os = zd->zd_os; 3921 ztest_od_t od[1]; 3922 uint64_t object; 3923 uint64_t txg, last_txg; 3924 uint64_t value[ZTEST_ZAP_MAX_INTS]; 3925 uint64_t zl_ints, zl_intsize, prop; 3926 int i, ints; 3927 dmu_tx_t *tx; 3928 char propname[100], txgname[100]; 3929 int error; 3930 char *hc[2] = { "s.acl.h", ".s.open.h.hyLZlg" }; 3931 3932 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_ZAP_OTHER, 0, 0); 3933 3934 if (ztest_object_init(zd, od, sizeof (od), !ztest_random(2)) != 0) 3935 return; 3936 3937 object = od[0].od_object; 3938 3939 /* 3940 * Generate a known hash collision, and verify that 3941 * we can lookup and remove both entries. 3942 */ 3943 tx = dmu_tx_create(os); 3944 dmu_tx_hold_zap(tx, object, B_TRUE, NULL); 3945 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); 3946 if (txg == 0) 3947 return; 3948 for (i = 0; i < 2; i++) { 3949 value[i] = i; 3950 VERIFY3U(0, ==, zap_add(os, object, hc[i], sizeof (uint64_t), 3951 1, &value[i], tx)); 3952 } 3953 for (i = 0; i < 2; i++) { 3954 VERIFY3U(EEXIST, ==, zap_add(os, object, hc[i], 3955 sizeof (uint64_t), 1, &value[i], tx)); 3956 VERIFY3U(0, ==, 3957 zap_length(os, object, hc[i], &zl_intsize, &zl_ints)); 3958 ASSERT3U(zl_intsize, ==, sizeof (uint64_t)); 3959 ASSERT3U(zl_ints, ==, 1); 3960 } 3961 for (i = 0; i < 2; i++) { 3962 VERIFY3U(0, ==, zap_remove(os, object, hc[i], tx)); 3963 } 3964 dmu_tx_commit(tx); 3965 3966 /* 3967 * Generate a buch of random entries. 3968 */ 3969 ints = MAX(ZTEST_ZAP_MIN_INTS, object % ZTEST_ZAP_MAX_INTS); 3970 3971 prop = ztest_random(ZTEST_ZAP_MAX_PROPS); 3972 (void) sprintf(propname, "prop_%llu", (u_longlong_t)prop); 3973 (void) sprintf(txgname, "txg_%llu", (u_longlong_t)prop); 3974 bzero(value, sizeof (value)); 3975 last_txg = 0; 3976 3977 /* 3978 * If these zap entries already exist, validate their contents. 3979 */ 3980 error = zap_length(os, object, txgname, &zl_intsize, &zl_ints); 3981 if (error == 0) { 3982 ASSERT3U(zl_intsize, ==, sizeof (uint64_t)); 3983 ASSERT3U(zl_ints, ==, 1); 3984 3985 VERIFY(zap_lookup(os, object, txgname, zl_intsize, 3986 zl_ints, &last_txg) == 0); 3987 3988 VERIFY(zap_length(os, object, propname, &zl_intsize, 3989 &zl_ints) == 0); 3990 3991 ASSERT3U(zl_intsize, ==, sizeof (uint64_t)); 3992 ASSERT3U(zl_ints, ==, ints); 3993 3994 VERIFY(zap_lookup(os, object, propname, zl_intsize, 3995 zl_ints, value) == 0); 3996 3997 for (i = 0; i < ints; i++) { 3998 ASSERT3U(value[i], ==, last_txg + object + i); 3999 } 4000 } else { 4001 ASSERT3U(error, ==, ENOENT); 4002 } 4003 4004 /* 4005 * Atomically update two entries in our zap object. 4006 * The first is named txg_%llu, and contains the txg 4007 * in which the property was last updated. The second 4008 * is named prop_%llu, and the nth element of its value 4009 * should be txg + object + n. 4010 */ 4011 tx = dmu_tx_create(os); 4012 dmu_tx_hold_zap(tx, object, B_TRUE, NULL); 4013 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); 4014 if (txg == 0) 4015 return; 4016 4017 if (last_txg > txg) 4018 fatal(0, "zap future leak: old %llu new %llu", last_txg, txg); 4019 4020 for (i = 0; i < ints; i++) 4021 value[i] = txg + object + i; 4022 4023 VERIFY3U(0, ==, zap_update(os, object, txgname, sizeof (uint64_t), 4024 1, &txg, tx)); 4025 VERIFY3U(0, ==, zap_update(os, object, propname, sizeof (uint64_t), 4026 ints, value, tx)); 4027 4028 dmu_tx_commit(tx); 4029 4030 /* 4031 * Remove a random pair of entries. 4032 */ 4033 prop = ztest_random(ZTEST_ZAP_MAX_PROPS); 4034 (void) sprintf(propname, "prop_%llu", (u_longlong_t)prop); 4035 (void) sprintf(txgname, "txg_%llu", (u_longlong_t)prop); 4036 4037 error = zap_length(os, object, txgname, &zl_intsize, &zl_ints); 4038 4039 if (error == ENOENT) 4040 return; 4041 4042 ASSERT0(error); 4043 4044 tx = dmu_tx_create(os); 4045 dmu_tx_hold_zap(tx, object, B_TRUE, NULL); 4046 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); 4047 if (txg == 0) 4048 return; 4049 VERIFY3U(0, ==, zap_remove(os, object, txgname, tx)); 4050 VERIFY3U(0, ==, zap_remove(os, object, propname, tx)); 4051 dmu_tx_commit(tx); 4052 } 4053 4054 /* 4055 * Testcase to test the upgrading of a microzap to fatzap. 4056 */ 4057 void 4058 ztest_fzap(ztest_ds_t *zd, uint64_t id) 4059 { 4060 objset_t *os = zd->zd_os; 4061 ztest_od_t od[1]; 4062 uint64_t object, txg; 4063 4064 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_ZAP_OTHER, 0, 0); 4065 4066 if (ztest_object_init(zd, od, sizeof (od), !ztest_random(2)) != 0) 4067 return; 4068 4069 object = od[0].od_object; 4070 4071 /* 4072 * Add entries to this ZAP and make sure it spills over 4073 * and gets upgraded to a fatzap. Also, since we are adding 4074 * 2050 entries we should see ptrtbl growth and leaf-block split. 4075 */ 4076 for (int i = 0; i < 2050; i++) { 4077 char name[MAXNAMELEN]; 4078 uint64_t value = i; 4079 dmu_tx_t *tx; 4080 int error; 4081 4082 (void) snprintf(name, sizeof (name), "fzap-%llu-%llu", 4083 id, value); 4084 4085 tx = dmu_tx_create(os); 4086 dmu_tx_hold_zap(tx, object, B_TRUE, name); 4087 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); 4088 if (txg == 0) 4089 return; 4090 error = zap_add(os, object, name, sizeof (uint64_t), 1, 4091 &value, tx); 4092 ASSERT(error == 0 || error == EEXIST); 4093 dmu_tx_commit(tx); 4094 } 4095 } 4096 4097 /* ARGSUSED */ 4098 void 4099 ztest_zap_parallel(ztest_ds_t *zd, uint64_t id) 4100 { 4101 objset_t *os = zd->zd_os; 4102 ztest_od_t od[1]; 4103 uint64_t txg, object, count, wsize, wc, zl_wsize, zl_wc; 4104 dmu_tx_t *tx; 4105 int i, namelen, error; 4106 int micro = ztest_random(2); 4107 char name[20], string_value[20]; 4108 void *data; 4109 4110 ztest_od_init(&od[0], ID_PARALLEL, FTAG, micro, DMU_OT_ZAP_OTHER, 0, 0); 4111 4112 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0) 4113 return; 4114 4115 object = od[0].od_object; 4116 4117 /* 4118 * Generate a random name of the form 'xxx.....' where each 4119 * x is a random printable character and the dots are dots. 4120 * There are 94 such characters, and the name length goes from 4121 * 6 to 20, so there are 94^3 * 15 = 12,458,760 possible names. 4122 */ 4123 namelen = ztest_random(sizeof (name) - 5) + 5 + 1; 4124 4125 for (i = 0; i < 3; i++) 4126 name[i] = '!' + ztest_random('~' - '!' + 1); 4127 for (; i < namelen - 1; i++) 4128 name[i] = '.'; 4129 name[i] = '\0'; 4130 4131 if ((namelen & 1) || micro) { 4132 wsize = sizeof (txg); 4133 wc = 1; 4134 data = &txg; 4135 } else { 4136 wsize = 1; 4137 wc = namelen; 4138 data = string_value; 4139 } 4140 4141 count = -1ULL; 4142 VERIFY(zap_count(os, object, &count) == 0); 4143 ASSERT(count != -1ULL); 4144 4145 /* 4146 * Select an operation: length, lookup, add, update, remove. 4147 */ 4148 i = ztest_random(5); 4149 4150 if (i >= 2) { 4151 tx = dmu_tx_create(os); 4152 dmu_tx_hold_zap(tx, object, B_TRUE, NULL); 4153 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); 4154 if (txg == 0) 4155 return; 4156 bcopy(name, string_value, namelen); 4157 } else { 4158 tx = NULL; 4159 txg = 0; 4160 bzero(string_value, namelen); 4161 } 4162 4163 switch (i) { 4164 4165 case 0: 4166 error = zap_length(os, object, name, &zl_wsize, &zl_wc); 4167 if (error == 0) { 4168 ASSERT3U(wsize, ==, zl_wsize); 4169 ASSERT3U(wc, ==, zl_wc); 4170 } else { 4171 ASSERT3U(error, ==, ENOENT); 4172 } 4173 break; 4174 4175 case 1: 4176 error = zap_lookup(os, object, name, wsize, wc, data); 4177 if (error == 0) { 4178 if (data == string_value && 4179 bcmp(name, data, namelen) != 0) 4180 fatal(0, "name '%s' != val '%s' len %d", 4181 name, data, namelen); 4182 } else { 4183 ASSERT3U(error, ==, ENOENT); 4184 } 4185 break; 4186 4187 case 2: 4188 error = zap_add(os, object, name, wsize, wc, data, tx); 4189 ASSERT(error == 0 || error == EEXIST); 4190 break; 4191 4192 case 3: 4193 VERIFY(zap_update(os, object, name, wsize, wc, data, tx) == 0); 4194 break; 4195 4196 case 4: 4197 error = zap_remove(os, object, name, tx); 4198 ASSERT(error == 0 || error == ENOENT); 4199 break; 4200 } 4201 4202 if (tx != NULL) 4203 dmu_tx_commit(tx); 4204 } 4205 4206 /* 4207 * Commit callback data. 4208 */ 4209 typedef struct ztest_cb_data { 4210 list_node_t zcd_node; 4211 uint64_t zcd_txg; 4212 int zcd_expected_err; 4213 boolean_t zcd_added; 4214 boolean_t zcd_called; 4215 spa_t *zcd_spa; 4216 } ztest_cb_data_t; 4217 4218 /* This is the actual commit callback function */ 4219 static void 4220 ztest_commit_callback(void *arg, int error) 4221 { 4222 ztest_cb_data_t *data = arg; 4223 uint64_t synced_txg; 4224 4225 VERIFY(data != NULL); 4226 VERIFY3S(data->zcd_expected_err, ==, error); 4227 VERIFY(!data->zcd_called); 4228 4229 synced_txg = spa_last_synced_txg(data->zcd_spa); 4230 if (data->zcd_txg > synced_txg) 4231 fatal(0, "commit callback of txg %" PRIu64 " called prematurely" 4232 ", last synced txg = %" PRIu64 "\n", data->zcd_txg, 4233 synced_txg); 4234 4235 data->zcd_called = B_TRUE; 4236 4237 if (error == ECANCELED) { 4238 ASSERT0(data->zcd_txg); 4239 ASSERT(!data->zcd_added); 4240 4241 /* 4242 * The private callback data should be destroyed here, but 4243 * since we are going to check the zcd_called field after 4244 * dmu_tx_abort(), we will destroy it there. 4245 */ 4246 return; 4247 } 4248 4249 /* Was this callback added to the global callback list? */ 4250 if (!data->zcd_added) 4251 goto out; 4252 4253 ASSERT3U(data->zcd_txg, !=, 0); 4254 4255 /* Remove our callback from the list */ 4256 (void) mutex_lock(&zcl.zcl_callbacks_lock); 4257 list_remove(&zcl.zcl_callbacks, data); 4258 (void) mutex_unlock(&zcl.zcl_callbacks_lock); 4259 4260 out: 4261 umem_free(data, sizeof (ztest_cb_data_t)); 4262 } 4263 4264 /* Allocate and initialize callback data structure */ 4265 static ztest_cb_data_t * 4266 ztest_create_cb_data(objset_t *os, uint64_t txg) 4267 { 4268 ztest_cb_data_t *cb_data; 4269 4270 cb_data = umem_zalloc(sizeof (ztest_cb_data_t), UMEM_NOFAIL); 4271 4272 cb_data->zcd_txg = txg; 4273 cb_data->zcd_spa = dmu_objset_spa(os); 4274 4275 return (cb_data); 4276 } 4277 4278 /* 4279 * If a number of txgs equal to this threshold have been created after a commit 4280 * callback has been registered but not called, then we assume there is an 4281 * implementation bug. 4282 */ 4283 #define ZTEST_COMMIT_CALLBACK_THRESH (TXG_CONCURRENT_STATES + 2) 4284 4285 /* 4286 * Commit callback test. 4287 */ 4288 void 4289 ztest_dmu_commit_callbacks(ztest_ds_t *zd, uint64_t id) 4290 { 4291 objset_t *os = zd->zd_os; 4292 ztest_od_t od[1]; 4293 dmu_tx_t *tx; 4294 ztest_cb_data_t *cb_data[3], *tmp_cb; 4295 uint64_t old_txg, txg; 4296 int i, error; 4297 4298 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0); 4299 4300 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0) 4301 return; 4302 4303 tx = dmu_tx_create(os); 4304 4305 cb_data[0] = ztest_create_cb_data(os, 0); 4306 dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[0]); 4307 4308 dmu_tx_hold_write(tx, od[0].od_object, 0, sizeof (uint64_t)); 4309 4310 /* Every once in a while, abort the transaction on purpose */ 4311 if (ztest_random(100) == 0) 4312 error = -1; 4313 4314 if (!error) 4315 error = dmu_tx_assign(tx, TXG_NOWAIT); 4316 4317 txg = error ? 0 : dmu_tx_get_txg(tx); 4318 4319 cb_data[0]->zcd_txg = txg; 4320 cb_data[1] = ztest_create_cb_data(os, txg); 4321 dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[1]); 4322 4323 if (error) { 4324 /* 4325 * It's not a strict requirement to call the registered 4326 * callbacks from inside dmu_tx_abort(), but that's what 4327 * it's supposed to happen in the current implementation 4328 * so we will check for that. 4329 */ 4330 for (i = 0; i < 2; i++) { 4331 cb_data[i]->zcd_expected_err = ECANCELED; 4332 VERIFY(!cb_data[i]->zcd_called); 4333 } 4334 4335 dmu_tx_abort(tx); 4336 4337 for (i = 0; i < 2; i++) { 4338 VERIFY(cb_data[i]->zcd_called); 4339 umem_free(cb_data[i], sizeof (ztest_cb_data_t)); 4340 } 4341 4342 return; 4343 } 4344 4345 cb_data[2] = ztest_create_cb_data(os, txg); 4346 dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[2]); 4347 4348 /* 4349 * Read existing data to make sure there isn't a future leak. 4350 */ 4351 VERIFY(0 == dmu_read(os, od[0].od_object, 0, sizeof (uint64_t), 4352 &old_txg, DMU_READ_PREFETCH)); 4353 4354 if (old_txg > txg) 4355 fatal(0, "future leak: got %" PRIu64 ", open txg is %" PRIu64, 4356 old_txg, txg); 4357 4358 dmu_write(os, od[0].od_object, 0, sizeof (uint64_t), &txg, tx); 4359 4360 (void) mutex_lock(&zcl.zcl_callbacks_lock); 4361 4362 /* 4363 * Since commit callbacks don't have any ordering requirement and since 4364 * it is theoretically possible for a commit callback to be called 4365 * after an arbitrary amount of time has elapsed since its txg has been 4366 * synced, it is difficult to reliably determine whether a commit 4367 * callback hasn't been called due to high load or due to a flawed 4368 * implementation. 4369 * 4370 * In practice, we will assume that if after a certain number of txgs a 4371 * commit callback hasn't been called, then most likely there's an 4372 * implementation bug.. 4373 */ 4374 tmp_cb = list_head(&zcl.zcl_callbacks); 4375 if (tmp_cb != NULL && 4376 tmp_cb->zcd_txg > txg - ZTEST_COMMIT_CALLBACK_THRESH) { 4377 fatal(0, "Commit callback threshold exceeded, oldest txg: %" 4378 PRIu64 ", open txg: %" PRIu64 "\n", tmp_cb->zcd_txg, txg); 4379 } 4380 4381 /* 4382 * Let's find the place to insert our callbacks. 4383 * 4384 * Even though the list is ordered by txg, it is possible for the 4385 * insertion point to not be the end because our txg may already be 4386 * quiescing at this point and other callbacks in the open txg 4387 * (from other objsets) may have sneaked in. 4388 */ 4389 tmp_cb = list_tail(&zcl.zcl_callbacks); 4390 while (tmp_cb != NULL && tmp_cb->zcd_txg > txg) 4391 tmp_cb = list_prev(&zcl.zcl_callbacks, tmp_cb); 4392 4393 /* Add the 3 callbacks to the list */ 4394 for (i = 0; i < 3; i++) { 4395 if (tmp_cb == NULL) 4396 list_insert_head(&zcl.zcl_callbacks, cb_data[i]); 4397 else 4398 list_insert_after(&zcl.zcl_callbacks, tmp_cb, 4399 cb_data[i]); 4400 4401 cb_data[i]->zcd_added = B_TRUE; 4402 VERIFY(!cb_data[i]->zcd_called); 4403 4404 tmp_cb = cb_data[i]; 4405 } 4406 4407 (void) mutex_unlock(&zcl.zcl_callbacks_lock); 4408 4409 dmu_tx_commit(tx); 4410 } 4411 4412 /* ARGSUSED */ 4413 void 4414 ztest_dsl_prop_get_set(ztest_ds_t *zd, uint64_t id) 4415 { 4416 zfs_prop_t proplist[] = { 4417 ZFS_PROP_CHECKSUM, 4418 ZFS_PROP_COMPRESSION, 4419 ZFS_PROP_COPIES, 4420 ZFS_PROP_DEDUP 4421 }; 4422 4423 (void) rw_rdlock(&ztest_name_lock); 4424 4425 for (int p = 0; p < sizeof (proplist) / sizeof (proplist[0]); p++) 4426 (void) ztest_dsl_prop_set_uint64(zd->zd_name, proplist[p], 4427 ztest_random_dsl_prop(proplist[p]), (int)ztest_random(2)); 4428 4429 (void) rw_unlock(&ztest_name_lock); 4430 } 4431 4432 /* ARGSUSED */ 4433 void 4434 ztest_spa_prop_get_set(ztest_ds_t *zd, uint64_t id) 4435 { 4436 nvlist_t *props = NULL; 4437 4438 (void) rw_rdlock(&ztest_name_lock); 4439 4440 (void) ztest_spa_prop_set_uint64(ZPOOL_PROP_DEDUPDITTO, 4441 ZIO_DEDUPDITTO_MIN + ztest_random(ZIO_DEDUPDITTO_MIN)); 4442 4443 VERIFY0(spa_prop_get(ztest_spa, &props)); 4444 4445 if (ztest_opts.zo_verbose >= 6) 4446 dump_nvlist(props, 4); 4447 4448 nvlist_free(props); 4449 4450 (void) rw_unlock(&ztest_name_lock); 4451 } 4452 4453 /* 4454 * Test snapshot hold/release and deferred destroy. 4455 */ 4456 void 4457 ztest_dmu_snapshot_hold(ztest_ds_t *zd, uint64_t id) 4458 { 4459 int error; 4460 objset_t *os = zd->zd_os; 4461 objset_t *origin; 4462 char snapname[100]; 4463 char fullname[100]; 4464 char clonename[100]; 4465 char tag[100]; 4466 char osname[MAXNAMELEN]; 4467 4468 (void) rw_rdlock(&ztest_name_lock); 4469 4470 dmu_objset_name(os, osname); 4471 4472 (void) snprintf(snapname, 100, "sh1_%llu", id); 4473 (void) snprintf(fullname, 100, "%s@%s", osname, snapname); 4474 (void) snprintf(clonename, 100, "%s/ch1_%llu", osname, id); 4475 (void) snprintf(tag, 100, "%tag_%llu", id); 4476 4477 /* 4478 * Clean up from any previous run. 4479 */ 4480 (void) dmu_objset_destroy(clonename, B_FALSE); 4481 (void) dsl_dataset_user_release(osname, snapname, tag, B_FALSE); 4482 (void) dmu_objset_destroy(fullname, B_FALSE); 4483 4484 /* 4485 * Create snapshot, clone it, mark snap for deferred destroy, 4486 * destroy clone, verify snap was also destroyed. 4487 */ 4488 error = dmu_objset_snapshot_one(osname, snapname); 4489 if (error) { 4490 if (error == ENOSPC) { 4491 ztest_record_enospc("dmu_objset_snapshot"); 4492 goto out; 4493 } 4494 fatal(0, "dmu_objset_snapshot(%s) = %d", fullname, error); 4495 } 4496 4497 error = dmu_objset_hold(fullname, FTAG, &origin); 4498 if (error) 4499 fatal(0, "dmu_objset_hold(%s) = %d", fullname, error); 4500 4501 error = dmu_objset_clone(clonename, dmu_objset_ds(origin), 0); 4502 dmu_objset_rele(origin, FTAG); 4503 if (error) { 4504 if (error == ENOSPC) { 4505 ztest_record_enospc("dmu_objset_clone"); 4506 goto out; 4507 } 4508 fatal(0, "dmu_objset_clone(%s) = %d", clonename, error); 4509 } 4510 4511 error = dmu_objset_destroy(fullname, B_TRUE); 4512 if (error) { 4513 fatal(0, "dmu_objset_destroy(%s, B_TRUE) = %d", 4514 fullname, error); 4515 } 4516 4517 error = dmu_objset_destroy(clonename, B_FALSE); 4518 if (error) 4519 fatal(0, "dmu_objset_destroy(%s) = %d", clonename, error); 4520 4521 error = dmu_objset_hold(fullname, FTAG, &origin); 4522 if (error != ENOENT) 4523 fatal(0, "dmu_objset_hold(%s) = %d", fullname, error); 4524 4525 /* 4526 * Create snapshot, add temporary hold, verify that we can't 4527 * destroy a held snapshot, mark for deferred destroy, 4528 * release hold, verify snapshot was destroyed. 4529 */ 4530 error = dmu_objset_snapshot_one(osname, snapname); 4531 if (error) { 4532 if (error == ENOSPC) { 4533 ztest_record_enospc("dmu_objset_snapshot"); 4534 goto out; 4535 } 4536 fatal(0, "dmu_objset_snapshot(%s) = %d", fullname, error); 4537 } 4538 4539 error = dsl_dataset_user_hold(osname, snapname, tag, B_FALSE, 4540 B_TRUE, -1); 4541 if (error) 4542 fatal(0, "dsl_dataset_user_hold(%s)", fullname, tag); 4543 4544 error = dmu_objset_destroy(fullname, B_FALSE); 4545 if (error != EBUSY) { 4546 fatal(0, "dmu_objset_destroy(%s, B_FALSE) = %d", 4547 fullname, error); 4548 } 4549 4550 error = dmu_objset_destroy(fullname, B_TRUE); 4551 if (error) { 4552 fatal(0, "dmu_objset_destroy(%s, B_TRUE) = %d", 4553 fullname, error); 4554 } 4555 4556 error = dsl_dataset_user_release(osname, snapname, tag, B_FALSE); 4557 if (error) 4558 fatal(0, "dsl_dataset_user_release(%s)", fullname, tag); 4559 4560 VERIFY(dmu_objset_hold(fullname, FTAG, &origin) == ENOENT); 4561 4562 out: 4563 (void) rw_unlock(&ztest_name_lock); 4564 } 4565 4566 /* 4567 * Inject random faults into the on-disk data. 4568 */ 4569 /* ARGSUSED */ 4570 void 4571 ztest_fault_inject(ztest_ds_t *zd, uint64_t id) 4572 { 4573 ztest_shared_t *zs = ztest_shared; 4574 spa_t *spa = ztest_spa; 4575 int fd; 4576 uint64_t offset; 4577 uint64_t leaves; 4578 uint64_t bad = 0x1990c0ffeedecade; 4579 uint64_t top, leaf; 4580 char path0[MAXPATHLEN]; 4581 char pathrand[MAXPATHLEN]; 4582 size_t fsize; 4583 int bshift = SPA_MAXBLOCKSHIFT + 2; /* don't scrog all labels */ 4584 int iters = 1000; 4585 int maxfaults; 4586 int mirror_save; 4587 vdev_t *vd0 = NULL; 4588 uint64_t guid0 = 0; 4589 boolean_t islog = B_FALSE; 4590 4591 VERIFY(mutex_lock(&ztest_vdev_lock) == 0); 4592 maxfaults = MAXFAULTS(); 4593 leaves = MAX(zs->zs_mirrors, 1) * ztest_opts.zo_raidz; 4594 mirror_save = zs->zs_mirrors; 4595 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 4596 4597 ASSERT(leaves >= 1); 4598 4599 /* 4600 * We need SCL_STATE here because we're going to look at vd0->vdev_tsd. 4601 */ 4602 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 4603 4604 if (ztest_random(2) == 0) { 4605 /* 4606 * Inject errors on a normal data device or slog device. 4607 */ 4608 top = ztest_random_vdev_top(spa, B_TRUE); 4609 leaf = ztest_random(leaves) + zs->zs_splits; 4610 4611 /* 4612 * Generate paths to the first leaf in this top-level vdev, 4613 * and to the random leaf we selected. We'll induce transient 4614 * write failures and random online/offline activity on leaf 0, 4615 * and we'll write random garbage to the randomly chosen leaf. 4616 */ 4617 (void) snprintf(path0, sizeof (path0), ztest_dev_template, 4618 ztest_opts.zo_dir, ztest_opts.zo_pool, 4619 top * leaves + zs->zs_splits); 4620 (void) snprintf(pathrand, sizeof (pathrand), ztest_dev_template, 4621 ztest_opts.zo_dir, ztest_opts.zo_pool, 4622 top * leaves + leaf); 4623 4624 vd0 = vdev_lookup_by_path(spa->spa_root_vdev, path0); 4625 if (vd0 != NULL && vd0->vdev_top->vdev_islog) 4626 islog = B_TRUE; 4627 4628 if (vd0 != NULL && maxfaults != 1) { 4629 /* 4630 * Make vd0 explicitly claim to be unreadable, 4631 * or unwriteable, or reach behind its back 4632 * and close the underlying fd. We can do this if 4633 * maxfaults == 0 because we'll fail and reexecute, 4634 * and we can do it if maxfaults >= 2 because we'll 4635 * have enough redundancy. If maxfaults == 1, the 4636 * combination of this with injection of random data 4637 * corruption below exceeds the pool's fault tolerance. 4638 */ 4639 vdev_file_t *vf = vd0->vdev_tsd; 4640 4641 if (vf != NULL && ztest_random(3) == 0) { 4642 (void) close(vf->vf_vnode->v_fd); 4643 vf->vf_vnode->v_fd = -1; 4644 } else if (ztest_random(2) == 0) { 4645 vd0->vdev_cant_read = B_TRUE; 4646 } else { 4647 vd0->vdev_cant_write = B_TRUE; 4648 } 4649 guid0 = vd0->vdev_guid; 4650 } 4651 } else { 4652 /* 4653 * Inject errors on an l2cache device. 4654 */ 4655 spa_aux_vdev_t *sav = &spa->spa_l2cache; 4656 4657 if (sav->sav_count == 0) { 4658 spa_config_exit(spa, SCL_STATE, FTAG); 4659 return; 4660 } 4661 vd0 = sav->sav_vdevs[ztest_random(sav->sav_count)]; 4662 guid0 = vd0->vdev_guid; 4663 (void) strcpy(path0, vd0->vdev_path); 4664 (void) strcpy(pathrand, vd0->vdev_path); 4665 4666 leaf = 0; 4667 leaves = 1; 4668 maxfaults = INT_MAX; /* no limit on cache devices */ 4669 } 4670 4671 spa_config_exit(spa, SCL_STATE, FTAG); 4672 4673 /* 4674 * If we can tolerate two or more faults, or we're dealing 4675 * with a slog, randomly online/offline vd0. 4676 */ 4677 if ((maxfaults >= 2 || islog) && guid0 != 0) { 4678 if (ztest_random(10) < 6) { 4679 int flags = (ztest_random(2) == 0 ? 4680 ZFS_OFFLINE_TEMPORARY : 0); 4681 4682 /* 4683 * We have to grab the zs_name_lock as writer to 4684 * prevent a race between offlining a slog and 4685 * destroying a dataset. Offlining the slog will 4686 * grab a reference on the dataset which may cause 4687 * dmu_objset_destroy() to fail with EBUSY thus 4688 * leaving the dataset in an inconsistent state. 4689 */ 4690 if (islog) 4691 (void) rw_wrlock(&ztest_name_lock); 4692 4693 VERIFY(vdev_offline(spa, guid0, flags) != EBUSY); 4694 4695 if (islog) 4696 (void) rw_unlock(&ztest_name_lock); 4697 } else { 4698 /* 4699 * Ideally we would like to be able to randomly 4700 * call vdev_[on|off]line without holding locks 4701 * to force unpredictable failures but the side 4702 * effects of vdev_[on|off]line prevent us from 4703 * doing so. We grab the ztest_vdev_lock here to 4704 * prevent a race between injection testing and 4705 * aux_vdev removal. 4706 */ 4707 VERIFY(mutex_lock(&ztest_vdev_lock) == 0); 4708 (void) vdev_online(spa, guid0, 0, NULL); 4709 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 4710 } 4711 } 4712 4713 if (maxfaults == 0) 4714 return; 4715 4716 /* 4717 * We have at least single-fault tolerance, so inject data corruption. 4718 */ 4719 fd = open(pathrand, O_RDWR); 4720 4721 if (fd == -1) /* we hit a gap in the device namespace */ 4722 return; 4723 4724 fsize = lseek(fd, 0, SEEK_END); 4725 4726 while (--iters != 0) { 4727 offset = ztest_random(fsize / (leaves << bshift)) * 4728 (leaves << bshift) + (leaf << bshift) + 4729 (ztest_random(1ULL << (bshift - 1)) & -8ULL); 4730 4731 if (offset >= fsize) 4732 continue; 4733 4734 VERIFY(mutex_lock(&ztest_vdev_lock) == 0); 4735 if (mirror_save != zs->zs_mirrors) { 4736 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 4737 (void) close(fd); 4738 return; 4739 } 4740 4741 if (pwrite(fd, &bad, sizeof (bad), offset) != sizeof (bad)) 4742 fatal(1, "can't inject bad word at 0x%llx in %s", 4743 offset, pathrand); 4744 4745 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 4746 4747 if (ztest_opts.zo_verbose >= 7) 4748 (void) printf("injected bad word into %s," 4749 " offset 0x%llx\n", pathrand, (u_longlong_t)offset); 4750 } 4751 4752 (void) close(fd); 4753 } 4754 4755 /* 4756 * Verify that DDT repair works as expected. 4757 */ 4758 void 4759 ztest_ddt_repair(ztest_ds_t *zd, uint64_t id) 4760 { 4761 ztest_shared_t *zs = ztest_shared; 4762 spa_t *spa = ztest_spa; 4763 objset_t *os = zd->zd_os; 4764 ztest_od_t od[1]; 4765 uint64_t object, blocksize, txg, pattern, psize; 4766 enum zio_checksum checksum = spa_dedup_checksum(spa); 4767 dmu_buf_t *db; 4768 dmu_tx_t *tx; 4769 void *buf; 4770 blkptr_t blk; 4771 int copies = 2 * ZIO_DEDUPDITTO_MIN; 4772 4773 blocksize = ztest_random_blocksize(); 4774 blocksize = MIN(blocksize, 2048); /* because we write so many */ 4775 4776 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0); 4777 4778 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0) 4779 return; 4780 4781 /* 4782 * Take the name lock as writer to prevent anyone else from changing 4783 * the pool and dataset properies we need to maintain during this test. 4784 */ 4785 (void) rw_wrlock(&ztest_name_lock); 4786 4787 if (ztest_dsl_prop_set_uint64(zd->zd_name, ZFS_PROP_DEDUP, checksum, 4788 B_FALSE) != 0 || 4789 ztest_dsl_prop_set_uint64(zd->zd_name, ZFS_PROP_COPIES, 1, 4790 B_FALSE) != 0) { 4791 (void) rw_unlock(&ztest_name_lock); 4792 return; 4793 } 4794 4795 object = od[0].od_object; 4796 blocksize = od[0].od_blocksize; 4797 pattern = zs->zs_guid ^ dmu_objset_fsid_guid(os); 4798 4799 ASSERT(object != 0); 4800 4801 tx = dmu_tx_create(os); 4802 dmu_tx_hold_write(tx, object, 0, copies * blocksize); 4803 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); 4804 if (txg == 0) { 4805 (void) rw_unlock(&ztest_name_lock); 4806 return; 4807 } 4808 4809 /* 4810 * Write all the copies of our block. 4811 */ 4812 for (int i = 0; i < copies; i++) { 4813 uint64_t offset = i * blocksize; 4814 VERIFY(dmu_buf_hold(os, object, offset, FTAG, &db, 4815 DMU_READ_NO_PREFETCH) == 0); 4816 ASSERT(db->db_offset == offset); 4817 ASSERT(db->db_size == blocksize); 4818 ASSERT(ztest_pattern_match(db->db_data, db->db_size, pattern) || 4819 ztest_pattern_match(db->db_data, db->db_size, 0ULL)); 4820 dmu_buf_will_fill(db, tx); 4821 ztest_pattern_set(db->db_data, db->db_size, pattern); 4822 dmu_buf_rele(db, FTAG); 4823 } 4824 4825 dmu_tx_commit(tx); 4826 txg_wait_synced(spa_get_dsl(spa), txg); 4827 4828 /* 4829 * Find out what block we got. 4830 */ 4831 VERIFY(dmu_buf_hold(os, object, 0, FTAG, &db, 4832 DMU_READ_NO_PREFETCH) == 0); 4833 blk = *((dmu_buf_impl_t *)db)->db_blkptr; 4834 dmu_buf_rele(db, FTAG); 4835 4836 /* 4837 * Damage the block. Dedup-ditto will save us when we read it later. 4838 */ 4839 psize = BP_GET_PSIZE(&blk); 4840 buf = zio_buf_alloc(psize); 4841 ztest_pattern_set(buf, psize, ~pattern); 4842 4843 (void) zio_wait(zio_rewrite(NULL, spa, 0, &blk, 4844 buf, psize, NULL, NULL, ZIO_PRIORITY_SYNC_WRITE, 4845 ZIO_FLAG_CANFAIL | ZIO_FLAG_INDUCE_DAMAGE, NULL)); 4846 4847 zio_buf_free(buf, psize); 4848 4849 (void) rw_unlock(&ztest_name_lock); 4850 } 4851 4852 /* 4853 * Scrub the pool. 4854 */ 4855 /* ARGSUSED */ 4856 void 4857 ztest_scrub(ztest_ds_t *zd, uint64_t id) 4858 { 4859 spa_t *spa = ztest_spa; 4860 4861 (void) spa_scan(spa, POOL_SCAN_SCRUB); 4862 (void) poll(NULL, 0, 100); /* wait a moment, then force a restart */ 4863 (void) spa_scan(spa, POOL_SCAN_SCRUB); 4864 } 4865 4866 /* 4867 * Change the guid for the pool. 4868 */ 4869 /* ARGSUSED */ 4870 void 4871 ztest_reguid(ztest_ds_t *zd, uint64_t id) 4872 { 4873 spa_t *spa = ztest_spa; 4874 uint64_t orig, load; 4875 int error; 4876 4877 orig = spa_guid(spa); 4878 load = spa_load_guid(spa); 4879 4880 (void) rw_wrlock(&ztest_name_lock); 4881 error = spa_change_guid(spa); 4882 (void) rw_unlock(&ztest_name_lock); 4883 4884 if (error != 0) 4885 return; 4886 4887 if (ztest_opts.zo_verbose >= 3) { 4888 (void) printf("Changed guid old %llu -> %llu\n", 4889 (u_longlong_t)orig, (u_longlong_t)spa_guid(spa)); 4890 } 4891 4892 VERIFY3U(orig, !=, spa_guid(spa)); 4893 VERIFY3U(load, ==, spa_load_guid(spa)); 4894 } 4895 4896 /* 4897 * Rename the pool to a different name and then rename it back. 4898 */ 4899 /* ARGSUSED */ 4900 void 4901 ztest_spa_rename(ztest_ds_t *zd, uint64_t id) 4902 { 4903 char *oldname, *newname; 4904 spa_t *spa; 4905 4906 (void) rw_wrlock(&ztest_name_lock); 4907 4908 oldname = ztest_opts.zo_pool; 4909 newname = umem_alloc(strlen(oldname) + 5, UMEM_NOFAIL); 4910 (void) strcpy(newname, oldname); 4911 (void) strcat(newname, "_tmp"); 4912 4913 /* 4914 * Do the rename 4915 */ 4916 VERIFY3U(0, ==, spa_rename(oldname, newname)); 4917 4918 /* 4919 * Try to open it under the old name, which shouldn't exist 4920 */ 4921 VERIFY3U(ENOENT, ==, spa_open(oldname, &spa, FTAG)); 4922 4923 /* 4924 * Open it under the new name and make sure it's still the same spa_t. 4925 */ 4926 VERIFY3U(0, ==, spa_open(newname, &spa, FTAG)); 4927 4928 ASSERT(spa == ztest_spa); 4929 spa_close(spa, FTAG); 4930 4931 /* 4932 * Rename it back to the original 4933 */ 4934 VERIFY3U(0, ==, spa_rename(newname, oldname)); 4935 4936 /* 4937 * Make sure it can still be opened 4938 */ 4939 VERIFY3U(0, ==, spa_open(oldname, &spa, FTAG)); 4940 4941 ASSERT(spa == ztest_spa); 4942 spa_close(spa, FTAG); 4943 4944 umem_free(newname, strlen(newname) + 1); 4945 4946 (void) rw_unlock(&ztest_name_lock); 4947 } 4948 4949 /* 4950 * Verify pool integrity by running zdb. 4951 */ 4952 static void 4953 ztest_run_zdb(char *pool) 4954 { 4955 int status; 4956 char zdb[MAXPATHLEN + MAXNAMELEN + 20]; 4957 char zbuf[1024]; 4958 char *bin; 4959 char *ztest; 4960 char *isa; 4961 int isalen; 4962 FILE *fp; 4963 4964 (void) realpath(getexecname(), zdb); 4965 4966 /* zdb lives in /usr/sbin, while ztest lives in /usr/bin */ 4967 bin = strstr(zdb, "/usr/bin/"); 4968 ztest = strstr(bin, "/ztest"); 4969 isa = bin + 8; 4970 isalen = ztest - isa; 4971 isa = strdup(isa); 4972 /* LINTED */ 4973 (void) sprintf(bin, 4974 "/usr/sbin%.*s/zdb -bcc%s%s -U %s %s", 4975 isalen, 4976 isa, 4977 ztest_opts.zo_verbose >= 3 ? "s" : "", 4978 ztest_opts.zo_verbose >= 4 ? "v" : "", 4979 spa_config_path, 4980 pool); 4981 free(isa); 4982 4983 if (ztest_opts.zo_verbose >= 5) 4984 (void) printf("Executing %s\n", strstr(zdb, "zdb ")); 4985 4986 fp = popen(zdb, "r"); 4987 4988 while (fgets(zbuf, sizeof (zbuf), fp) != NULL) 4989 if (ztest_opts.zo_verbose >= 3) 4990 (void) printf("%s", zbuf); 4991 4992 status = pclose(fp); 4993 4994 if (status == 0) 4995 return; 4996 4997 ztest_dump_core = 0; 4998 if (WIFEXITED(status)) 4999 fatal(0, "'%s' exit code %d", zdb, WEXITSTATUS(status)); 5000 else 5001 fatal(0, "'%s' died with signal %d", zdb, WTERMSIG(status)); 5002 } 5003 5004 static void 5005 ztest_walk_pool_directory(char *header) 5006 { 5007 spa_t *spa = NULL; 5008 5009 if (ztest_opts.zo_verbose >= 6) 5010 (void) printf("%s\n", header); 5011 5012 mutex_enter(&spa_namespace_lock); 5013 while ((spa = spa_next(spa)) != NULL) 5014 if (ztest_opts.zo_verbose >= 6) 5015 (void) printf("\t%s\n", spa_name(spa)); 5016 mutex_exit(&spa_namespace_lock); 5017 } 5018 5019 static void 5020 ztest_spa_import_export(char *oldname, char *newname) 5021 { 5022 nvlist_t *config, *newconfig; 5023 uint64_t pool_guid; 5024 spa_t *spa; 5025 5026 if (ztest_opts.zo_verbose >= 4) { 5027 (void) printf("import/export: old = %s, new = %s\n", 5028 oldname, newname); 5029 } 5030 5031 /* 5032 * Clean up from previous runs. 5033 */ 5034 (void) spa_destroy(newname); 5035 5036 /* 5037 * Get the pool's configuration and guid. 5038 */ 5039 VERIFY3U(0, ==, spa_open(oldname, &spa, FTAG)); 5040 5041 /* 5042 * Kick off a scrub to tickle scrub/export races. 5043 */ 5044 if (ztest_random(2) == 0) 5045 (void) spa_scan(spa, POOL_SCAN_SCRUB); 5046 5047 pool_guid = spa_guid(spa); 5048 spa_close(spa, FTAG); 5049 5050 ztest_walk_pool_directory("pools before export"); 5051 5052 /* 5053 * Export it. 5054 */ 5055 VERIFY3U(0, ==, spa_export(oldname, &config, B_FALSE, B_FALSE)); 5056 5057 ztest_walk_pool_directory("pools after export"); 5058 5059 /* 5060 * Try to import it. 5061 */ 5062 newconfig = spa_tryimport(config); 5063 ASSERT(newconfig != NULL); 5064 nvlist_free(newconfig); 5065 5066 /* 5067 * Import it under the new name. 5068 */ 5069 VERIFY3U(0, ==, spa_import(newname, config, NULL, 0)); 5070 5071 ztest_walk_pool_directory("pools after import"); 5072 5073 /* 5074 * Try to import it again -- should fail with EEXIST. 5075 */ 5076 VERIFY3U(EEXIST, ==, spa_import(newname, config, NULL, 0)); 5077 5078 /* 5079 * Try to import it under a different name -- should fail with EEXIST. 5080 */ 5081 VERIFY3U(EEXIST, ==, spa_import(oldname, config, NULL, 0)); 5082 5083 /* 5084 * Verify that the pool is no longer visible under the old name. 5085 */ 5086 VERIFY3U(ENOENT, ==, spa_open(oldname, &spa, FTAG)); 5087 5088 /* 5089 * Verify that we can open and close the pool using the new name. 5090 */ 5091 VERIFY3U(0, ==, spa_open(newname, &spa, FTAG)); 5092 ASSERT(pool_guid == spa_guid(spa)); 5093 spa_close(spa, FTAG); 5094 5095 nvlist_free(config); 5096 } 5097 5098 static void 5099 ztest_resume(spa_t *spa) 5100 { 5101 if (spa_suspended(spa) && ztest_opts.zo_verbose >= 6) 5102 (void) printf("resuming from suspended state\n"); 5103 spa_vdev_state_enter(spa, SCL_NONE); 5104 vdev_clear(spa, NULL); 5105 (void) spa_vdev_state_exit(spa, NULL, 0); 5106 (void) zio_resume(spa); 5107 } 5108 5109 static void * 5110 ztest_resume_thread(void *arg) 5111 { 5112 spa_t *spa = arg; 5113 5114 while (!ztest_exiting) { 5115 if (spa_suspended(spa)) 5116 ztest_resume(spa); 5117 (void) poll(NULL, 0, 100); 5118 } 5119 return (NULL); 5120 } 5121 5122 static void * 5123 ztest_deadman_thread(void *arg) 5124 { 5125 ztest_shared_t *zs = arg; 5126 int grace = 300; 5127 hrtime_t delta; 5128 5129 delta = (zs->zs_thread_stop - zs->zs_thread_start) / NANOSEC + grace; 5130 5131 (void) poll(NULL, 0, (int)(1000 * delta)); 5132 5133 fatal(0, "failed to complete within %d seconds of deadline", grace); 5134 5135 return (NULL); 5136 } 5137 5138 static void 5139 ztest_execute(int test, ztest_info_t *zi, uint64_t id) 5140 { 5141 ztest_ds_t *zd = &ztest_ds[id % ztest_opts.zo_datasets]; 5142 ztest_shared_callstate_t *zc = ZTEST_GET_SHARED_CALLSTATE(test); 5143 hrtime_t functime = gethrtime(); 5144 5145 for (int i = 0; i < zi->zi_iters; i++) 5146 zi->zi_func(zd, id); 5147 5148 functime = gethrtime() - functime; 5149 5150 atomic_add_64(&zc->zc_count, 1); 5151 atomic_add_64(&zc->zc_time, functime); 5152 5153 if (ztest_opts.zo_verbose >= 4) { 5154 Dl_info dli; 5155 (void) dladdr((void *)zi->zi_func, &dli); 5156 (void) printf("%6.2f sec in %s\n", 5157 (double)functime / NANOSEC, dli.dli_sname); 5158 } 5159 } 5160 5161 static void * 5162 ztest_thread(void *arg) 5163 { 5164 int rand; 5165 uint64_t id = (uintptr_t)arg; 5166 ztest_shared_t *zs = ztest_shared; 5167 uint64_t call_next; 5168 hrtime_t now; 5169 ztest_info_t *zi; 5170 ztest_shared_callstate_t *zc; 5171 5172 while ((now = gethrtime()) < zs->zs_thread_stop) { 5173 /* 5174 * See if it's time to force a crash. 5175 */ 5176 if (now > zs->zs_thread_kill) 5177 ztest_kill(zs); 5178 5179 /* 5180 * If we're getting ENOSPC with some regularity, stop. 5181 */ 5182 if (zs->zs_enospc_count > 10) 5183 break; 5184 5185 /* 5186 * Pick a random function to execute. 5187 */ 5188 rand = ztest_random(ZTEST_FUNCS); 5189 zi = &ztest_info[rand]; 5190 zc = ZTEST_GET_SHARED_CALLSTATE(rand); 5191 call_next = zc->zc_next; 5192 5193 if (now >= call_next && 5194 atomic_cas_64(&zc->zc_next, call_next, call_next + 5195 ztest_random(2 * zi->zi_interval[0] + 1)) == call_next) { 5196 ztest_execute(rand, zi, id); 5197 } 5198 } 5199 5200 return (NULL); 5201 } 5202 5203 static void 5204 ztest_dataset_name(char *dsname, char *pool, int d) 5205 { 5206 (void) snprintf(dsname, MAXNAMELEN, "%s/ds_%d", pool, d); 5207 } 5208 5209 static void 5210 ztest_dataset_destroy(int d) 5211 { 5212 char name[MAXNAMELEN]; 5213 5214 ztest_dataset_name(name, ztest_opts.zo_pool, d); 5215 5216 if (ztest_opts.zo_verbose >= 3) 5217 (void) printf("Destroying %s to free up space\n", name); 5218 5219 /* 5220 * Cleanup any non-standard clones and snapshots. In general, 5221 * ztest thread t operates on dataset (t % zopt_datasets), 5222 * so there may be more than one thing to clean up. 5223 */ 5224 for (int t = d; t < ztest_opts.zo_threads; 5225 t += ztest_opts.zo_datasets) { 5226 ztest_dsl_dataset_cleanup(name, t); 5227 } 5228 5229 (void) dmu_objset_find(name, ztest_objset_destroy_cb, NULL, 5230 DS_FIND_SNAPSHOTS | DS_FIND_CHILDREN); 5231 } 5232 5233 static void 5234 ztest_dataset_dirobj_verify(ztest_ds_t *zd) 5235 { 5236 uint64_t usedobjs, dirobjs, scratch; 5237 5238 /* 5239 * ZTEST_DIROBJ is the object directory for the entire dataset. 5240 * Therefore, the number of objects in use should equal the 5241 * number of ZTEST_DIROBJ entries, +1 for ZTEST_DIROBJ itself. 5242 * If not, we have an object leak. 5243 * 5244 * Note that we can only check this in ztest_dataset_open(), 5245 * when the open-context and syncing-context values agree. 5246 * That's because zap_count() returns the open-context value, 5247 * while dmu_objset_space() returns the rootbp fill count. 5248 */ 5249 VERIFY3U(0, ==, zap_count(zd->zd_os, ZTEST_DIROBJ, &dirobjs)); 5250 dmu_objset_space(zd->zd_os, &scratch, &scratch, &usedobjs, &scratch); 5251 ASSERT3U(dirobjs + 1, ==, usedobjs); 5252 } 5253 5254 static int 5255 ztest_dataset_open(int d) 5256 { 5257 ztest_ds_t *zd = &ztest_ds[d]; 5258 uint64_t committed_seq = ZTEST_GET_SHARED_DS(d)->zd_seq; 5259 objset_t *os; 5260 zilog_t *zilog; 5261 char name[MAXNAMELEN]; 5262 int error; 5263 5264 ztest_dataset_name(name, ztest_opts.zo_pool, d); 5265 5266 (void) rw_rdlock(&ztest_name_lock); 5267 5268 error = ztest_dataset_create(name); 5269 if (error == ENOSPC) { 5270 (void) rw_unlock(&ztest_name_lock); 5271 ztest_record_enospc(FTAG); 5272 return (error); 5273 } 5274 ASSERT(error == 0 || error == EEXIST); 5275 5276 VERIFY0(dmu_objset_hold(name, zd, &os)); 5277 (void) rw_unlock(&ztest_name_lock); 5278 5279 ztest_zd_init(zd, ZTEST_GET_SHARED_DS(d), os); 5280 5281 zilog = zd->zd_zilog; 5282 5283 if (zilog->zl_header->zh_claim_lr_seq != 0 && 5284 zilog->zl_header->zh_claim_lr_seq < committed_seq) 5285 fatal(0, "missing log records: claimed %llu < committed %llu", 5286 zilog->zl_header->zh_claim_lr_seq, committed_seq); 5287 5288 ztest_dataset_dirobj_verify(zd); 5289 5290 zil_replay(os, zd, ztest_replay_vector); 5291 5292 ztest_dataset_dirobj_verify(zd); 5293 5294 if (ztest_opts.zo_verbose >= 6) 5295 (void) printf("%s replay %llu blocks, %llu records, seq %llu\n", 5296 zd->zd_name, 5297 (u_longlong_t)zilog->zl_parse_blk_count, 5298 (u_longlong_t)zilog->zl_parse_lr_count, 5299 (u_longlong_t)zilog->zl_replaying_seq); 5300 5301 zilog = zil_open(os, ztest_get_data); 5302 5303 if (zilog->zl_replaying_seq != 0 && 5304 zilog->zl_replaying_seq < committed_seq) 5305 fatal(0, "missing log records: replayed %llu < committed %llu", 5306 zilog->zl_replaying_seq, committed_seq); 5307 5308 return (0); 5309 } 5310 5311 static void 5312 ztest_dataset_close(int d) 5313 { 5314 ztest_ds_t *zd = &ztest_ds[d]; 5315 5316 zil_close(zd->zd_zilog); 5317 dmu_objset_rele(zd->zd_os, zd); 5318 5319 ztest_zd_fini(zd); 5320 } 5321 5322 /* 5323 * Kick off threads to run tests on all datasets in parallel. 5324 */ 5325 static void 5326 ztest_run(ztest_shared_t *zs) 5327 { 5328 thread_t *tid; 5329 spa_t *spa; 5330 objset_t *os; 5331 thread_t resume_tid; 5332 int error; 5333 5334 ztest_exiting = B_FALSE; 5335 5336 /* 5337 * Initialize parent/child shared state. 5338 */ 5339 VERIFY(_mutex_init(&ztest_vdev_lock, USYNC_THREAD, NULL) == 0); 5340 VERIFY(rwlock_init(&ztest_name_lock, USYNC_THREAD, NULL) == 0); 5341 5342 zs->zs_thread_start = gethrtime(); 5343 zs->zs_thread_stop = 5344 zs->zs_thread_start + ztest_opts.zo_passtime * NANOSEC; 5345 zs->zs_thread_stop = MIN(zs->zs_thread_stop, zs->zs_proc_stop); 5346 zs->zs_thread_kill = zs->zs_thread_stop; 5347 if (ztest_random(100) < ztest_opts.zo_killrate) { 5348 zs->zs_thread_kill -= 5349 ztest_random(ztest_opts.zo_passtime * NANOSEC); 5350 } 5351 5352 (void) _mutex_init(&zcl.zcl_callbacks_lock, USYNC_THREAD, NULL); 5353 5354 list_create(&zcl.zcl_callbacks, sizeof (ztest_cb_data_t), 5355 offsetof(ztest_cb_data_t, zcd_node)); 5356 5357 /* 5358 * Open our pool. 5359 */ 5360 kernel_init(FREAD | FWRITE); 5361 VERIFY(spa_open(ztest_opts.zo_pool, &spa, FTAG) == 0); 5362 spa->spa_debug = B_TRUE; 5363 ztest_spa = spa; 5364 5365 VERIFY3U(0, ==, dmu_objset_hold(ztest_opts.zo_pool, FTAG, &os)); 5366 zs->zs_guid = dmu_objset_fsid_guid(os); 5367 dmu_objset_rele(os, FTAG); 5368 5369 spa->spa_dedup_ditto = 2 * ZIO_DEDUPDITTO_MIN; 5370 5371 /* 5372 * We don't expect the pool to suspend unless maxfaults == 0, 5373 * in which case ztest_fault_inject() temporarily takes away 5374 * the only valid replica. 5375 */ 5376 if (MAXFAULTS() == 0) 5377 spa->spa_failmode = ZIO_FAILURE_MODE_WAIT; 5378 else 5379 spa->spa_failmode = ZIO_FAILURE_MODE_PANIC; 5380 5381 /* 5382 * Create a thread to periodically resume suspended I/O. 5383 */ 5384 VERIFY(thr_create(0, 0, ztest_resume_thread, spa, THR_BOUND, 5385 &resume_tid) == 0); 5386 5387 /* 5388 * Create a deadman thread to abort() if we hang. 5389 */ 5390 VERIFY(thr_create(0, 0, ztest_deadman_thread, zs, THR_BOUND, 5391 NULL) == 0); 5392 5393 /* 5394 * Verify that we can safely inquire about about any object, 5395 * whether it's allocated or not. To make it interesting, 5396 * we probe a 5-wide window around each power of two. 5397 * This hits all edge cases, including zero and the max. 5398 */ 5399 for (int t = 0; t < 64; t++) { 5400 for (int d = -5; d <= 5; d++) { 5401 error = dmu_object_info(spa->spa_meta_objset, 5402 (1ULL << t) + d, NULL); 5403 ASSERT(error == 0 || error == ENOENT || 5404 error == EINVAL); 5405 } 5406 } 5407 5408 /* 5409 * If we got any ENOSPC errors on the previous run, destroy something. 5410 */ 5411 if (zs->zs_enospc_count != 0) { 5412 int d = ztest_random(ztest_opts.zo_datasets); 5413 ztest_dataset_destroy(d); 5414 } 5415 zs->zs_enospc_count = 0; 5416 5417 tid = umem_zalloc(ztest_opts.zo_threads * sizeof (thread_t), 5418 UMEM_NOFAIL); 5419 5420 if (ztest_opts.zo_verbose >= 4) 5421 (void) printf("starting main threads...\n"); 5422 5423 /* 5424 * Kick off all the tests that run in parallel. 5425 */ 5426 for (int t = 0; t < ztest_opts.zo_threads; t++) { 5427 if (t < ztest_opts.zo_datasets && 5428 ztest_dataset_open(t) != 0) 5429 return; 5430 VERIFY(thr_create(0, 0, ztest_thread, (void *)(uintptr_t)t, 5431 THR_BOUND, &tid[t]) == 0); 5432 } 5433 5434 /* 5435 * Wait for all of the tests to complete. We go in reverse order 5436 * so we don't close datasets while threads are still using them. 5437 */ 5438 for (int t = ztest_opts.zo_threads - 1; t >= 0; t--) { 5439 VERIFY(thr_join(tid[t], NULL, NULL) == 0); 5440 if (t < ztest_opts.zo_datasets) 5441 ztest_dataset_close(t); 5442 } 5443 5444 txg_wait_synced(spa_get_dsl(spa), 0); 5445 5446 zs->zs_alloc = metaslab_class_get_alloc(spa_normal_class(spa)); 5447 zs->zs_space = metaslab_class_get_space(spa_normal_class(spa)); 5448 5449 umem_free(tid, ztest_opts.zo_threads * sizeof (thread_t)); 5450 5451 /* Kill the resume thread */ 5452 ztest_exiting = B_TRUE; 5453 VERIFY(thr_join(resume_tid, NULL, NULL) == 0); 5454 ztest_resume(spa); 5455 5456 /* 5457 * Right before closing the pool, kick off a bunch of async I/O; 5458 * spa_close() should wait for it to complete. 5459 */ 5460 for (uint64_t object = 1; object < 50; object++) 5461 dmu_prefetch(spa->spa_meta_objset, object, 0, 1ULL << 20); 5462 5463 spa_close(spa, FTAG); 5464 5465 /* 5466 * Verify that we can loop over all pools. 5467 */ 5468 mutex_enter(&spa_namespace_lock); 5469 for (spa = spa_next(NULL); spa != NULL; spa = spa_next(spa)) 5470 if (ztest_opts.zo_verbose > 3) 5471 (void) printf("spa_next: found %s\n", spa_name(spa)); 5472 mutex_exit(&spa_namespace_lock); 5473 5474 /* 5475 * Verify that we can export the pool and reimport it under a 5476 * different name. 5477 */ 5478 if (ztest_random(2) == 0) { 5479 char name[MAXNAMELEN]; 5480 (void) snprintf(name, MAXNAMELEN, "%s_import", 5481 ztest_opts.zo_pool); 5482 ztest_spa_import_export(ztest_opts.zo_pool, name); 5483 ztest_spa_import_export(name, ztest_opts.zo_pool); 5484 } 5485 5486 kernel_fini(); 5487 5488 list_destroy(&zcl.zcl_callbacks); 5489 5490 (void) _mutex_destroy(&zcl.zcl_callbacks_lock); 5491 5492 (void) rwlock_destroy(&ztest_name_lock); 5493 (void) _mutex_destroy(&ztest_vdev_lock); 5494 } 5495 5496 static void 5497 ztest_freeze(void) 5498 { 5499 ztest_ds_t *zd = &ztest_ds[0]; 5500 spa_t *spa; 5501 int numloops = 0; 5502 5503 if (ztest_opts.zo_verbose >= 3) 5504 (void) printf("testing spa_freeze()...\n"); 5505 5506 kernel_init(FREAD | FWRITE); 5507 VERIFY3U(0, ==, spa_open(ztest_opts.zo_pool, &spa, FTAG)); 5508 VERIFY3U(0, ==, ztest_dataset_open(0)); 5509 5510 /* 5511 * Force the first log block to be transactionally allocated. 5512 * We have to do this before we freeze the pool -- otherwise 5513 * the log chain won't be anchored. 5514 */ 5515 while (BP_IS_HOLE(&zd->zd_zilog->zl_header->zh_log)) { 5516 ztest_dmu_object_alloc_free(zd, 0); 5517 zil_commit(zd->zd_zilog, 0); 5518 } 5519 5520 txg_wait_synced(spa_get_dsl(spa), 0); 5521 5522 /* 5523 * Freeze the pool. This stops spa_sync() from doing anything, 5524 * so that the only way to record changes from now on is the ZIL. 5525 */ 5526 spa_freeze(spa); 5527 5528 /* 5529 * Run tests that generate log records but don't alter the pool config 5530 * or depend on DSL sync tasks (snapshots, objset create/destroy, etc). 5531 * We do a txg_wait_synced() after each iteration to force the txg 5532 * to increase well beyond the last synced value in the uberblock. 5533 * The ZIL should be OK with that. 5534 */ 5535 while (ztest_random(10) != 0 && 5536 numloops++ < ztest_opts.zo_maxloops) { 5537 ztest_dmu_write_parallel(zd, 0); 5538 ztest_dmu_object_alloc_free(zd, 0); 5539 txg_wait_synced(spa_get_dsl(spa), 0); 5540 } 5541 5542 /* 5543 * Commit all of the changes we just generated. 5544 */ 5545 zil_commit(zd->zd_zilog, 0); 5546 txg_wait_synced(spa_get_dsl(spa), 0); 5547 5548 /* 5549 * Close our dataset and close the pool. 5550 */ 5551 ztest_dataset_close(0); 5552 spa_close(spa, FTAG); 5553 kernel_fini(); 5554 5555 /* 5556 * Open and close the pool and dataset to induce log replay. 5557 */ 5558 kernel_init(FREAD | FWRITE); 5559 VERIFY3U(0, ==, spa_open(ztest_opts.zo_pool, &spa, FTAG)); 5560 ASSERT(spa_freeze_txg(spa) == UINT64_MAX); 5561 VERIFY3U(0, ==, ztest_dataset_open(0)); 5562 ztest_dataset_close(0); 5563 5564 spa->spa_debug = B_TRUE; 5565 ztest_spa = spa; 5566 txg_wait_synced(spa_get_dsl(spa), 0); 5567 ztest_reguid(NULL, 0); 5568 5569 spa_close(spa, FTAG); 5570 kernel_fini(); 5571 } 5572 5573 void 5574 print_time(hrtime_t t, char *timebuf) 5575 { 5576 hrtime_t s = t / NANOSEC; 5577 hrtime_t m = s / 60; 5578 hrtime_t h = m / 60; 5579 hrtime_t d = h / 24; 5580 5581 s -= m * 60; 5582 m -= h * 60; 5583 h -= d * 24; 5584 5585 timebuf[0] = '\0'; 5586 5587 if (d) 5588 (void) sprintf(timebuf, 5589 "%llud%02lluh%02llum%02llus", d, h, m, s); 5590 else if (h) 5591 (void) sprintf(timebuf, "%lluh%02llum%02llus", h, m, s); 5592 else if (m) 5593 (void) sprintf(timebuf, "%llum%02llus", m, s); 5594 else 5595 (void) sprintf(timebuf, "%llus", s); 5596 } 5597 5598 static nvlist_t * 5599 make_random_props() 5600 { 5601 nvlist_t *props; 5602 5603 VERIFY(nvlist_alloc(&props, NV_UNIQUE_NAME, 0) == 0); 5604 if (ztest_random(2) == 0) 5605 return (props); 5606 VERIFY(nvlist_add_uint64(props, "autoreplace", 1) == 0); 5607 5608 return (props); 5609 } 5610 5611 /* 5612 * Create a storage pool with the given name and initial vdev size. 5613 * Then test spa_freeze() functionality. 5614 */ 5615 static void 5616 ztest_init(ztest_shared_t *zs) 5617 { 5618 spa_t *spa; 5619 nvlist_t *nvroot, *props; 5620 5621 VERIFY(_mutex_init(&ztest_vdev_lock, USYNC_THREAD, NULL) == 0); 5622 VERIFY(rwlock_init(&ztest_name_lock, USYNC_THREAD, NULL) == 0); 5623 5624 kernel_init(FREAD | FWRITE); 5625 5626 /* 5627 * Create the storage pool. 5628 */ 5629 (void) spa_destroy(ztest_opts.zo_pool); 5630 ztest_shared->zs_vdev_next_leaf = 0; 5631 zs->zs_splits = 0; 5632 zs->zs_mirrors = ztest_opts.zo_mirrors; 5633 nvroot = make_vdev_root(NULL, NULL, ztest_opts.zo_vdev_size, 0, 5634 0, ztest_opts.zo_raidz, zs->zs_mirrors, 1); 5635 props = make_random_props(); 5636 for (int i = 0; i < SPA_FEATURES; i++) { 5637 char buf[1024]; 5638 (void) snprintf(buf, sizeof (buf), "feature@%s", 5639 spa_feature_table[i].fi_uname); 5640 VERIFY3U(0, ==, nvlist_add_uint64(props, buf, 0)); 5641 } 5642 VERIFY3U(0, ==, spa_create(ztest_opts.zo_pool, nvroot, props, NULL)); 5643 nvlist_free(nvroot); 5644 5645 VERIFY3U(0, ==, spa_open(ztest_opts.zo_pool, &spa, FTAG)); 5646 zs->zs_metaslab_sz = 5647 1ULL << spa->spa_root_vdev->vdev_child[0]->vdev_ms_shift; 5648 5649 spa_close(spa, FTAG); 5650 5651 kernel_fini(); 5652 5653 ztest_run_zdb(ztest_opts.zo_pool); 5654 5655 ztest_freeze(); 5656 5657 ztest_run_zdb(ztest_opts.zo_pool); 5658 5659 (void) rwlock_destroy(&ztest_name_lock); 5660 (void) _mutex_destroy(&ztest_vdev_lock); 5661 } 5662 5663 static void 5664 setup_fds(void) 5665 { 5666 int fd; 5667 5668 char *tmp = tempnam(NULL, NULL); 5669 fd = open(tmp, O_RDWR | O_CREAT, 0700); 5670 ASSERT3U(fd, ==, ZTEST_FD_DATA); 5671 (void) unlink(tmp); 5672 free(tmp); 5673 5674 fd = open("/dev/urandom", O_RDONLY); 5675 ASSERT3U(fd, ==, ZTEST_FD_RAND); 5676 } 5677 5678 static int 5679 shared_data_size(ztest_shared_hdr_t *hdr) 5680 { 5681 int size; 5682 5683 size = hdr->zh_hdr_size; 5684 size += hdr->zh_opts_size; 5685 size += hdr->zh_size; 5686 size += hdr->zh_stats_size * hdr->zh_stats_count; 5687 size += hdr->zh_ds_size * hdr->zh_ds_count; 5688 5689 return (size); 5690 } 5691 5692 static void 5693 setup_hdr(void) 5694 { 5695 int size; 5696 ztest_shared_hdr_t *hdr; 5697 5698 hdr = (void *)mmap(0, P2ROUNDUP(sizeof (*hdr), getpagesize()), 5699 PROT_READ | PROT_WRITE, MAP_SHARED, ZTEST_FD_DATA, 0); 5700 ASSERT(hdr != MAP_FAILED); 5701 5702 VERIFY3U(0, ==, ftruncate(ZTEST_FD_DATA, sizeof (ztest_shared_hdr_t))); 5703 5704 hdr->zh_hdr_size = sizeof (ztest_shared_hdr_t); 5705 hdr->zh_opts_size = sizeof (ztest_shared_opts_t); 5706 hdr->zh_size = sizeof (ztest_shared_t); 5707 hdr->zh_stats_size = sizeof (ztest_shared_callstate_t); 5708 hdr->zh_stats_count = ZTEST_FUNCS; 5709 hdr->zh_ds_size = sizeof (ztest_shared_ds_t); 5710 hdr->zh_ds_count = ztest_opts.zo_datasets; 5711 5712 size = shared_data_size(hdr); 5713 VERIFY3U(0, ==, ftruncate(ZTEST_FD_DATA, size)); 5714 5715 (void) munmap((caddr_t)hdr, P2ROUNDUP(sizeof (*hdr), getpagesize())); 5716 } 5717 5718 static void 5719 setup_data(void) 5720 { 5721 int size, offset; 5722 ztest_shared_hdr_t *hdr; 5723 uint8_t *buf; 5724 5725 hdr = (void *)mmap(0, P2ROUNDUP(sizeof (*hdr), getpagesize()), 5726 PROT_READ, MAP_SHARED, ZTEST_FD_DATA, 0); 5727 ASSERT(hdr != MAP_FAILED); 5728 5729 size = shared_data_size(hdr); 5730 5731 (void) munmap((caddr_t)hdr, P2ROUNDUP(sizeof (*hdr), getpagesize())); 5732 hdr = ztest_shared_hdr = (void *)mmap(0, P2ROUNDUP(size, getpagesize()), 5733 PROT_READ | PROT_WRITE, MAP_SHARED, ZTEST_FD_DATA, 0); 5734 ASSERT(hdr != MAP_FAILED); 5735 buf = (uint8_t *)hdr; 5736 5737 offset = hdr->zh_hdr_size; 5738 ztest_shared_opts = (void *)&buf[offset]; 5739 offset += hdr->zh_opts_size; 5740 ztest_shared = (void *)&buf[offset]; 5741 offset += hdr->zh_size; 5742 ztest_shared_callstate = (void *)&buf[offset]; 5743 offset += hdr->zh_stats_size * hdr->zh_stats_count; 5744 ztest_shared_ds = (void *)&buf[offset]; 5745 } 5746 5747 static boolean_t 5748 exec_child(char *cmd, char *libpath, boolean_t ignorekill, int *statusp) 5749 { 5750 pid_t pid; 5751 int status; 5752 char cmdbuf[MAXPATHLEN]; 5753 5754 pid = fork(); 5755 5756 if (cmd == NULL) { 5757 (void) strlcpy(cmdbuf, getexecname(), sizeof (cmdbuf)); 5758 cmd = cmdbuf; 5759 } 5760 5761 if (pid == -1) 5762 fatal(1, "fork failed"); 5763 5764 if (pid == 0) { /* child */ 5765 char *emptyargv[2] = { cmd, NULL }; 5766 5767 struct rlimit rl = { 1024, 1024 }; 5768 (void) setrlimit(RLIMIT_NOFILE, &rl); 5769 (void) enable_extended_FILE_stdio(-1, -1); 5770 if (libpath != NULL) 5771 VERIFY(0 == setenv("LD_LIBRARY_PATH", libpath, 1)); 5772 (void) execv(cmd, emptyargv); 5773 ztest_dump_core = B_FALSE; 5774 fatal(B_TRUE, "exec failed: %s", cmd); 5775 } 5776 5777 while (waitpid(pid, &status, 0) != pid) 5778 continue; 5779 if (statusp != NULL) 5780 *statusp = status; 5781 5782 if (WIFEXITED(status)) { 5783 if (WEXITSTATUS(status) != 0) { 5784 (void) fprintf(stderr, "child exited with code %d\n", 5785 WEXITSTATUS(status)); 5786 exit(2); 5787 } 5788 return (B_FALSE); 5789 } else if (WIFSIGNALED(status)) { 5790 if (!ignorekill || WTERMSIG(status) != SIGKILL) { 5791 (void) fprintf(stderr, "child died with signal %d\n", 5792 WTERMSIG(status)); 5793 exit(3); 5794 } 5795 return (B_TRUE); 5796 } else { 5797 (void) fprintf(stderr, "something strange happened to child\n"); 5798 exit(4); 5799 /* NOTREACHED */ 5800 } 5801 } 5802 5803 static void 5804 ztest_run_init(void) 5805 { 5806 ztest_shared_t *zs = ztest_shared; 5807 5808 ASSERT(ztest_opts.zo_init != 0); 5809 5810 /* 5811 * Blow away any existing copy of zpool.cache 5812 */ 5813 (void) remove(spa_config_path); 5814 5815 /* 5816 * Create and initialize our storage pool. 5817 */ 5818 for (int i = 1; i <= ztest_opts.zo_init; i++) { 5819 bzero(zs, sizeof (ztest_shared_t)); 5820 if (ztest_opts.zo_verbose >= 3 && 5821 ztest_opts.zo_init != 1) { 5822 (void) printf("ztest_init(), pass %d\n", i); 5823 } 5824 ztest_init(zs); 5825 } 5826 } 5827 5828 int 5829 main(int argc, char **argv) 5830 { 5831 int kills = 0; 5832 int iters = 0; 5833 int older = 0; 5834 int newer = 0; 5835 ztest_shared_t *zs; 5836 ztest_info_t *zi; 5837 ztest_shared_callstate_t *zc; 5838 char timebuf[100]; 5839 char numbuf[6]; 5840 spa_t *spa; 5841 char cmd[MAXNAMELEN]; 5842 boolean_t hasalt; 5843 5844 boolean_t ischild = (0 == lseek(ZTEST_FD_DATA, 0, SEEK_CUR)); 5845 ASSERT(ischild || errno == EBADF); 5846 5847 (void) setvbuf(stdout, NULL, _IOLBF, 0); 5848 5849 dprintf_setup(&argc, argv); 5850 5851 if (!ischild) { 5852 process_options(argc, argv); 5853 5854 setup_fds(); 5855 setup_hdr(); 5856 setup_data(); 5857 bcopy(&ztest_opts, ztest_shared_opts, 5858 sizeof (*ztest_shared_opts)); 5859 } else { 5860 setup_data(); 5861 bcopy(ztest_shared_opts, &ztest_opts, sizeof (ztest_opts)); 5862 } 5863 ASSERT3U(ztest_opts.zo_datasets, ==, ztest_shared_hdr->zh_ds_count); 5864 5865 /* Override location of zpool.cache */ 5866 (void) asprintf((char **)&spa_config_path, "%s/zpool.cache", 5867 ztest_opts.zo_dir); 5868 5869 ztest_ds = umem_alloc(ztest_opts.zo_datasets * sizeof (ztest_ds_t), 5870 UMEM_NOFAIL); 5871 zs = ztest_shared; 5872 5873 if (ischild) { 5874 metaslab_gang_bang = ztest_opts.zo_metaslab_gang_bang; 5875 metaslab_df_alloc_threshold = 5876 zs->zs_metaslab_df_alloc_threshold; 5877 5878 if (zs->zs_do_init) 5879 ztest_run_init(); 5880 else 5881 ztest_run(zs); 5882 exit(0); 5883 } 5884 5885 hasalt = (strlen(ztest_opts.zo_alt_ztest) != 0); 5886 5887 if (ztest_opts.zo_verbose >= 1) { 5888 (void) printf("%llu vdevs, %d datasets, %d threads," 5889 " %llu seconds...\n", 5890 (u_longlong_t)ztest_opts.zo_vdevs, 5891 ztest_opts.zo_datasets, 5892 ztest_opts.zo_threads, 5893 (u_longlong_t)ztest_opts.zo_time); 5894 } 5895 5896 (void) strlcpy(cmd, getexecname(), sizeof (cmd)); 5897 5898 zs->zs_do_init = B_TRUE; 5899 if (strlen(ztest_opts.zo_alt_ztest) != 0) { 5900 if (ztest_opts.zo_verbose >= 1) { 5901 (void) printf("Executing older ztest for " 5902 "initialization: %s\n", ztest_opts.zo_alt_ztest); 5903 } 5904 VERIFY(!exec_child(ztest_opts.zo_alt_ztest, 5905 ztest_opts.zo_alt_libpath, B_FALSE, NULL)); 5906 } else { 5907 VERIFY(!exec_child(NULL, NULL, B_FALSE, NULL)); 5908 } 5909 zs->zs_do_init = B_FALSE; 5910 5911 zs->zs_proc_start = gethrtime(); 5912 zs->zs_proc_stop = zs->zs_proc_start + ztest_opts.zo_time * NANOSEC; 5913 5914 for (int f = 0; f < ZTEST_FUNCS; f++) { 5915 zi = &ztest_info[f]; 5916 zc = ZTEST_GET_SHARED_CALLSTATE(f); 5917 if (zs->zs_proc_start + zi->zi_interval[0] > zs->zs_proc_stop) 5918 zc->zc_next = UINT64_MAX; 5919 else 5920 zc->zc_next = zs->zs_proc_start + 5921 ztest_random(2 * zi->zi_interval[0] + 1); 5922 } 5923 5924 /* 5925 * Run the tests in a loop. These tests include fault injection 5926 * to verify that self-healing data works, and forced crashes 5927 * to verify that we never lose on-disk consistency. 5928 */ 5929 while (gethrtime() < zs->zs_proc_stop) { 5930 int status; 5931 boolean_t killed; 5932 5933 /* 5934 * Initialize the workload counters for each function. 5935 */ 5936 for (int f = 0; f < ZTEST_FUNCS; f++) { 5937 zc = ZTEST_GET_SHARED_CALLSTATE(f); 5938 zc->zc_count = 0; 5939 zc->zc_time = 0; 5940 } 5941 5942 /* Set the allocation switch size */ 5943 zs->zs_metaslab_df_alloc_threshold = 5944 ztest_random(zs->zs_metaslab_sz / 4) + 1; 5945 5946 if (!hasalt || ztest_random(2) == 0) { 5947 if (hasalt && ztest_opts.zo_verbose >= 1) { 5948 (void) printf("Executing newer ztest: %s\n", 5949 cmd); 5950 } 5951 newer++; 5952 killed = exec_child(cmd, NULL, B_TRUE, &status); 5953 } else { 5954 if (hasalt && ztest_opts.zo_verbose >= 1) { 5955 (void) printf("Executing older ztest: %s\n", 5956 ztest_opts.zo_alt_ztest); 5957 } 5958 older++; 5959 killed = exec_child(ztest_opts.zo_alt_ztest, 5960 ztest_opts.zo_alt_libpath, B_TRUE, &status); 5961 } 5962 5963 if (killed) 5964 kills++; 5965 iters++; 5966 5967 if (ztest_opts.zo_verbose >= 1) { 5968 hrtime_t now = gethrtime(); 5969 5970 now = MIN(now, zs->zs_proc_stop); 5971 print_time(zs->zs_proc_stop - now, timebuf); 5972 nicenum(zs->zs_space, numbuf); 5973 5974 (void) printf("Pass %3d, %8s, %3llu ENOSPC, " 5975 "%4.1f%% of %5s used, %3.0f%% done, %8s to go\n", 5976 iters, 5977 WIFEXITED(status) ? "Complete" : "SIGKILL", 5978 (u_longlong_t)zs->zs_enospc_count, 5979 100.0 * zs->zs_alloc / zs->zs_space, 5980 numbuf, 5981 100.0 * (now - zs->zs_proc_start) / 5982 (ztest_opts.zo_time * NANOSEC), timebuf); 5983 } 5984 5985 if (ztest_opts.zo_verbose >= 2) { 5986 (void) printf("\nWorkload summary:\n\n"); 5987 (void) printf("%7s %9s %s\n", 5988 "Calls", "Time", "Function"); 5989 (void) printf("%7s %9s %s\n", 5990 "-----", "----", "--------"); 5991 for (int f = 0; f < ZTEST_FUNCS; f++) { 5992 Dl_info dli; 5993 5994 zi = &ztest_info[f]; 5995 zc = ZTEST_GET_SHARED_CALLSTATE(f); 5996 print_time(zc->zc_time, timebuf); 5997 (void) dladdr((void *)zi->zi_func, &dli); 5998 (void) printf("%7llu %9s %s\n", 5999 (u_longlong_t)zc->zc_count, timebuf, 6000 dli.dli_sname); 6001 } 6002 (void) printf("\n"); 6003 } 6004 6005 /* 6006 * It's possible that we killed a child during a rename test, 6007 * in which case we'll have a 'ztest_tmp' pool lying around 6008 * instead of 'ztest'. Do a blind rename in case this happened. 6009 */ 6010 kernel_init(FREAD); 6011 if (spa_open(ztest_opts.zo_pool, &spa, FTAG) == 0) { 6012 spa_close(spa, FTAG); 6013 } else { 6014 char tmpname[MAXNAMELEN]; 6015 kernel_fini(); 6016 kernel_init(FREAD | FWRITE); 6017 (void) snprintf(tmpname, sizeof (tmpname), "%s_tmp", 6018 ztest_opts.zo_pool); 6019 (void) spa_rename(tmpname, ztest_opts.zo_pool); 6020 } 6021 kernel_fini(); 6022 6023 ztest_run_zdb(ztest_opts.zo_pool); 6024 } 6025 6026 if (ztest_opts.zo_verbose >= 1) { 6027 if (hasalt) { 6028 (void) printf("%d runs of older ztest: %s\n", older, 6029 ztest_opts.zo_alt_ztest); 6030 (void) printf("%d runs of newer ztest: %s\n", newer, 6031 cmd); 6032 } 6033 (void) printf("%d killed, %d completed, %.0f%% kill rate\n", 6034 kills, iters - kills, (100.0 * kills) / MAX(1, iters)); 6035 } 6036 6037 return (0); 6038 } 6039