1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 /* 29 * The objective of this program is to provide a DMU/ZAP/SPA stress test 30 * that runs entirely in userland, is easy to use, and easy to extend. 31 * 32 * The overall design of the ztest program is as follows: 33 * 34 * (1) For each major functional area (e.g. adding vdevs to a pool, 35 * creating and destroying datasets, reading and writing objects, etc) 36 * we have a simple routine to test that functionality. These 37 * individual routines do not have to do anything "stressful". 38 * 39 * (2) We turn these simple functionality tests into a stress test by 40 * running them all in parallel, with as many threads as desired, 41 * and spread across as many datasets, objects, and vdevs as desired. 42 * 43 * (3) While all this is happening, we inject faults into the pool to 44 * verify that self-healing data really works. 45 * 46 * (4) Every time we open a dataset, we change its checksum and compression 47 * functions. Thus even individual objects vary from block to block 48 * in which checksum they use and whether they're compressed. 49 * 50 * (5) To verify that we never lose on-disk consistency after a crash, 51 * we run the entire test in a child of the main process. 52 * At random times, the child self-immolates with a SIGKILL. 53 * This is the software equivalent of pulling the power cord. 54 * The parent then runs the test again, using the existing 55 * storage pool, as many times as desired. 56 * 57 * (6) To verify that we don't have future leaks or temporal incursions, 58 * many of the functional tests record the transaction group number 59 * as part of their data. When reading old data, they verify that 60 * the transaction group number is less than the current, open txg. 61 * If you add a new test, please do this if applicable. 62 * 63 * When run with no arguments, ztest runs for about five minutes and 64 * produces no output if successful. To get a little bit of information, 65 * specify -V. To get more information, specify -VV, and so on. 66 * 67 * To turn this into an overnight stress test, use -T to specify run time. 68 * 69 * You can ask more more vdevs [-v], datasets [-d], or threads [-t] 70 * to increase the pool capacity, fanout, and overall stress level. 71 * 72 * The -N(okill) option will suppress kills, so each child runs to completion. 73 * This can be useful when you're trying to distinguish temporal incursions 74 * from plain old race conditions. 75 */ 76 77 #include <sys/zfs_context.h> 78 #include <sys/spa.h> 79 #include <sys/dmu.h> 80 #include <sys/txg.h> 81 #include <sys/zap.h> 82 #include <sys/dmu_traverse.h> 83 #include <sys/dmu_objset.h> 84 #include <sys/poll.h> 85 #include <sys/stat.h> 86 #include <sys/time.h> 87 #include <sys/wait.h> 88 #include <sys/mman.h> 89 #include <sys/resource.h> 90 #include <sys/zio.h> 91 #include <sys/zio_checksum.h> 92 #include <sys/zio_compress.h> 93 #include <sys/zil.h> 94 #include <sys/vdev_impl.h> 95 #include <sys/spa_impl.h> 96 #include <sys/dsl_prop.h> 97 #include <sys/refcount.h> 98 #include <stdio.h> 99 #include <stdio_ext.h> 100 #include <stdlib.h> 101 #include <unistd.h> 102 #include <signal.h> 103 #include <umem.h> 104 #include <dlfcn.h> 105 #include <ctype.h> 106 #include <math.h> 107 #include <sys/fs/zfs.h> 108 109 static char cmdname[] = "ztest"; 110 static char *zopt_pool = cmdname; 111 112 static uint64_t zopt_vdevs = 5; 113 static uint64_t zopt_vdevtime; 114 static int zopt_ashift = SPA_MINBLOCKSHIFT; 115 static int zopt_mirrors = 2; 116 static int zopt_raidz = 4; 117 static int zopt_raidz_parity = 1; 118 static size_t zopt_vdev_size = SPA_MINDEVSIZE; 119 static int zopt_datasets = 7; 120 static int zopt_threads = 23; 121 static uint64_t zopt_passtime = 60; /* 60 seconds */ 122 static uint64_t zopt_killrate = 70; /* 70% kill rate */ 123 static int zopt_verbose = 0; 124 static int zopt_init = 1; 125 static char *zopt_dir = "/tmp"; 126 static uint64_t zopt_time = 300; /* 5 minutes */ 127 static int zopt_maxfaults; 128 static uint16_t zopt_write_fail_shift = 5; 129 130 typedef struct ztest_block_tag { 131 uint64_t bt_objset; 132 uint64_t bt_object; 133 uint64_t bt_offset; 134 uint64_t bt_txg; 135 uint64_t bt_thread; 136 uint64_t bt_seq; 137 } ztest_block_tag_t; 138 139 typedef struct ztest_args { 140 char za_pool[MAXNAMELEN]; 141 spa_t *za_spa; 142 objset_t *za_os; 143 zilog_t *za_zilog; 144 thread_t za_thread; 145 uint64_t za_instance; 146 uint64_t za_random; 147 uint64_t za_diroff; 148 uint64_t za_diroff_shared; 149 uint64_t za_zil_seq; 150 hrtime_t za_start; 151 hrtime_t za_stop; 152 hrtime_t za_kill; 153 traverse_handle_t *za_th; 154 /* 155 * Thread-local variables can go here to aid debugging. 156 */ 157 ztest_block_tag_t za_rbt; 158 ztest_block_tag_t za_wbt; 159 dmu_object_info_t za_doi; 160 dmu_buf_t *za_dbuf; 161 } ztest_args_t; 162 163 typedef void ztest_func_t(ztest_args_t *); 164 165 /* 166 * Note: these aren't static because we want dladdr() to work. 167 */ 168 ztest_func_t ztest_dmu_read_write; 169 ztest_func_t ztest_dmu_write_parallel; 170 ztest_func_t ztest_dmu_object_alloc_free; 171 ztest_func_t ztest_zap; 172 ztest_func_t ztest_zap_parallel; 173 ztest_func_t ztest_traverse; 174 ztest_func_t ztest_dsl_prop_get_set; 175 ztest_func_t ztest_dmu_objset_create_destroy; 176 ztest_func_t ztest_dmu_snapshot_create_destroy; 177 ztest_func_t ztest_spa_create_destroy; 178 ztest_func_t ztest_fault_inject; 179 ztest_func_t ztest_vdev_attach_detach; 180 ztest_func_t ztest_vdev_LUN_growth; 181 ztest_func_t ztest_vdev_add_remove; 182 ztest_func_t ztest_scrub; 183 ztest_func_t ztest_spa_rename; 184 185 typedef struct ztest_info { 186 ztest_func_t *zi_func; /* test function */ 187 uint64_t zi_iters; /* iterations per execution */ 188 uint64_t *zi_interval; /* execute every <interval> seconds */ 189 uint64_t zi_calls; /* per-pass count */ 190 uint64_t zi_call_time; /* per-pass time */ 191 uint64_t zi_call_total; /* cumulative total */ 192 uint64_t zi_call_target; /* target cumulative total */ 193 } ztest_info_t; 194 195 uint64_t zopt_always = 0; /* all the time */ 196 uint64_t zopt_often = 1; /* every second */ 197 uint64_t zopt_sometimes = 10; /* every 10 seconds */ 198 uint64_t zopt_rarely = 60; /* every 60 seconds */ 199 200 ztest_info_t ztest_info[] = { 201 { ztest_dmu_read_write, 1, &zopt_always }, 202 { ztest_dmu_write_parallel, 30, &zopt_always }, 203 { ztest_dmu_object_alloc_free, 1, &zopt_always }, 204 { ztest_zap, 30, &zopt_always }, 205 { ztest_zap_parallel, 100, &zopt_always }, 206 { ztest_traverse, 1, &zopt_often }, 207 { ztest_dsl_prop_get_set, 1, &zopt_sometimes }, 208 { ztest_dmu_objset_create_destroy, 1, &zopt_sometimes }, 209 { ztest_dmu_snapshot_create_destroy, 1, &zopt_rarely }, 210 { ztest_spa_create_destroy, 1, &zopt_sometimes }, 211 { ztest_fault_inject, 1, &zopt_sometimes }, 212 { ztest_spa_rename, 1, &zopt_rarely }, 213 { ztest_vdev_attach_detach, 1, &zopt_rarely }, 214 { ztest_vdev_LUN_growth, 1, &zopt_rarely }, 215 { ztest_vdev_add_remove, 1, &zopt_vdevtime }, 216 { ztest_scrub, 1, &zopt_vdevtime }, 217 }; 218 219 #define ZTEST_FUNCS (sizeof (ztest_info) / sizeof (ztest_info_t)) 220 221 #define ZTEST_SYNC_LOCKS 16 222 223 /* 224 * Stuff we need to share writably between parent and child. 225 */ 226 typedef struct ztest_shared { 227 mutex_t zs_vdev_lock; 228 rwlock_t zs_name_lock; 229 uint64_t zs_vdev_primaries; 230 uint64_t zs_enospc_count; 231 hrtime_t zs_start_time; 232 hrtime_t zs_stop_time; 233 uint64_t zs_alloc; 234 uint64_t zs_space; 235 ztest_info_t zs_info[ZTEST_FUNCS]; 236 mutex_t zs_sync_lock[ZTEST_SYNC_LOCKS]; 237 uint64_t zs_seq[ZTEST_SYNC_LOCKS]; 238 } ztest_shared_t; 239 240 static char ztest_dev_template[] = "%s/%s.%llua"; 241 static ztest_shared_t *ztest_shared; 242 243 static int ztest_random_fd; 244 static int ztest_dump_core = 1; 245 246 static boolean_t ztest_exiting = B_FALSE; 247 248 extern uint64_t metaslab_gang_bang; 249 extern uint16_t zio_zil_fail_shift; 250 extern uint16_t zio_io_fail_shift; 251 252 #define ZTEST_DIROBJ 1 253 #define ZTEST_MICROZAP_OBJ 2 254 #define ZTEST_FATZAP_OBJ 3 255 256 #define ZTEST_DIROBJ_BLOCKSIZE (1 << 10) 257 #define ZTEST_DIRSIZE 256 258 259 static void usage(boolean_t) __NORETURN; 260 261 /* 262 * These libumem hooks provide a reasonable set of defaults for the allocator's 263 * debugging facilities. 264 */ 265 const char * 266 _umem_debug_init() 267 { 268 return ("default,verbose"); /* $UMEM_DEBUG setting */ 269 } 270 271 const char * 272 _umem_logging_init(void) 273 { 274 return ("fail,contents"); /* $UMEM_LOGGING setting */ 275 } 276 277 #define FATAL_MSG_SZ 1024 278 279 char *fatal_msg; 280 281 static void 282 fatal(int do_perror, char *message, ...) 283 { 284 va_list args; 285 int save_errno = errno; 286 char buf[FATAL_MSG_SZ]; 287 288 (void) fflush(stdout); 289 290 va_start(args, message); 291 (void) sprintf(buf, "ztest: "); 292 /* LINTED */ 293 (void) vsprintf(buf + strlen(buf), message, args); 294 va_end(args); 295 if (do_perror) { 296 (void) snprintf(buf + strlen(buf), FATAL_MSG_SZ - strlen(buf), 297 ": %s", strerror(save_errno)); 298 } 299 (void) fprintf(stderr, "%s\n", buf); 300 fatal_msg = buf; /* to ease debugging */ 301 if (ztest_dump_core) 302 abort(); 303 exit(3); 304 } 305 306 static int 307 str2shift(const char *buf) 308 { 309 const char *ends = "BKMGTPEZ"; 310 int i; 311 312 if (buf[0] == '\0') 313 return (0); 314 for (i = 0; i < strlen(ends); i++) { 315 if (toupper(buf[0]) == ends[i]) 316 break; 317 } 318 if (i == strlen(ends)) { 319 (void) fprintf(stderr, "ztest: invalid bytes suffix: %s\n", 320 buf); 321 usage(B_FALSE); 322 } 323 if (buf[1] == '\0' || (toupper(buf[1]) == 'B' && buf[2] == '\0')) { 324 return (10*i); 325 } 326 (void) fprintf(stderr, "ztest: invalid bytes suffix: %s\n", buf); 327 usage(B_FALSE); 328 /* NOTREACHED */ 329 } 330 331 static uint64_t 332 nicenumtoull(const char *buf) 333 { 334 char *end; 335 uint64_t val; 336 337 val = strtoull(buf, &end, 0); 338 if (end == buf) { 339 (void) fprintf(stderr, "ztest: bad numeric value: %s\n", buf); 340 usage(B_FALSE); 341 } else if (end[0] == '.') { 342 double fval = strtod(buf, &end); 343 fval *= pow(2, str2shift(end)); 344 if (fval > UINT64_MAX) { 345 (void) fprintf(stderr, "ztest: value too large: %s\n", 346 buf); 347 usage(B_FALSE); 348 } 349 val = (uint64_t)fval; 350 } else { 351 int shift = str2shift(end); 352 if (shift >= 64 || (val << shift) >> shift != val) { 353 (void) fprintf(stderr, "ztest: value too large: %s\n", 354 buf); 355 usage(B_FALSE); 356 } 357 val <<= shift; 358 } 359 return (val); 360 } 361 362 static void 363 usage(boolean_t requested) 364 { 365 char nice_vdev_size[10]; 366 char nice_gang_bang[10]; 367 FILE *fp = requested ? stdout : stderr; 368 369 nicenum(zopt_vdev_size, nice_vdev_size); 370 nicenum(metaslab_gang_bang, nice_gang_bang); 371 372 (void) fprintf(fp, "Usage: %s\n" 373 "\t[-v vdevs (default: %llu)]\n" 374 "\t[-s size_of_each_vdev (default: %s)]\n" 375 "\t[-a alignment_shift (default: %d) (use 0 for random)]\n" 376 "\t[-m mirror_copies (default: %d)]\n" 377 "\t[-r raidz_disks (default: %d)]\n" 378 "\t[-R raidz_parity (default: %d)]\n" 379 "\t[-d datasets (default: %d)]\n" 380 "\t[-t threads (default: %d)]\n" 381 "\t[-g gang_block_threshold (default: %s)]\n" 382 "\t[-i initialize pool i times (default: %d)]\n" 383 "\t[-k kill percentage (default: %llu%%)]\n" 384 "\t[-p pool_name (default: %s)]\n" 385 "\t[-f file directory for vdev files (default: %s)]\n" 386 "\t[-V(erbose)] (use multiple times for ever more blather)\n" 387 "\t[-E(xisting)] (use existing pool instead of creating new one)\n" 388 "\t[-T time] total run time (default: %llu sec)\n" 389 "\t[-P passtime] time per pass (default: %llu sec)\n" 390 "\t[-z zil failure rate (default: fail every 2^%llu allocs)]\n" 391 "\t[-w write failure rate (default: fail every 2^%llu allocs)]\n" 392 "\t[-h] (print help)\n" 393 "", 394 cmdname, 395 (u_longlong_t)zopt_vdevs, /* -v */ 396 nice_vdev_size, /* -s */ 397 zopt_ashift, /* -a */ 398 zopt_mirrors, /* -m */ 399 zopt_raidz, /* -r */ 400 zopt_raidz_parity, /* -R */ 401 zopt_datasets, /* -d */ 402 zopt_threads, /* -t */ 403 nice_gang_bang, /* -g */ 404 zopt_init, /* -i */ 405 (u_longlong_t)zopt_killrate, /* -k */ 406 zopt_pool, /* -p */ 407 zopt_dir, /* -f */ 408 (u_longlong_t)zopt_time, /* -T */ 409 (u_longlong_t)zopt_passtime, /* -P */ 410 (u_longlong_t)zio_zil_fail_shift, /* -z */ 411 (u_longlong_t)zopt_write_fail_shift); /* -w */ 412 exit(requested ? 0 : 1); 413 } 414 415 static uint64_t 416 ztest_random(uint64_t range) 417 { 418 uint64_t r; 419 420 if (range == 0) 421 return (0); 422 423 if (read(ztest_random_fd, &r, sizeof (r)) != sizeof (r)) 424 fatal(1, "short read from /dev/urandom"); 425 426 return (r % range); 427 } 428 429 static void 430 ztest_record_enospc(char *s) 431 { 432 dprintf("ENOSPC doing: %s\n", s ? s : "<unknown>"); 433 ztest_shared->zs_enospc_count++; 434 } 435 436 static void 437 process_options(int argc, char **argv) 438 { 439 int opt; 440 uint64_t value; 441 442 /* By default, test gang blocks for blocks 32K and greater */ 443 metaslab_gang_bang = 32 << 10; 444 445 /* Default value, fail every 32nd allocation */ 446 zio_zil_fail_shift = 5; 447 448 while ((opt = getopt(argc, argv, 449 "v:s:a:m:r:R:d:t:g:i:k:p:f:VET:P:z:w:h")) != EOF) { 450 value = 0; 451 switch (opt) { 452 case 'v': 453 case 's': 454 case 'a': 455 case 'm': 456 case 'r': 457 case 'R': 458 case 'd': 459 case 't': 460 case 'g': 461 case 'i': 462 case 'k': 463 case 'T': 464 case 'P': 465 case 'z': 466 case 'w': 467 value = nicenumtoull(optarg); 468 } 469 switch (opt) { 470 case 'v': 471 zopt_vdevs = value; 472 break; 473 case 's': 474 zopt_vdev_size = MAX(SPA_MINDEVSIZE, value); 475 break; 476 case 'a': 477 zopt_ashift = value; 478 break; 479 case 'm': 480 zopt_mirrors = value; 481 break; 482 case 'r': 483 zopt_raidz = MAX(1, value); 484 break; 485 case 'R': 486 zopt_raidz_parity = MIN(MAX(value, 1), 2); 487 break; 488 case 'd': 489 zopt_datasets = MAX(1, value); 490 break; 491 case 't': 492 zopt_threads = MAX(1, value); 493 break; 494 case 'g': 495 metaslab_gang_bang = MAX(SPA_MINBLOCKSIZE << 1, value); 496 break; 497 case 'i': 498 zopt_init = value; 499 break; 500 case 'k': 501 zopt_killrate = value; 502 break; 503 case 'p': 504 zopt_pool = strdup(optarg); 505 break; 506 case 'f': 507 zopt_dir = strdup(optarg); 508 break; 509 case 'V': 510 zopt_verbose++; 511 break; 512 case 'E': 513 zopt_init = 0; 514 break; 515 case 'T': 516 zopt_time = value; 517 break; 518 case 'P': 519 zopt_passtime = MAX(1, value); 520 break; 521 case 'z': 522 zio_zil_fail_shift = MIN(value, 16); 523 break; 524 case 'w': 525 zopt_write_fail_shift = MIN(value, 16); 526 break; 527 case 'h': 528 usage(B_TRUE); 529 break; 530 case '?': 531 default: 532 usage(B_FALSE); 533 break; 534 } 535 } 536 537 zopt_raidz_parity = MIN(zopt_raidz_parity, zopt_raidz - 1); 538 539 zopt_vdevtime = (zopt_vdevs > 0 ? zopt_time / zopt_vdevs : UINT64_MAX); 540 zopt_maxfaults = MAX(zopt_mirrors, 1) * (zopt_raidz_parity + 1) - 1; 541 } 542 543 static uint64_t 544 ztest_get_ashift(void) 545 { 546 if (zopt_ashift == 0) 547 return (SPA_MINBLOCKSHIFT + ztest_random(3)); 548 return (zopt_ashift); 549 } 550 551 static nvlist_t * 552 make_vdev_file(size_t size) 553 { 554 char dev_name[MAXPATHLEN]; 555 uint64_t vdev; 556 uint64_t ashift = ztest_get_ashift(); 557 int fd; 558 nvlist_t *file; 559 560 if (size == 0) { 561 (void) snprintf(dev_name, sizeof (dev_name), "%s", 562 "/dev/bogus"); 563 } else { 564 vdev = ztest_shared->zs_vdev_primaries++; 565 (void) sprintf(dev_name, ztest_dev_template, 566 zopt_dir, zopt_pool, vdev); 567 568 fd = open(dev_name, O_RDWR | O_CREAT | O_TRUNC, 0666); 569 if (fd == -1) 570 fatal(1, "can't open %s", dev_name); 571 if (ftruncate(fd, size) != 0) 572 fatal(1, "can't ftruncate %s", dev_name); 573 (void) close(fd); 574 } 575 576 VERIFY(nvlist_alloc(&file, NV_UNIQUE_NAME, 0) == 0); 577 VERIFY(nvlist_add_string(file, ZPOOL_CONFIG_TYPE, VDEV_TYPE_FILE) == 0); 578 VERIFY(nvlist_add_string(file, ZPOOL_CONFIG_PATH, dev_name) == 0); 579 VERIFY(nvlist_add_uint64(file, ZPOOL_CONFIG_ASHIFT, ashift) == 0); 580 581 return (file); 582 } 583 584 static nvlist_t * 585 make_vdev_raidz(size_t size, int r) 586 { 587 nvlist_t *raidz, **child; 588 int c; 589 590 if (r < 2) 591 return (make_vdev_file(size)); 592 593 child = umem_alloc(r * sizeof (nvlist_t *), UMEM_NOFAIL); 594 595 for (c = 0; c < r; c++) 596 child[c] = make_vdev_file(size); 597 598 VERIFY(nvlist_alloc(&raidz, NV_UNIQUE_NAME, 0) == 0); 599 VERIFY(nvlist_add_string(raidz, ZPOOL_CONFIG_TYPE, 600 VDEV_TYPE_RAIDZ) == 0); 601 VERIFY(nvlist_add_uint64(raidz, ZPOOL_CONFIG_NPARITY, 602 zopt_raidz_parity) == 0); 603 VERIFY(nvlist_add_nvlist_array(raidz, ZPOOL_CONFIG_CHILDREN, 604 child, r) == 0); 605 606 for (c = 0; c < r; c++) 607 nvlist_free(child[c]); 608 609 umem_free(child, r * sizeof (nvlist_t *)); 610 611 return (raidz); 612 } 613 614 static nvlist_t * 615 make_vdev_mirror(size_t size, int log, int r, int m) 616 { 617 nvlist_t *mirror, **child; 618 int c; 619 620 if (m < 1) 621 return (make_vdev_raidz(size, r)); 622 623 child = umem_alloc(m * sizeof (nvlist_t *), UMEM_NOFAIL); 624 625 for (c = 0; c < m; c++) 626 child[c] = make_vdev_raidz(size, r); 627 628 VERIFY(nvlist_alloc(&mirror, NV_UNIQUE_NAME, 0) == 0); 629 VERIFY(nvlist_add_string(mirror, ZPOOL_CONFIG_TYPE, 630 VDEV_TYPE_MIRROR) == 0); 631 VERIFY(nvlist_add_nvlist_array(mirror, ZPOOL_CONFIG_CHILDREN, 632 child, m) == 0); 633 VERIFY(nvlist_add_uint64(mirror, ZPOOL_CONFIG_IS_LOG, log) == 0); 634 635 for (c = 0; c < m; c++) 636 nvlist_free(child[c]); 637 638 umem_free(child, m * sizeof (nvlist_t *)); 639 640 return (mirror); 641 } 642 643 static nvlist_t * 644 make_vdev_root(size_t size, int log, int r, int m, int t) 645 { 646 nvlist_t *root, **child; 647 int c; 648 649 ASSERT(t > 0); 650 651 child = umem_alloc(t * sizeof (nvlist_t *), UMEM_NOFAIL); 652 653 for (c = 0; c < t; c++) 654 child[c] = make_vdev_mirror(size, log, r, m); 655 656 VERIFY(nvlist_alloc(&root, NV_UNIQUE_NAME, 0) == 0); 657 VERIFY(nvlist_add_string(root, ZPOOL_CONFIG_TYPE, VDEV_TYPE_ROOT) == 0); 658 VERIFY(nvlist_add_nvlist_array(root, ZPOOL_CONFIG_CHILDREN, 659 child, t) == 0); 660 661 for (c = 0; c < t; c++) 662 nvlist_free(child[c]); 663 664 umem_free(child, t * sizeof (nvlist_t *)); 665 666 return (root); 667 } 668 669 static void 670 ztest_set_random_blocksize(objset_t *os, uint64_t object, dmu_tx_t *tx) 671 { 672 int bs = SPA_MINBLOCKSHIFT + 673 ztest_random(SPA_MAXBLOCKSHIFT - SPA_MINBLOCKSHIFT + 1); 674 int ibs = DN_MIN_INDBLKSHIFT + 675 ztest_random(DN_MAX_INDBLKSHIFT - DN_MIN_INDBLKSHIFT + 1); 676 int error; 677 678 error = dmu_object_set_blocksize(os, object, 1ULL << bs, ibs, tx); 679 if (error) { 680 char osname[300]; 681 dmu_objset_name(os, osname); 682 fatal(0, "dmu_object_set_blocksize('%s', %llu, %d, %d) = %d", 683 osname, object, 1 << bs, ibs, error); 684 } 685 } 686 687 static uint8_t 688 ztest_random_checksum(void) 689 { 690 uint8_t checksum; 691 692 do { 693 checksum = ztest_random(ZIO_CHECKSUM_FUNCTIONS); 694 } while (zio_checksum_table[checksum].ci_zbt); 695 696 if (checksum == ZIO_CHECKSUM_OFF) 697 checksum = ZIO_CHECKSUM_ON; 698 699 return (checksum); 700 } 701 702 static uint8_t 703 ztest_random_compress(void) 704 { 705 return ((uint8_t)ztest_random(ZIO_COMPRESS_FUNCTIONS)); 706 } 707 708 typedef struct ztest_replay { 709 objset_t *zr_os; 710 uint64_t zr_assign; 711 } ztest_replay_t; 712 713 static int 714 ztest_replay_create(ztest_replay_t *zr, lr_create_t *lr, boolean_t byteswap) 715 { 716 objset_t *os = zr->zr_os; 717 dmu_tx_t *tx; 718 int error; 719 720 if (byteswap) 721 byteswap_uint64_array(lr, sizeof (*lr)); 722 723 tx = dmu_tx_create(os); 724 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); 725 error = dmu_tx_assign(tx, zr->zr_assign); 726 if (error) { 727 dmu_tx_abort(tx); 728 return (error); 729 } 730 731 error = dmu_object_claim(os, lr->lr_doid, lr->lr_mode, 0, 732 DMU_OT_NONE, 0, tx); 733 ASSERT3U(error, ==, 0); 734 dmu_tx_commit(tx); 735 736 if (zopt_verbose >= 5) { 737 char osname[MAXNAMELEN]; 738 dmu_objset_name(os, osname); 739 (void) printf("replay create of %s object %llu" 740 " in txg %llu = %d\n", 741 osname, (u_longlong_t)lr->lr_doid, 742 (u_longlong_t)zr->zr_assign, error); 743 } 744 745 return (error); 746 } 747 748 static int 749 ztest_replay_remove(ztest_replay_t *zr, lr_remove_t *lr, boolean_t byteswap) 750 { 751 objset_t *os = zr->zr_os; 752 dmu_tx_t *tx; 753 int error; 754 755 if (byteswap) 756 byteswap_uint64_array(lr, sizeof (*lr)); 757 758 tx = dmu_tx_create(os); 759 dmu_tx_hold_free(tx, lr->lr_doid, 0, DMU_OBJECT_END); 760 error = dmu_tx_assign(tx, zr->zr_assign); 761 if (error) { 762 dmu_tx_abort(tx); 763 return (error); 764 } 765 766 error = dmu_object_free(os, lr->lr_doid, tx); 767 dmu_tx_commit(tx); 768 769 return (error); 770 } 771 772 zil_replay_func_t *ztest_replay_vector[TX_MAX_TYPE] = { 773 NULL, /* 0 no such transaction type */ 774 ztest_replay_create, /* TX_CREATE */ 775 NULL, /* TX_MKDIR */ 776 NULL, /* TX_MKXATTR */ 777 NULL, /* TX_SYMLINK */ 778 ztest_replay_remove, /* TX_REMOVE */ 779 NULL, /* TX_RMDIR */ 780 NULL, /* TX_LINK */ 781 NULL, /* TX_RENAME */ 782 NULL, /* TX_WRITE */ 783 NULL, /* TX_TRUNCATE */ 784 NULL, /* TX_SETATTR */ 785 NULL, /* TX_ACL */ 786 }; 787 788 /* 789 * Verify that we can't destroy an active pool, create an existing pool, 790 * or create a pool with a bad vdev spec. 791 */ 792 void 793 ztest_spa_create_destroy(ztest_args_t *za) 794 { 795 int error; 796 spa_t *spa; 797 nvlist_t *nvroot; 798 799 /* 800 * Attempt to create using a bad file. 801 */ 802 nvroot = make_vdev_root(0, 0, 0, 0, 1); 803 error = spa_create("ztest_bad_file", nvroot, NULL, NULL); 804 nvlist_free(nvroot); 805 if (error != ENOENT) 806 fatal(0, "spa_create(bad_file) = %d", error); 807 808 /* 809 * Attempt to create using a bad mirror. 810 */ 811 nvroot = make_vdev_root(0, 0, 0, 2, 1); 812 error = spa_create("ztest_bad_mirror", nvroot, NULL, NULL); 813 nvlist_free(nvroot); 814 if (error != ENOENT) 815 fatal(0, "spa_create(bad_mirror) = %d", error); 816 817 /* 818 * Attempt to create an existing pool. It shouldn't matter 819 * what's in the nvroot; we should fail with EEXIST. 820 */ 821 (void) rw_rdlock(&ztest_shared->zs_name_lock); 822 nvroot = make_vdev_root(0, 0, 0, 0, 1); 823 error = spa_create(za->za_pool, nvroot, NULL, NULL); 824 nvlist_free(nvroot); 825 if (error != EEXIST) 826 fatal(0, "spa_create(whatever) = %d", error); 827 828 error = spa_open(za->za_pool, &spa, FTAG); 829 if (error) 830 fatal(0, "spa_open() = %d", error); 831 832 error = spa_destroy(za->za_pool); 833 if (error != EBUSY) 834 fatal(0, "spa_destroy() = %d", error); 835 836 spa_close(spa, FTAG); 837 (void) rw_unlock(&ztest_shared->zs_name_lock); 838 } 839 840 /* 841 * Verify that vdev_add() works as expected. 842 */ 843 void 844 ztest_vdev_add_remove(ztest_args_t *za) 845 { 846 spa_t *spa = za->za_spa; 847 uint64_t leaves = MAX(zopt_mirrors, 1) * zopt_raidz; 848 nvlist_t *nvroot; 849 int error; 850 851 if (zopt_verbose >= 6) 852 (void) printf("adding vdev\n"); 853 854 (void) mutex_lock(&ztest_shared->zs_vdev_lock); 855 856 spa_config_enter(spa, RW_READER, FTAG); 857 858 ztest_shared->zs_vdev_primaries = 859 spa->spa_root_vdev->vdev_children * leaves; 860 861 spa_config_exit(spa, FTAG); 862 863 /* 864 * Make 1/4 of the devices be log devices. 865 */ 866 nvroot = make_vdev_root(zopt_vdev_size, 867 ztest_random(4) == 0, zopt_raidz, zopt_mirrors, 1); 868 869 error = spa_vdev_add(spa, nvroot); 870 nvlist_free(nvroot); 871 872 (void) mutex_unlock(&ztest_shared->zs_vdev_lock); 873 874 if (error == ENOSPC) 875 ztest_record_enospc("spa_vdev_add"); 876 else if (error != 0) 877 fatal(0, "spa_vdev_add() = %d", error); 878 879 if (zopt_verbose >= 6) 880 (void) printf("spa_vdev_add = %d, as expected\n", error); 881 } 882 883 static vdev_t * 884 vdev_lookup_by_path(vdev_t *vd, const char *path) 885 { 886 int c; 887 vdev_t *mvd; 888 889 if (vd->vdev_path != NULL) { 890 if (vd->vdev_wholedisk == 1) { 891 /* 892 * For whole disks, the internal path has 's0', but the 893 * path passed in by the user doesn't. 894 */ 895 if (strlen(path) == strlen(vd->vdev_path) - 2 && 896 strncmp(path, vd->vdev_path, strlen(path)) == 0) 897 return (vd); 898 } else if (strcmp(path, vd->vdev_path) == 0) { 899 return (vd); 900 } 901 } 902 903 for (c = 0; c < vd->vdev_children; c++) 904 if ((mvd = vdev_lookup_by_path(vd->vdev_child[c], path)) != 905 NULL) 906 return (mvd); 907 908 return (NULL); 909 } 910 911 /* 912 * Verify that we can attach and detach devices. 913 */ 914 void 915 ztest_vdev_attach_detach(ztest_args_t *za) 916 { 917 spa_t *spa = za->za_spa; 918 vdev_t *rvd = spa->spa_root_vdev; 919 vdev_t *oldvd, *newvd, *pvd; 920 nvlist_t *root, *file; 921 uint64_t leaves = MAX(zopt_mirrors, 1) * zopt_raidz; 922 uint64_t leaf, top; 923 uint64_t ashift = ztest_get_ashift(); 924 size_t oldsize, newsize; 925 char oldpath[MAXPATHLEN], newpath[MAXPATHLEN]; 926 int replacing; 927 int error, expected_error; 928 int fd; 929 930 (void) mutex_lock(&ztest_shared->zs_vdev_lock); 931 932 spa_config_enter(spa, RW_READER, FTAG); 933 934 /* 935 * Decide whether to do an attach or a replace. 936 */ 937 replacing = ztest_random(2); 938 939 /* 940 * Pick a random top-level vdev. 941 */ 942 top = ztest_random(rvd->vdev_children); 943 944 /* 945 * Pick a random leaf within it. 946 */ 947 leaf = ztest_random(leaves); 948 949 /* 950 * Generate the path to this leaf. The filename will end with 'a'. 951 * We'll alternate replacements with a filename that ends with 'b'. 952 */ 953 (void) snprintf(oldpath, sizeof (oldpath), 954 ztest_dev_template, zopt_dir, zopt_pool, top * leaves + leaf); 955 956 bcopy(oldpath, newpath, MAXPATHLEN); 957 958 /* 959 * If the 'a' file isn't part of the pool, the 'b' file must be. 960 */ 961 if (vdev_lookup_by_path(rvd, oldpath) == NULL) 962 oldpath[strlen(oldpath) - 1] = 'b'; 963 else 964 newpath[strlen(newpath) - 1] = 'b'; 965 966 /* 967 * Now oldpath represents something that's already in the pool, 968 * and newpath is the thing we'll try to attach. 969 */ 970 oldvd = vdev_lookup_by_path(rvd, oldpath); 971 newvd = vdev_lookup_by_path(rvd, newpath); 972 ASSERT(oldvd != NULL); 973 pvd = oldvd->vdev_parent; 974 975 /* 976 * Make newsize a little bigger or smaller than oldsize. 977 * If it's smaller, the attach should fail. 978 * If it's larger, and we're doing a replace, 979 * we should get dynamic LUN growth when we're done. 980 */ 981 oldsize = vdev_get_rsize(oldvd); 982 newsize = 10 * oldsize / (9 + ztest_random(3)); 983 984 /* 985 * If pvd is not a mirror or root, the attach should fail with ENOTSUP, 986 * unless it's a replace; in that case any non-replacing parent is OK. 987 * 988 * If newvd is already part of the pool, it should fail with EBUSY. 989 * 990 * If newvd is too small, it should fail with EOVERFLOW. 991 */ 992 if (newvd != NULL) 993 expected_error = EBUSY; 994 else if (pvd->vdev_ops != &vdev_mirror_ops && 995 pvd->vdev_ops != &vdev_root_ops && 996 (!replacing || pvd->vdev_ops == &vdev_replacing_ops)) 997 expected_error = ENOTSUP; 998 else if (newsize < oldsize) 999 expected_error = EOVERFLOW; 1000 else if (ashift > oldvd->vdev_top->vdev_ashift) 1001 expected_error = EDOM; 1002 else 1003 expected_error = 0; 1004 1005 /* 1006 * If newvd isn't already part of the pool, create it. 1007 */ 1008 if (newvd == NULL) { 1009 fd = open(newpath, O_RDWR | O_CREAT | O_TRUNC, 0666); 1010 if (fd == -1) 1011 fatal(1, "can't open %s", newpath); 1012 if (ftruncate(fd, newsize) != 0) 1013 fatal(1, "can't ftruncate %s", newpath); 1014 (void) close(fd); 1015 } 1016 1017 spa_config_exit(spa, FTAG); 1018 1019 /* 1020 * Build the nvlist describing newpath. 1021 */ 1022 VERIFY(nvlist_alloc(&file, NV_UNIQUE_NAME, 0) == 0); 1023 VERIFY(nvlist_add_string(file, ZPOOL_CONFIG_TYPE, VDEV_TYPE_FILE) == 0); 1024 VERIFY(nvlist_add_string(file, ZPOOL_CONFIG_PATH, newpath) == 0); 1025 VERIFY(nvlist_add_uint64(file, ZPOOL_CONFIG_ASHIFT, ashift) == 0); 1026 1027 VERIFY(nvlist_alloc(&root, NV_UNIQUE_NAME, 0) == 0); 1028 VERIFY(nvlist_add_string(root, ZPOOL_CONFIG_TYPE, VDEV_TYPE_ROOT) == 0); 1029 VERIFY(nvlist_add_nvlist_array(root, ZPOOL_CONFIG_CHILDREN, 1030 &file, 1) == 0); 1031 1032 error = spa_vdev_attach(spa, oldvd->vdev_guid, root, replacing); 1033 1034 nvlist_free(file); 1035 nvlist_free(root); 1036 1037 /* 1038 * If our parent was the replacing vdev, but the replace completed, 1039 * then instead of failing with ENOTSUP we may either succeed, 1040 * fail with ENODEV, or fail with EOVERFLOW. 1041 */ 1042 if (expected_error == ENOTSUP && 1043 (error == 0 || error == ENODEV || error == EOVERFLOW)) 1044 expected_error = error; 1045 1046 /* 1047 * If someone grew the LUN, the replacement may be too small. 1048 */ 1049 if (error == EOVERFLOW) 1050 expected_error = error; 1051 1052 if (error != expected_error) { 1053 fatal(0, "attach (%s, %s, %d) returned %d, expected %d", 1054 oldpath, newpath, replacing, error, expected_error); 1055 } 1056 1057 (void) mutex_unlock(&ztest_shared->zs_vdev_lock); 1058 } 1059 1060 /* 1061 * Verify that dynamic LUN growth works as expected. 1062 */ 1063 /* ARGSUSED */ 1064 void 1065 ztest_vdev_LUN_growth(ztest_args_t *za) 1066 { 1067 spa_t *spa = za->za_spa; 1068 char dev_name[MAXPATHLEN]; 1069 uint64_t leaves = MAX(zopt_mirrors, 1) * zopt_raidz; 1070 uint64_t vdev; 1071 size_t fsize; 1072 int fd; 1073 1074 (void) mutex_lock(&ztest_shared->zs_vdev_lock); 1075 1076 /* 1077 * Pick a random leaf vdev. 1078 */ 1079 spa_config_enter(spa, RW_READER, FTAG); 1080 vdev = ztest_random(spa->spa_root_vdev->vdev_children * leaves); 1081 spa_config_exit(spa, FTAG); 1082 1083 (void) sprintf(dev_name, ztest_dev_template, zopt_dir, zopt_pool, vdev); 1084 1085 if ((fd = open(dev_name, O_RDWR)) != -1) { 1086 /* 1087 * Determine the size. 1088 */ 1089 fsize = lseek(fd, 0, SEEK_END); 1090 1091 /* 1092 * If it's less than 2x the original size, grow by around 3%. 1093 */ 1094 if (fsize < 2 * zopt_vdev_size) { 1095 size_t newsize = fsize + ztest_random(fsize / 32); 1096 (void) ftruncate(fd, newsize); 1097 if (zopt_verbose >= 6) { 1098 (void) printf("%s grew from %lu to %lu bytes\n", 1099 dev_name, (ulong_t)fsize, (ulong_t)newsize); 1100 } 1101 } 1102 (void) close(fd); 1103 } 1104 1105 (void) mutex_unlock(&ztest_shared->zs_vdev_lock); 1106 } 1107 1108 /* ARGSUSED */ 1109 static void 1110 ztest_create_cb(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx) 1111 { 1112 /* 1113 * Create the directory object. 1114 */ 1115 VERIFY(dmu_object_claim(os, ZTEST_DIROBJ, 1116 DMU_OT_UINT64_OTHER, ZTEST_DIROBJ_BLOCKSIZE, 1117 DMU_OT_UINT64_OTHER, 5 * sizeof (ztest_block_tag_t), tx) == 0); 1118 1119 VERIFY(zap_create_claim(os, ZTEST_MICROZAP_OBJ, 1120 DMU_OT_ZAP_OTHER, DMU_OT_NONE, 0, tx) == 0); 1121 1122 VERIFY(zap_create_claim(os, ZTEST_FATZAP_OBJ, 1123 DMU_OT_ZAP_OTHER, DMU_OT_NONE, 0, tx) == 0); 1124 } 1125 1126 static int 1127 ztest_destroy_cb(char *name, void *arg) 1128 { 1129 ztest_args_t *za = arg; 1130 objset_t *os; 1131 dmu_object_info_t *doi = &za->za_doi; 1132 int error; 1133 1134 /* 1135 * Verify that the dataset contains a directory object. 1136 */ 1137 error = dmu_objset_open(name, DMU_OST_OTHER, 1138 DS_MODE_STANDARD | DS_MODE_READONLY, &os); 1139 ASSERT3U(error, ==, 0); 1140 error = dmu_object_info(os, ZTEST_DIROBJ, doi); 1141 if (error != ENOENT) { 1142 /* We could have crashed in the middle of destroying it */ 1143 ASSERT3U(error, ==, 0); 1144 ASSERT3U(doi->doi_type, ==, DMU_OT_UINT64_OTHER); 1145 ASSERT3S(doi->doi_physical_blks, >=, 0); 1146 } 1147 dmu_objset_close(os); 1148 1149 /* 1150 * Destroy the dataset. 1151 */ 1152 error = dmu_objset_destroy(name); 1153 ASSERT3U(error, ==, 0); 1154 return (0); 1155 } 1156 1157 /* 1158 * Verify that dmu_objset_{create,destroy,open,close} work as expected. 1159 */ 1160 static uint64_t 1161 ztest_log_create(zilog_t *zilog, dmu_tx_t *tx, uint64_t object, int mode) 1162 { 1163 itx_t *itx; 1164 lr_create_t *lr; 1165 size_t namesize; 1166 char name[24]; 1167 1168 (void) sprintf(name, "ZOBJ_%llu", (u_longlong_t)object); 1169 namesize = strlen(name) + 1; 1170 1171 itx = zil_itx_create(TX_CREATE, sizeof (*lr) + namesize + 1172 ztest_random(ZIL_MAX_BLKSZ)); 1173 lr = (lr_create_t *)&itx->itx_lr; 1174 bzero(lr + 1, lr->lr_common.lrc_reclen - sizeof (*lr)); 1175 lr->lr_doid = object; 1176 lr->lr_foid = 0; 1177 lr->lr_mode = mode; 1178 lr->lr_uid = 0; 1179 lr->lr_gid = 0; 1180 lr->lr_gen = dmu_tx_get_txg(tx); 1181 lr->lr_crtime[0] = time(NULL); 1182 lr->lr_crtime[1] = 0; 1183 lr->lr_rdev = 0; 1184 bcopy(name, (char *)(lr + 1), namesize); 1185 1186 return (zil_itx_assign(zilog, itx, tx)); 1187 } 1188 1189 void 1190 ztest_dmu_objset_create_destroy(ztest_args_t *za) 1191 { 1192 int error; 1193 objset_t *os; 1194 char name[100]; 1195 int mode, basemode, expected_error; 1196 zilog_t *zilog; 1197 uint64_t seq; 1198 uint64_t objects; 1199 ztest_replay_t zr; 1200 1201 (void) rw_rdlock(&ztest_shared->zs_name_lock); 1202 (void) snprintf(name, 100, "%s/%s_temp_%llu", za->za_pool, za->za_pool, 1203 (u_longlong_t)za->za_instance); 1204 1205 basemode = DS_MODE_LEVEL(za->za_instance); 1206 if (basemode == DS_MODE_NONE) 1207 basemode++; 1208 1209 /* 1210 * If this dataset exists from a previous run, process its replay log 1211 * half of the time. If we don't replay it, then dmu_objset_destroy() 1212 * (invoked from ztest_destroy_cb() below) should just throw it away. 1213 */ 1214 if (ztest_random(2) == 0 && 1215 dmu_objset_open(name, DMU_OST_OTHER, DS_MODE_PRIMARY, &os) == 0) { 1216 zr.zr_os = os; 1217 zil_replay(os, &zr, &zr.zr_assign, ztest_replay_vector); 1218 dmu_objset_close(os); 1219 } 1220 1221 /* 1222 * There may be an old instance of the dataset we're about to 1223 * create lying around from a previous run. If so, destroy it 1224 * and all of its snapshots. 1225 */ 1226 (void) dmu_objset_find(name, ztest_destroy_cb, za, 1227 DS_FIND_CHILDREN | DS_FIND_SNAPSHOTS); 1228 1229 /* 1230 * Verify that the destroyed dataset is no longer in the namespace. 1231 */ 1232 error = dmu_objset_open(name, DMU_OST_OTHER, basemode, &os); 1233 if (error != ENOENT) 1234 fatal(1, "dmu_objset_open(%s) found destroyed dataset %p", 1235 name, os); 1236 1237 /* 1238 * Verify that we can create a new dataset. 1239 */ 1240 error = dmu_objset_create(name, DMU_OST_OTHER, NULL, ztest_create_cb, 1241 NULL); 1242 if (error) { 1243 if (error == ENOSPC) { 1244 ztest_record_enospc("dmu_objset_create"); 1245 (void) rw_unlock(&ztest_shared->zs_name_lock); 1246 return; 1247 } 1248 fatal(0, "dmu_objset_create(%s) = %d", name, error); 1249 } 1250 1251 error = dmu_objset_open(name, DMU_OST_OTHER, basemode, &os); 1252 if (error) { 1253 fatal(0, "dmu_objset_open(%s) = %d", name, error); 1254 } 1255 1256 /* 1257 * Open the intent log for it. 1258 */ 1259 zilog = zil_open(os, NULL); 1260 1261 /* 1262 * Put a random number of objects in there. 1263 */ 1264 objects = ztest_random(20); 1265 seq = 0; 1266 while (objects-- != 0) { 1267 uint64_t object; 1268 dmu_tx_t *tx = dmu_tx_create(os); 1269 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, sizeof (name)); 1270 error = dmu_tx_assign(tx, TXG_WAIT); 1271 if (error) { 1272 dmu_tx_abort(tx); 1273 } else { 1274 object = dmu_object_alloc(os, DMU_OT_UINT64_OTHER, 0, 1275 DMU_OT_NONE, 0, tx); 1276 ztest_set_random_blocksize(os, object, tx); 1277 seq = ztest_log_create(zilog, tx, object, 1278 DMU_OT_UINT64_OTHER); 1279 dmu_write(os, object, 0, sizeof (name), name, tx); 1280 dmu_tx_commit(tx); 1281 } 1282 if (ztest_random(5) == 0) { 1283 zil_commit(zilog, seq, object); 1284 } 1285 if (ztest_random(100) == 0) { 1286 error = zil_suspend(zilog); 1287 if (error == 0) { 1288 zil_resume(zilog); 1289 } 1290 } 1291 } 1292 1293 /* 1294 * Verify that we cannot create an existing dataset. 1295 */ 1296 error = dmu_objset_create(name, DMU_OST_OTHER, NULL, NULL, NULL); 1297 if (error != EEXIST) 1298 fatal(0, "created existing dataset, error = %d", error); 1299 1300 /* 1301 * Verify that multiple dataset opens are allowed, but only when 1302 * the new access mode is compatible with the base mode. 1303 * We use a mixture of typed and typeless opens, and when the 1304 * open succeeds, verify that the discovered type is correct. 1305 */ 1306 for (mode = DS_MODE_STANDARD; mode < DS_MODE_LEVELS; mode++) { 1307 objset_t *os2; 1308 error = dmu_objset_open(name, DMU_OST_OTHER, mode, &os2); 1309 expected_error = (basemode + mode < DS_MODE_LEVELS) ? 0 : EBUSY; 1310 if (error != expected_error) 1311 fatal(0, "dmu_objset_open('%s') = %d, expected %d", 1312 name, error, expected_error); 1313 if (error == 0) 1314 dmu_objset_close(os2); 1315 } 1316 1317 zil_close(zilog); 1318 dmu_objset_close(os); 1319 1320 error = dmu_objset_destroy(name); 1321 if (error) 1322 fatal(0, "dmu_objset_destroy(%s) = %d", name, error); 1323 1324 (void) rw_unlock(&ztest_shared->zs_name_lock); 1325 } 1326 1327 /* 1328 * Verify that dmu_snapshot_{create,destroy,open,close} work as expected. 1329 */ 1330 void 1331 ztest_dmu_snapshot_create_destroy(ztest_args_t *za) 1332 { 1333 int error; 1334 objset_t *os = za->za_os; 1335 char snapname[100]; 1336 char osname[MAXNAMELEN]; 1337 1338 (void) rw_rdlock(&ztest_shared->zs_name_lock); 1339 dmu_objset_name(os, osname); 1340 (void) snprintf(snapname, 100, "%s@%llu", osname, 1341 (u_longlong_t)za->za_instance); 1342 1343 error = dmu_objset_destroy(snapname); 1344 if (error != 0 && error != ENOENT) 1345 fatal(0, "dmu_objset_destroy() = %d", error); 1346 error = dmu_objset_snapshot(osname, strchr(snapname, '@')+1, FALSE); 1347 if (error == ENOSPC) 1348 ztest_record_enospc("dmu_take_snapshot"); 1349 else if (error != 0 && error != EEXIST) 1350 fatal(0, "dmu_take_snapshot() = %d", error); 1351 (void) rw_unlock(&ztest_shared->zs_name_lock); 1352 } 1353 1354 #define ZTEST_TRAVERSE_BLOCKS 1000 1355 1356 static int 1357 ztest_blk_cb(traverse_blk_cache_t *bc, spa_t *spa, void *arg) 1358 { 1359 ztest_args_t *za = arg; 1360 zbookmark_t *zb = &bc->bc_bookmark; 1361 blkptr_t *bp = &bc->bc_blkptr; 1362 dnode_phys_t *dnp = bc->bc_dnode; 1363 traverse_handle_t *th = za->za_th; 1364 uint64_t size = BP_GET_LSIZE(bp); 1365 1366 /* 1367 * Level -1 indicates the objset_phys_t or something in its intent log. 1368 */ 1369 if (zb->zb_level == -1) { 1370 if (BP_GET_TYPE(bp) == DMU_OT_OBJSET) { 1371 ASSERT3U(zb->zb_object, ==, 0); 1372 ASSERT3U(zb->zb_blkid, ==, 0); 1373 ASSERT3U(size, ==, sizeof (objset_phys_t)); 1374 za->za_zil_seq = 0; 1375 } else if (BP_GET_TYPE(bp) == DMU_OT_INTENT_LOG) { 1376 ASSERT3U(zb->zb_object, ==, 0); 1377 ASSERT3U(zb->zb_blkid, >, za->za_zil_seq); 1378 za->za_zil_seq = zb->zb_blkid; 1379 } else { 1380 ASSERT3U(zb->zb_object, !=, 0); /* lr_write_t */ 1381 } 1382 1383 return (0); 1384 } 1385 1386 ASSERT(dnp != NULL); 1387 1388 if (bc->bc_errno) 1389 return (ERESTART); 1390 1391 /* 1392 * Once in a while, abort the traverse. We only do this to odd 1393 * instance numbers to ensure that even ones can run to completion. 1394 */ 1395 if ((za->za_instance & 1) && ztest_random(10000) == 0) 1396 return (EINTR); 1397 1398 if (bp->blk_birth == 0) { 1399 ASSERT(th->th_advance & ADVANCE_HOLES); 1400 return (0); 1401 } 1402 1403 if (zb->zb_level == 0 && !(th->th_advance & ADVANCE_DATA) && 1404 bc == &th->th_cache[ZB_DN_CACHE][0]) { 1405 ASSERT(bc->bc_data == NULL); 1406 return (0); 1407 } 1408 1409 ASSERT(bc->bc_data != NULL); 1410 1411 /* 1412 * This is an expensive question, so don't ask it too often. 1413 */ 1414 if (((za->za_random ^ th->th_callbacks) & 0xff) == 0) { 1415 void *xbuf = umem_alloc(size, UMEM_NOFAIL); 1416 if (arc_tryread(spa, bp, xbuf) == 0) { 1417 ASSERT(bcmp(bc->bc_data, xbuf, size) == 0); 1418 } 1419 umem_free(xbuf, size); 1420 } 1421 1422 if (zb->zb_level > 0) { 1423 ASSERT3U(size, ==, 1ULL << dnp->dn_indblkshift); 1424 return (0); 1425 } 1426 1427 ASSERT(zb->zb_level == 0); 1428 ASSERT3U(size, ==, dnp->dn_datablkszsec << DEV_BSHIFT); 1429 1430 return (0); 1431 } 1432 1433 /* 1434 * Verify that live pool traversal works. 1435 */ 1436 void 1437 ztest_traverse(ztest_args_t *za) 1438 { 1439 spa_t *spa = za->za_spa; 1440 traverse_handle_t *th = za->za_th; 1441 int rc, advance; 1442 uint64_t cbstart, cblimit; 1443 1444 if (th == NULL) { 1445 advance = 0; 1446 1447 if (ztest_random(2) == 0) 1448 advance |= ADVANCE_PRE; 1449 1450 if (ztest_random(2) == 0) 1451 advance |= ADVANCE_PRUNE; 1452 1453 if (ztest_random(2) == 0) 1454 advance |= ADVANCE_DATA; 1455 1456 if (ztest_random(2) == 0) 1457 advance |= ADVANCE_HOLES; 1458 1459 if (ztest_random(2) == 0) 1460 advance |= ADVANCE_ZIL; 1461 1462 th = za->za_th = traverse_init(spa, ztest_blk_cb, za, advance, 1463 ZIO_FLAG_CANFAIL); 1464 1465 traverse_add_pool(th, 0, -1ULL); 1466 } 1467 1468 advance = th->th_advance; 1469 cbstart = th->th_callbacks; 1470 cblimit = cbstart + ((advance & ADVANCE_DATA) ? 100 : 1000); 1471 1472 while ((rc = traverse_more(th)) == EAGAIN && th->th_callbacks < cblimit) 1473 continue; 1474 1475 if (zopt_verbose >= 5) 1476 (void) printf("traverse %s%s%s%s %llu blocks to " 1477 "<%llu, %llu, %lld, %llx>%s\n", 1478 (advance & ADVANCE_PRE) ? "pre" : "post", 1479 (advance & ADVANCE_PRUNE) ? "|prune" : "", 1480 (advance & ADVANCE_DATA) ? "|data" : "", 1481 (advance & ADVANCE_HOLES) ? "|holes" : "", 1482 (u_longlong_t)(th->th_callbacks - cbstart), 1483 (u_longlong_t)th->th_lastcb.zb_objset, 1484 (u_longlong_t)th->th_lastcb.zb_object, 1485 (u_longlong_t)th->th_lastcb.zb_level, 1486 (u_longlong_t)th->th_lastcb.zb_blkid, 1487 rc == 0 ? " [done]" : 1488 rc == EINTR ? " [aborted]" : 1489 rc == EAGAIN ? "" : 1490 strerror(rc)); 1491 1492 if (rc != EAGAIN) { 1493 if (rc != 0 && rc != EINTR) 1494 fatal(0, "traverse_more(%p) = %d", th, rc); 1495 traverse_fini(th); 1496 za->za_th = NULL; 1497 } 1498 } 1499 1500 /* 1501 * Verify that dmu_object_{alloc,free} work as expected. 1502 */ 1503 void 1504 ztest_dmu_object_alloc_free(ztest_args_t *za) 1505 { 1506 objset_t *os = za->za_os; 1507 dmu_buf_t *db; 1508 dmu_tx_t *tx; 1509 uint64_t batchobj, object, batchsize, endoff, temp; 1510 int b, c, error, bonuslen; 1511 dmu_object_info_t *doi = &za->za_doi; 1512 char osname[MAXNAMELEN]; 1513 1514 dmu_objset_name(os, osname); 1515 1516 endoff = -8ULL; 1517 batchsize = 2; 1518 1519 /* 1520 * Create a batch object if necessary, and record it in the directory. 1521 */ 1522 VERIFY(0 == dmu_read(os, ZTEST_DIROBJ, za->za_diroff, 1523 sizeof (uint64_t), &batchobj)); 1524 if (batchobj == 0) { 1525 tx = dmu_tx_create(os); 1526 dmu_tx_hold_write(tx, ZTEST_DIROBJ, za->za_diroff, 1527 sizeof (uint64_t)); 1528 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); 1529 error = dmu_tx_assign(tx, TXG_WAIT); 1530 if (error) { 1531 ztest_record_enospc("create a batch object"); 1532 dmu_tx_abort(tx); 1533 return; 1534 } 1535 batchobj = dmu_object_alloc(os, DMU_OT_UINT64_OTHER, 0, 1536 DMU_OT_NONE, 0, tx); 1537 ztest_set_random_blocksize(os, batchobj, tx); 1538 dmu_write(os, ZTEST_DIROBJ, za->za_diroff, 1539 sizeof (uint64_t), &batchobj, tx); 1540 dmu_tx_commit(tx); 1541 } 1542 1543 /* 1544 * Destroy the previous batch of objects. 1545 */ 1546 for (b = 0; b < batchsize; b++) { 1547 VERIFY(0 == dmu_read(os, batchobj, b * sizeof (uint64_t), 1548 sizeof (uint64_t), &object)); 1549 if (object == 0) 1550 continue; 1551 /* 1552 * Read and validate contents. 1553 * We expect the nth byte of the bonus buffer to be n. 1554 */ 1555 VERIFY(0 == dmu_bonus_hold(os, object, FTAG, &db)); 1556 za->za_dbuf = db; 1557 1558 dmu_object_info_from_db(db, doi); 1559 ASSERT(doi->doi_type == DMU_OT_UINT64_OTHER); 1560 ASSERT(doi->doi_bonus_type == DMU_OT_PLAIN_OTHER); 1561 ASSERT3S(doi->doi_physical_blks, >=, 0); 1562 1563 bonuslen = doi->doi_bonus_size; 1564 1565 for (c = 0; c < bonuslen; c++) { 1566 if (((uint8_t *)db->db_data)[c] != 1567 (uint8_t)(c + bonuslen)) { 1568 fatal(0, 1569 "bad bonus: %s, obj %llu, off %d: %u != %u", 1570 osname, object, c, 1571 ((uint8_t *)db->db_data)[c], 1572 (uint8_t)(c + bonuslen)); 1573 } 1574 } 1575 1576 dmu_buf_rele(db, FTAG); 1577 za->za_dbuf = NULL; 1578 1579 /* 1580 * We expect the word at endoff to be our object number. 1581 */ 1582 VERIFY(0 == dmu_read(os, object, endoff, 1583 sizeof (uint64_t), &temp)); 1584 1585 if (temp != object) { 1586 fatal(0, "bad data in %s, got %llu, expected %llu", 1587 osname, temp, object); 1588 } 1589 1590 /* 1591 * Destroy old object and clear batch entry. 1592 */ 1593 tx = dmu_tx_create(os); 1594 dmu_tx_hold_write(tx, batchobj, 1595 b * sizeof (uint64_t), sizeof (uint64_t)); 1596 dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END); 1597 error = dmu_tx_assign(tx, TXG_WAIT); 1598 if (error) { 1599 ztest_record_enospc("free object"); 1600 dmu_tx_abort(tx); 1601 return; 1602 } 1603 error = dmu_object_free(os, object, tx); 1604 if (error) { 1605 fatal(0, "dmu_object_free('%s', %llu) = %d", 1606 osname, object, error); 1607 } 1608 object = 0; 1609 1610 dmu_object_set_checksum(os, batchobj, 1611 ztest_random_checksum(), tx); 1612 dmu_object_set_compress(os, batchobj, 1613 ztest_random_compress(), tx); 1614 1615 dmu_write(os, batchobj, b * sizeof (uint64_t), 1616 sizeof (uint64_t), &object, tx); 1617 1618 dmu_tx_commit(tx); 1619 } 1620 1621 /* 1622 * Before creating the new batch of objects, generate a bunch of churn. 1623 */ 1624 for (b = ztest_random(100); b > 0; b--) { 1625 tx = dmu_tx_create(os); 1626 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); 1627 error = dmu_tx_assign(tx, TXG_WAIT); 1628 if (error) { 1629 ztest_record_enospc("churn objects"); 1630 dmu_tx_abort(tx); 1631 return; 1632 } 1633 object = dmu_object_alloc(os, DMU_OT_UINT64_OTHER, 0, 1634 DMU_OT_NONE, 0, tx); 1635 ztest_set_random_blocksize(os, object, tx); 1636 error = dmu_object_free(os, object, tx); 1637 if (error) { 1638 fatal(0, "dmu_object_free('%s', %llu) = %d", 1639 osname, object, error); 1640 } 1641 dmu_tx_commit(tx); 1642 } 1643 1644 /* 1645 * Create a new batch of objects with randomly chosen 1646 * blocksizes and record them in the batch directory. 1647 */ 1648 for (b = 0; b < batchsize; b++) { 1649 uint32_t va_blksize; 1650 u_longlong_t va_nblocks; 1651 1652 tx = dmu_tx_create(os); 1653 dmu_tx_hold_write(tx, batchobj, b * sizeof (uint64_t), 1654 sizeof (uint64_t)); 1655 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); 1656 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, endoff, 1657 sizeof (uint64_t)); 1658 error = dmu_tx_assign(tx, TXG_WAIT); 1659 if (error) { 1660 ztest_record_enospc("create batchobj"); 1661 dmu_tx_abort(tx); 1662 return; 1663 } 1664 bonuslen = (int)ztest_random(dmu_bonus_max()) + 1; 1665 1666 object = dmu_object_alloc(os, DMU_OT_UINT64_OTHER, 0, 1667 DMU_OT_PLAIN_OTHER, bonuslen, tx); 1668 1669 ztest_set_random_blocksize(os, object, tx); 1670 1671 dmu_object_set_checksum(os, object, 1672 ztest_random_checksum(), tx); 1673 dmu_object_set_compress(os, object, 1674 ztest_random_compress(), tx); 1675 1676 dmu_write(os, batchobj, b * sizeof (uint64_t), 1677 sizeof (uint64_t), &object, tx); 1678 1679 /* 1680 * Write to both the bonus buffer and the regular data. 1681 */ 1682 VERIFY(dmu_bonus_hold(os, object, FTAG, &db) == 0); 1683 za->za_dbuf = db; 1684 ASSERT3U(bonuslen, <=, db->db_size); 1685 1686 dmu_object_size_from_db(db, &va_blksize, &va_nblocks); 1687 ASSERT3S(va_nblocks, >=, 0); 1688 1689 dmu_buf_will_dirty(db, tx); 1690 1691 /* 1692 * See comments above regarding the contents of 1693 * the bonus buffer and the word at endoff. 1694 */ 1695 for (c = 0; c < bonuslen; c++) 1696 ((uint8_t *)db->db_data)[c] = (uint8_t)(c + bonuslen); 1697 1698 dmu_buf_rele(db, FTAG); 1699 za->za_dbuf = NULL; 1700 1701 /* 1702 * Write to a large offset to increase indirection. 1703 */ 1704 dmu_write(os, object, endoff, sizeof (uint64_t), &object, tx); 1705 1706 dmu_tx_commit(tx); 1707 } 1708 } 1709 1710 /* 1711 * Verify that dmu_{read,write} work as expected. 1712 */ 1713 typedef struct bufwad { 1714 uint64_t bw_index; 1715 uint64_t bw_txg; 1716 uint64_t bw_data; 1717 } bufwad_t; 1718 1719 typedef struct dmu_read_write_dir { 1720 uint64_t dd_packobj; 1721 uint64_t dd_bigobj; 1722 uint64_t dd_chunk; 1723 } dmu_read_write_dir_t; 1724 1725 void 1726 ztest_dmu_read_write(ztest_args_t *za) 1727 { 1728 objset_t *os = za->za_os; 1729 dmu_read_write_dir_t dd; 1730 dmu_tx_t *tx; 1731 int i, freeit, error; 1732 uint64_t n, s, txg; 1733 bufwad_t *packbuf, *bigbuf, *pack, *bigH, *bigT; 1734 uint64_t packoff, packsize, bigoff, bigsize; 1735 uint64_t regions = 997; 1736 uint64_t stride = 123456789ULL; 1737 uint64_t width = 40; 1738 int free_percent = 5; 1739 1740 /* 1741 * This test uses two objects, packobj and bigobj, that are always 1742 * updated together (i.e. in the same tx) so that their contents are 1743 * in sync and can be compared. Their contents relate to each other 1744 * in a simple way: packobj is a dense array of 'bufwad' structures, 1745 * while bigobj is a sparse array of the same bufwads. Specifically, 1746 * for any index n, there are three bufwads that should be identical: 1747 * 1748 * packobj, at offset n * sizeof (bufwad_t) 1749 * bigobj, at the head of the nth chunk 1750 * bigobj, at the tail of the nth chunk 1751 * 1752 * The chunk size is arbitrary. It doesn't have to be a power of two, 1753 * and it doesn't have any relation to the object blocksize. 1754 * The only requirement is that it can hold at least two bufwads. 1755 * 1756 * Normally, we write the bufwad to each of these locations. 1757 * However, free_percent of the time we instead write zeroes to 1758 * packobj and perform a dmu_free_range() on bigobj. By comparing 1759 * bigobj to packobj, we can verify that the DMU is correctly 1760 * tracking which parts of an object are allocated and free, 1761 * and that the contents of the allocated blocks are correct. 1762 */ 1763 1764 /* 1765 * Read the directory info. If it's the first time, set things up. 1766 */ 1767 VERIFY(0 == dmu_read(os, ZTEST_DIROBJ, za->za_diroff, 1768 sizeof (dd), &dd)); 1769 if (dd.dd_chunk == 0) { 1770 ASSERT(dd.dd_packobj == 0); 1771 ASSERT(dd.dd_bigobj == 0); 1772 tx = dmu_tx_create(os); 1773 dmu_tx_hold_write(tx, ZTEST_DIROBJ, za->za_diroff, sizeof (dd)); 1774 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); 1775 error = dmu_tx_assign(tx, TXG_WAIT); 1776 if (error) { 1777 ztest_record_enospc("create r/w directory"); 1778 dmu_tx_abort(tx); 1779 return; 1780 } 1781 1782 dd.dd_packobj = dmu_object_alloc(os, DMU_OT_UINT64_OTHER, 0, 1783 DMU_OT_NONE, 0, tx); 1784 dd.dd_bigobj = dmu_object_alloc(os, DMU_OT_UINT64_OTHER, 0, 1785 DMU_OT_NONE, 0, tx); 1786 dd.dd_chunk = (1000 + ztest_random(1000)) * sizeof (uint64_t); 1787 1788 ztest_set_random_blocksize(os, dd.dd_packobj, tx); 1789 ztest_set_random_blocksize(os, dd.dd_bigobj, tx); 1790 1791 dmu_write(os, ZTEST_DIROBJ, za->za_diroff, sizeof (dd), &dd, 1792 tx); 1793 dmu_tx_commit(tx); 1794 } 1795 1796 /* 1797 * Prefetch a random chunk of the big object. 1798 * Our aim here is to get some async reads in flight 1799 * for blocks that we may free below; the DMU should 1800 * handle this race correctly. 1801 */ 1802 n = ztest_random(regions) * stride + ztest_random(width); 1803 s = 1 + ztest_random(2 * width - 1); 1804 dmu_prefetch(os, dd.dd_bigobj, n * dd.dd_chunk, s * dd.dd_chunk); 1805 1806 /* 1807 * Pick a random index and compute the offsets into packobj and bigobj. 1808 */ 1809 n = ztest_random(regions) * stride + ztest_random(width); 1810 s = 1 + ztest_random(width - 1); 1811 1812 packoff = n * sizeof (bufwad_t); 1813 packsize = s * sizeof (bufwad_t); 1814 1815 bigoff = n * dd.dd_chunk; 1816 bigsize = s * dd.dd_chunk; 1817 1818 packbuf = umem_alloc(packsize, UMEM_NOFAIL); 1819 bigbuf = umem_alloc(bigsize, UMEM_NOFAIL); 1820 1821 /* 1822 * free_percent of the time, free a range of bigobj rather than 1823 * overwriting it. 1824 */ 1825 freeit = (ztest_random(100) < free_percent); 1826 1827 /* 1828 * Read the current contents of our objects. 1829 */ 1830 error = dmu_read(os, dd.dd_packobj, packoff, packsize, packbuf); 1831 ASSERT3U(error, ==, 0); 1832 error = dmu_read(os, dd.dd_bigobj, bigoff, bigsize, bigbuf); 1833 ASSERT3U(error, ==, 0); 1834 1835 /* 1836 * Get a tx for the mods to both packobj and bigobj. 1837 */ 1838 tx = dmu_tx_create(os); 1839 1840 dmu_tx_hold_write(tx, dd.dd_packobj, packoff, packsize); 1841 1842 if (freeit) 1843 dmu_tx_hold_free(tx, dd.dd_bigobj, bigoff, bigsize); 1844 else 1845 dmu_tx_hold_write(tx, dd.dd_bigobj, bigoff, bigsize); 1846 1847 error = dmu_tx_assign(tx, TXG_WAIT); 1848 1849 if (error) { 1850 ztest_record_enospc("dmu r/w range"); 1851 dmu_tx_abort(tx); 1852 umem_free(packbuf, packsize); 1853 umem_free(bigbuf, bigsize); 1854 return; 1855 } 1856 1857 txg = dmu_tx_get_txg(tx); 1858 1859 /* 1860 * For each index from n to n + s, verify that the existing bufwad 1861 * in packobj matches the bufwads at the head and tail of the 1862 * corresponding chunk in bigobj. Then update all three bufwads 1863 * with the new values we want to write out. 1864 */ 1865 for (i = 0; i < s; i++) { 1866 /* LINTED */ 1867 pack = (bufwad_t *)((char *)packbuf + i * sizeof (bufwad_t)); 1868 /* LINTED */ 1869 bigH = (bufwad_t *)((char *)bigbuf + i * dd.dd_chunk); 1870 /* LINTED */ 1871 bigT = (bufwad_t *)((char *)bigH + dd.dd_chunk) - 1; 1872 1873 ASSERT((uintptr_t)bigH - (uintptr_t)bigbuf < bigsize); 1874 ASSERT((uintptr_t)bigT - (uintptr_t)bigbuf < bigsize); 1875 1876 if (pack->bw_txg > txg) 1877 fatal(0, "future leak: got %llx, open txg is %llx", 1878 pack->bw_txg, txg); 1879 1880 if (pack->bw_data != 0 && pack->bw_index != n + i) 1881 fatal(0, "wrong index: got %llx, wanted %llx+%llx", 1882 pack->bw_index, n, i); 1883 1884 if (bcmp(pack, bigH, sizeof (bufwad_t)) != 0) 1885 fatal(0, "pack/bigH mismatch in %p/%p", pack, bigH); 1886 1887 if (bcmp(pack, bigT, sizeof (bufwad_t)) != 0) 1888 fatal(0, "pack/bigT mismatch in %p/%p", pack, bigT); 1889 1890 if (freeit) { 1891 bzero(pack, sizeof (bufwad_t)); 1892 } else { 1893 pack->bw_index = n + i; 1894 pack->bw_txg = txg; 1895 pack->bw_data = 1 + ztest_random(-2ULL); 1896 } 1897 *bigH = *pack; 1898 *bigT = *pack; 1899 } 1900 1901 /* 1902 * We've verified all the old bufwads, and made new ones. 1903 * Now write them out. 1904 */ 1905 dmu_write(os, dd.dd_packobj, packoff, packsize, packbuf, tx); 1906 1907 if (freeit) { 1908 if (zopt_verbose >= 6) { 1909 (void) printf("freeing offset %llx size %llx" 1910 " txg %llx\n", 1911 (u_longlong_t)bigoff, 1912 (u_longlong_t)bigsize, 1913 (u_longlong_t)txg); 1914 } 1915 VERIFY(0 == dmu_free_range(os, dd.dd_bigobj, bigoff, 1916 bigsize, tx)); 1917 } else { 1918 if (zopt_verbose >= 6) { 1919 (void) printf("writing offset %llx size %llx" 1920 " txg %llx\n", 1921 (u_longlong_t)bigoff, 1922 (u_longlong_t)bigsize, 1923 (u_longlong_t)txg); 1924 } 1925 dmu_write(os, dd.dd_bigobj, bigoff, bigsize, bigbuf, tx); 1926 } 1927 1928 dmu_tx_commit(tx); 1929 1930 /* 1931 * Sanity check the stuff we just wrote. 1932 */ 1933 { 1934 void *packcheck = umem_alloc(packsize, UMEM_NOFAIL); 1935 void *bigcheck = umem_alloc(bigsize, UMEM_NOFAIL); 1936 1937 VERIFY(0 == dmu_read(os, dd.dd_packobj, packoff, 1938 packsize, packcheck)); 1939 VERIFY(0 == dmu_read(os, dd.dd_bigobj, bigoff, 1940 bigsize, bigcheck)); 1941 1942 ASSERT(bcmp(packbuf, packcheck, packsize) == 0); 1943 ASSERT(bcmp(bigbuf, bigcheck, bigsize) == 0); 1944 1945 umem_free(packcheck, packsize); 1946 umem_free(bigcheck, bigsize); 1947 } 1948 1949 umem_free(packbuf, packsize); 1950 umem_free(bigbuf, bigsize); 1951 } 1952 1953 void 1954 ztest_dmu_check_future_leak(ztest_args_t *za) 1955 { 1956 objset_t *os = za->za_os; 1957 dmu_buf_t *db; 1958 ztest_block_tag_t *bt; 1959 dmu_object_info_t *doi = &za->za_doi; 1960 1961 /* 1962 * Make sure that, if there is a write record in the bonus buffer 1963 * of the ZTEST_DIROBJ, that the txg for this record is <= the 1964 * last synced txg of the pool. 1965 */ 1966 VERIFY(dmu_bonus_hold(os, ZTEST_DIROBJ, FTAG, &db) == 0); 1967 za->za_dbuf = db; 1968 VERIFY(dmu_object_info(os, ZTEST_DIROBJ, doi) == 0); 1969 ASSERT3U(doi->doi_bonus_size, >=, sizeof (*bt)); 1970 ASSERT3U(doi->doi_bonus_size, <=, db->db_size); 1971 ASSERT3U(doi->doi_bonus_size % sizeof (*bt), ==, 0); 1972 bt = (void *)((char *)db->db_data + doi->doi_bonus_size - sizeof (*bt)); 1973 if (bt->bt_objset != 0) { 1974 ASSERT3U(bt->bt_objset, ==, dmu_objset_id(os)); 1975 ASSERT3U(bt->bt_object, ==, ZTEST_DIROBJ); 1976 ASSERT3U(bt->bt_offset, ==, -1ULL); 1977 ASSERT3U(bt->bt_txg, <, spa_first_txg(za->za_spa)); 1978 } 1979 dmu_buf_rele(db, FTAG); 1980 za->za_dbuf = NULL; 1981 } 1982 1983 void 1984 ztest_dmu_write_parallel(ztest_args_t *za) 1985 { 1986 objset_t *os = za->za_os; 1987 ztest_block_tag_t *rbt = &za->za_rbt; 1988 ztest_block_tag_t *wbt = &za->za_wbt; 1989 const size_t btsize = sizeof (ztest_block_tag_t); 1990 dmu_buf_t *db; 1991 int b, error; 1992 int bs = ZTEST_DIROBJ_BLOCKSIZE; 1993 int do_free = 0; 1994 uint64_t off, txg_how; 1995 mutex_t *lp; 1996 char osname[MAXNAMELEN]; 1997 char iobuf[SPA_MAXBLOCKSIZE]; 1998 blkptr_t blk = { 0 }; 1999 uint64_t blkoff; 2000 zbookmark_t zb; 2001 dmu_tx_t *tx = dmu_tx_create(os); 2002 2003 dmu_objset_name(os, osname); 2004 2005 /* 2006 * Have multiple threads write to large offsets in ZTEST_DIROBJ 2007 * to verify that having multiple threads writing to the same object 2008 * in parallel doesn't cause any trouble. 2009 */ 2010 if (ztest_random(4) == 0) { 2011 /* 2012 * Do the bonus buffer instead of a regular block. 2013 * We need a lock to serialize resize vs. others, 2014 * so we hash on the objset ID. 2015 */ 2016 b = dmu_objset_id(os) % ZTEST_SYNC_LOCKS; 2017 off = -1ULL; 2018 dmu_tx_hold_bonus(tx, ZTEST_DIROBJ); 2019 } else { 2020 b = ztest_random(ZTEST_SYNC_LOCKS); 2021 off = za->za_diroff_shared + (b << SPA_MAXBLOCKSHIFT); 2022 if (ztest_random(4) == 0) { 2023 do_free = 1; 2024 dmu_tx_hold_free(tx, ZTEST_DIROBJ, off, bs); 2025 } else { 2026 dmu_tx_hold_write(tx, ZTEST_DIROBJ, off, bs); 2027 } 2028 } 2029 2030 txg_how = ztest_random(2) == 0 ? TXG_WAIT : TXG_NOWAIT; 2031 error = dmu_tx_assign(tx, txg_how); 2032 if (error) { 2033 if (error == ERESTART) { 2034 ASSERT(txg_how == TXG_NOWAIT); 2035 dmu_tx_wait(tx); 2036 } else { 2037 ztest_record_enospc("dmu write parallel"); 2038 } 2039 dmu_tx_abort(tx); 2040 return; 2041 } 2042 2043 lp = &ztest_shared->zs_sync_lock[b]; 2044 (void) mutex_lock(lp); 2045 2046 wbt->bt_objset = dmu_objset_id(os); 2047 wbt->bt_object = ZTEST_DIROBJ; 2048 wbt->bt_offset = off; 2049 wbt->bt_txg = dmu_tx_get_txg(tx); 2050 wbt->bt_thread = za->za_instance; 2051 wbt->bt_seq = ztest_shared->zs_seq[b]++; /* protected by lp */ 2052 2053 if (off == -1ULL) { 2054 dmu_object_info_t *doi = &za->za_doi; 2055 char *dboff; 2056 2057 VERIFY(dmu_bonus_hold(os, ZTEST_DIROBJ, FTAG, &db) == 0); 2058 za->za_dbuf = db; 2059 dmu_object_info_from_db(db, doi); 2060 ASSERT3U(doi->doi_bonus_size, <=, db->db_size); 2061 ASSERT3U(doi->doi_bonus_size, >=, btsize); 2062 ASSERT3U(doi->doi_bonus_size % btsize, ==, 0); 2063 dboff = (char *)db->db_data + doi->doi_bonus_size - btsize; 2064 bcopy(dboff, rbt, btsize); 2065 if (rbt->bt_objset != 0) { 2066 ASSERT3U(rbt->bt_objset, ==, wbt->bt_objset); 2067 ASSERT3U(rbt->bt_object, ==, wbt->bt_object); 2068 ASSERT3U(rbt->bt_offset, ==, wbt->bt_offset); 2069 ASSERT3U(rbt->bt_txg, <=, wbt->bt_txg); 2070 } 2071 if (ztest_random(10) == 0) { 2072 int newsize = (ztest_random(db->db_size / 2073 btsize) + 1) * btsize; 2074 2075 ASSERT3U(newsize, >=, btsize); 2076 ASSERT3U(newsize, <=, db->db_size); 2077 VERIFY3U(dmu_set_bonus(db, newsize, tx), ==, 0); 2078 dboff = (char *)db->db_data + newsize - btsize; 2079 } 2080 dmu_buf_will_dirty(db, tx); 2081 bcopy(wbt, dboff, btsize); 2082 dmu_buf_rele(db, FTAG); 2083 za->za_dbuf = NULL; 2084 } else if (do_free) { 2085 VERIFY(dmu_free_range(os, ZTEST_DIROBJ, off, bs, tx) == 0); 2086 } else { 2087 dmu_write(os, ZTEST_DIROBJ, off, btsize, wbt, tx); 2088 } 2089 2090 (void) mutex_unlock(lp); 2091 2092 if (ztest_random(1000) == 0) 2093 (void) poll(NULL, 0, 1); /* open dn_notxholds window */ 2094 2095 dmu_tx_commit(tx); 2096 2097 if (ztest_random(10000) == 0) 2098 txg_wait_synced(dmu_objset_pool(os), wbt->bt_txg); 2099 2100 if (off == -1 || do_free) 2101 return; 2102 2103 if (ztest_random(2) != 0) 2104 return; 2105 2106 /* 2107 * dmu_sync() the block we just wrote. 2108 */ 2109 (void) mutex_lock(lp); 2110 2111 blkoff = P2ALIGN_TYPED(off, bs, uint64_t); 2112 error = dmu_buf_hold(os, ZTEST_DIROBJ, blkoff, FTAG, &db); 2113 za->za_dbuf = db; 2114 if (error) { 2115 dprintf("dmu_buf_hold(%s, %d, %llx) = %d\n", 2116 osname, ZTEST_DIROBJ, blkoff, error); 2117 (void) mutex_unlock(lp); 2118 return; 2119 } 2120 blkoff = off - blkoff; 2121 error = dmu_sync(NULL, db, &blk, wbt->bt_txg, NULL, NULL); 2122 dmu_buf_rele(db, FTAG); 2123 za->za_dbuf = NULL; 2124 2125 (void) mutex_unlock(lp); 2126 2127 if (error) { 2128 dprintf("dmu_sync(%s, %d, %llx) = %d\n", 2129 osname, ZTEST_DIROBJ, off, error); 2130 return; 2131 } 2132 2133 if (blk.blk_birth == 0) /* concurrent free */ 2134 return; 2135 2136 txg_suspend(dmu_objset_pool(os)); 2137 2138 ASSERT(blk.blk_fill == 1); 2139 ASSERT3U(BP_GET_TYPE(&blk), ==, DMU_OT_UINT64_OTHER); 2140 ASSERT3U(BP_GET_LEVEL(&blk), ==, 0); 2141 ASSERT3U(BP_GET_LSIZE(&blk), ==, bs); 2142 2143 /* 2144 * Read the block that dmu_sync() returned to make sure its contents 2145 * match what we wrote. We do this while still txg_suspend()ed 2146 * to ensure that the block can't be reused before we read it. 2147 */ 2148 zb.zb_objset = dmu_objset_id(os); 2149 zb.zb_object = ZTEST_DIROBJ; 2150 zb.zb_level = 0; 2151 zb.zb_blkid = off / bs; 2152 error = zio_wait(zio_read(NULL, za->za_spa, &blk, iobuf, bs, 2153 NULL, NULL, ZIO_PRIORITY_SYNC_READ, ZIO_FLAG_MUSTSUCCEED, &zb)); 2154 ASSERT3U(error, ==, 0); 2155 2156 txg_resume(dmu_objset_pool(os)); 2157 2158 bcopy(&iobuf[blkoff], rbt, btsize); 2159 2160 if (rbt->bt_objset == 0) /* concurrent free */ 2161 return; 2162 2163 ASSERT3U(rbt->bt_objset, ==, wbt->bt_objset); 2164 ASSERT3U(rbt->bt_object, ==, wbt->bt_object); 2165 ASSERT3U(rbt->bt_offset, ==, wbt->bt_offset); 2166 2167 /* 2168 * The semantic of dmu_sync() is that we always push the most recent 2169 * version of the data, so in the face of concurrent updates we may 2170 * see a newer version of the block. That's OK. 2171 */ 2172 ASSERT3U(rbt->bt_txg, >=, wbt->bt_txg); 2173 if (rbt->bt_thread == wbt->bt_thread) 2174 ASSERT3U(rbt->bt_seq, ==, wbt->bt_seq); 2175 else 2176 ASSERT3U(rbt->bt_seq, >, wbt->bt_seq); 2177 } 2178 2179 /* 2180 * Verify that zap_{create,destroy,add,remove,update} work as expected. 2181 */ 2182 #define ZTEST_ZAP_MIN_INTS 1 2183 #define ZTEST_ZAP_MAX_INTS 4 2184 #define ZTEST_ZAP_MAX_PROPS 1000 2185 2186 void 2187 ztest_zap(ztest_args_t *za) 2188 { 2189 objset_t *os = za->za_os; 2190 uint64_t object; 2191 uint64_t txg, last_txg; 2192 uint64_t value[ZTEST_ZAP_MAX_INTS]; 2193 uint64_t zl_ints, zl_intsize, prop; 2194 int i, ints; 2195 dmu_tx_t *tx; 2196 char propname[100], txgname[100]; 2197 int error; 2198 char osname[MAXNAMELEN]; 2199 char *hc[2] = { "s.acl.h", ".s.open.h.hyLZlg" }; 2200 2201 dmu_objset_name(os, osname); 2202 2203 /* 2204 * Create a new object if necessary, and record it in the directory. 2205 */ 2206 VERIFY(0 == dmu_read(os, ZTEST_DIROBJ, za->za_diroff, 2207 sizeof (uint64_t), &object)); 2208 2209 if (object == 0) { 2210 tx = dmu_tx_create(os); 2211 dmu_tx_hold_write(tx, ZTEST_DIROBJ, za->za_diroff, 2212 sizeof (uint64_t)); 2213 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, TRUE, NULL); 2214 error = dmu_tx_assign(tx, TXG_WAIT); 2215 if (error) { 2216 ztest_record_enospc("create zap test obj"); 2217 dmu_tx_abort(tx); 2218 return; 2219 } 2220 object = zap_create(os, DMU_OT_ZAP_OTHER, DMU_OT_NONE, 0, tx); 2221 if (error) { 2222 fatal(0, "zap_create('%s', %llu) = %d", 2223 osname, object, error); 2224 } 2225 ASSERT(object != 0); 2226 dmu_write(os, ZTEST_DIROBJ, za->za_diroff, 2227 sizeof (uint64_t), &object, tx); 2228 /* 2229 * Generate a known hash collision, and verify that 2230 * we can lookup and remove both entries. 2231 */ 2232 for (i = 0; i < 2; i++) { 2233 value[i] = i; 2234 error = zap_add(os, object, hc[i], sizeof (uint64_t), 2235 1, &value[i], tx); 2236 ASSERT3U(error, ==, 0); 2237 } 2238 for (i = 0; i < 2; i++) { 2239 error = zap_add(os, object, hc[i], sizeof (uint64_t), 2240 1, &value[i], tx); 2241 ASSERT3U(error, ==, EEXIST); 2242 error = zap_length(os, object, hc[i], 2243 &zl_intsize, &zl_ints); 2244 ASSERT3U(error, ==, 0); 2245 ASSERT3U(zl_intsize, ==, sizeof (uint64_t)); 2246 ASSERT3U(zl_ints, ==, 1); 2247 } 2248 for (i = 0; i < 2; i++) { 2249 error = zap_remove(os, object, hc[i], tx); 2250 ASSERT3U(error, ==, 0); 2251 } 2252 2253 dmu_tx_commit(tx); 2254 } 2255 2256 ints = MAX(ZTEST_ZAP_MIN_INTS, object % ZTEST_ZAP_MAX_INTS); 2257 2258 prop = ztest_random(ZTEST_ZAP_MAX_PROPS); 2259 (void) sprintf(propname, "prop_%llu", (u_longlong_t)prop); 2260 (void) sprintf(txgname, "txg_%llu", (u_longlong_t)prop); 2261 bzero(value, sizeof (value)); 2262 last_txg = 0; 2263 2264 /* 2265 * If these zap entries already exist, validate their contents. 2266 */ 2267 error = zap_length(os, object, txgname, &zl_intsize, &zl_ints); 2268 if (error == 0) { 2269 ASSERT3U(zl_intsize, ==, sizeof (uint64_t)); 2270 ASSERT3U(zl_ints, ==, 1); 2271 2272 VERIFY(zap_lookup(os, object, txgname, zl_intsize, 2273 zl_ints, &last_txg) == 0); 2274 2275 VERIFY(zap_length(os, object, propname, &zl_intsize, 2276 &zl_ints) == 0); 2277 2278 ASSERT3U(zl_intsize, ==, sizeof (uint64_t)); 2279 ASSERT3U(zl_ints, ==, ints); 2280 2281 VERIFY(zap_lookup(os, object, propname, zl_intsize, 2282 zl_ints, value) == 0); 2283 2284 for (i = 0; i < ints; i++) { 2285 ASSERT3U(value[i], ==, last_txg + object + i); 2286 } 2287 } else { 2288 ASSERT3U(error, ==, ENOENT); 2289 } 2290 2291 /* 2292 * Atomically update two entries in our zap object. 2293 * The first is named txg_%llu, and contains the txg 2294 * in which the property was last updated. The second 2295 * is named prop_%llu, and the nth element of its value 2296 * should be txg + object + n. 2297 */ 2298 tx = dmu_tx_create(os); 2299 dmu_tx_hold_zap(tx, object, TRUE, NULL); 2300 error = dmu_tx_assign(tx, TXG_WAIT); 2301 if (error) { 2302 ztest_record_enospc("create zap entry"); 2303 dmu_tx_abort(tx); 2304 return; 2305 } 2306 txg = dmu_tx_get_txg(tx); 2307 2308 if (last_txg > txg) 2309 fatal(0, "zap future leak: old %llu new %llu", last_txg, txg); 2310 2311 for (i = 0; i < ints; i++) 2312 value[i] = txg + object + i; 2313 2314 error = zap_update(os, object, txgname, sizeof (uint64_t), 1, &txg, tx); 2315 if (error) 2316 fatal(0, "zap_update('%s', %llu, '%s') = %d", 2317 osname, object, txgname, error); 2318 2319 error = zap_update(os, object, propname, sizeof (uint64_t), 2320 ints, value, tx); 2321 if (error) 2322 fatal(0, "zap_update('%s', %llu, '%s') = %d", 2323 osname, object, propname, error); 2324 2325 dmu_tx_commit(tx); 2326 2327 /* 2328 * Remove a random pair of entries. 2329 */ 2330 prop = ztest_random(ZTEST_ZAP_MAX_PROPS); 2331 (void) sprintf(propname, "prop_%llu", (u_longlong_t)prop); 2332 (void) sprintf(txgname, "txg_%llu", (u_longlong_t)prop); 2333 2334 error = zap_length(os, object, txgname, &zl_intsize, &zl_ints); 2335 2336 if (error == ENOENT) 2337 return; 2338 2339 ASSERT3U(error, ==, 0); 2340 2341 tx = dmu_tx_create(os); 2342 dmu_tx_hold_zap(tx, object, TRUE, NULL); 2343 error = dmu_tx_assign(tx, TXG_WAIT); 2344 if (error) { 2345 ztest_record_enospc("remove zap entry"); 2346 dmu_tx_abort(tx); 2347 return; 2348 } 2349 error = zap_remove(os, object, txgname, tx); 2350 if (error) 2351 fatal(0, "zap_remove('%s', %llu, '%s') = %d", 2352 osname, object, txgname, error); 2353 2354 error = zap_remove(os, object, propname, tx); 2355 if (error) 2356 fatal(0, "zap_remove('%s', %llu, '%s') = %d", 2357 osname, object, propname, error); 2358 2359 dmu_tx_commit(tx); 2360 2361 /* 2362 * Once in a while, destroy the object. 2363 */ 2364 if (ztest_random(1000) != 0) 2365 return; 2366 2367 tx = dmu_tx_create(os); 2368 dmu_tx_hold_write(tx, ZTEST_DIROBJ, za->za_diroff, sizeof (uint64_t)); 2369 dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END); 2370 error = dmu_tx_assign(tx, TXG_WAIT); 2371 if (error) { 2372 ztest_record_enospc("destroy zap object"); 2373 dmu_tx_abort(tx); 2374 return; 2375 } 2376 error = zap_destroy(os, object, tx); 2377 if (error) 2378 fatal(0, "zap_destroy('%s', %llu) = %d", 2379 osname, object, error); 2380 object = 0; 2381 dmu_write(os, ZTEST_DIROBJ, za->za_diroff, sizeof (uint64_t), 2382 &object, tx); 2383 dmu_tx_commit(tx); 2384 } 2385 2386 void 2387 ztest_zap_parallel(ztest_args_t *za) 2388 { 2389 objset_t *os = za->za_os; 2390 uint64_t txg, object, count, wsize, wc, zl_wsize, zl_wc; 2391 dmu_tx_t *tx; 2392 int i, namelen, error; 2393 char name[20], string_value[20]; 2394 void *data; 2395 2396 /* 2397 * Generate a random name of the form 'xxx.....' where each 2398 * x is a random printable character and the dots are dots. 2399 * There are 94 such characters, and the name length goes from 2400 * 6 to 20, so there are 94^3 * 15 = 12,458,760 possible names. 2401 */ 2402 namelen = ztest_random(sizeof (name) - 5) + 5 + 1; 2403 2404 for (i = 0; i < 3; i++) 2405 name[i] = '!' + ztest_random('~' - '!' + 1); 2406 for (; i < namelen - 1; i++) 2407 name[i] = '.'; 2408 name[i] = '\0'; 2409 2410 if (ztest_random(2) == 0) 2411 object = ZTEST_MICROZAP_OBJ; 2412 else 2413 object = ZTEST_FATZAP_OBJ; 2414 2415 if ((namelen & 1) || object == ZTEST_MICROZAP_OBJ) { 2416 wsize = sizeof (txg); 2417 wc = 1; 2418 data = &txg; 2419 } else { 2420 wsize = 1; 2421 wc = namelen; 2422 data = string_value; 2423 } 2424 2425 count = -1ULL; 2426 VERIFY(zap_count(os, object, &count) == 0); 2427 ASSERT(count != -1ULL); 2428 2429 /* 2430 * Select an operation: length, lookup, add, update, remove. 2431 */ 2432 i = ztest_random(5); 2433 2434 if (i >= 2) { 2435 tx = dmu_tx_create(os); 2436 dmu_tx_hold_zap(tx, object, TRUE, NULL); 2437 error = dmu_tx_assign(tx, TXG_WAIT); 2438 if (error) { 2439 ztest_record_enospc("zap parallel"); 2440 dmu_tx_abort(tx); 2441 return; 2442 } 2443 txg = dmu_tx_get_txg(tx); 2444 bcopy(name, string_value, namelen); 2445 } else { 2446 tx = NULL; 2447 txg = 0; 2448 bzero(string_value, namelen); 2449 } 2450 2451 switch (i) { 2452 2453 case 0: 2454 error = zap_length(os, object, name, &zl_wsize, &zl_wc); 2455 if (error == 0) { 2456 ASSERT3U(wsize, ==, zl_wsize); 2457 ASSERT3U(wc, ==, zl_wc); 2458 } else { 2459 ASSERT3U(error, ==, ENOENT); 2460 } 2461 break; 2462 2463 case 1: 2464 error = zap_lookup(os, object, name, wsize, wc, data); 2465 if (error == 0) { 2466 if (data == string_value && 2467 bcmp(name, data, namelen) != 0) 2468 fatal(0, "name '%s' != val '%s' len %d", 2469 name, data, namelen); 2470 } else { 2471 ASSERT3U(error, ==, ENOENT); 2472 } 2473 break; 2474 2475 case 2: 2476 error = zap_add(os, object, name, wsize, wc, data, tx); 2477 ASSERT(error == 0 || error == EEXIST); 2478 break; 2479 2480 case 3: 2481 VERIFY(zap_update(os, object, name, wsize, wc, data, tx) == 0); 2482 break; 2483 2484 case 4: 2485 error = zap_remove(os, object, name, tx); 2486 ASSERT(error == 0 || error == ENOENT); 2487 break; 2488 } 2489 2490 if (tx != NULL) 2491 dmu_tx_commit(tx); 2492 } 2493 2494 void 2495 ztest_dsl_prop_get_set(ztest_args_t *za) 2496 { 2497 objset_t *os = za->za_os; 2498 int i, inherit; 2499 uint64_t value; 2500 const char *prop, *valname; 2501 char setpoint[MAXPATHLEN]; 2502 char osname[MAXNAMELEN]; 2503 int error; 2504 2505 (void) rw_rdlock(&ztest_shared->zs_name_lock); 2506 2507 dmu_objset_name(os, osname); 2508 2509 for (i = 0; i < 2; i++) { 2510 if (i == 0) { 2511 prop = "checksum"; 2512 value = ztest_random_checksum(); 2513 inherit = (value == ZIO_CHECKSUM_INHERIT); 2514 } else { 2515 prop = "compression"; 2516 value = ztest_random_compress(); 2517 inherit = (value == ZIO_COMPRESS_INHERIT); 2518 } 2519 2520 error = dsl_prop_set(osname, prop, sizeof (value), 2521 !inherit, &value); 2522 2523 if (error == ENOSPC) { 2524 ztest_record_enospc("dsl_prop_set"); 2525 break; 2526 } 2527 2528 ASSERT3U(error, ==, 0); 2529 2530 VERIFY3U(dsl_prop_get(osname, prop, sizeof (value), 2531 1, &value, setpoint), ==, 0); 2532 2533 if (i == 0) 2534 valname = zio_checksum_table[value].ci_name; 2535 else 2536 valname = zio_compress_table[value].ci_name; 2537 2538 if (zopt_verbose >= 6) { 2539 (void) printf("%s %s = %s for '%s'\n", 2540 osname, prop, valname, setpoint); 2541 } 2542 } 2543 2544 (void) rw_unlock(&ztest_shared->zs_name_lock); 2545 } 2546 2547 static void 2548 ztest_error_setup(vdev_t *vd, int mode, int mask, uint64_t arg) 2549 { 2550 int c; 2551 2552 for (c = 0; c < vd->vdev_children; c++) 2553 ztest_error_setup(vd->vdev_child[c], mode, mask, arg); 2554 2555 if (vd->vdev_path != NULL) { 2556 vd->vdev_fault_mode = mode; 2557 vd->vdev_fault_mask = mask; 2558 vd->vdev_fault_arg = arg; 2559 } 2560 } 2561 2562 /* 2563 * Inject random faults into the on-disk data. 2564 */ 2565 void 2566 ztest_fault_inject(ztest_args_t *za) 2567 { 2568 int fd; 2569 uint64_t offset; 2570 uint64_t leaves = MAX(zopt_mirrors, 1) * zopt_raidz; 2571 uint64_t bad = 0x1990c0ffeedecade; 2572 uint64_t top, leaf; 2573 char path0[MAXPATHLEN]; 2574 char pathrand[MAXPATHLEN]; 2575 size_t fsize; 2576 spa_t *spa = za->za_spa; 2577 int bshift = SPA_MAXBLOCKSHIFT + 2; /* don't scrog all labels */ 2578 int iters = 1000; 2579 vdev_t *vd0; 2580 uint64_t guid0 = 0; 2581 2582 /* 2583 * We can't inject faults when we have no fault tolerance. 2584 */ 2585 if (zopt_maxfaults == 0) 2586 return; 2587 2588 ASSERT(leaves >= 2); 2589 2590 /* 2591 * Pick a random top-level vdev. 2592 */ 2593 spa_config_enter(spa, RW_READER, FTAG); 2594 top = ztest_random(spa->spa_root_vdev->vdev_children); 2595 spa_config_exit(spa, FTAG); 2596 2597 /* 2598 * Pick a random leaf. 2599 */ 2600 leaf = ztest_random(leaves); 2601 2602 /* 2603 * Generate paths to the first two leaves in this top-level vdev, 2604 * and to the random leaf we selected. We'll induce transient 2605 * I/O errors and random online/offline activity on leaf 0, 2606 * and we'll write random garbage to the randomly chosen leaf. 2607 */ 2608 (void) snprintf(path0, sizeof (path0), 2609 ztest_dev_template, zopt_dir, zopt_pool, top * leaves + 0); 2610 (void) snprintf(pathrand, sizeof (pathrand), 2611 ztest_dev_template, zopt_dir, zopt_pool, top * leaves + leaf); 2612 2613 dprintf("damaging %s and %s\n", path0, pathrand); 2614 2615 spa_config_enter(spa, RW_READER, FTAG); 2616 2617 /* 2618 * If we can tolerate two or more faults, make vd0 fail randomly. 2619 */ 2620 vd0 = vdev_lookup_by_path(spa->spa_root_vdev, path0); 2621 if (vd0 != NULL && zopt_maxfaults >= 2) { 2622 guid0 = vd0->vdev_guid; 2623 ztest_error_setup(vd0, VDEV_FAULT_COUNT, 2624 (1U << ZIO_TYPE_READ) | (1U << ZIO_TYPE_WRITE), 100); 2625 } 2626 2627 spa_config_exit(spa, FTAG); 2628 2629 /* 2630 * If we can tolerate two or more faults, randomly online/offline vd0. 2631 */ 2632 if (zopt_maxfaults >= 2 && guid0 != 0) { 2633 if (ztest_random(10) < 6) 2634 (void) vdev_offline(spa, guid0, B_TRUE); 2635 else 2636 (void) vdev_online(spa, guid0, B_FALSE, NULL); 2637 } 2638 2639 /* 2640 * We have at least single-fault tolerance, so inject data corruption. 2641 */ 2642 fd = open(pathrand, O_RDWR); 2643 2644 if (fd == -1) /* we hit a gap in the device namespace */ 2645 return; 2646 2647 fsize = lseek(fd, 0, SEEK_END); 2648 2649 while (--iters != 0) { 2650 offset = ztest_random(fsize / (leaves << bshift)) * 2651 (leaves << bshift) + (leaf << bshift) + 2652 (ztest_random(1ULL << (bshift - 1)) & -8ULL); 2653 2654 if (offset >= fsize) 2655 continue; 2656 2657 if (zopt_verbose >= 6) 2658 (void) printf("injecting bad word into %s," 2659 " offset 0x%llx\n", pathrand, (u_longlong_t)offset); 2660 2661 if (pwrite(fd, &bad, sizeof (bad), offset) != sizeof (bad)) 2662 fatal(1, "can't inject bad word at 0x%llx in %s", 2663 offset, pathrand); 2664 } 2665 2666 (void) close(fd); 2667 } 2668 2669 /* 2670 * Scrub the pool. 2671 */ 2672 void 2673 ztest_scrub(ztest_args_t *za) 2674 { 2675 spa_t *spa = za->za_spa; 2676 2677 mutex_enter(&spa_namespace_lock); 2678 (void) spa_scrub(spa, POOL_SCRUB_EVERYTHING, B_FALSE); 2679 mutex_exit(&spa_namespace_lock); 2680 (void) poll(NULL, 0, 1000); /* wait a second, then force a restart */ 2681 mutex_enter(&spa_namespace_lock); 2682 (void) spa_scrub(spa, POOL_SCRUB_EVERYTHING, B_FALSE); 2683 mutex_exit(&spa_namespace_lock); 2684 } 2685 2686 /* 2687 * Rename the pool to a different name and then rename it back. 2688 */ 2689 void 2690 ztest_spa_rename(ztest_args_t *za) 2691 { 2692 char *oldname, *newname; 2693 int error; 2694 spa_t *spa; 2695 2696 (void) rw_wrlock(&ztest_shared->zs_name_lock); 2697 2698 oldname = za->za_pool; 2699 newname = umem_alloc(strlen(oldname) + 5, UMEM_NOFAIL); 2700 (void) strcpy(newname, oldname); 2701 (void) strcat(newname, "_tmp"); 2702 2703 /* 2704 * Do the rename 2705 */ 2706 error = spa_rename(oldname, newname); 2707 if (error) 2708 fatal(0, "spa_rename('%s', '%s') = %d", oldname, 2709 newname, error); 2710 2711 /* 2712 * Try to open it under the old name, which shouldn't exist 2713 */ 2714 error = spa_open(oldname, &spa, FTAG); 2715 if (error != ENOENT) 2716 fatal(0, "spa_open('%s') = %d", oldname, error); 2717 2718 /* 2719 * Open it under the new name and make sure it's still the same spa_t. 2720 */ 2721 error = spa_open(newname, &spa, FTAG); 2722 if (error != 0) 2723 fatal(0, "spa_open('%s') = %d", newname, error); 2724 2725 ASSERT(spa == za->za_spa); 2726 spa_close(spa, FTAG); 2727 2728 /* 2729 * Rename it back to the original 2730 */ 2731 error = spa_rename(newname, oldname); 2732 if (error) 2733 fatal(0, "spa_rename('%s', '%s') = %d", newname, 2734 oldname, error); 2735 2736 /* 2737 * Make sure it can still be opened 2738 */ 2739 error = spa_open(oldname, &spa, FTAG); 2740 if (error != 0) 2741 fatal(0, "spa_open('%s') = %d", oldname, error); 2742 2743 ASSERT(spa == za->za_spa); 2744 spa_close(spa, FTAG); 2745 2746 umem_free(newname, strlen(newname) + 1); 2747 2748 (void) rw_unlock(&ztest_shared->zs_name_lock); 2749 } 2750 2751 2752 /* 2753 * Completely obliterate one disk. 2754 */ 2755 static void 2756 ztest_obliterate_one_disk(uint64_t vdev) 2757 { 2758 int fd; 2759 char dev_name[MAXPATHLEN], copy_name[MAXPATHLEN]; 2760 size_t fsize; 2761 2762 if (zopt_maxfaults < 2) 2763 return; 2764 2765 (void) sprintf(dev_name, ztest_dev_template, zopt_dir, zopt_pool, vdev); 2766 (void) snprintf(copy_name, MAXPATHLEN, "%s.old", dev_name); 2767 2768 fd = open(dev_name, O_RDWR); 2769 2770 if (fd == -1) 2771 fatal(1, "can't open %s", dev_name); 2772 2773 /* 2774 * Determine the size. 2775 */ 2776 fsize = lseek(fd, 0, SEEK_END); 2777 2778 (void) close(fd); 2779 2780 /* 2781 * Rename the old device to dev_name.old (useful for debugging). 2782 */ 2783 VERIFY(rename(dev_name, copy_name) == 0); 2784 2785 /* 2786 * Create a new one. 2787 */ 2788 VERIFY((fd = open(dev_name, O_RDWR | O_CREAT | O_TRUNC, 0666)) >= 0); 2789 VERIFY(ftruncate(fd, fsize) == 0); 2790 (void) close(fd); 2791 } 2792 2793 static void 2794 ztest_replace_one_disk(spa_t *spa, uint64_t vdev) 2795 { 2796 char dev_name[MAXPATHLEN]; 2797 nvlist_t *file, *root; 2798 int error; 2799 uint64_t guid; 2800 uint64_t ashift = ztest_get_ashift(); 2801 vdev_t *vd; 2802 2803 (void) sprintf(dev_name, ztest_dev_template, zopt_dir, zopt_pool, vdev); 2804 2805 /* 2806 * Build the nvlist describing dev_name. 2807 */ 2808 VERIFY(nvlist_alloc(&file, NV_UNIQUE_NAME, 0) == 0); 2809 VERIFY(nvlist_add_string(file, ZPOOL_CONFIG_TYPE, VDEV_TYPE_FILE) == 0); 2810 VERIFY(nvlist_add_string(file, ZPOOL_CONFIG_PATH, dev_name) == 0); 2811 VERIFY(nvlist_add_uint64(file, ZPOOL_CONFIG_ASHIFT, ashift) == 0); 2812 2813 VERIFY(nvlist_alloc(&root, NV_UNIQUE_NAME, 0) == 0); 2814 VERIFY(nvlist_add_string(root, ZPOOL_CONFIG_TYPE, VDEV_TYPE_ROOT) == 0); 2815 VERIFY(nvlist_add_nvlist_array(root, ZPOOL_CONFIG_CHILDREN, 2816 &file, 1) == 0); 2817 2818 spa_config_enter(spa, RW_READER, FTAG); 2819 if ((vd = vdev_lookup_by_path(spa->spa_root_vdev, dev_name)) == NULL) 2820 guid = 0; 2821 else 2822 guid = vd->vdev_guid; 2823 spa_config_exit(spa, FTAG); 2824 error = spa_vdev_attach(spa, guid, root, B_TRUE); 2825 if (error != 0 && 2826 error != EBUSY && 2827 error != ENOTSUP && 2828 error != ENODEV && 2829 error != EDOM) 2830 fatal(0, "spa_vdev_attach(in-place) = %d", error); 2831 2832 nvlist_free(file); 2833 nvlist_free(root); 2834 } 2835 2836 static void 2837 ztest_verify_blocks(char *pool) 2838 { 2839 int status; 2840 char zdb[MAXPATHLEN + MAXNAMELEN + 20]; 2841 char zbuf[1024]; 2842 char *bin; 2843 char *ztest; 2844 char *isa; 2845 int isalen; 2846 FILE *fp; 2847 2848 (void) realpath(getexecname(), zdb); 2849 2850 /* zdb lives in /usr/sbin, while ztest lives in /usr/bin */ 2851 bin = strstr(zdb, "/usr/bin/"); 2852 ztest = strstr(bin, "/ztest"); 2853 isa = bin + 8; 2854 isalen = ztest - isa; 2855 isa = strdup(isa); 2856 /* LINTED */ 2857 (void) sprintf(bin, 2858 "/usr/sbin%.*s/zdb -bc%s%s -U /tmp/zpool.cache -O %s %s", 2859 isalen, 2860 isa, 2861 zopt_verbose >= 3 ? "s" : "", 2862 zopt_verbose >= 4 ? "v" : "", 2863 ztest_random(2) == 0 ? "pre" : "post", pool); 2864 free(isa); 2865 2866 if (zopt_verbose >= 5) 2867 (void) printf("Executing %s\n", strstr(zdb, "zdb ")); 2868 2869 fp = popen(zdb, "r"); 2870 2871 while (fgets(zbuf, sizeof (zbuf), fp) != NULL) 2872 if (zopt_verbose >= 3) 2873 (void) printf("%s", zbuf); 2874 2875 status = pclose(fp); 2876 2877 if (status == 0) 2878 return; 2879 2880 ztest_dump_core = 0; 2881 if (WIFEXITED(status)) 2882 fatal(0, "'%s' exit code %d", zdb, WEXITSTATUS(status)); 2883 else 2884 fatal(0, "'%s' died with signal %d", zdb, WTERMSIG(status)); 2885 } 2886 2887 static void 2888 ztest_walk_pool_directory(char *header) 2889 { 2890 spa_t *spa = NULL; 2891 2892 if (zopt_verbose >= 6) 2893 (void) printf("%s\n", header); 2894 2895 mutex_enter(&spa_namespace_lock); 2896 while ((spa = spa_next(spa)) != NULL) 2897 if (zopt_verbose >= 6) 2898 (void) printf("\t%s\n", spa_name(spa)); 2899 mutex_exit(&spa_namespace_lock); 2900 } 2901 2902 static void 2903 ztest_spa_import_export(char *oldname, char *newname) 2904 { 2905 nvlist_t *config; 2906 uint64_t pool_guid; 2907 spa_t *spa; 2908 int error; 2909 2910 if (zopt_verbose >= 4) { 2911 (void) printf("import/export: old = %s, new = %s\n", 2912 oldname, newname); 2913 } 2914 2915 /* 2916 * Clean up from previous runs. 2917 */ 2918 (void) spa_destroy(newname); 2919 2920 /* 2921 * Get the pool's configuration and guid. 2922 */ 2923 error = spa_open(oldname, &spa, FTAG); 2924 if (error) 2925 fatal(0, "spa_open('%s') = %d", oldname, error); 2926 2927 pool_guid = spa_guid(spa); 2928 spa_close(spa, FTAG); 2929 2930 ztest_walk_pool_directory("pools before export"); 2931 2932 /* 2933 * Export it. 2934 */ 2935 error = spa_export(oldname, &config); 2936 if (error) 2937 fatal(0, "spa_export('%s') = %d", oldname, error); 2938 2939 ztest_walk_pool_directory("pools after export"); 2940 2941 /* 2942 * Import it under the new name. 2943 */ 2944 error = spa_import(newname, config, NULL); 2945 if (error) 2946 fatal(0, "spa_import('%s') = %d", newname, error); 2947 2948 ztest_walk_pool_directory("pools after import"); 2949 2950 /* 2951 * Try to import it again -- should fail with EEXIST. 2952 */ 2953 error = spa_import(newname, config, NULL); 2954 if (error != EEXIST) 2955 fatal(0, "spa_import('%s') twice", newname); 2956 2957 /* 2958 * Try to import it under a different name -- should fail with EEXIST. 2959 */ 2960 error = spa_import(oldname, config, NULL); 2961 if (error != EEXIST) 2962 fatal(0, "spa_import('%s') under multiple names", newname); 2963 2964 /* 2965 * Verify that the pool is no longer visible under the old name. 2966 */ 2967 error = spa_open(oldname, &spa, FTAG); 2968 if (error != ENOENT) 2969 fatal(0, "spa_open('%s') = %d", newname, error); 2970 2971 /* 2972 * Verify that we can open and close the pool using the new name. 2973 */ 2974 error = spa_open(newname, &spa, FTAG); 2975 if (error) 2976 fatal(0, "spa_open('%s') = %d", newname, error); 2977 ASSERT(pool_guid == spa_guid(spa)); 2978 spa_close(spa, FTAG); 2979 2980 nvlist_free(config); 2981 } 2982 2983 /* ARGSUSED */ 2984 static void * 2985 ztest_suspend_monitor(void *arg) 2986 { 2987 spa_t *spa; 2988 int error; 2989 2990 error = spa_open(zopt_pool, &spa, FTAG); 2991 if (error) { 2992 (void) printf("Unable to monitor pool '%s'\n", zopt_pool); 2993 return (NULL); 2994 } 2995 2996 while (!ztest_exiting) { 2997 mutex_enter(&spa->spa_zio_lock); 2998 while (!ztest_exiting && list_is_empty(&spa->spa_zio_list)) 2999 cv_wait(&spa->spa_zio_cv, &spa->spa_zio_lock); 3000 mutex_exit(&spa->spa_zio_lock); 3001 3002 (void) sleep(3); 3003 /* 3004 * We don't hold the spa_config_lock since the pool is in 3005 * complete failure mode and there is no way for us to 3006 * change the vdev config when we're in this state. 3007 */ 3008 while ((error = zio_vdev_resume_io(spa)) != 0) { 3009 (void) printf("I/O could not be resumed, %d\n", error); 3010 (void) sleep(1); 3011 } 3012 vdev_clear(spa, NULL, B_TRUE); 3013 } 3014 spa_close(spa, FTAG); 3015 return (NULL); 3016 } 3017 3018 static void * 3019 ztest_thread(void *arg) 3020 { 3021 ztest_args_t *za = arg; 3022 ztest_shared_t *zs = ztest_shared; 3023 hrtime_t now, functime; 3024 ztest_info_t *zi; 3025 int f, i; 3026 3027 while ((now = gethrtime()) < za->za_stop) { 3028 /* 3029 * See if it's time to force a crash. 3030 */ 3031 if (now > za->za_kill) { 3032 zs->zs_alloc = spa_get_alloc(za->za_spa); 3033 zs->zs_space = spa_get_space(za->za_spa); 3034 (void) kill(getpid(), SIGKILL); 3035 } 3036 3037 /* 3038 * Pick a random function. 3039 */ 3040 f = ztest_random(ZTEST_FUNCS); 3041 zi = &zs->zs_info[f]; 3042 3043 /* 3044 * Decide whether to call it, based on the requested frequency. 3045 */ 3046 if (zi->zi_call_target == 0 || 3047 (double)zi->zi_call_total / zi->zi_call_target > 3048 (double)(now - zs->zs_start_time) / (zopt_time * NANOSEC)) 3049 continue; 3050 3051 atomic_add_64(&zi->zi_calls, 1); 3052 atomic_add_64(&zi->zi_call_total, 1); 3053 3054 za->za_diroff = (za->za_instance * ZTEST_FUNCS + f) * 3055 ZTEST_DIRSIZE; 3056 za->za_diroff_shared = (1ULL << 63); 3057 3058 for (i = 0; i < zi->zi_iters; i++) 3059 zi->zi_func(za); 3060 3061 functime = gethrtime() - now; 3062 3063 atomic_add_64(&zi->zi_call_time, functime); 3064 3065 if (zopt_verbose >= 4) { 3066 Dl_info dli; 3067 (void) dladdr((void *)zi->zi_func, &dli); 3068 (void) printf("%6.2f sec in %s\n", 3069 (double)functime / NANOSEC, dli.dli_sname); 3070 } 3071 3072 /* 3073 * If we're getting ENOSPC with some regularity, stop. 3074 */ 3075 if (zs->zs_enospc_count > 10) 3076 break; 3077 } 3078 3079 return (NULL); 3080 } 3081 3082 /* 3083 * Kick off threads to run tests on all datasets in parallel. 3084 */ 3085 static void 3086 ztest_run(char *pool) 3087 { 3088 int t, d, error; 3089 ztest_shared_t *zs = ztest_shared; 3090 ztest_args_t *za; 3091 spa_t *spa; 3092 char name[100]; 3093 thread_t tid; 3094 3095 (void) _mutex_init(&zs->zs_vdev_lock, USYNC_THREAD, NULL); 3096 (void) rwlock_init(&zs->zs_name_lock, USYNC_THREAD, NULL); 3097 3098 for (t = 0; t < ZTEST_SYNC_LOCKS; t++) 3099 (void) _mutex_init(&zs->zs_sync_lock[t], USYNC_THREAD, NULL); 3100 3101 /* 3102 * Destroy one disk before we even start. 3103 * It's mirrored, so everything should work just fine. 3104 * This makes us exercise fault handling very early in spa_load(). 3105 */ 3106 ztest_obliterate_one_disk(0); 3107 3108 /* 3109 * Verify that the sum of the sizes of all blocks in the pool 3110 * equals the SPA's allocated space total. 3111 */ 3112 ztest_verify_blocks(pool); 3113 3114 /* 3115 * Kick off a replacement of the disk we just obliterated. 3116 */ 3117 kernel_init(FREAD | FWRITE); 3118 error = spa_open(pool, &spa, FTAG); 3119 if (error) 3120 fatal(0, "spa_open(%s) = %d", pool, error); 3121 ztest_replace_one_disk(spa, 0); 3122 if (zopt_verbose >= 5) 3123 show_pool_stats(spa); 3124 spa_close(spa, FTAG); 3125 kernel_fini(); 3126 3127 kernel_init(FREAD | FWRITE); 3128 3129 /* 3130 * Verify that we can export the pool and reimport it under a 3131 * different name. 3132 */ 3133 if (ztest_random(2) == 0) { 3134 (void) snprintf(name, 100, "%s_import", pool); 3135 ztest_spa_import_export(pool, name); 3136 ztest_spa_import_export(name, pool); 3137 } 3138 3139 /* 3140 * Verify that we can loop over all pools. 3141 */ 3142 mutex_enter(&spa_namespace_lock); 3143 for (spa = spa_next(NULL); spa != NULL; spa = spa_next(spa)) { 3144 if (zopt_verbose > 3) { 3145 (void) printf("spa_next: found %s\n", spa_name(spa)); 3146 } 3147 } 3148 mutex_exit(&spa_namespace_lock); 3149 3150 /* 3151 * Create a thread to handling complete pool failures. This 3152 * thread will kickstart the I/Os when they suspend. We must 3153 * start the thread before setting the zio_io_fail_shift, which 3154 * will indicate our failure rate. 3155 */ 3156 error = thr_create(0, 0, ztest_suspend_monitor, NULL, THR_BOUND, &tid); 3157 if (error) { 3158 fatal(0, "can't create suspend monitor thread: error %d", 3159 t, error); 3160 } 3161 3162 /* 3163 * Open our pool. 3164 */ 3165 error = spa_open(pool, &spa, FTAG); 3166 if (error) 3167 fatal(0, "spa_open() = %d", error); 3168 3169 /* 3170 * Verify that we can safely inquire about about any object, 3171 * whether it's allocated or not. To make it interesting, 3172 * we probe a 5-wide window around each power of two. 3173 * This hits all edge cases, including zero and the max. 3174 */ 3175 for (t = 0; t < 64; t++) { 3176 for (d = -5; d <= 5; d++) { 3177 error = dmu_object_info(spa->spa_meta_objset, 3178 (1ULL << t) + d, NULL); 3179 ASSERT(error == 0 || error == ENOENT || 3180 error == EINVAL); 3181 } 3182 } 3183 3184 /* 3185 * Now kick off all the tests that run in parallel. 3186 */ 3187 zs->zs_enospc_count = 0; 3188 3189 za = umem_zalloc(zopt_threads * sizeof (ztest_args_t), UMEM_NOFAIL); 3190 3191 if (zopt_verbose >= 4) 3192 (void) printf("starting main threads...\n"); 3193 3194 /* Let failures begin */ 3195 zio_io_fail_shift = zopt_write_fail_shift; 3196 3197 za[0].za_start = gethrtime(); 3198 za[0].za_stop = za[0].za_start + zopt_passtime * NANOSEC; 3199 za[0].za_stop = MIN(za[0].za_stop, zs->zs_stop_time); 3200 za[0].za_kill = za[0].za_stop; 3201 if (ztest_random(100) < zopt_killrate) 3202 za[0].za_kill -= ztest_random(zopt_passtime * NANOSEC); 3203 3204 for (t = 0; t < zopt_threads; t++) { 3205 d = t % zopt_datasets; 3206 3207 (void) strcpy(za[t].za_pool, pool); 3208 za[t].za_os = za[d].za_os; 3209 za[t].za_spa = spa; 3210 za[t].za_zilog = za[d].za_zilog; 3211 za[t].za_instance = t; 3212 za[t].za_random = ztest_random(-1ULL); 3213 za[t].za_start = za[0].za_start; 3214 za[t].za_stop = za[0].za_stop; 3215 za[t].za_kill = za[0].za_kill; 3216 3217 if (t < zopt_datasets) { 3218 ztest_replay_t zr; 3219 int test_future = FALSE; 3220 (void) rw_rdlock(&ztest_shared->zs_name_lock); 3221 (void) snprintf(name, 100, "%s/%s_%d", pool, pool, d); 3222 error = dmu_objset_create(name, DMU_OST_OTHER, NULL, 3223 ztest_create_cb, NULL); 3224 if (error == EEXIST) { 3225 test_future = TRUE; 3226 } else if (error == ENOSPC) { 3227 zs->zs_enospc_count++; 3228 (void) rw_unlock(&ztest_shared->zs_name_lock); 3229 break; 3230 } else if (error != 0) { 3231 fatal(0, "dmu_objset_create(%s) = %d", 3232 name, error); 3233 } 3234 error = dmu_objset_open(name, DMU_OST_OTHER, 3235 DS_MODE_STANDARD, &za[d].za_os); 3236 if (error) 3237 fatal(0, "dmu_objset_open('%s') = %d", 3238 name, error); 3239 (void) rw_unlock(&ztest_shared->zs_name_lock); 3240 if (test_future) 3241 ztest_dmu_check_future_leak(&za[t]); 3242 zr.zr_os = za[d].za_os; 3243 zil_replay(zr.zr_os, &zr, &zr.zr_assign, 3244 ztest_replay_vector); 3245 za[d].za_zilog = zil_open(za[d].za_os, NULL); 3246 } 3247 3248 error = thr_create(0, 0, ztest_thread, &za[t], THR_BOUND, 3249 &za[t].za_thread); 3250 if (error) 3251 fatal(0, "can't create thread %d: error %d", 3252 t, error); 3253 } 3254 3255 while (--t >= 0) { 3256 error = thr_join(za[t].za_thread, NULL, NULL); 3257 if (error) 3258 fatal(0, "thr_join(%d) = %d", t, error); 3259 if (za[t].za_th) 3260 traverse_fini(za[t].za_th); 3261 if (t < zopt_datasets) { 3262 zil_close(za[t].za_zilog); 3263 dmu_objset_close(za[t].za_os); 3264 } 3265 } 3266 3267 if (zopt_verbose >= 3) 3268 show_pool_stats(spa); 3269 3270 txg_wait_synced(spa_get_dsl(spa), 0); 3271 3272 zs->zs_alloc = spa_get_alloc(spa); 3273 zs->zs_space = spa_get_space(spa); 3274 3275 /* 3276 * If we had out-of-space errors, destroy a random objset. 3277 */ 3278 if (zs->zs_enospc_count != 0) { 3279 (void) rw_rdlock(&ztest_shared->zs_name_lock); 3280 d = (int)ztest_random(zopt_datasets); 3281 (void) snprintf(name, 100, "%s/%s_%d", pool, pool, d); 3282 if (zopt_verbose >= 3) 3283 (void) printf("Destroying %s to free up space\n", name); 3284 (void) dmu_objset_find(name, ztest_destroy_cb, &za[d], 3285 DS_FIND_SNAPSHOTS | DS_FIND_CHILDREN); 3286 (void) rw_unlock(&ztest_shared->zs_name_lock); 3287 } 3288 3289 txg_wait_synced(spa_get_dsl(spa), 0); 3290 3291 /* 3292 * Right before closing the pool, kick off a bunch of async I/O; 3293 * spa_close() should wait for it to complete. 3294 */ 3295 for (t = 1; t < 50; t++) 3296 dmu_prefetch(spa->spa_meta_objset, t, 0, 1 << 15); 3297 3298 /* Shutdown the suspend monitor thread */ 3299 zio_io_fail_shift = 0; 3300 ztest_exiting = B_TRUE; 3301 mutex_enter(&spa->spa_zio_lock); 3302 cv_broadcast(&spa->spa_zio_cv); 3303 mutex_exit(&spa->spa_zio_lock); 3304 error = thr_join(tid, NULL, NULL); 3305 if (error) 3306 fatal(0, "thr_join(%d) = %d", tid, error); 3307 3308 umem_free(za, zopt_threads * sizeof (ztest_args_t)); 3309 3310 spa_close(spa, FTAG); 3311 3312 kernel_fini(); 3313 } 3314 3315 void 3316 print_time(hrtime_t t, char *timebuf) 3317 { 3318 hrtime_t s = t / NANOSEC; 3319 hrtime_t m = s / 60; 3320 hrtime_t h = m / 60; 3321 hrtime_t d = h / 24; 3322 3323 s -= m * 60; 3324 m -= h * 60; 3325 h -= d * 24; 3326 3327 timebuf[0] = '\0'; 3328 3329 if (d) 3330 (void) sprintf(timebuf, 3331 "%llud%02lluh%02llum%02llus", d, h, m, s); 3332 else if (h) 3333 (void) sprintf(timebuf, "%lluh%02llum%02llus", h, m, s); 3334 else if (m) 3335 (void) sprintf(timebuf, "%llum%02llus", m, s); 3336 else 3337 (void) sprintf(timebuf, "%llus", s); 3338 } 3339 3340 /* 3341 * Create a storage pool with the given name and initial vdev size. 3342 * Then create the specified number of datasets in the pool. 3343 */ 3344 static void 3345 ztest_init(char *pool) 3346 { 3347 spa_t *spa; 3348 int error; 3349 nvlist_t *nvroot; 3350 3351 kernel_init(FREAD | FWRITE); 3352 3353 /* 3354 * Create the storage pool. 3355 */ 3356 (void) spa_destroy(pool); 3357 ztest_shared->zs_vdev_primaries = 0; 3358 nvroot = make_vdev_root(zopt_vdev_size, 0, zopt_raidz, zopt_mirrors, 1); 3359 error = spa_create(pool, nvroot, NULL, NULL); 3360 nvlist_free(nvroot); 3361 3362 if (error) 3363 fatal(0, "spa_create() = %d", error); 3364 error = spa_open(pool, &spa, FTAG); 3365 if (error) 3366 fatal(0, "spa_open() = %d", error); 3367 3368 if (zopt_verbose >= 3) 3369 show_pool_stats(spa); 3370 3371 spa_close(spa, FTAG); 3372 3373 kernel_fini(); 3374 } 3375 3376 int 3377 main(int argc, char **argv) 3378 { 3379 int kills = 0; 3380 int iters = 0; 3381 int i, f; 3382 ztest_shared_t *zs; 3383 ztest_info_t *zi; 3384 char timebuf[100]; 3385 char numbuf[6]; 3386 3387 (void) setvbuf(stdout, NULL, _IOLBF, 0); 3388 3389 /* Override location of zpool.cache */ 3390 spa_config_dir = "/tmp"; 3391 3392 ztest_random_fd = open("/dev/urandom", O_RDONLY); 3393 3394 process_options(argc, argv); 3395 3396 argc -= optind; 3397 argv += optind; 3398 3399 dprintf_setup(&argc, argv); 3400 3401 /* 3402 * Blow away any existing copy of zpool.cache 3403 */ 3404 if (zopt_init != 0) 3405 (void) remove("/tmp/zpool.cache"); 3406 3407 zs = ztest_shared = (void *)mmap(0, 3408 P2ROUNDUP(sizeof (ztest_shared_t), getpagesize()), 3409 PROT_READ | PROT_WRITE, MAP_SHARED | MAP_ANON, -1, 0); 3410 3411 if (zopt_verbose >= 1) { 3412 (void) printf("%llu vdevs, %d datasets, %d threads," 3413 " %llu seconds...\n", 3414 (u_longlong_t)zopt_vdevs, zopt_datasets, zopt_threads, 3415 (u_longlong_t)zopt_time); 3416 } 3417 3418 /* 3419 * Create and initialize our storage pool. 3420 */ 3421 for (i = 1; i <= zopt_init; i++) { 3422 bzero(zs, sizeof (ztest_shared_t)); 3423 if (zopt_verbose >= 3 && zopt_init != 1) 3424 (void) printf("ztest_init(), pass %d\n", i); 3425 ztest_init(zopt_pool); 3426 } 3427 3428 /* 3429 * Initialize the call targets for each function. 3430 */ 3431 for (f = 0; f < ZTEST_FUNCS; f++) { 3432 zi = &zs->zs_info[f]; 3433 3434 *zi = ztest_info[f]; 3435 3436 if (*zi->zi_interval == 0) 3437 zi->zi_call_target = UINT64_MAX; 3438 else 3439 zi->zi_call_target = zopt_time / *zi->zi_interval; 3440 } 3441 3442 zs->zs_start_time = gethrtime(); 3443 zs->zs_stop_time = zs->zs_start_time + zopt_time * NANOSEC; 3444 3445 /* 3446 * Run the tests in a loop. These tests include fault injection 3447 * to verify that self-healing data works, and forced crashes 3448 * to verify that we never lose on-disk consistency. 3449 */ 3450 while (gethrtime() < zs->zs_stop_time) { 3451 int status; 3452 pid_t pid; 3453 char *tmp; 3454 3455 /* 3456 * Initialize the workload counters for each function. 3457 */ 3458 for (f = 0; f < ZTEST_FUNCS; f++) { 3459 zi = &zs->zs_info[f]; 3460 zi->zi_calls = 0; 3461 zi->zi_call_time = 0; 3462 } 3463 3464 pid = fork(); 3465 3466 if (pid == -1) 3467 fatal(1, "fork failed"); 3468 3469 if (pid == 0) { /* child */ 3470 struct rlimit rl = { 1024, 1024 }; 3471 (void) setrlimit(RLIMIT_NOFILE, &rl); 3472 (void) enable_extended_FILE_stdio(-1, -1); 3473 ztest_run(zopt_pool); 3474 exit(0); 3475 } 3476 3477 while (waitpid(pid, &status, 0) != pid) 3478 continue; 3479 3480 if (WIFEXITED(status)) { 3481 if (WEXITSTATUS(status) != 0) { 3482 (void) fprintf(stderr, 3483 "child exited with code %d\n", 3484 WEXITSTATUS(status)); 3485 exit(2); 3486 } 3487 } else if (WIFSIGNALED(status)) { 3488 if (WTERMSIG(status) != SIGKILL) { 3489 (void) fprintf(stderr, 3490 "child died with signal %d\n", 3491 WTERMSIG(status)); 3492 exit(3); 3493 } 3494 kills++; 3495 } else { 3496 (void) fprintf(stderr, "something strange happened " 3497 "to child\n"); 3498 exit(4); 3499 } 3500 3501 iters++; 3502 3503 if (zopt_verbose >= 1) { 3504 hrtime_t now = gethrtime(); 3505 3506 now = MIN(now, zs->zs_stop_time); 3507 print_time(zs->zs_stop_time - now, timebuf); 3508 nicenum(zs->zs_space, numbuf); 3509 3510 (void) printf("Pass %3d, %8s, %3llu ENOSPC, " 3511 "%4.1f%% of %5s used, %3.0f%% done, %8s to go\n", 3512 iters, 3513 WIFEXITED(status) ? "Complete" : "SIGKILL", 3514 (u_longlong_t)zs->zs_enospc_count, 3515 100.0 * zs->zs_alloc / zs->zs_space, 3516 numbuf, 3517 100.0 * (now - zs->zs_start_time) / 3518 (zopt_time * NANOSEC), timebuf); 3519 } 3520 3521 if (zopt_verbose >= 2) { 3522 (void) printf("\nWorkload summary:\n\n"); 3523 (void) printf("%7s %9s %s\n", 3524 "Calls", "Time", "Function"); 3525 (void) printf("%7s %9s %s\n", 3526 "-----", "----", "--------"); 3527 for (f = 0; f < ZTEST_FUNCS; f++) { 3528 Dl_info dli; 3529 3530 zi = &zs->zs_info[f]; 3531 print_time(zi->zi_call_time, timebuf); 3532 (void) dladdr((void *)zi->zi_func, &dli); 3533 (void) printf("%7llu %9s %s\n", 3534 (u_longlong_t)zi->zi_calls, timebuf, 3535 dli.dli_sname); 3536 } 3537 (void) printf("\n"); 3538 } 3539 3540 /* 3541 * It's possible that we killed a child during a rename test, in 3542 * which case we'll have a 'ztest_tmp' pool lying around instead 3543 * of 'ztest'. Do a blind rename in case this happened. 3544 */ 3545 tmp = umem_alloc(strlen(zopt_pool) + 5, UMEM_NOFAIL); 3546 (void) strcpy(tmp, zopt_pool); 3547 (void) strcat(tmp, "_tmp"); 3548 kernel_init(FREAD | FWRITE); 3549 (void) spa_rename(tmp, zopt_pool); 3550 kernel_fini(); 3551 umem_free(tmp, strlen(tmp) + 1); 3552 } 3553 3554 ztest_verify_blocks(zopt_pool); 3555 3556 if (zopt_verbose >= 1) { 3557 (void) printf("%d killed, %d completed, %.0f%% kill rate\n", 3558 kills, iters - kills, (100.0 * kills) / MAX(1, iters)); 3559 } 3560 3561 return (0); 3562 } 3563