1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2010 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* 27 * The objective of this program is to provide a DMU/ZAP/SPA stress test 28 * that runs entirely in userland, is easy to use, and easy to extend. 29 * 30 * The overall design of the ztest program is as follows: 31 * 32 * (1) For each major functional area (e.g. adding vdevs to a pool, 33 * creating and destroying datasets, reading and writing objects, etc) 34 * we have a simple routine to test that functionality. These 35 * individual routines do not have to do anything "stressful". 36 * 37 * (2) We turn these simple functionality tests into a stress test by 38 * running them all in parallel, with as many threads as desired, 39 * and spread across as many datasets, objects, and vdevs as desired. 40 * 41 * (3) While all this is happening, we inject faults into the pool to 42 * verify that self-healing data really works. 43 * 44 * (4) Every time we open a dataset, we change its checksum and compression 45 * functions. Thus even individual objects vary from block to block 46 * in which checksum they use and whether they're compressed. 47 * 48 * (5) To verify that we never lose on-disk consistency after a crash, 49 * we run the entire test in a child of the main process. 50 * At random times, the child self-immolates with a SIGKILL. 51 * This is the software equivalent of pulling the power cord. 52 * The parent then runs the test again, using the existing 53 * storage pool, as many times as desired. 54 * 55 * (6) To verify that we don't have future leaks or temporal incursions, 56 * many of the functional tests record the transaction group number 57 * as part of their data. When reading old data, they verify that 58 * the transaction group number is less than the current, open txg. 59 * If you add a new test, please do this if applicable. 60 * 61 * When run with no arguments, ztest runs for about five minutes and 62 * produces no output if successful. To get a little bit of information, 63 * specify -V. To get more information, specify -VV, and so on. 64 * 65 * To turn this into an overnight stress test, use -T to specify run time. 66 * 67 * You can ask more more vdevs [-v], datasets [-d], or threads [-t] 68 * to increase the pool capacity, fanout, and overall stress level. 69 * 70 * The -N(okill) option will suppress kills, so each child runs to completion. 71 * This can be useful when you're trying to distinguish temporal incursions 72 * from plain old race conditions. 73 */ 74 75 #include <sys/zfs_context.h> 76 #include <sys/spa.h> 77 #include <sys/dmu.h> 78 #include <sys/txg.h> 79 #include <sys/dbuf.h> 80 #include <sys/zap.h> 81 #include <sys/dmu_objset.h> 82 #include <sys/poll.h> 83 #include <sys/stat.h> 84 #include <sys/time.h> 85 #include <sys/wait.h> 86 #include <sys/mman.h> 87 #include <sys/resource.h> 88 #include <sys/zio.h> 89 #include <sys/zil.h> 90 #include <sys/zil_impl.h> 91 #include <sys/vdev_impl.h> 92 #include <sys/vdev_file.h> 93 #include <sys/spa_impl.h> 94 #include <sys/metaslab_impl.h> 95 #include <sys/dsl_prop.h> 96 #include <sys/dsl_dataset.h> 97 #include <sys/refcount.h> 98 #include <stdio.h> 99 #include <stdio_ext.h> 100 #include <stdlib.h> 101 #include <unistd.h> 102 #include <signal.h> 103 #include <umem.h> 104 #include <dlfcn.h> 105 #include <ctype.h> 106 #include <math.h> 107 #include <sys/fs/zfs.h> 108 #include <libnvpair.h> 109 110 static char cmdname[] = "ztest"; 111 static char *zopt_pool = cmdname; 112 113 static uint64_t zopt_vdevs = 5; 114 static uint64_t zopt_vdevtime; 115 static int zopt_ashift = SPA_MINBLOCKSHIFT; 116 static int zopt_mirrors = 2; 117 static int zopt_raidz = 4; 118 static int zopt_raidz_parity = 1; 119 static size_t zopt_vdev_size = SPA_MINDEVSIZE; 120 static int zopt_datasets = 7; 121 static int zopt_threads = 23; 122 static uint64_t zopt_passtime = 60; /* 60 seconds */ 123 static uint64_t zopt_killrate = 70; /* 70% kill rate */ 124 static int zopt_verbose = 0; 125 static int zopt_init = 1; 126 static char *zopt_dir = "/tmp"; 127 static uint64_t zopt_time = 300; /* 5 minutes */ 128 129 #define BT_MAGIC 0x123456789abcdefULL 130 #define MAXFAULTS() (MAX(zs->zs_mirrors, 1) * (zopt_raidz_parity + 1) - 1) 131 132 enum ztest_io_type { 133 ZTEST_IO_WRITE_TAG, 134 ZTEST_IO_WRITE_PATTERN, 135 ZTEST_IO_WRITE_ZEROES, 136 ZTEST_IO_TRUNCATE, 137 ZTEST_IO_SETATTR, 138 ZTEST_IO_TYPES 139 }; 140 141 typedef struct ztest_block_tag { 142 uint64_t bt_magic; 143 uint64_t bt_objset; 144 uint64_t bt_object; 145 uint64_t bt_offset; 146 uint64_t bt_gen; 147 uint64_t bt_txg; 148 uint64_t bt_crtxg; 149 } ztest_block_tag_t; 150 151 typedef struct bufwad { 152 uint64_t bw_index; 153 uint64_t bw_txg; 154 uint64_t bw_data; 155 } bufwad_t; 156 157 /* 158 * XXX -- fix zfs range locks to be generic so we can use them here. 159 */ 160 typedef enum { 161 RL_READER, 162 RL_WRITER, 163 RL_APPEND 164 } rl_type_t; 165 166 typedef struct rll { 167 void *rll_writer; 168 int rll_readers; 169 mutex_t rll_lock; 170 cond_t rll_cv; 171 } rll_t; 172 173 typedef struct rl { 174 uint64_t rl_object; 175 uint64_t rl_offset; 176 uint64_t rl_size; 177 rll_t *rl_lock; 178 } rl_t; 179 180 #define ZTEST_RANGE_LOCKS 64 181 #define ZTEST_OBJECT_LOCKS 64 182 183 /* 184 * Object descriptor. Used as a template for object lookup/create/remove. 185 */ 186 typedef struct ztest_od { 187 uint64_t od_dir; 188 uint64_t od_object; 189 dmu_object_type_t od_type; 190 dmu_object_type_t od_crtype; 191 uint64_t od_blocksize; 192 uint64_t od_crblocksize; 193 uint64_t od_gen; 194 uint64_t od_crgen; 195 char od_name[MAXNAMELEN]; 196 } ztest_od_t; 197 198 /* 199 * Per-dataset state. 200 */ 201 typedef struct ztest_ds { 202 objset_t *zd_os; 203 zilog_t *zd_zilog; 204 uint64_t zd_seq; 205 ztest_od_t *zd_od; /* debugging aid */ 206 char zd_name[MAXNAMELEN]; 207 mutex_t zd_dirobj_lock; 208 rll_t zd_object_lock[ZTEST_OBJECT_LOCKS]; 209 rll_t zd_range_lock[ZTEST_RANGE_LOCKS]; 210 } ztest_ds_t; 211 212 /* 213 * Per-iteration state. 214 */ 215 typedef void ztest_func_t(ztest_ds_t *zd, uint64_t id); 216 217 typedef struct ztest_info { 218 ztest_func_t *zi_func; /* test function */ 219 uint64_t zi_iters; /* iterations per execution */ 220 uint64_t *zi_interval; /* execute every <interval> seconds */ 221 uint64_t zi_call_count; /* per-pass count */ 222 uint64_t zi_call_time; /* per-pass time */ 223 uint64_t zi_call_next; /* next time to call this function */ 224 } ztest_info_t; 225 226 /* 227 * Note: these aren't static because we want dladdr() to work. 228 */ 229 ztest_func_t ztest_dmu_read_write; 230 ztest_func_t ztest_dmu_write_parallel; 231 ztest_func_t ztest_dmu_object_alloc_free; 232 ztest_func_t ztest_dmu_commit_callbacks; 233 ztest_func_t ztest_zap; 234 ztest_func_t ztest_zap_parallel; 235 ztest_func_t ztest_zil_commit; 236 ztest_func_t ztest_dmu_read_write_zcopy; 237 ztest_func_t ztest_dmu_objset_create_destroy; 238 ztest_func_t ztest_dmu_prealloc; 239 ztest_func_t ztest_fzap; 240 ztest_func_t ztest_dmu_snapshot_create_destroy; 241 ztest_func_t ztest_dsl_prop_get_set; 242 ztest_func_t ztest_spa_prop_get_set; 243 ztest_func_t ztest_spa_create_destroy; 244 ztest_func_t ztest_fault_inject; 245 ztest_func_t ztest_ddt_repair; 246 ztest_func_t ztest_dmu_snapshot_hold; 247 ztest_func_t ztest_spa_rename; 248 ztest_func_t ztest_scrub; 249 ztest_func_t ztest_dsl_dataset_promote_busy; 250 ztest_func_t ztest_vdev_attach_detach; 251 ztest_func_t ztest_vdev_LUN_growth; 252 ztest_func_t ztest_vdev_add_remove; 253 ztest_func_t ztest_vdev_aux_add_remove; 254 ztest_func_t ztest_split_pool; 255 256 uint64_t zopt_always = 0ULL * NANOSEC; /* all the time */ 257 uint64_t zopt_incessant = 1ULL * NANOSEC / 10; /* every 1/10 second */ 258 uint64_t zopt_often = 1ULL * NANOSEC; /* every second */ 259 uint64_t zopt_sometimes = 10ULL * NANOSEC; /* every 10 seconds */ 260 uint64_t zopt_rarely = 60ULL * NANOSEC; /* every 60 seconds */ 261 262 ztest_info_t ztest_info[] = { 263 { ztest_dmu_read_write, 1, &zopt_always }, 264 { ztest_dmu_write_parallel, 10, &zopt_always }, 265 { ztest_dmu_object_alloc_free, 1, &zopt_always }, 266 { ztest_dmu_commit_callbacks, 1, &zopt_always }, 267 { ztest_zap, 30, &zopt_always }, 268 { ztest_zap_parallel, 100, &zopt_always }, 269 { ztest_split_pool, 1, &zopt_always }, 270 { ztest_zil_commit, 1, &zopt_incessant }, 271 { ztest_dmu_read_write_zcopy, 1, &zopt_often }, 272 { ztest_dmu_objset_create_destroy, 1, &zopt_often }, 273 { ztest_dsl_prop_get_set, 1, &zopt_often }, 274 { ztest_spa_prop_get_set, 1, &zopt_sometimes }, 275 #if 0 276 { ztest_dmu_prealloc, 1, &zopt_sometimes }, 277 #endif 278 { ztest_fzap, 1, &zopt_sometimes }, 279 { ztest_dmu_snapshot_create_destroy, 1, &zopt_sometimes }, 280 { ztest_spa_create_destroy, 1, &zopt_sometimes }, 281 { ztest_fault_inject, 1, &zopt_sometimes }, 282 { ztest_ddt_repair, 1, &zopt_sometimes }, 283 { ztest_dmu_snapshot_hold, 1, &zopt_sometimes }, 284 { ztest_spa_rename, 1, &zopt_rarely }, 285 { ztest_scrub, 1, &zopt_rarely }, 286 { ztest_dsl_dataset_promote_busy, 1, &zopt_rarely }, 287 { ztest_vdev_attach_detach, 1, &zopt_rarely }, 288 { ztest_vdev_LUN_growth, 1, &zopt_rarely }, 289 { ztest_vdev_add_remove, 1, &zopt_vdevtime }, 290 { ztest_vdev_aux_add_remove, 1, &zopt_vdevtime }, 291 }; 292 293 #define ZTEST_FUNCS (sizeof (ztest_info) / sizeof (ztest_info_t)) 294 295 /* 296 * The following struct is used to hold a list of uncalled commit callbacks. 297 * The callbacks are ordered by txg number. 298 */ 299 typedef struct ztest_cb_list { 300 mutex_t zcl_callbacks_lock; 301 list_t zcl_callbacks; 302 } ztest_cb_list_t; 303 304 /* 305 * Stuff we need to share writably between parent and child. 306 */ 307 typedef struct ztest_shared { 308 char *zs_pool; 309 spa_t *zs_spa; 310 hrtime_t zs_proc_start; 311 hrtime_t zs_proc_stop; 312 hrtime_t zs_thread_start; 313 hrtime_t zs_thread_stop; 314 hrtime_t zs_thread_kill; 315 uint64_t zs_enospc_count; 316 uint64_t zs_vdev_next_leaf; 317 uint64_t zs_vdev_aux; 318 uint64_t zs_alloc; 319 uint64_t zs_space; 320 mutex_t zs_vdev_lock; 321 rwlock_t zs_name_lock; 322 ztest_info_t zs_info[ZTEST_FUNCS]; 323 uint64_t zs_splits; 324 uint64_t zs_mirrors; 325 ztest_ds_t zs_zd[]; 326 } ztest_shared_t; 327 328 #define ID_PARALLEL -1ULL 329 330 static char ztest_dev_template[] = "%s/%s.%llua"; 331 static char ztest_aux_template[] = "%s/%s.%s.%llu"; 332 ztest_shared_t *ztest_shared; 333 uint64_t *ztest_seq; 334 335 static int ztest_random_fd; 336 static int ztest_dump_core = 1; 337 338 static boolean_t ztest_exiting; 339 340 /* Global commit callback list */ 341 static ztest_cb_list_t zcl; 342 343 extern uint64_t metaslab_gang_bang; 344 extern uint64_t metaslab_df_alloc_threshold; 345 static uint64_t metaslab_sz; 346 347 enum ztest_object { 348 ZTEST_META_DNODE = 0, 349 ZTEST_DIROBJ, 350 ZTEST_OBJECTS 351 }; 352 353 static void usage(boolean_t) __NORETURN; 354 355 /* 356 * These libumem hooks provide a reasonable set of defaults for the allocator's 357 * debugging facilities. 358 */ 359 const char * 360 _umem_debug_init() 361 { 362 return ("default,verbose"); /* $UMEM_DEBUG setting */ 363 } 364 365 const char * 366 _umem_logging_init(void) 367 { 368 return ("fail,contents"); /* $UMEM_LOGGING setting */ 369 } 370 371 #define FATAL_MSG_SZ 1024 372 373 char *fatal_msg; 374 375 static void 376 fatal(int do_perror, char *message, ...) 377 { 378 va_list args; 379 int save_errno = errno; 380 char buf[FATAL_MSG_SZ]; 381 382 (void) fflush(stdout); 383 384 va_start(args, message); 385 (void) sprintf(buf, "ztest: "); 386 /* LINTED */ 387 (void) vsprintf(buf + strlen(buf), message, args); 388 va_end(args); 389 if (do_perror) { 390 (void) snprintf(buf + strlen(buf), FATAL_MSG_SZ - strlen(buf), 391 ": %s", strerror(save_errno)); 392 } 393 (void) fprintf(stderr, "%s\n", buf); 394 fatal_msg = buf; /* to ease debugging */ 395 if (ztest_dump_core) 396 abort(); 397 exit(3); 398 } 399 400 static int 401 str2shift(const char *buf) 402 { 403 const char *ends = "BKMGTPEZ"; 404 int i; 405 406 if (buf[0] == '\0') 407 return (0); 408 for (i = 0; i < strlen(ends); i++) { 409 if (toupper(buf[0]) == ends[i]) 410 break; 411 } 412 if (i == strlen(ends)) { 413 (void) fprintf(stderr, "ztest: invalid bytes suffix: %s\n", 414 buf); 415 usage(B_FALSE); 416 } 417 if (buf[1] == '\0' || (toupper(buf[1]) == 'B' && buf[2] == '\0')) { 418 return (10*i); 419 } 420 (void) fprintf(stderr, "ztest: invalid bytes suffix: %s\n", buf); 421 usage(B_FALSE); 422 /* NOTREACHED */ 423 } 424 425 static uint64_t 426 nicenumtoull(const char *buf) 427 { 428 char *end; 429 uint64_t val; 430 431 val = strtoull(buf, &end, 0); 432 if (end == buf) { 433 (void) fprintf(stderr, "ztest: bad numeric value: %s\n", buf); 434 usage(B_FALSE); 435 } else if (end[0] == '.') { 436 double fval = strtod(buf, &end); 437 fval *= pow(2, str2shift(end)); 438 if (fval > UINT64_MAX) { 439 (void) fprintf(stderr, "ztest: value too large: %s\n", 440 buf); 441 usage(B_FALSE); 442 } 443 val = (uint64_t)fval; 444 } else { 445 int shift = str2shift(end); 446 if (shift >= 64 || (val << shift) >> shift != val) { 447 (void) fprintf(stderr, "ztest: value too large: %s\n", 448 buf); 449 usage(B_FALSE); 450 } 451 val <<= shift; 452 } 453 return (val); 454 } 455 456 static void 457 usage(boolean_t requested) 458 { 459 char nice_vdev_size[10]; 460 char nice_gang_bang[10]; 461 FILE *fp = requested ? stdout : stderr; 462 463 nicenum(zopt_vdev_size, nice_vdev_size); 464 nicenum(metaslab_gang_bang, nice_gang_bang); 465 466 (void) fprintf(fp, "Usage: %s\n" 467 "\t[-v vdevs (default: %llu)]\n" 468 "\t[-s size_of_each_vdev (default: %s)]\n" 469 "\t[-a alignment_shift (default: %d) (use 0 for random)]\n" 470 "\t[-m mirror_copies (default: %d)]\n" 471 "\t[-r raidz_disks (default: %d)]\n" 472 "\t[-R raidz_parity (default: %d)]\n" 473 "\t[-d datasets (default: %d)]\n" 474 "\t[-t threads (default: %d)]\n" 475 "\t[-g gang_block_threshold (default: %s)]\n" 476 "\t[-i initialize pool i times (default: %d)]\n" 477 "\t[-k kill percentage (default: %llu%%)]\n" 478 "\t[-p pool_name (default: %s)]\n" 479 "\t[-f file directory for vdev files (default: %s)]\n" 480 "\t[-V(erbose)] (use multiple times for ever more blather)\n" 481 "\t[-E(xisting)] (use existing pool instead of creating new one)\n" 482 "\t[-T time] total run time (default: %llu sec)\n" 483 "\t[-P passtime] time per pass (default: %llu sec)\n" 484 "\t[-h] (print help)\n" 485 "", 486 cmdname, 487 (u_longlong_t)zopt_vdevs, /* -v */ 488 nice_vdev_size, /* -s */ 489 zopt_ashift, /* -a */ 490 zopt_mirrors, /* -m */ 491 zopt_raidz, /* -r */ 492 zopt_raidz_parity, /* -R */ 493 zopt_datasets, /* -d */ 494 zopt_threads, /* -t */ 495 nice_gang_bang, /* -g */ 496 zopt_init, /* -i */ 497 (u_longlong_t)zopt_killrate, /* -k */ 498 zopt_pool, /* -p */ 499 zopt_dir, /* -f */ 500 (u_longlong_t)zopt_time, /* -T */ 501 (u_longlong_t)zopt_passtime); /* -P */ 502 exit(requested ? 0 : 1); 503 } 504 505 static void 506 process_options(int argc, char **argv) 507 { 508 int opt; 509 uint64_t value; 510 511 /* By default, test gang blocks for blocks 32K and greater */ 512 metaslab_gang_bang = 32 << 10; 513 514 while ((opt = getopt(argc, argv, 515 "v:s:a:m:r:R:d:t:g:i:k:p:f:VET:P:h")) != EOF) { 516 value = 0; 517 switch (opt) { 518 case 'v': 519 case 's': 520 case 'a': 521 case 'm': 522 case 'r': 523 case 'R': 524 case 'd': 525 case 't': 526 case 'g': 527 case 'i': 528 case 'k': 529 case 'T': 530 case 'P': 531 value = nicenumtoull(optarg); 532 } 533 switch (opt) { 534 case 'v': 535 zopt_vdevs = value; 536 break; 537 case 's': 538 zopt_vdev_size = MAX(SPA_MINDEVSIZE, value); 539 break; 540 case 'a': 541 zopt_ashift = value; 542 break; 543 case 'm': 544 zopt_mirrors = value; 545 break; 546 case 'r': 547 zopt_raidz = MAX(1, value); 548 break; 549 case 'R': 550 zopt_raidz_parity = MIN(MAX(value, 1), 3); 551 break; 552 case 'd': 553 zopt_datasets = MAX(1, value); 554 break; 555 case 't': 556 zopt_threads = MAX(1, value); 557 break; 558 case 'g': 559 metaslab_gang_bang = MAX(SPA_MINBLOCKSIZE << 1, value); 560 break; 561 case 'i': 562 zopt_init = value; 563 break; 564 case 'k': 565 zopt_killrate = value; 566 break; 567 case 'p': 568 zopt_pool = strdup(optarg); 569 break; 570 case 'f': 571 zopt_dir = strdup(optarg); 572 break; 573 case 'V': 574 zopt_verbose++; 575 break; 576 case 'E': 577 zopt_init = 0; 578 break; 579 case 'T': 580 zopt_time = value; 581 break; 582 case 'P': 583 zopt_passtime = MAX(1, value); 584 break; 585 case 'h': 586 usage(B_TRUE); 587 break; 588 case '?': 589 default: 590 usage(B_FALSE); 591 break; 592 } 593 } 594 595 zopt_raidz_parity = MIN(zopt_raidz_parity, zopt_raidz - 1); 596 597 zopt_vdevtime = (zopt_vdevs > 0 ? zopt_time * NANOSEC / zopt_vdevs : 598 UINT64_MAX >> 2); 599 } 600 601 static void 602 ztest_kill(ztest_shared_t *zs) 603 { 604 zs->zs_alloc = metaslab_class_get_alloc(spa_normal_class(zs->zs_spa)); 605 zs->zs_space = metaslab_class_get_space(spa_normal_class(zs->zs_spa)); 606 (void) kill(getpid(), SIGKILL); 607 } 608 609 static uint64_t 610 ztest_random(uint64_t range) 611 { 612 uint64_t r; 613 614 if (range == 0) 615 return (0); 616 617 if (read(ztest_random_fd, &r, sizeof (r)) != sizeof (r)) 618 fatal(1, "short read from /dev/urandom"); 619 620 return (r % range); 621 } 622 623 /* ARGSUSED */ 624 static void 625 ztest_record_enospc(const char *s) 626 { 627 ztest_shared->zs_enospc_count++; 628 } 629 630 static uint64_t 631 ztest_get_ashift(void) 632 { 633 if (zopt_ashift == 0) 634 return (SPA_MINBLOCKSHIFT + ztest_random(3)); 635 return (zopt_ashift); 636 } 637 638 static nvlist_t * 639 make_vdev_file(char *path, char *aux, size_t size, uint64_t ashift) 640 { 641 char pathbuf[MAXPATHLEN]; 642 uint64_t vdev; 643 nvlist_t *file; 644 645 if (ashift == 0) 646 ashift = ztest_get_ashift(); 647 648 if (path == NULL) { 649 path = pathbuf; 650 651 if (aux != NULL) { 652 vdev = ztest_shared->zs_vdev_aux; 653 (void) sprintf(path, ztest_aux_template, 654 zopt_dir, zopt_pool, aux, vdev); 655 } else { 656 vdev = ztest_shared->zs_vdev_next_leaf++; 657 (void) sprintf(path, ztest_dev_template, 658 zopt_dir, zopt_pool, vdev); 659 } 660 } 661 662 if (size != 0) { 663 int fd = open(path, O_RDWR | O_CREAT | O_TRUNC, 0666); 664 if (fd == -1) 665 fatal(1, "can't open %s", path); 666 if (ftruncate(fd, size) != 0) 667 fatal(1, "can't ftruncate %s", path); 668 (void) close(fd); 669 } 670 671 VERIFY(nvlist_alloc(&file, NV_UNIQUE_NAME, 0) == 0); 672 VERIFY(nvlist_add_string(file, ZPOOL_CONFIG_TYPE, VDEV_TYPE_FILE) == 0); 673 VERIFY(nvlist_add_string(file, ZPOOL_CONFIG_PATH, path) == 0); 674 VERIFY(nvlist_add_uint64(file, ZPOOL_CONFIG_ASHIFT, ashift) == 0); 675 676 return (file); 677 } 678 679 static nvlist_t * 680 make_vdev_raidz(char *path, char *aux, size_t size, uint64_t ashift, int r) 681 { 682 nvlist_t *raidz, **child; 683 int c; 684 685 if (r < 2) 686 return (make_vdev_file(path, aux, size, ashift)); 687 child = umem_alloc(r * sizeof (nvlist_t *), UMEM_NOFAIL); 688 689 for (c = 0; c < r; c++) 690 child[c] = make_vdev_file(path, aux, size, ashift); 691 692 VERIFY(nvlist_alloc(&raidz, NV_UNIQUE_NAME, 0) == 0); 693 VERIFY(nvlist_add_string(raidz, ZPOOL_CONFIG_TYPE, 694 VDEV_TYPE_RAIDZ) == 0); 695 VERIFY(nvlist_add_uint64(raidz, ZPOOL_CONFIG_NPARITY, 696 zopt_raidz_parity) == 0); 697 VERIFY(nvlist_add_nvlist_array(raidz, ZPOOL_CONFIG_CHILDREN, 698 child, r) == 0); 699 700 for (c = 0; c < r; c++) 701 nvlist_free(child[c]); 702 703 umem_free(child, r * sizeof (nvlist_t *)); 704 705 return (raidz); 706 } 707 708 static nvlist_t * 709 make_vdev_mirror(char *path, char *aux, size_t size, uint64_t ashift, 710 int r, int m) 711 { 712 nvlist_t *mirror, **child; 713 int c; 714 715 if (m < 1) 716 return (make_vdev_raidz(path, aux, size, ashift, r)); 717 718 child = umem_alloc(m * sizeof (nvlist_t *), UMEM_NOFAIL); 719 720 for (c = 0; c < m; c++) 721 child[c] = make_vdev_raidz(path, aux, size, ashift, r); 722 723 VERIFY(nvlist_alloc(&mirror, NV_UNIQUE_NAME, 0) == 0); 724 VERIFY(nvlist_add_string(mirror, ZPOOL_CONFIG_TYPE, 725 VDEV_TYPE_MIRROR) == 0); 726 VERIFY(nvlist_add_nvlist_array(mirror, ZPOOL_CONFIG_CHILDREN, 727 child, m) == 0); 728 729 for (c = 0; c < m; c++) 730 nvlist_free(child[c]); 731 732 umem_free(child, m * sizeof (nvlist_t *)); 733 734 return (mirror); 735 } 736 737 static nvlist_t * 738 make_vdev_root(char *path, char *aux, size_t size, uint64_t ashift, 739 int log, int r, int m, int t) 740 { 741 nvlist_t *root, **child; 742 int c; 743 744 ASSERT(t > 0); 745 746 child = umem_alloc(t * sizeof (nvlist_t *), UMEM_NOFAIL); 747 748 for (c = 0; c < t; c++) { 749 child[c] = make_vdev_mirror(path, aux, size, ashift, r, m); 750 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_IS_LOG, 751 log) == 0); 752 } 753 754 VERIFY(nvlist_alloc(&root, NV_UNIQUE_NAME, 0) == 0); 755 VERIFY(nvlist_add_string(root, ZPOOL_CONFIG_TYPE, VDEV_TYPE_ROOT) == 0); 756 VERIFY(nvlist_add_nvlist_array(root, aux ? aux : ZPOOL_CONFIG_CHILDREN, 757 child, t) == 0); 758 759 for (c = 0; c < t; c++) 760 nvlist_free(child[c]); 761 762 umem_free(child, t * sizeof (nvlist_t *)); 763 764 return (root); 765 } 766 767 static int 768 ztest_random_blocksize(void) 769 { 770 return (1 << (SPA_MINBLOCKSHIFT + 771 ztest_random(SPA_MAXBLOCKSHIFT - SPA_MINBLOCKSHIFT + 1))); 772 } 773 774 static int 775 ztest_random_ibshift(void) 776 { 777 return (DN_MIN_INDBLKSHIFT + 778 ztest_random(DN_MAX_INDBLKSHIFT - DN_MIN_INDBLKSHIFT + 1)); 779 } 780 781 static uint64_t 782 ztest_random_vdev_top(spa_t *spa, boolean_t log_ok) 783 { 784 uint64_t top; 785 vdev_t *rvd = spa->spa_root_vdev; 786 vdev_t *tvd; 787 788 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); 789 790 do { 791 top = ztest_random(rvd->vdev_children); 792 tvd = rvd->vdev_child[top]; 793 } while (tvd->vdev_ishole || (tvd->vdev_islog && !log_ok) || 794 tvd->vdev_mg == NULL || tvd->vdev_mg->mg_class == NULL); 795 796 return (top); 797 } 798 799 static uint64_t 800 ztest_random_dsl_prop(zfs_prop_t prop) 801 { 802 uint64_t value; 803 804 do { 805 value = zfs_prop_random_value(prop, ztest_random(-1ULL)); 806 } while (prop == ZFS_PROP_CHECKSUM && value == ZIO_CHECKSUM_OFF); 807 808 return (value); 809 } 810 811 static int 812 ztest_dsl_prop_set_uint64(char *osname, zfs_prop_t prop, uint64_t value, 813 boolean_t inherit) 814 { 815 const char *propname = zfs_prop_to_name(prop); 816 const char *valname; 817 char setpoint[MAXPATHLEN]; 818 uint64_t curval; 819 int error; 820 821 error = dsl_prop_set(osname, propname, 822 (inherit ? ZPROP_SRC_NONE : ZPROP_SRC_LOCAL), 823 sizeof (value), 1, &value); 824 825 if (error == ENOSPC) { 826 ztest_record_enospc(FTAG); 827 return (error); 828 } 829 ASSERT3U(error, ==, 0); 830 831 VERIFY3U(dsl_prop_get(osname, propname, sizeof (curval), 832 1, &curval, setpoint), ==, 0); 833 834 if (zopt_verbose >= 6) { 835 VERIFY(zfs_prop_index_to_string(prop, curval, &valname) == 0); 836 (void) printf("%s %s = %s at '%s'\n", 837 osname, propname, valname, setpoint); 838 } 839 840 return (error); 841 } 842 843 static int 844 ztest_spa_prop_set_uint64(ztest_shared_t *zs, zpool_prop_t prop, uint64_t value) 845 { 846 spa_t *spa = zs->zs_spa; 847 nvlist_t *props = NULL; 848 int error; 849 850 VERIFY(nvlist_alloc(&props, NV_UNIQUE_NAME, 0) == 0); 851 VERIFY(nvlist_add_uint64(props, zpool_prop_to_name(prop), value) == 0); 852 853 error = spa_prop_set(spa, props); 854 855 nvlist_free(props); 856 857 if (error == ENOSPC) { 858 ztest_record_enospc(FTAG); 859 return (error); 860 } 861 ASSERT3U(error, ==, 0); 862 863 return (error); 864 } 865 866 static void 867 ztest_rll_init(rll_t *rll) 868 { 869 rll->rll_writer = NULL; 870 rll->rll_readers = 0; 871 VERIFY(_mutex_init(&rll->rll_lock, USYNC_THREAD, NULL) == 0); 872 VERIFY(cond_init(&rll->rll_cv, USYNC_THREAD, NULL) == 0); 873 } 874 875 static void 876 ztest_rll_destroy(rll_t *rll) 877 { 878 ASSERT(rll->rll_writer == NULL); 879 ASSERT(rll->rll_readers == 0); 880 VERIFY(_mutex_destroy(&rll->rll_lock) == 0); 881 VERIFY(cond_destroy(&rll->rll_cv) == 0); 882 } 883 884 static void 885 ztest_rll_lock(rll_t *rll, rl_type_t type) 886 { 887 VERIFY(mutex_lock(&rll->rll_lock) == 0); 888 889 if (type == RL_READER) { 890 while (rll->rll_writer != NULL) 891 (void) cond_wait(&rll->rll_cv, &rll->rll_lock); 892 rll->rll_readers++; 893 } else { 894 while (rll->rll_writer != NULL || rll->rll_readers) 895 (void) cond_wait(&rll->rll_cv, &rll->rll_lock); 896 rll->rll_writer = curthread; 897 } 898 899 VERIFY(mutex_unlock(&rll->rll_lock) == 0); 900 } 901 902 static void 903 ztest_rll_unlock(rll_t *rll) 904 { 905 VERIFY(mutex_lock(&rll->rll_lock) == 0); 906 907 if (rll->rll_writer) { 908 ASSERT(rll->rll_readers == 0); 909 rll->rll_writer = NULL; 910 } else { 911 ASSERT(rll->rll_readers != 0); 912 ASSERT(rll->rll_writer == NULL); 913 rll->rll_readers--; 914 } 915 916 if (rll->rll_writer == NULL && rll->rll_readers == 0) 917 VERIFY(cond_broadcast(&rll->rll_cv) == 0); 918 919 VERIFY(mutex_unlock(&rll->rll_lock) == 0); 920 } 921 922 static void 923 ztest_object_lock(ztest_ds_t *zd, uint64_t object, rl_type_t type) 924 { 925 rll_t *rll = &zd->zd_object_lock[object & (ZTEST_OBJECT_LOCKS - 1)]; 926 927 ztest_rll_lock(rll, type); 928 } 929 930 static void 931 ztest_object_unlock(ztest_ds_t *zd, uint64_t object) 932 { 933 rll_t *rll = &zd->zd_object_lock[object & (ZTEST_OBJECT_LOCKS - 1)]; 934 935 ztest_rll_unlock(rll); 936 } 937 938 static rl_t * 939 ztest_range_lock(ztest_ds_t *zd, uint64_t object, uint64_t offset, 940 uint64_t size, rl_type_t type) 941 { 942 uint64_t hash = object ^ (offset % (ZTEST_RANGE_LOCKS + 1)); 943 rll_t *rll = &zd->zd_range_lock[hash & (ZTEST_RANGE_LOCKS - 1)]; 944 rl_t *rl; 945 946 rl = umem_alloc(sizeof (*rl), UMEM_NOFAIL); 947 rl->rl_object = object; 948 rl->rl_offset = offset; 949 rl->rl_size = size; 950 rl->rl_lock = rll; 951 952 ztest_rll_lock(rll, type); 953 954 return (rl); 955 } 956 957 static void 958 ztest_range_unlock(rl_t *rl) 959 { 960 rll_t *rll = rl->rl_lock; 961 962 ztest_rll_unlock(rll); 963 964 umem_free(rl, sizeof (*rl)); 965 } 966 967 static void 968 ztest_zd_init(ztest_ds_t *zd, objset_t *os) 969 { 970 zd->zd_os = os; 971 zd->zd_zilog = dmu_objset_zil(os); 972 zd->zd_seq = 0; 973 dmu_objset_name(os, zd->zd_name); 974 975 VERIFY(_mutex_init(&zd->zd_dirobj_lock, USYNC_THREAD, NULL) == 0); 976 977 for (int l = 0; l < ZTEST_OBJECT_LOCKS; l++) 978 ztest_rll_init(&zd->zd_object_lock[l]); 979 980 for (int l = 0; l < ZTEST_RANGE_LOCKS; l++) 981 ztest_rll_init(&zd->zd_range_lock[l]); 982 } 983 984 static void 985 ztest_zd_fini(ztest_ds_t *zd) 986 { 987 VERIFY(_mutex_destroy(&zd->zd_dirobj_lock) == 0); 988 989 for (int l = 0; l < ZTEST_OBJECT_LOCKS; l++) 990 ztest_rll_destroy(&zd->zd_object_lock[l]); 991 992 for (int l = 0; l < ZTEST_RANGE_LOCKS; l++) 993 ztest_rll_destroy(&zd->zd_range_lock[l]); 994 } 995 996 #define TXG_MIGHTWAIT (ztest_random(10) == 0 ? TXG_NOWAIT : TXG_WAIT) 997 998 static uint64_t 999 ztest_tx_assign(dmu_tx_t *tx, uint64_t txg_how, const char *tag) 1000 { 1001 uint64_t txg; 1002 int error; 1003 1004 /* 1005 * Attempt to assign tx to some transaction group. 1006 */ 1007 error = dmu_tx_assign(tx, txg_how); 1008 if (error) { 1009 if (error == ERESTART) { 1010 ASSERT(txg_how == TXG_NOWAIT); 1011 dmu_tx_wait(tx); 1012 } else { 1013 ASSERT3U(error, ==, ENOSPC); 1014 ztest_record_enospc(tag); 1015 } 1016 dmu_tx_abort(tx); 1017 return (0); 1018 } 1019 txg = dmu_tx_get_txg(tx); 1020 ASSERT(txg != 0); 1021 return (txg); 1022 } 1023 1024 static void 1025 ztest_pattern_set(void *buf, uint64_t size, uint64_t value) 1026 { 1027 uint64_t *ip = buf; 1028 uint64_t *ip_end = (uint64_t *)((uintptr_t)buf + (uintptr_t)size); 1029 1030 while (ip < ip_end) 1031 *ip++ = value; 1032 } 1033 1034 static boolean_t 1035 ztest_pattern_match(void *buf, uint64_t size, uint64_t value) 1036 { 1037 uint64_t *ip = buf; 1038 uint64_t *ip_end = (uint64_t *)((uintptr_t)buf + (uintptr_t)size); 1039 uint64_t diff = 0; 1040 1041 while (ip < ip_end) 1042 diff |= (value - *ip++); 1043 1044 return (diff == 0); 1045 } 1046 1047 static void 1048 ztest_bt_generate(ztest_block_tag_t *bt, objset_t *os, uint64_t object, 1049 uint64_t offset, uint64_t gen, uint64_t txg, uint64_t crtxg) 1050 { 1051 bt->bt_magic = BT_MAGIC; 1052 bt->bt_objset = dmu_objset_id(os); 1053 bt->bt_object = object; 1054 bt->bt_offset = offset; 1055 bt->bt_gen = gen; 1056 bt->bt_txg = txg; 1057 bt->bt_crtxg = crtxg; 1058 } 1059 1060 static void 1061 ztest_bt_verify(ztest_block_tag_t *bt, objset_t *os, uint64_t object, 1062 uint64_t offset, uint64_t gen, uint64_t txg, uint64_t crtxg) 1063 { 1064 ASSERT(bt->bt_magic == BT_MAGIC); 1065 ASSERT(bt->bt_objset == dmu_objset_id(os)); 1066 ASSERT(bt->bt_object == object); 1067 ASSERT(bt->bt_offset == offset); 1068 ASSERT(bt->bt_gen <= gen); 1069 ASSERT(bt->bt_txg <= txg); 1070 ASSERT(bt->bt_crtxg == crtxg); 1071 } 1072 1073 static ztest_block_tag_t * 1074 ztest_bt_bonus(dmu_buf_t *db) 1075 { 1076 dmu_object_info_t doi; 1077 ztest_block_tag_t *bt; 1078 1079 dmu_object_info_from_db(db, &doi); 1080 ASSERT3U(doi.doi_bonus_size, <=, db->db_size); 1081 ASSERT3U(doi.doi_bonus_size, >=, sizeof (*bt)); 1082 bt = (void *)((char *)db->db_data + doi.doi_bonus_size - sizeof (*bt)); 1083 1084 return (bt); 1085 } 1086 1087 /* 1088 * ZIL logging ops 1089 */ 1090 1091 #define lrz_type lr_mode 1092 #define lrz_blocksize lr_uid 1093 #define lrz_ibshift lr_gid 1094 #define lrz_bonustype lr_rdev 1095 #define lrz_bonuslen lr_crtime[1] 1096 1097 static uint64_t 1098 ztest_log_create(ztest_ds_t *zd, dmu_tx_t *tx, lr_create_t *lr) 1099 { 1100 char *name = (void *)(lr + 1); /* name follows lr */ 1101 size_t namesize = strlen(name) + 1; 1102 itx_t *itx; 1103 1104 if (zil_replaying(zd->zd_zilog, tx)) 1105 return (0); 1106 1107 itx = zil_itx_create(TX_CREATE, sizeof (*lr) + namesize); 1108 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1, 1109 sizeof (*lr) + namesize - sizeof (lr_t)); 1110 1111 return (zil_itx_assign(zd->zd_zilog, itx, tx)); 1112 } 1113 1114 static uint64_t 1115 ztest_log_remove(ztest_ds_t *zd, dmu_tx_t *tx, lr_remove_t *lr) 1116 { 1117 char *name = (void *)(lr + 1); /* name follows lr */ 1118 size_t namesize = strlen(name) + 1; 1119 itx_t *itx; 1120 1121 if (zil_replaying(zd->zd_zilog, tx)) 1122 return (0); 1123 1124 itx = zil_itx_create(TX_REMOVE, sizeof (*lr) + namesize); 1125 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1, 1126 sizeof (*lr) + namesize - sizeof (lr_t)); 1127 1128 return (zil_itx_assign(zd->zd_zilog, itx, tx)); 1129 } 1130 1131 static uint64_t 1132 ztest_log_write(ztest_ds_t *zd, dmu_tx_t *tx, lr_write_t *lr) 1133 { 1134 itx_t *itx; 1135 itx_wr_state_t write_state = ztest_random(WR_NUM_STATES); 1136 1137 if (zil_replaying(zd->zd_zilog, tx)) 1138 return (0); 1139 1140 if (lr->lr_length > ZIL_MAX_LOG_DATA) 1141 write_state = WR_INDIRECT; 1142 1143 itx = zil_itx_create(TX_WRITE, 1144 sizeof (*lr) + (write_state == WR_COPIED ? lr->lr_length : 0)); 1145 1146 if (write_state == WR_COPIED && 1147 dmu_read(zd->zd_os, lr->lr_foid, lr->lr_offset, lr->lr_length, 1148 ((lr_write_t *)&itx->itx_lr) + 1, DMU_READ_NO_PREFETCH) != 0) { 1149 zil_itx_destroy(itx); 1150 itx = zil_itx_create(TX_WRITE, sizeof (*lr)); 1151 write_state = WR_NEED_COPY; 1152 } 1153 itx->itx_private = zd; 1154 itx->itx_wr_state = write_state; 1155 itx->itx_sync = (ztest_random(8) == 0); 1156 itx->itx_sod += (write_state == WR_NEED_COPY ? lr->lr_length : 0); 1157 1158 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1, 1159 sizeof (*lr) - sizeof (lr_t)); 1160 1161 return (zil_itx_assign(zd->zd_zilog, itx, tx)); 1162 } 1163 1164 static uint64_t 1165 ztest_log_truncate(ztest_ds_t *zd, dmu_tx_t *tx, lr_truncate_t *lr) 1166 { 1167 itx_t *itx; 1168 1169 if (zil_replaying(zd->zd_zilog, tx)) 1170 return (0); 1171 1172 itx = zil_itx_create(TX_TRUNCATE, sizeof (*lr)); 1173 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1, 1174 sizeof (*lr) - sizeof (lr_t)); 1175 1176 return (zil_itx_assign(zd->zd_zilog, itx, tx)); 1177 } 1178 1179 static uint64_t 1180 ztest_log_setattr(ztest_ds_t *zd, dmu_tx_t *tx, lr_setattr_t *lr) 1181 { 1182 itx_t *itx; 1183 1184 if (zil_replaying(zd->zd_zilog, tx)) 1185 return (0); 1186 1187 itx = zil_itx_create(TX_SETATTR, sizeof (*lr)); 1188 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1, 1189 sizeof (*lr) - sizeof (lr_t)); 1190 1191 return (zil_itx_assign(zd->zd_zilog, itx, tx)); 1192 } 1193 1194 /* 1195 * ZIL replay ops 1196 */ 1197 static int 1198 ztest_replay_create(ztest_ds_t *zd, lr_create_t *lr, boolean_t byteswap) 1199 { 1200 char *name = (void *)(lr + 1); /* name follows lr */ 1201 objset_t *os = zd->zd_os; 1202 ztest_block_tag_t *bbt; 1203 dmu_buf_t *db; 1204 dmu_tx_t *tx; 1205 uint64_t txg; 1206 int error = 0; 1207 1208 if (byteswap) 1209 byteswap_uint64_array(lr, sizeof (*lr)); 1210 1211 ASSERT(lr->lr_doid == ZTEST_DIROBJ); 1212 ASSERT(name[0] != '\0'); 1213 1214 tx = dmu_tx_create(os); 1215 1216 dmu_tx_hold_zap(tx, lr->lr_doid, B_TRUE, name); 1217 1218 if (lr->lrz_type == DMU_OT_ZAP_OTHER) { 1219 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, B_TRUE, NULL); 1220 } else { 1221 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); 1222 } 1223 1224 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); 1225 if (txg == 0) 1226 return (ENOSPC); 1227 1228 ASSERT(dmu_objset_zil(os)->zl_replay == !!lr->lr_foid); 1229 1230 if (lr->lrz_type == DMU_OT_ZAP_OTHER) { 1231 if (lr->lr_foid == 0) { 1232 lr->lr_foid = zap_create(os, 1233 lr->lrz_type, lr->lrz_bonustype, 1234 lr->lrz_bonuslen, tx); 1235 } else { 1236 error = zap_create_claim(os, lr->lr_foid, 1237 lr->lrz_type, lr->lrz_bonustype, 1238 lr->lrz_bonuslen, tx); 1239 } 1240 } else { 1241 if (lr->lr_foid == 0) { 1242 lr->lr_foid = dmu_object_alloc(os, 1243 lr->lrz_type, 0, lr->lrz_bonustype, 1244 lr->lrz_bonuslen, tx); 1245 } else { 1246 error = dmu_object_claim(os, lr->lr_foid, 1247 lr->lrz_type, 0, lr->lrz_bonustype, 1248 lr->lrz_bonuslen, tx); 1249 } 1250 } 1251 1252 if (error) { 1253 ASSERT3U(error, ==, EEXIST); 1254 ASSERT(zd->zd_zilog->zl_replay); 1255 dmu_tx_commit(tx); 1256 return (error); 1257 } 1258 1259 ASSERT(lr->lr_foid != 0); 1260 1261 if (lr->lrz_type != DMU_OT_ZAP_OTHER) 1262 VERIFY3U(0, ==, dmu_object_set_blocksize(os, lr->lr_foid, 1263 lr->lrz_blocksize, lr->lrz_ibshift, tx)); 1264 1265 VERIFY3U(0, ==, dmu_bonus_hold(os, lr->lr_foid, FTAG, &db)); 1266 bbt = ztest_bt_bonus(db); 1267 dmu_buf_will_dirty(db, tx); 1268 ztest_bt_generate(bbt, os, lr->lr_foid, -1ULL, lr->lr_gen, txg, txg); 1269 dmu_buf_rele(db, FTAG); 1270 1271 VERIFY3U(0, ==, zap_add(os, lr->lr_doid, name, sizeof (uint64_t), 1, 1272 &lr->lr_foid, tx)); 1273 1274 (void) ztest_log_create(zd, tx, lr); 1275 1276 dmu_tx_commit(tx); 1277 1278 return (0); 1279 } 1280 1281 static int 1282 ztest_replay_remove(ztest_ds_t *zd, lr_remove_t *lr, boolean_t byteswap) 1283 { 1284 char *name = (void *)(lr + 1); /* name follows lr */ 1285 objset_t *os = zd->zd_os; 1286 dmu_object_info_t doi; 1287 dmu_tx_t *tx; 1288 uint64_t object, txg; 1289 1290 if (byteswap) 1291 byteswap_uint64_array(lr, sizeof (*lr)); 1292 1293 ASSERT(lr->lr_doid == ZTEST_DIROBJ); 1294 ASSERT(name[0] != '\0'); 1295 1296 VERIFY3U(0, ==, 1297 zap_lookup(os, lr->lr_doid, name, sizeof (object), 1, &object)); 1298 ASSERT(object != 0); 1299 1300 ztest_object_lock(zd, object, RL_WRITER); 1301 1302 VERIFY3U(0, ==, dmu_object_info(os, object, &doi)); 1303 1304 tx = dmu_tx_create(os); 1305 1306 dmu_tx_hold_zap(tx, lr->lr_doid, B_FALSE, name); 1307 dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END); 1308 1309 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); 1310 if (txg == 0) { 1311 ztest_object_unlock(zd, object); 1312 return (ENOSPC); 1313 } 1314 1315 if (doi.doi_type == DMU_OT_ZAP_OTHER) { 1316 VERIFY3U(0, ==, zap_destroy(os, object, tx)); 1317 } else { 1318 VERIFY3U(0, ==, dmu_object_free(os, object, tx)); 1319 } 1320 1321 VERIFY3U(0, ==, zap_remove(os, lr->lr_doid, name, tx)); 1322 1323 (void) ztest_log_remove(zd, tx, lr); 1324 1325 dmu_tx_commit(tx); 1326 1327 ztest_object_unlock(zd, object); 1328 1329 return (0); 1330 } 1331 1332 static int 1333 ztest_replay_write(ztest_ds_t *zd, lr_write_t *lr, boolean_t byteswap) 1334 { 1335 objset_t *os = zd->zd_os; 1336 void *data = lr + 1; /* data follows lr */ 1337 uint64_t offset, length; 1338 ztest_block_tag_t *bt = data; 1339 ztest_block_tag_t *bbt; 1340 uint64_t gen, txg, lrtxg, crtxg; 1341 dmu_object_info_t doi; 1342 dmu_tx_t *tx; 1343 dmu_buf_t *db; 1344 arc_buf_t *abuf = NULL; 1345 rl_t *rl; 1346 1347 if (byteswap) 1348 byteswap_uint64_array(lr, sizeof (*lr)); 1349 1350 offset = lr->lr_offset; 1351 length = lr->lr_length; 1352 1353 /* If it's a dmu_sync() block, write the whole block */ 1354 if (lr->lr_common.lrc_reclen == sizeof (lr_write_t)) { 1355 uint64_t blocksize = BP_GET_LSIZE(&lr->lr_blkptr); 1356 if (length < blocksize) { 1357 offset -= offset % blocksize; 1358 length = blocksize; 1359 } 1360 } 1361 1362 if (bt->bt_magic == BSWAP_64(BT_MAGIC)) 1363 byteswap_uint64_array(bt, sizeof (*bt)); 1364 1365 if (bt->bt_magic != BT_MAGIC) 1366 bt = NULL; 1367 1368 ztest_object_lock(zd, lr->lr_foid, RL_READER); 1369 rl = ztest_range_lock(zd, lr->lr_foid, offset, length, RL_WRITER); 1370 1371 VERIFY3U(0, ==, dmu_bonus_hold(os, lr->lr_foid, FTAG, &db)); 1372 1373 dmu_object_info_from_db(db, &doi); 1374 1375 bbt = ztest_bt_bonus(db); 1376 ASSERT3U(bbt->bt_magic, ==, BT_MAGIC); 1377 gen = bbt->bt_gen; 1378 crtxg = bbt->bt_crtxg; 1379 lrtxg = lr->lr_common.lrc_txg; 1380 1381 tx = dmu_tx_create(os); 1382 1383 dmu_tx_hold_write(tx, lr->lr_foid, offset, length); 1384 1385 if (ztest_random(8) == 0 && length == doi.doi_data_block_size && 1386 P2PHASE(offset, length) == 0) 1387 abuf = dmu_request_arcbuf(db, length); 1388 1389 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); 1390 if (txg == 0) { 1391 if (abuf != NULL) 1392 dmu_return_arcbuf(abuf); 1393 dmu_buf_rele(db, FTAG); 1394 ztest_range_unlock(rl); 1395 ztest_object_unlock(zd, lr->lr_foid); 1396 return (ENOSPC); 1397 } 1398 1399 if (bt != NULL) { 1400 /* 1401 * Usually, verify the old data before writing new data -- 1402 * but not always, because we also want to verify correct 1403 * behavior when the data was not recently read into cache. 1404 */ 1405 ASSERT(offset % doi.doi_data_block_size == 0); 1406 if (ztest_random(4) != 0) { 1407 int prefetch = ztest_random(2) ? 1408 DMU_READ_PREFETCH : DMU_READ_NO_PREFETCH; 1409 ztest_block_tag_t rbt; 1410 1411 VERIFY(dmu_read(os, lr->lr_foid, offset, 1412 sizeof (rbt), &rbt, prefetch) == 0); 1413 if (rbt.bt_magic == BT_MAGIC) { 1414 ztest_bt_verify(&rbt, os, lr->lr_foid, 1415 offset, gen, txg, crtxg); 1416 } 1417 } 1418 1419 /* 1420 * Writes can appear to be newer than the bonus buffer because 1421 * the ztest_get_data() callback does a dmu_read() of the 1422 * open-context data, which may be different than the data 1423 * as it was when the write was generated. 1424 */ 1425 if (zd->zd_zilog->zl_replay) { 1426 ztest_bt_verify(bt, os, lr->lr_foid, offset, 1427 MAX(gen, bt->bt_gen), MAX(txg, lrtxg), 1428 bt->bt_crtxg); 1429 } 1430 1431 /* 1432 * Set the bt's gen/txg to the bonus buffer's gen/txg 1433 * so that all of the usual ASSERTs will work. 1434 */ 1435 ztest_bt_generate(bt, os, lr->lr_foid, offset, gen, txg, crtxg); 1436 } 1437 1438 if (abuf == NULL) { 1439 dmu_write(os, lr->lr_foid, offset, length, data, tx); 1440 } else { 1441 bcopy(data, abuf->b_data, length); 1442 dmu_assign_arcbuf(db, offset, abuf, tx); 1443 } 1444 1445 (void) ztest_log_write(zd, tx, lr); 1446 1447 dmu_buf_rele(db, FTAG); 1448 1449 dmu_tx_commit(tx); 1450 1451 ztest_range_unlock(rl); 1452 ztest_object_unlock(zd, lr->lr_foid); 1453 1454 return (0); 1455 } 1456 1457 static int 1458 ztest_replay_truncate(ztest_ds_t *zd, lr_truncate_t *lr, boolean_t byteswap) 1459 { 1460 objset_t *os = zd->zd_os; 1461 dmu_tx_t *tx; 1462 uint64_t txg; 1463 rl_t *rl; 1464 1465 if (byteswap) 1466 byteswap_uint64_array(lr, sizeof (*lr)); 1467 1468 ztest_object_lock(zd, lr->lr_foid, RL_READER); 1469 rl = ztest_range_lock(zd, lr->lr_foid, lr->lr_offset, lr->lr_length, 1470 RL_WRITER); 1471 1472 tx = dmu_tx_create(os); 1473 1474 dmu_tx_hold_free(tx, lr->lr_foid, lr->lr_offset, lr->lr_length); 1475 1476 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); 1477 if (txg == 0) { 1478 ztest_range_unlock(rl); 1479 ztest_object_unlock(zd, lr->lr_foid); 1480 return (ENOSPC); 1481 } 1482 1483 VERIFY(dmu_free_range(os, lr->lr_foid, lr->lr_offset, 1484 lr->lr_length, tx) == 0); 1485 1486 (void) ztest_log_truncate(zd, tx, lr); 1487 1488 dmu_tx_commit(tx); 1489 1490 ztest_range_unlock(rl); 1491 ztest_object_unlock(zd, lr->lr_foid); 1492 1493 return (0); 1494 } 1495 1496 static int 1497 ztest_replay_setattr(ztest_ds_t *zd, lr_setattr_t *lr, boolean_t byteswap) 1498 { 1499 objset_t *os = zd->zd_os; 1500 dmu_tx_t *tx; 1501 dmu_buf_t *db; 1502 ztest_block_tag_t *bbt; 1503 uint64_t txg, lrtxg, crtxg; 1504 1505 if (byteswap) 1506 byteswap_uint64_array(lr, sizeof (*lr)); 1507 1508 ztest_object_lock(zd, lr->lr_foid, RL_WRITER); 1509 1510 VERIFY3U(0, ==, dmu_bonus_hold(os, lr->lr_foid, FTAG, &db)); 1511 1512 tx = dmu_tx_create(os); 1513 dmu_tx_hold_bonus(tx, lr->lr_foid); 1514 1515 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); 1516 if (txg == 0) { 1517 dmu_buf_rele(db, FTAG); 1518 ztest_object_unlock(zd, lr->lr_foid); 1519 return (ENOSPC); 1520 } 1521 1522 bbt = ztest_bt_bonus(db); 1523 ASSERT3U(bbt->bt_magic, ==, BT_MAGIC); 1524 crtxg = bbt->bt_crtxg; 1525 lrtxg = lr->lr_common.lrc_txg; 1526 1527 if (zd->zd_zilog->zl_replay) { 1528 ASSERT(lr->lr_size != 0); 1529 ASSERT(lr->lr_mode != 0); 1530 ASSERT(lrtxg != 0); 1531 } else { 1532 /* 1533 * Randomly change the size and increment the generation. 1534 */ 1535 lr->lr_size = (ztest_random(db->db_size / sizeof (*bbt)) + 1) * 1536 sizeof (*bbt); 1537 lr->lr_mode = bbt->bt_gen + 1; 1538 ASSERT(lrtxg == 0); 1539 } 1540 1541 /* 1542 * Verify that the current bonus buffer is not newer than our txg. 1543 */ 1544 ztest_bt_verify(bbt, os, lr->lr_foid, -1ULL, lr->lr_mode, 1545 MAX(txg, lrtxg), crtxg); 1546 1547 dmu_buf_will_dirty(db, tx); 1548 1549 ASSERT3U(lr->lr_size, >=, sizeof (*bbt)); 1550 ASSERT3U(lr->lr_size, <=, db->db_size); 1551 VERIFY3U(dmu_set_bonus(db, lr->lr_size, tx), ==, 0); 1552 bbt = ztest_bt_bonus(db); 1553 1554 ztest_bt_generate(bbt, os, lr->lr_foid, -1ULL, lr->lr_mode, txg, crtxg); 1555 1556 dmu_buf_rele(db, FTAG); 1557 1558 (void) ztest_log_setattr(zd, tx, lr); 1559 1560 dmu_tx_commit(tx); 1561 1562 ztest_object_unlock(zd, lr->lr_foid); 1563 1564 return (0); 1565 } 1566 1567 zil_replay_func_t *ztest_replay_vector[TX_MAX_TYPE] = { 1568 NULL, /* 0 no such transaction type */ 1569 ztest_replay_create, /* TX_CREATE */ 1570 NULL, /* TX_MKDIR */ 1571 NULL, /* TX_MKXATTR */ 1572 NULL, /* TX_SYMLINK */ 1573 ztest_replay_remove, /* TX_REMOVE */ 1574 NULL, /* TX_RMDIR */ 1575 NULL, /* TX_LINK */ 1576 NULL, /* TX_RENAME */ 1577 ztest_replay_write, /* TX_WRITE */ 1578 ztest_replay_truncate, /* TX_TRUNCATE */ 1579 ztest_replay_setattr, /* TX_SETATTR */ 1580 NULL, /* TX_ACL */ 1581 NULL, /* TX_CREATE_ACL */ 1582 NULL, /* TX_CREATE_ATTR */ 1583 NULL, /* TX_CREATE_ACL_ATTR */ 1584 NULL, /* TX_MKDIR_ACL */ 1585 NULL, /* TX_MKDIR_ATTR */ 1586 NULL, /* TX_MKDIR_ACL_ATTR */ 1587 NULL, /* TX_WRITE2 */ 1588 }; 1589 1590 /* 1591 * ZIL get_data callbacks 1592 */ 1593 1594 static void 1595 ztest_get_done(zgd_t *zgd, int error) 1596 { 1597 ztest_ds_t *zd = zgd->zgd_private; 1598 uint64_t object = zgd->zgd_rl->rl_object; 1599 1600 if (zgd->zgd_db) 1601 dmu_buf_rele(zgd->zgd_db, zgd); 1602 1603 ztest_range_unlock(zgd->zgd_rl); 1604 ztest_object_unlock(zd, object); 1605 1606 if (error == 0 && zgd->zgd_bp) 1607 zil_add_block(zgd->zgd_zilog, zgd->zgd_bp); 1608 1609 umem_free(zgd, sizeof (*zgd)); 1610 } 1611 1612 static int 1613 ztest_get_data(void *arg, lr_write_t *lr, char *buf, zio_t *zio) 1614 { 1615 ztest_ds_t *zd = arg; 1616 objset_t *os = zd->zd_os; 1617 uint64_t object = lr->lr_foid; 1618 uint64_t offset = lr->lr_offset; 1619 uint64_t size = lr->lr_length; 1620 blkptr_t *bp = &lr->lr_blkptr; 1621 uint64_t txg = lr->lr_common.lrc_txg; 1622 uint64_t crtxg; 1623 dmu_object_info_t doi; 1624 dmu_buf_t *db; 1625 zgd_t *zgd; 1626 int error; 1627 1628 ztest_object_lock(zd, object, RL_READER); 1629 error = dmu_bonus_hold(os, object, FTAG, &db); 1630 if (error) { 1631 ztest_object_unlock(zd, object); 1632 return (error); 1633 } 1634 1635 crtxg = ztest_bt_bonus(db)->bt_crtxg; 1636 1637 if (crtxg == 0 || crtxg > txg) { 1638 dmu_buf_rele(db, FTAG); 1639 ztest_object_unlock(zd, object); 1640 return (ENOENT); 1641 } 1642 1643 dmu_object_info_from_db(db, &doi); 1644 dmu_buf_rele(db, FTAG); 1645 db = NULL; 1646 1647 zgd = umem_zalloc(sizeof (*zgd), UMEM_NOFAIL); 1648 zgd->zgd_zilog = zd->zd_zilog; 1649 zgd->zgd_private = zd; 1650 1651 if (buf != NULL) { /* immediate write */ 1652 zgd->zgd_rl = ztest_range_lock(zd, object, offset, size, 1653 RL_READER); 1654 1655 error = dmu_read(os, object, offset, size, buf, 1656 DMU_READ_NO_PREFETCH); 1657 ASSERT(error == 0); 1658 } else { 1659 size = doi.doi_data_block_size; 1660 if (ISP2(size)) { 1661 offset = P2ALIGN(offset, size); 1662 } else { 1663 ASSERT(offset < size); 1664 offset = 0; 1665 } 1666 1667 zgd->zgd_rl = ztest_range_lock(zd, object, offset, size, 1668 RL_READER); 1669 1670 error = dmu_buf_hold(os, object, offset, zgd, &db); 1671 1672 if (error == 0) { 1673 zgd->zgd_db = db; 1674 zgd->zgd_bp = bp; 1675 1676 ASSERT(db->db_offset == offset); 1677 ASSERT(db->db_size == size); 1678 1679 error = dmu_sync(zio, lr->lr_common.lrc_txg, 1680 ztest_get_done, zgd); 1681 1682 if (error == 0) 1683 return (0); 1684 } 1685 } 1686 1687 ztest_get_done(zgd, error); 1688 1689 return (error); 1690 } 1691 1692 static void * 1693 ztest_lr_alloc(size_t lrsize, char *name) 1694 { 1695 char *lr; 1696 size_t namesize = name ? strlen(name) + 1 : 0; 1697 1698 lr = umem_zalloc(lrsize + namesize, UMEM_NOFAIL); 1699 1700 if (name) 1701 bcopy(name, lr + lrsize, namesize); 1702 1703 return (lr); 1704 } 1705 1706 void 1707 ztest_lr_free(void *lr, size_t lrsize, char *name) 1708 { 1709 size_t namesize = name ? strlen(name) + 1 : 0; 1710 1711 umem_free(lr, lrsize + namesize); 1712 } 1713 1714 /* 1715 * Lookup a bunch of objects. Returns the number of objects not found. 1716 */ 1717 static int 1718 ztest_lookup(ztest_ds_t *zd, ztest_od_t *od, int count) 1719 { 1720 int missing = 0; 1721 int error; 1722 1723 ASSERT(_mutex_held(&zd->zd_dirobj_lock)); 1724 1725 for (int i = 0; i < count; i++, od++) { 1726 od->od_object = 0; 1727 error = zap_lookup(zd->zd_os, od->od_dir, od->od_name, 1728 sizeof (uint64_t), 1, &od->od_object); 1729 if (error) { 1730 ASSERT(error == ENOENT); 1731 ASSERT(od->od_object == 0); 1732 missing++; 1733 } else { 1734 dmu_buf_t *db; 1735 ztest_block_tag_t *bbt; 1736 dmu_object_info_t doi; 1737 1738 ASSERT(od->od_object != 0); 1739 ASSERT(missing == 0); /* there should be no gaps */ 1740 1741 ztest_object_lock(zd, od->od_object, RL_READER); 1742 VERIFY3U(0, ==, dmu_bonus_hold(zd->zd_os, 1743 od->od_object, FTAG, &db)); 1744 dmu_object_info_from_db(db, &doi); 1745 bbt = ztest_bt_bonus(db); 1746 ASSERT3U(bbt->bt_magic, ==, BT_MAGIC); 1747 od->od_type = doi.doi_type; 1748 od->od_blocksize = doi.doi_data_block_size; 1749 od->od_gen = bbt->bt_gen; 1750 dmu_buf_rele(db, FTAG); 1751 ztest_object_unlock(zd, od->od_object); 1752 } 1753 } 1754 1755 return (missing); 1756 } 1757 1758 static int 1759 ztest_create(ztest_ds_t *zd, ztest_od_t *od, int count) 1760 { 1761 int missing = 0; 1762 1763 ASSERT(_mutex_held(&zd->zd_dirobj_lock)); 1764 1765 for (int i = 0; i < count; i++, od++) { 1766 if (missing) { 1767 od->od_object = 0; 1768 missing++; 1769 continue; 1770 } 1771 1772 lr_create_t *lr = ztest_lr_alloc(sizeof (*lr), od->od_name); 1773 1774 lr->lr_doid = od->od_dir; 1775 lr->lr_foid = 0; /* 0 to allocate, > 0 to claim */ 1776 lr->lrz_type = od->od_crtype; 1777 lr->lrz_blocksize = od->od_crblocksize; 1778 lr->lrz_ibshift = ztest_random_ibshift(); 1779 lr->lrz_bonustype = DMU_OT_UINT64_OTHER; 1780 lr->lrz_bonuslen = dmu_bonus_max(); 1781 lr->lr_gen = od->od_crgen; 1782 lr->lr_crtime[0] = time(NULL); 1783 1784 if (ztest_replay_create(zd, lr, B_FALSE) != 0) { 1785 ASSERT(missing == 0); 1786 od->od_object = 0; 1787 missing++; 1788 } else { 1789 od->od_object = lr->lr_foid; 1790 od->od_type = od->od_crtype; 1791 od->od_blocksize = od->od_crblocksize; 1792 od->od_gen = od->od_crgen; 1793 ASSERT(od->od_object != 0); 1794 } 1795 1796 ztest_lr_free(lr, sizeof (*lr), od->od_name); 1797 } 1798 1799 return (missing); 1800 } 1801 1802 static int 1803 ztest_remove(ztest_ds_t *zd, ztest_od_t *od, int count) 1804 { 1805 int missing = 0; 1806 int error; 1807 1808 ASSERT(_mutex_held(&zd->zd_dirobj_lock)); 1809 1810 od += count - 1; 1811 1812 for (int i = count - 1; i >= 0; i--, od--) { 1813 if (missing) { 1814 missing++; 1815 continue; 1816 } 1817 1818 if (od->od_object == 0) 1819 continue; 1820 1821 lr_remove_t *lr = ztest_lr_alloc(sizeof (*lr), od->od_name); 1822 1823 lr->lr_doid = od->od_dir; 1824 1825 if ((error = ztest_replay_remove(zd, lr, B_FALSE)) != 0) { 1826 ASSERT3U(error, ==, ENOSPC); 1827 missing++; 1828 } else { 1829 od->od_object = 0; 1830 } 1831 ztest_lr_free(lr, sizeof (*lr), od->od_name); 1832 } 1833 1834 return (missing); 1835 } 1836 1837 static int 1838 ztest_write(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size, 1839 void *data) 1840 { 1841 lr_write_t *lr; 1842 int error; 1843 1844 lr = ztest_lr_alloc(sizeof (*lr) + size, NULL); 1845 1846 lr->lr_foid = object; 1847 lr->lr_offset = offset; 1848 lr->lr_length = size; 1849 lr->lr_blkoff = 0; 1850 BP_ZERO(&lr->lr_blkptr); 1851 1852 bcopy(data, lr + 1, size); 1853 1854 error = ztest_replay_write(zd, lr, B_FALSE); 1855 1856 ztest_lr_free(lr, sizeof (*lr) + size, NULL); 1857 1858 return (error); 1859 } 1860 1861 static int 1862 ztest_truncate(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size) 1863 { 1864 lr_truncate_t *lr; 1865 int error; 1866 1867 lr = ztest_lr_alloc(sizeof (*lr), NULL); 1868 1869 lr->lr_foid = object; 1870 lr->lr_offset = offset; 1871 lr->lr_length = size; 1872 1873 error = ztest_replay_truncate(zd, lr, B_FALSE); 1874 1875 ztest_lr_free(lr, sizeof (*lr), NULL); 1876 1877 return (error); 1878 } 1879 1880 static int 1881 ztest_setattr(ztest_ds_t *zd, uint64_t object) 1882 { 1883 lr_setattr_t *lr; 1884 int error; 1885 1886 lr = ztest_lr_alloc(sizeof (*lr), NULL); 1887 1888 lr->lr_foid = object; 1889 lr->lr_size = 0; 1890 lr->lr_mode = 0; 1891 1892 error = ztest_replay_setattr(zd, lr, B_FALSE); 1893 1894 ztest_lr_free(lr, sizeof (*lr), NULL); 1895 1896 return (error); 1897 } 1898 1899 static void 1900 ztest_prealloc(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size) 1901 { 1902 objset_t *os = zd->zd_os; 1903 dmu_tx_t *tx; 1904 uint64_t txg; 1905 rl_t *rl; 1906 1907 txg_wait_synced(dmu_objset_pool(os), 0); 1908 1909 ztest_object_lock(zd, object, RL_READER); 1910 rl = ztest_range_lock(zd, object, offset, size, RL_WRITER); 1911 1912 tx = dmu_tx_create(os); 1913 1914 dmu_tx_hold_write(tx, object, offset, size); 1915 1916 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); 1917 1918 if (txg != 0) { 1919 dmu_prealloc(os, object, offset, size, tx); 1920 dmu_tx_commit(tx); 1921 txg_wait_synced(dmu_objset_pool(os), txg); 1922 } else { 1923 (void) dmu_free_long_range(os, object, offset, size); 1924 } 1925 1926 ztest_range_unlock(rl); 1927 ztest_object_unlock(zd, object); 1928 } 1929 1930 static void 1931 ztest_io(ztest_ds_t *zd, uint64_t object, uint64_t offset) 1932 { 1933 ztest_block_tag_t wbt; 1934 dmu_object_info_t doi; 1935 enum ztest_io_type io_type; 1936 uint64_t blocksize; 1937 void *data; 1938 1939 VERIFY(dmu_object_info(zd->zd_os, object, &doi) == 0); 1940 blocksize = doi.doi_data_block_size; 1941 data = umem_alloc(blocksize, UMEM_NOFAIL); 1942 1943 /* 1944 * Pick an i/o type at random, biased toward writing block tags. 1945 */ 1946 io_type = ztest_random(ZTEST_IO_TYPES); 1947 if (ztest_random(2) == 0) 1948 io_type = ZTEST_IO_WRITE_TAG; 1949 1950 switch (io_type) { 1951 1952 case ZTEST_IO_WRITE_TAG: 1953 ztest_bt_generate(&wbt, zd->zd_os, object, offset, 0, 0, 0); 1954 (void) ztest_write(zd, object, offset, sizeof (wbt), &wbt); 1955 break; 1956 1957 case ZTEST_IO_WRITE_PATTERN: 1958 (void) memset(data, 'a' + (object + offset) % 5, blocksize); 1959 if (ztest_random(2) == 0) { 1960 /* 1961 * Induce fletcher2 collisions to ensure that 1962 * zio_ddt_collision() detects and resolves them 1963 * when using fletcher2-verify for deduplication. 1964 */ 1965 ((uint64_t *)data)[0] ^= 1ULL << 63; 1966 ((uint64_t *)data)[4] ^= 1ULL << 63; 1967 } 1968 (void) ztest_write(zd, object, offset, blocksize, data); 1969 break; 1970 1971 case ZTEST_IO_WRITE_ZEROES: 1972 bzero(data, blocksize); 1973 (void) ztest_write(zd, object, offset, blocksize, data); 1974 break; 1975 1976 case ZTEST_IO_TRUNCATE: 1977 (void) ztest_truncate(zd, object, offset, blocksize); 1978 break; 1979 1980 case ZTEST_IO_SETATTR: 1981 (void) ztest_setattr(zd, object); 1982 break; 1983 } 1984 1985 umem_free(data, blocksize); 1986 } 1987 1988 /* 1989 * Initialize an object description template. 1990 */ 1991 static void 1992 ztest_od_init(ztest_od_t *od, uint64_t id, char *tag, uint64_t index, 1993 dmu_object_type_t type, uint64_t blocksize, uint64_t gen) 1994 { 1995 od->od_dir = ZTEST_DIROBJ; 1996 od->od_object = 0; 1997 1998 od->od_crtype = type; 1999 od->od_crblocksize = blocksize ? blocksize : ztest_random_blocksize(); 2000 od->od_crgen = gen; 2001 2002 od->od_type = DMU_OT_NONE; 2003 od->od_blocksize = 0; 2004 od->od_gen = 0; 2005 2006 (void) snprintf(od->od_name, sizeof (od->od_name), "%s(%lld)[%llu]", 2007 tag, (int64_t)id, index); 2008 } 2009 2010 /* 2011 * Lookup or create the objects for a test using the od template. 2012 * If the objects do not all exist, or if 'remove' is specified, 2013 * remove any existing objects and create new ones. Otherwise, 2014 * use the existing objects. 2015 */ 2016 static int 2017 ztest_object_init(ztest_ds_t *zd, ztest_od_t *od, size_t size, boolean_t remove) 2018 { 2019 int count = size / sizeof (*od); 2020 int rv = 0; 2021 2022 VERIFY(mutex_lock(&zd->zd_dirobj_lock) == 0); 2023 if ((ztest_lookup(zd, od, count) != 0 || remove) && 2024 (ztest_remove(zd, od, count) != 0 || 2025 ztest_create(zd, od, count) != 0)) 2026 rv = -1; 2027 zd->zd_od = od; 2028 VERIFY(mutex_unlock(&zd->zd_dirobj_lock) == 0); 2029 2030 return (rv); 2031 } 2032 2033 /* ARGSUSED */ 2034 void 2035 ztest_zil_commit(ztest_ds_t *zd, uint64_t id) 2036 { 2037 zilog_t *zilog = zd->zd_zilog; 2038 2039 zil_commit(zilog, UINT64_MAX, ztest_random(ZTEST_OBJECTS)); 2040 2041 /* 2042 * Remember the committed values in zd, which is in parent/child 2043 * shared memory. If we die, the next iteration of ztest_run() 2044 * will verify that the log really does contain this record. 2045 */ 2046 mutex_enter(&zilog->zl_lock); 2047 ASSERT(zd->zd_seq <= zilog->zl_commit_lr_seq); 2048 zd->zd_seq = zilog->zl_commit_lr_seq; 2049 mutex_exit(&zilog->zl_lock); 2050 } 2051 2052 /* 2053 * Verify that we can't destroy an active pool, create an existing pool, 2054 * or create a pool with a bad vdev spec. 2055 */ 2056 /* ARGSUSED */ 2057 void 2058 ztest_spa_create_destroy(ztest_ds_t *zd, uint64_t id) 2059 { 2060 ztest_shared_t *zs = ztest_shared; 2061 spa_t *spa; 2062 nvlist_t *nvroot; 2063 2064 /* 2065 * Attempt to create using a bad file. 2066 */ 2067 nvroot = make_vdev_root("/dev/bogus", NULL, 0, 0, 0, 0, 0, 1); 2068 VERIFY3U(ENOENT, ==, 2069 spa_create("ztest_bad_file", nvroot, NULL, NULL, NULL)); 2070 nvlist_free(nvroot); 2071 2072 /* 2073 * Attempt to create using a bad mirror. 2074 */ 2075 nvroot = make_vdev_root("/dev/bogus", NULL, 0, 0, 0, 0, 2, 1); 2076 VERIFY3U(ENOENT, ==, 2077 spa_create("ztest_bad_mirror", nvroot, NULL, NULL, NULL)); 2078 nvlist_free(nvroot); 2079 2080 /* 2081 * Attempt to create an existing pool. It shouldn't matter 2082 * what's in the nvroot; we should fail with EEXIST. 2083 */ 2084 (void) rw_rdlock(&zs->zs_name_lock); 2085 nvroot = make_vdev_root("/dev/bogus", NULL, 0, 0, 0, 0, 0, 1); 2086 VERIFY3U(EEXIST, ==, spa_create(zs->zs_pool, nvroot, NULL, NULL, NULL)); 2087 nvlist_free(nvroot); 2088 VERIFY3U(0, ==, spa_open(zs->zs_pool, &spa, FTAG)); 2089 VERIFY3U(EBUSY, ==, spa_destroy(zs->zs_pool)); 2090 spa_close(spa, FTAG); 2091 2092 (void) rw_unlock(&zs->zs_name_lock); 2093 } 2094 2095 static vdev_t * 2096 vdev_lookup_by_path(vdev_t *vd, const char *path) 2097 { 2098 vdev_t *mvd; 2099 2100 if (vd->vdev_path != NULL && strcmp(path, vd->vdev_path) == 0) 2101 return (vd); 2102 2103 for (int c = 0; c < vd->vdev_children; c++) 2104 if ((mvd = vdev_lookup_by_path(vd->vdev_child[c], path)) != 2105 NULL) 2106 return (mvd); 2107 2108 return (NULL); 2109 } 2110 2111 /* 2112 * Find the first available hole which can be used as a top-level. 2113 */ 2114 int 2115 find_vdev_hole(spa_t *spa) 2116 { 2117 vdev_t *rvd = spa->spa_root_vdev; 2118 int c; 2119 2120 ASSERT(spa_config_held(spa, SCL_VDEV, RW_READER) == SCL_VDEV); 2121 2122 for (c = 0; c < rvd->vdev_children; c++) { 2123 vdev_t *cvd = rvd->vdev_child[c]; 2124 2125 if (cvd->vdev_ishole) 2126 break; 2127 } 2128 return (c); 2129 } 2130 2131 /* 2132 * Verify that vdev_add() works as expected. 2133 */ 2134 /* ARGSUSED */ 2135 void 2136 ztest_vdev_add_remove(ztest_ds_t *zd, uint64_t id) 2137 { 2138 ztest_shared_t *zs = ztest_shared; 2139 spa_t *spa = zs->zs_spa; 2140 uint64_t leaves; 2141 uint64_t guid; 2142 nvlist_t *nvroot; 2143 int error; 2144 2145 VERIFY(mutex_lock(&zs->zs_vdev_lock) == 0); 2146 leaves = MAX(zs->zs_mirrors + zs->zs_splits, 1) * zopt_raidz; 2147 2148 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 2149 2150 ztest_shared->zs_vdev_next_leaf = find_vdev_hole(spa) * leaves; 2151 2152 /* 2153 * If we have slogs then remove them 1/4 of the time. 2154 */ 2155 if (spa_has_slogs(spa) && ztest_random(4) == 0) { 2156 /* 2157 * Grab the guid from the head of the log class rotor. 2158 */ 2159 guid = spa_log_class(spa)->mc_rotor->mg_vd->vdev_guid; 2160 2161 spa_config_exit(spa, SCL_VDEV, FTAG); 2162 2163 /* 2164 * We have to grab the zs_name_lock as writer to 2165 * prevent a race between removing a slog (dmu_objset_find) 2166 * and destroying a dataset. Removing the slog will 2167 * grab a reference on the dataset which may cause 2168 * dmu_objset_destroy() to fail with EBUSY thus 2169 * leaving the dataset in an inconsistent state. 2170 */ 2171 VERIFY(rw_wrlock(&ztest_shared->zs_name_lock) == 0); 2172 error = spa_vdev_remove(spa, guid, B_FALSE); 2173 VERIFY(rw_unlock(&ztest_shared->zs_name_lock) == 0); 2174 2175 if (error && error != EEXIST) 2176 fatal(0, "spa_vdev_remove() = %d", error); 2177 } else { 2178 spa_config_exit(spa, SCL_VDEV, FTAG); 2179 2180 /* 2181 * Make 1/4 of the devices be log devices. 2182 */ 2183 nvroot = make_vdev_root(NULL, NULL, zopt_vdev_size, 0, 2184 ztest_random(4) == 0, zopt_raidz, zs->zs_mirrors, 1); 2185 2186 error = spa_vdev_add(spa, nvroot); 2187 nvlist_free(nvroot); 2188 2189 if (error == ENOSPC) 2190 ztest_record_enospc("spa_vdev_add"); 2191 else if (error != 0) 2192 fatal(0, "spa_vdev_add() = %d", error); 2193 } 2194 2195 VERIFY(mutex_unlock(&ztest_shared->zs_vdev_lock) == 0); 2196 } 2197 2198 /* 2199 * Verify that adding/removing aux devices (l2arc, hot spare) works as expected. 2200 */ 2201 /* ARGSUSED */ 2202 void 2203 ztest_vdev_aux_add_remove(ztest_ds_t *zd, uint64_t id) 2204 { 2205 ztest_shared_t *zs = ztest_shared; 2206 spa_t *spa = zs->zs_spa; 2207 vdev_t *rvd = spa->spa_root_vdev; 2208 spa_aux_vdev_t *sav; 2209 char *aux; 2210 uint64_t guid = 0; 2211 int error; 2212 2213 if (ztest_random(2) == 0) { 2214 sav = &spa->spa_spares; 2215 aux = ZPOOL_CONFIG_SPARES; 2216 } else { 2217 sav = &spa->spa_l2cache; 2218 aux = ZPOOL_CONFIG_L2CACHE; 2219 } 2220 2221 VERIFY(mutex_lock(&zs->zs_vdev_lock) == 0); 2222 2223 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 2224 2225 if (sav->sav_count != 0 && ztest_random(4) == 0) { 2226 /* 2227 * Pick a random device to remove. 2228 */ 2229 guid = sav->sav_vdevs[ztest_random(sav->sav_count)]->vdev_guid; 2230 } else { 2231 /* 2232 * Find an unused device we can add. 2233 */ 2234 zs->zs_vdev_aux = 0; 2235 for (;;) { 2236 char path[MAXPATHLEN]; 2237 int c; 2238 (void) sprintf(path, ztest_aux_template, zopt_dir, 2239 zopt_pool, aux, zs->zs_vdev_aux); 2240 for (c = 0; c < sav->sav_count; c++) 2241 if (strcmp(sav->sav_vdevs[c]->vdev_path, 2242 path) == 0) 2243 break; 2244 if (c == sav->sav_count && 2245 vdev_lookup_by_path(rvd, path) == NULL) 2246 break; 2247 zs->zs_vdev_aux++; 2248 } 2249 } 2250 2251 spa_config_exit(spa, SCL_VDEV, FTAG); 2252 2253 if (guid == 0) { 2254 /* 2255 * Add a new device. 2256 */ 2257 nvlist_t *nvroot = make_vdev_root(NULL, aux, 2258 (zopt_vdev_size * 5) / 4, 0, 0, 0, 0, 1); 2259 error = spa_vdev_add(spa, nvroot); 2260 if (error != 0) 2261 fatal(0, "spa_vdev_add(%p) = %d", nvroot, error); 2262 nvlist_free(nvroot); 2263 } else { 2264 /* 2265 * Remove an existing device. Sometimes, dirty its 2266 * vdev state first to make sure we handle removal 2267 * of devices that have pending state changes. 2268 */ 2269 if (ztest_random(2) == 0) 2270 (void) vdev_online(spa, guid, 0, NULL); 2271 2272 error = spa_vdev_remove(spa, guid, B_FALSE); 2273 if (error != 0 && error != EBUSY) 2274 fatal(0, "spa_vdev_remove(%llu) = %d", guid, error); 2275 } 2276 2277 VERIFY(mutex_unlock(&zs->zs_vdev_lock) == 0); 2278 } 2279 2280 /* 2281 * split a pool if it has mirror tlvdevs 2282 */ 2283 /* ARGSUSED */ 2284 void 2285 ztest_split_pool(ztest_ds_t *zd, uint64_t id) 2286 { 2287 ztest_shared_t *zs = ztest_shared; 2288 spa_t *spa = zs->zs_spa; 2289 vdev_t *rvd = spa->spa_root_vdev; 2290 nvlist_t *tree, **child, *config, *split, **schild; 2291 uint_t c, children, schildren = 0, lastlogid = 0; 2292 int error = 0; 2293 2294 VERIFY(mutex_lock(&zs->zs_vdev_lock) == 0); 2295 2296 /* ensure we have a useable config; mirrors of raidz aren't supported */ 2297 if (zs->zs_mirrors < 3 || zopt_raidz > 1) { 2298 VERIFY(mutex_unlock(&zs->zs_vdev_lock) == 0); 2299 return; 2300 } 2301 2302 /* clean up the old pool, if any */ 2303 (void) spa_destroy("splitp"); 2304 2305 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 2306 2307 /* generate a config from the existing config */ 2308 VERIFY(nvlist_lookup_nvlist(spa->spa_config, ZPOOL_CONFIG_VDEV_TREE, 2309 &tree) == 0); 2310 VERIFY(nvlist_lookup_nvlist_array(tree, ZPOOL_CONFIG_CHILDREN, &child, 2311 &children) == 0); 2312 2313 schild = malloc(rvd->vdev_children * sizeof (nvlist_t *)); 2314 for (c = 0; c < children; c++) { 2315 vdev_t *tvd = rvd->vdev_child[c]; 2316 nvlist_t **mchild; 2317 uint_t mchildren; 2318 2319 if (tvd->vdev_islog || tvd->vdev_ops == &vdev_hole_ops) { 2320 VERIFY(nvlist_alloc(&schild[schildren], NV_UNIQUE_NAME, 2321 0) == 0); 2322 VERIFY(nvlist_add_string(schild[schildren], 2323 ZPOOL_CONFIG_TYPE, VDEV_TYPE_HOLE) == 0); 2324 VERIFY(nvlist_add_uint64(schild[schildren], 2325 ZPOOL_CONFIG_IS_HOLE, 1) == 0); 2326 if (lastlogid == 0) 2327 lastlogid = schildren; 2328 ++schildren; 2329 continue; 2330 } 2331 lastlogid = 0; 2332 VERIFY(nvlist_lookup_nvlist_array(child[c], 2333 ZPOOL_CONFIG_CHILDREN, &mchild, &mchildren) == 0); 2334 VERIFY(nvlist_dup(mchild[0], &schild[schildren++], 0) == 0); 2335 } 2336 2337 /* OK, create a config that can be used to split */ 2338 VERIFY(nvlist_alloc(&split, NV_UNIQUE_NAME, 0) == 0); 2339 VERIFY(nvlist_add_string(split, ZPOOL_CONFIG_TYPE, 2340 VDEV_TYPE_ROOT) == 0); 2341 VERIFY(nvlist_add_nvlist_array(split, ZPOOL_CONFIG_CHILDREN, schild, 2342 lastlogid != 0 ? lastlogid : schildren) == 0); 2343 2344 VERIFY(nvlist_alloc(&config, NV_UNIQUE_NAME, 0) == 0); 2345 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, split) == 0); 2346 2347 for (c = 0; c < schildren; c++) 2348 nvlist_free(schild[c]); 2349 free(schild); 2350 nvlist_free(split); 2351 2352 spa_config_exit(spa, SCL_VDEV, FTAG); 2353 2354 (void) rw_wrlock(&zs->zs_name_lock); 2355 error = spa_vdev_split_mirror(spa, "splitp", config, NULL, B_FALSE); 2356 (void) rw_unlock(&zs->zs_name_lock); 2357 2358 nvlist_free(config); 2359 2360 if (error == 0) { 2361 (void) printf("successful split - results:\n"); 2362 mutex_enter(&spa_namespace_lock); 2363 show_pool_stats(spa); 2364 show_pool_stats(spa_lookup("splitp")); 2365 mutex_exit(&spa_namespace_lock); 2366 ++zs->zs_splits; 2367 --zs->zs_mirrors; 2368 } 2369 VERIFY(mutex_unlock(&zs->zs_vdev_lock) == 0); 2370 2371 } 2372 2373 /* 2374 * Verify that we can attach and detach devices. 2375 */ 2376 /* ARGSUSED */ 2377 void 2378 ztest_vdev_attach_detach(ztest_ds_t *zd, uint64_t id) 2379 { 2380 ztest_shared_t *zs = ztest_shared; 2381 spa_t *spa = zs->zs_spa; 2382 spa_aux_vdev_t *sav = &spa->spa_spares; 2383 vdev_t *rvd = spa->spa_root_vdev; 2384 vdev_t *oldvd, *newvd, *pvd; 2385 nvlist_t *root; 2386 uint64_t leaves; 2387 uint64_t leaf, top; 2388 uint64_t ashift = ztest_get_ashift(); 2389 uint64_t oldguid, pguid; 2390 size_t oldsize, newsize; 2391 char oldpath[MAXPATHLEN], newpath[MAXPATHLEN]; 2392 int replacing; 2393 int oldvd_has_siblings = B_FALSE; 2394 int newvd_is_spare = B_FALSE; 2395 int oldvd_is_log; 2396 int error, expected_error; 2397 2398 VERIFY(mutex_lock(&zs->zs_vdev_lock) == 0); 2399 leaves = MAX(zs->zs_mirrors, 1) * zopt_raidz; 2400 2401 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 2402 2403 /* 2404 * Decide whether to do an attach or a replace. 2405 */ 2406 replacing = ztest_random(2); 2407 2408 /* 2409 * Pick a random top-level vdev. 2410 */ 2411 top = ztest_random_vdev_top(spa, B_TRUE); 2412 2413 /* 2414 * Pick a random leaf within it. 2415 */ 2416 leaf = ztest_random(leaves); 2417 2418 /* 2419 * Locate this vdev. 2420 */ 2421 oldvd = rvd->vdev_child[top]; 2422 if (zs->zs_mirrors >= 1) { 2423 ASSERT(oldvd->vdev_ops == &vdev_mirror_ops); 2424 ASSERT(oldvd->vdev_children >= zs->zs_mirrors); 2425 oldvd = oldvd->vdev_child[leaf / zopt_raidz]; 2426 } 2427 if (zopt_raidz > 1) { 2428 ASSERT(oldvd->vdev_ops == &vdev_raidz_ops); 2429 ASSERT(oldvd->vdev_children == zopt_raidz); 2430 oldvd = oldvd->vdev_child[leaf % zopt_raidz]; 2431 } 2432 2433 /* 2434 * If we're already doing an attach or replace, oldvd may be a 2435 * mirror vdev -- in which case, pick a random child. 2436 */ 2437 while (oldvd->vdev_children != 0) { 2438 oldvd_has_siblings = B_TRUE; 2439 ASSERT(oldvd->vdev_children >= 2); 2440 oldvd = oldvd->vdev_child[ztest_random(oldvd->vdev_children)]; 2441 } 2442 2443 oldguid = oldvd->vdev_guid; 2444 oldsize = vdev_get_min_asize(oldvd); 2445 oldvd_is_log = oldvd->vdev_top->vdev_islog; 2446 (void) strcpy(oldpath, oldvd->vdev_path); 2447 pvd = oldvd->vdev_parent; 2448 pguid = pvd->vdev_guid; 2449 2450 /* 2451 * If oldvd has siblings, then half of the time, detach it. 2452 */ 2453 if (oldvd_has_siblings && ztest_random(2) == 0) { 2454 spa_config_exit(spa, SCL_VDEV, FTAG); 2455 error = spa_vdev_detach(spa, oldguid, pguid, B_FALSE); 2456 if (error != 0 && error != ENODEV && error != EBUSY && 2457 error != ENOTSUP) 2458 fatal(0, "detach (%s) returned %d", oldpath, error); 2459 VERIFY(mutex_unlock(&zs->zs_vdev_lock) == 0); 2460 return; 2461 } 2462 2463 /* 2464 * For the new vdev, choose with equal probability between the two 2465 * standard paths (ending in either 'a' or 'b') or a random hot spare. 2466 */ 2467 if (sav->sav_count != 0 && ztest_random(3) == 0) { 2468 newvd = sav->sav_vdevs[ztest_random(sav->sav_count)]; 2469 newvd_is_spare = B_TRUE; 2470 (void) strcpy(newpath, newvd->vdev_path); 2471 } else { 2472 (void) snprintf(newpath, sizeof (newpath), ztest_dev_template, 2473 zopt_dir, zopt_pool, top * leaves + leaf); 2474 if (ztest_random(2) == 0) 2475 newpath[strlen(newpath) - 1] = 'b'; 2476 newvd = vdev_lookup_by_path(rvd, newpath); 2477 } 2478 2479 if (newvd) { 2480 newsize = vdev_get_min_asize(newvd); 2481 } else { 2482 /* 2483 * Make newsize a little bigger or smaller than oldsize. 2484 * If it's smaller, the attach should fail. 2485 * If it's larger, and we're doing a replace, 2486 * we should get dynamic LUN growth when we're done. 2487 */ 2488 newsize = 10 * oldsize / (9 + ztest_random(3)); 2489 } 2490 2491 /* 2492 * If pvd is not a mirror or root, the attach should fail with ENOTSUP, 2493 * unless it's a replace; in that case any non-replacing parent is OK. 2494 * 2495 * If newvd is already part of the pool, it should fail with EBUSY. 2496 * 2497 * If newvd is too small, it should fail with EOVERFLOW. 2498 */ 2499 if (pvd->vdev_ops != &vdev_mirror_ops && 2500 pvd->vdev_ops != &vdev_root_ops && (!replacing || 2501 pvd->vdev_ops == &vdev_replacing_ops || 2502 pvd->vdev_ops == &vdev_spare_ops)) 2503 expected_error = ENOTSUP; 2504 else if (newvd_is_spare && (!replacing || oldvd_is_log)) 2505 expected_error = ENOTSUP; 2506 else if (newvd == oldvd) 2507 expected_error = replacing ? 0 : EBUSY; 2508 else if (vdev_lookup_by_path(rvd, newpath) != NULL) 2509 expected_error = EBUSY; 2510 else if (newsize < oldsize) 2511 expected_error = EOVERFLOW; 2512 else if (ashift > oldvd->vdev_top->vdev_ashift) 2513 expected_error = EDOM; 2514 else 2515 expected_error = 0; 2516 2517 spa_config_exit(spa, SCL_VDEV, FTAG); 2518 2519 /* 2520 * Build the nvlist describing newpath. 2521 */ 2522 root = make_vdev_root(newpath, NULL, newvd == NULL ? newsize : 0, 2523 ashift, 0, 0, 0, 1); 2524 2525 error = spa_vdev_attach(spa, oldguid, root, replacing); 2526 2527 nvlist_free(root); 2528 2529 /* 2530 * If our parent was the replacing vdev, but the replace completed, 2531 * then instead of failing with ENOTSUP we may either succeed, 2532 * fail with ENODEV, or fail with EOVERFLOW. 2533 */ 2534 if (expected_error == ENOTSUP && 2535 (error == 0 || error == ENODEV || error == EOVERFLOW)) 2536 expected_error = error; 2537 2538 /* 2539 * If someone grew the LUN, the replacement may be too small. 2540 */ 2541 if (error == EOVERFLOW || error == EBUSY) 2542 expected_error = error; 2543 2544 /* XXX workaround 6690467 */ 2545 if (error != expected_error && expected_error != EBUSY) { 2546 fatal(0, "attach (%s %llu, %s %llu, %d) " 2547 "returned %d, expected %d", 2548 oldpath, (longlong_t)oldsize, newpath, 2549 (longlong_t)newsize, replacing, error, expected_error); 2550 } 2551 2552 VERIFY(mutex_unlock(&zs->zs_vdev_lock) == 0); 2553 } 2554 2555 /* 2556 * Callback function which expands the physical size of the vdev. 2557 */ 2558 vdev_t * 2559 grow_vdev(vdev_t *vd, void *arg) 2560 { 2561 spa_t *spa = vd->vdev_spa; 2562 size_t *newsize = arg; 2563 size_t fsize; 2564 int fd; 2565 2566 ASSERT(spa_config_held(spa, SCL_STATE, RW_READER) == SCL_STATE); 2567 ASSERT(vd->vdev_ops->vdev_op_leaf); 2568 2569 if ((fd = open(vd->vdev_path, O_RDWR)) == -1) 2570 return (vd); 2571 2572 fsize = lseek(fd, 0, SEEK_END); 2573 (void) ftruncate(fd, *newsize); 2574 2575 if (zopt_verbose >= 6) { 2576 (void) printf("%s grew from %lu to %lu bytes\n", 2577 vd->vdev_path, (ulong_t)fsize, (ulong_t)*newsize); 2578 } 2579 (void) close(fd); 2580 return (NULL); 2581 } 2582 2583 /* 2584 * Callback function which expands a given vdev by calling vdev_online(). 2585 */ 2586 /* ARGSUSED */ 2587 vdev_t * 2588 online_vdev(vdev_t *vd, void *arg) 2589 { 2590 spa_t *spa = vd->vdev_spa; 2591 vdev_t *tvd = vd->vdev_top; 2592 uint64_t guid = vd->vdev_guid; 2593 uint64_t generation = spa->spa_config_generation + 1; 2594 vdev_state_t newstate = VDEV_STATE_UNKNOWN; 2595 int error; 2596 2597 ASSERT(spa_config_held(spa, SCL_STATE, RW_READER) == SCL_STATE); 2598 ASSERT(vd->vdev_ops->vdev_op_leaf); 2599 2600 /* Calling vdev_online will initialize the new metaslabs */ 2601 spa_config_exit(spa, SCL_STATE, spa); 2602 error = vdev_online(spa, guid, ZFS_ONLINE_EXPAND, &newstate); 2603 spa_config_enter(spa, SCL_STATE, spa, RW_READER); 2604 2605 /* 2606 * If vdev_online returned an error or the underlying vdev_open 2607 * failed then we abort the expand. The only way to know that 2608 * vdev_open fails is by checking the returned newstate. 2609 */ 2610 if (error || newstate != VDEV_STATE_HEALTHY) { 2611 if (zopt_verbose >= 5) { 2612 (void) printf("Unable to expand vdev, state %llu, " 2613 "error %d\n", (u_longlong_t)newstate, error); 2614 } 2615 return (vd); 2616 } 2617 ASSERT3U(newstate, ==, VDEV_STATE_HEALTHY); 2618 2619 /* 2620 * Since we dropped the lock we need to ensure that we're 2621 * still talking to the original vdev. It's possible this 2622 * vdev may have been detached/replaced while we were 2623 * trying to online it. 2624 */ 2625 if (generation != spa->spa_config_generation) { 2626 if (zopt_verbose >= 5) { 2627 (void) printf("vdev configuration has changed, " 2628 "guid %llu, state %llu, expected gen %llu, " 2629 "got gen %llu\n", 2630 (u_longlong_t)guid, 2631 (u_longlong_t)tvd->vdev_state, 2632 (u_longlong_t)generation, 2633 (u_longlong_t)spa->spa_config_generation); 2634 } 2635 return (vd); 2636 } 2637 return (NULL); 2638 } 2639 2640 /* 2641 * Traverse the vdev tree calling the supplied function. 2642 * We continue to walk the tree until we either have walked all 2643 * children or we receive a non-NULL return from the callback. 2644 * If a NULL callback is passed, then we just return back the first 2645 * leaf vdev we encounter. 2646 */ 2647 vdev_t * 2648 vdev_walk_tree(vdev_t *vd, vdev_t *(*func)(vdev_t *, void *), void *arg) 2649 { 2650 if (vd->vdev_ops->vdev_op_leaf) { 2651 if (func == NULL) 2652 return (vd); 2653 else 2654 return (func(vd, arg)); 2655 } 2656 2657 for (uint_t c = 0; c < vd->vdev_children; c++) { 2658 vdev_t *cvd = vd->vdev_child[c]; 2659 if ((cvd = vdev_walk_tree(cvd, func, arg)) != NULL) 2660 return (cvd); 2661 } 2662 return (NULL); 2663 } 2664 2665 /* 2666 * Verify that dynamic LUN growth works as expected. 2667 */ 2668 /* ARGSUSED */ 2669 void 2670 ztest_vdev_LUN_growth(ztest_ds_t *zd, uint64_t id) 2671 { 2672 ztest_shared_t *zs = ztest_shared; 2673 spa_t *spa = zs->zs_spa; 2674 vdev_t *vd, *tvd; 2675 metaslab_class_t *mc; 2676 metaslab_group_t *mg; 2677 size_t psize, newsize; 2678 uint64_t top; 2679 uint64_t old_class_space, new_class_space, old_ms_count, new_ms_count; 2680 2681 VERIFY(mutex_lock(&zs->zs_vdev_lock) == 0); 2682 spa_config_enter(spa, SCL_STATE, spa, RW_READER); 2683 2684 top = ztest_random_vdev_top(spa, B_TRUE); 2685 2686 tvd = spa->spa_root_vdev->vdev_child[top]; 2687 mg = tvd->vdev_mg; 2688 mc = mg->mg_class; 2689 old_ms_count = tvd->vdev_ms_count; 2690 old_class_space = metaslab_class_get_space(mc); 2691 2692 /* 2693 * Determine the size of the first leaf vdev associated with 2694 * our top-level device. 2695 */ 2696 vd = vdev_walk_tree(tvd, NULL, NULL); 2697 ASSERT3P(vd, !=, NULL); 2698 ASSERT(vd->vdev_ops->vdev_op_leaf); 2699 2700 psize = vd->vdev_psize; 2701 2702 /* 2703 * We only try to expand the vdev if it's healthy, less than 4x its 2704 * original size, and it has a valid psize. 2705 */ 2706 if (tvd->vdev_state != VDEV_STATE_HEALTHY || 2707 psize == 0 || psize >= 4 * zopt_vdev_size) { 2708 spa_config_exit(spa, SCL_STATE, spa); 2709 VERIFY(mutex_unlock(&zs->zs_vdev_lock) == 0); 2710 return; 2711 } 2712 ASSERT(psize > 0); 2713 newsize = psize + psize / 8; 2714 ASSERT3U(newsize, >, psize); 2715 2716 if (zopt_verbose >= 6) { 2717 (void) printf("Expanding LUN %s from %lu to %lu\n", 2718 vd->vdev_path, (ulong_t)psize, (ulong_t)newsize); 2719 } 2720 2721 /* 2722 * Growing the vdev is a two step process: 2723 * 1). expand the physical size (i.e. relabel) 2724 * 2). online the vdev to create the new metaslabs 2725 */ 2726 if (vdev_walk_tree(tvd, grow_vdev, &newsize) != NULL || 2727 vdev_walk_tree(tvd, online_vdev, NULL) != NULL || 2728 tvd->vdev_state != VDEV_STATE_HEALTHY) { 2729 if (zopt_verbose >= 5) { 2730 (void) printf("Could not expand LUN because " 2731 "the vdev configuration changed.\n"); 2732 } 2733 spa_config_exit(spa, SCL_STATE, spa); 2734 VERIFY(mutex_unlock(&zs->zs_vdev_lock) == 0); 2735 return; 2736 } 2737 2738 spa_config_exit(spa, SCL_STATE, spa); 2739 2740 /* 2741 * Expanding the LUN will update the config asynchronously, 2742 * thus we must wait for the async thread to complete any 2743 * pending tasks before proceeding. 2744 */ 2745 for (;;) { 2746 boolean_t done; 2747 mutex_enter(&spa->spa_async_lock); 2748 done = (spa->spa_async_thread == NULL && !spa->spa_async_tasks); 2749 mutex_exit(&spa->spa_async_lock); 2750 if (done) 2751 break; 2752 txg_wait_synced(spa_get_dsl(spa), 0); 2753 (void) poll(NULL, 0, 100); 2754 } 2755 2756 spa_config_enter(spa, SCL_STATE, spa, RW_READER); 2757 2758 tvd = spa->spa_root_vdev->vdev_child[top]; 2759 new_ms_count = tvd->vdev_ms_count; 2760 new_class_space = metaslab_class_get_space(mc); 2761 2762 if (tvd->vdev_mg != mg || mg->mg_class != mc) { 2763 if (zopt_verbose >= 5) { 2764 (void) printf("Could not verify LUN expansion due to " 2765 "intervening vdev offline or remove.\n"); 2766 } 2767 spa_config_exit(spa, SCL_STATE, spa); 2768 VERIFY(mutex_unlock(&zs->zs_vdev_lock) == 0); 2769 return; 2770 } 2771 2772 /* 2773 * Make sure we were able to grow the vdev. 2774 */ 2775 if (new_ms_count <= old_ms_count) 2776 fatal(0, "LUN expansion failed: ms_count %llu <= %llu\n", 2777 old_ms_count, new_ms_count); 2778 2779 /* 2780 * Make sure we were able to grow the pool. 2781 */ 2782 if (new_class_space <= old_class_space) 2783 fatal(0, "LUN expansion failed: class_space %llu <= %llu\n", 2784 old_class_space, new_class_space); 2785 2786 if (zopt_verbose >= 5) { 2787 char oldnumbuf[6], newnumbuf[6]; 2788 2789 nicenum(old_class_space, oldnumbuf); 2790 nicenum(new_class_space, newnumbuf); 2791 (void) printf("%s grew from %s to %s\n", 2792 spa->spa_name, oldnumbuf, newnumbuf); 2793 } 2794 2795 spa_config_exit(spa, SCL_STATE, spa); 2796 VERIFY(mutex_unlock(&zs->zs_vdev_lock) == 0); 2797 } 2798 2799 /* 2800 * Verify that dmu_objset_{create,destroy,open,close} work as expected. 2801 */ 2802 /* ARGSUSED */ 2803 static void 2804 ztest_objset_create_cb(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx) 2805 { 2806 /* 2807 * Create the objects common to all ztest datasets. 2808 */ 2809 VERIFY(zap_create_claim(os, ZTEST_DIROBJ, 2810 DMU_OT_ZAP_OTHER, DMU_OT_NONE, 0, tx) == 0); 2811 } 2812 2813 /* ARGSUSED */ 2814 static int 2815 ztest_objset_destroy_cb(const char *name, void *arg) 2816 { 2817 objset_t *os; 2818 dmu_object_info_t doi; 2819 int error; 2820 2821 /* 2822 * Verify that the dataset contains a directory object. 2823 */ 2824 VERIFY3U(0, ==, dmu_objset_hold(name, FTAG, &os)); 2825 error = dmu_object_info(os, ZTEST_DIROBJ, &doi); 2826 if (error != ENOENT) { 2827 /* We could have crashed in the middle of destroying it */ 2828 ASSERT3U(error, ==, 0); 2829 ASSERT3U(doi.doi_type, ==, DMU_OT_ZAP_OTHER); 2830 ASSERT3S(doi.doi_physical_blocks_512, >=, 0); 2831 } 2832 dmu_objset_rele(os, FTAG); 2833 2834 /* 2835 * Destroy the dataset. 2836 */ 2837 VERIFY3U(0, ==, dmu_objset_destroy(name, B_FALSE)); 2838 return (0); 2839 } 2840 2841 static boolean_t 2842 ztest_snapshot_create(char *osname, uint64_t id) 2843 { 2844 char snapname[MAXNAMELEN]; 2845 int error; 2846 2847 (void) snprintf(snapname, MAXNAMELEN, "%s@%llu", osname, 2848 (u_longlong_t)id); 2849 2850 error = dmu_objset_snapshot(osname, strchr(snapname, '@') + 1, 2851 NULL, B_FALSE); 2852 if (error == ENOSPC) { 2853 ztest_record_enospc(FTAG); 2854 return (B_FALSE); 2855 } 2856 if (error != 0 && error != EEXIST) 2857 fatal(0, "ztest_snapshot_create(%s) = %d", snapname, error); 2858 return (B_TRUE); 2859 } 2860 2861 static boolean_t 2862 ztest_snapshot_destroy(char *osname, uint64_t id) 2863 { 2864 char snapname[MAXNAMELEN]; 2865 int error; 2866 2867 (void) snprintf(snapname, MAXNAMELEN, "%s@%llu", osname, 2868 (u_longlong_t)id); 2869 2870 error = dmu_objset_destroy(snapname, B_FALSE); 2871 if (error != 0 && error != ENOENT) 2872 fatal(0, "ztest_snapshot_destroy(%s) = %d", snapname, error); 2873 return (B_TRUE); 2874 } 2875 2876 /* ARGSUSED */ 2877 void 2878 ztest_dmu_objset_create_destroy(ztest_ds_t *zd, uint64_t id) 2879 { 2880 ztest_shared_t *zs = ztest_shared; 2881 ztest_ds_t zdtmp; 2882 int iters; 2883 int error; 2884 objset_t *os, *os2; 2885 char name[MAXNAMELEN]; 2886 zilog_t *zilog; 2887 2888 (void) rw_rdlock(&zs->zs_name_lock); 2889 2890 (void) snprintf(name, MAXNAMELEN, "%s/temp_%llu", 2891 zs->zs_pool, (u_longlong_t)id); 2892 2893 /* 2894 * If this dataset exists from a previous run, process its replay log 2895 * half of the time. If we don't replay it, then dmu_objset_destroy() 2896 * (invoked from ztest_objset_destroy_cb()) should just throw it away. 2897 */ 2898 if (ztest_random(2) == 0 && 2899 dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, FTAG, &os) == 0) { 2900 ztest_zd_init(&zdtmp, os); 2901 zil_replay(os, &zdtmp, ztest_replay_vector); 2902 ztest_zd_fini(&zdtmp); 2903 dmu_objset_disown(os, FTAG); 2904 } 2905 2906 /* 2907 * There may be an old instance of the dataset we're about to 2908 * create lying around from a previous run. If so, destroy it 2909 * and all of its snapshots. 2910 */ 2911 (void) dmu_objset_find(name, ztest_objset_destroy_cb, NULL, 2912 DS_FIND_CHILDREN | DS_FIND_SNAPSHOTS); 2913 2914 /* 2915 * Verify that the destroyed dataset is no longer in the namespace. 2916 */ 2917 VERIFY3U(ENOENT, ==, dmu_objset_hold(name, FTAG, &os)); 2918 2919 /* 2920 * Verify that we can create a new dataset. 2921 */ 2922 error = dmu_objset_create(name, DMU_OST_OTHER, 0, 2923 ztest_objset_create_cb, NULL); 2924 if (error) { 2925 if (error == ENOSPC) { 2926 ztest_record_enospc(FTAG); 2927 (void) rw_unlock(&zs->zs_name_lock); 2928 return; 2929 } 2930 fatal(0, "dmu_objset_create(%s) = %d", name, error); 2931 } 2932 2933 VERIFY3U(0, ==, 2934 dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, FTAG, &os)); 2935 2936 ztest_zd_init(&zdtmp, os); 2937 2938 /* 2939 * Open the intent log for it. 2940 */ 2941 zilog = zil_open(os, ztest_get_data); 2942 2943 /* 2944 * Put some objects in there, do a little I/O to them, 2945 * and randomly take a couple of snapshots along the way. 2946 */ 2947 iters = ztest_random(5); 2948 for (int i = 0; i < iters; i++) { 2949 ztest_dmu_object_alloc_free(&zdtmp, id); 2950 if (ztest_random(iters) == 0) 2951 (void) ztest_snapshot_create(name, i); 2952 } 2953 2954 /* 2955 * Verify that we cannot create an existing dataset. 2956 */ 2957 VERIFY3U(EEXIST, ==, 2958 dmu_objset_create(name, DMU_OST_OTHER, 0, NULL, NULL)); 2959 2960 /* 2961 * Verify that we can hold an objset that is also owned. 2962 */ 2963 VERIFY3U(0, ==, dmu_objset_hold(name, FTAG, &os2)); 2964 dmu_objset_rele(os2, FTAG); 2965 2966 /* 2967 * Verify that we cannot own an objset that is already owned. 2968 */ 2969 VERIFY3U(EBUSY, ==, 2970 dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, FTAG, &os2)); 2971 2972 zil_close(zilog); 2973 dmu_objset_disown(os, FTAG); 2974 ztest_zd_fini(&zdtmp); 2975 2976 (void) rw_unlock(&zs->zs_name_lock); 2977 } 2978 2979 /* 2980 * Verify that dmu_snapshot_{create,destroy,open,close} work as expected. 2981 */ 2982 void 2983 ztest_dmu_snapshot_create_destroy(ztest_ds_t *zd, uint64_t id) 2984 { 2985 ztest_shared_t *zs = ztest_shared; 2986 2987 (void) rw_rdlock(&zs->zs_name_lock); 2988 (void) ztest_snapshot_destroy(zd->zd_name, id); 2989 (void) ztest_snapshot_create(zd->zd_name, id); 2990 (void) rw_unlock(&zs->zs_name_lock); 2991 } 2992 2993 /* 2994 * Cleanup non-standard snapshots and clones. 2995 */ 2996 void 2997 ztest_dsl_dataset_cleanup(char *osname, uint64_t id) 2998 { 2999 char snap1name[MAXNAMELEN]; 3000 char clone1name[MAXNAMELEN]; 3001 char snap2name[MAXNAMELEN]; 3002 char clone2name[MAXNAMELEN]; 3003 char snap3name[MAXNAMELEN]; 3004 int error; 3005 3006 (void) snprintf(snap1name, MAXNAMELEN, "%s@s1_%llu", osname, id); 3007 (void) snprintf(clone1name, MAXNAMELEN, "%s/c1_%llu", osname, id); 3008 (void) snprintf(snap2name, MAXNAMELEN, "%s@s2_%llu", clone1name, id); 3009 (void) snprintf(clone2name, MAXNAMELEN, "%s/c2_%llu", osname, id); 3010 (void) snprintf(snap3name, MAXNAMELEN, "%s@s3_%llu", clone1name, id); 3011 3012 error = dmu_objset_destroy(clone2name, B_FALSE); 3013 if (error && error != ENOENT) 3014 fatal(0, "dmu_objset_destroy(%s) = %d", clone2name, error); 3015 error = dmu_objset_destroy(snap3name, B_FALSE); 3016 if (error && error != ENOENT) 3017 fatal(0, "dmu_objset_destroy(%s) = %d", snap3name, error); 3018 error = dmu_objset_destroy(snap2name, B_FALSE); 3019 if (error && error != ENOENT) 3020 fatal(0, "dmu_objset_destroy(%s) = %d", snap2name, error); 3021 error = dmu_objset_destroy(clone1name, B_FALSE); 3022 if (error && error != ENOENT) 3023 fatal(0, "dmu_objset_destroy(%s) = %d", clone1name, error); 3024 error = dmu_objset_destroy(snap1name, B_FALSE); 3025 if (error && error != ENOENT) 3026 fatal(0, "dmu_objset_destroy(%s) = %d", snap1name, error); 3027 } 3028 3029 /* 3030 * Verify dsl_dataset_promote handles EBUSY 3031 */ 3032 void 3033 ztest_dsl_dataset_promote_busy(ztest_ds_t *zd, uint64_t id) 3034 { 3035 ztest_shared_t *zs = ztest_shared; 3036 objset_t *clone; 3037 dsl_dataset_t *ds; 3038 char snap1name[MAXNAMELEN]; 3039 char clone1name[MAXNAMELEN]; 3040 char snap2name[MAXNAMELEN]; 3041 char clone2name[MAXNAMELEN]; 3042 char snap3name[MAXNAMELEN]; 3043 char *osname = zd->zd_name; 3044 int error; 3045 3046 (void) rw_rdlock(&zs->zs_name_lock); 3047 3048 ztest_dsl_dataset_cleanup(osname, id); 3049 3050 (void) snprintf(snap1name, MAXNAMELEN, "%s@s1_%llu", osname, id); 3051 (void) snprintf(clone1name, MAXNAMELEN, "%s/c1_%llu", osname, id); 3052 (void) snprintf(snap2name, MAXNAMELEN, "%s@s2_%llu", clone1name, id); 3053 (void) snprintf(clone2name, MAXNAMELEN, "%s/c2_%llu", osname, id); 3054 (void) snprintf(snap3name, MAXNAMELEN, "%s@s3_%llu", clone1name, id); 3055 3056 error = dmu_objset_snapshot(osname, strchr(snap1name, '@')+1, 3057 NULL, B_FALSE); 3058 if (error && error != EEXIST) { 3059 if (error == ENOSPC) { 3060 ztest_record_enospc(FTAG); 3061 goto out; 3062 } 3063 fatal(0, "dmu_take_snapshot(%s) = %d", snap1name, error); 3064 } 3065 3066 error = dmu_objset_hold(snap1name, FTAG, &clone); 3067 if (error) 3068 fatal(0, "dmu_open_snapshot(%s) = %d", snap1name, error); 3069 3070 error = dmu_objset_clone(clone1name, dmu_objset_ds(clone), 0); 3071 dmu_objset_rele(clone, FTAG); 3072 if (error) { 3073 if (error == ENOSPC) { 3074 ztest_record_enospc(FTAG); 3075 goto out; 3076 } 3077 fatal(0, "dmu_objset_create(%s) = %d", clone1name, error); 3078 } 3079 3080 error = dmu_objset_snapshot(clone1name, strchr(snap2name, '@')+1, 3081 NULL, B_FALSE); 3082 if (error && error != EEXIST) { 3083 if (error == ENOSPC) { 3084 ztest_record_enospc(FTAG); 3085 goto out; 3086 } 3087 fatal(0, "dmu_open_snapshot(%s) = %d", snap2name, error); 3088 } 3089 3090 error = dmu_objset_snapshot(clone1name, strchr(snap3name, '@')+1, 3091 NULL, B_FALSE); 3092 if (error && error != EEXIST) { 3093 if (error == ENOSPC) { 3094 ztest_record_enospc(FTAG); 3095 goto out; 3096 } 3097 fatal(0, "dmu_open_snapshot(%s) = %d", snap3name, error); 3098 } 3099 3100 error = dmu_objset_hold(snap3name, FTAG, &clone); 3101 if (error) 3102 fatal(0, "dmu_open_snapshot(%s) = %d", snap3name, error); 3103 3104 error = dmu_objset_clone(clone2name, dmu_objset_ds(clone), 0); 3105 dmu_objset_rele(clone, FTAG); 3106 if (error) { 3107 if (error == ENOSPC) { 3108 ztest_record_enospc(FTAG); 3109 goto out; 3110 } 3111 fatal(0, "dmu_objset_create(%s) = %d", clone2name, error); 3112 } 3113 3114 error = dsl_dataset_own(snap1name, B_FALSE, FTAG, &ds); 3115 if (error) 3116 fatal(0, "dsl_dataset_own(%s) = %d", snap1name, error); 3117 error = dsl_dataset_promote(clone2name, NULL); 3118 if (error != EBUSY) 3119 fatal(0, "dsl_dataset_promote(%s), %d, not EBUSY", clone2name, 3120 error); 3121 dsl_dataset_disown(ds, FTAG); 3122 3123 out: 3124 ztest_dsl_dataset_cleanup(osname, id); 3125 3126 (void) rw_unlock(&zs->zs_name_lock); 3127 } 3128 3129 /* 3130 * Verify that dmu_object_{alloc,free} work as expected. 3131 */ 3132 void 3133 ztest_dmu_object_alloc_free(ztest_ds_t *zd, uint64_t id) 3134 { 3135 ztest_od_t od[4]; 3136 int batchsize = sizeof (od) / sizeof (od[0]); 3137 3138 for (int b = 0; b < batchsize; b++) 3139 ztest_od_init(&od[b], id, FTAG, b, DMU_OT_UINT64_OTHER, 0, 0); 3140 3141 /* 3142 * Destroy the previous batch of objects, create a new batch, 3143 * and do some I/O on the new objects. 3144 */ 3145 if (ztest_object_init(zd, od, sizeof (od), B_TRUE) != 0) 3146 return; 3147 3148 while (ztest_random(4 * batchsize) != 0) 3149 ztest_io(zd, od[ztest_random(batchsize)].od_object, 3150 ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT); 3151 } 3152 3153 /* 3154 * Verify that dmu_{read,write} work as expected. 3155 */ 3156 void 3157 ztest_dmu_read_write(ztest_ds_t *zd, uint64_t id) 3158 { 3159 objset_t *os = zd->zd_os; 3160 ztest_od_t od[2]; 3161 dmu_tx_t *tx; 3162 int i, freeit, error; 3163 uint64_t n, s, txg; 3164 bufwad_t *packbuf, *bigbuf, *pack, *bigH, *bigT; 3165 uint64_t packobj, packoff, packsize, bigobj, bigoff, bigsize; 3166 uint64_t chunksize = (1000 + ztest_random(1000)) * sizeof (uint64_t); 3167 uint64_t regions = 997; 3168 uint64_t stride = 123456789ULL; 3169 uint64_t width = 40; 3170 int free_percent = 5; 3171 3172 /* 3173 * This test uses two objects, packobj and bigobj, that are always 3174 * updated together (i.e. in the same tx) so that their contents are 3175 * in sync and can be compared. Their contents relate to each other 3176 * in a simple way: packobj is a dense array of 'bufwad' structures, 3177 * while bigobj is a sparse array of the same bufwads. Specifically, 3178 * for any index n, there are three bufwads that should be identical: 3179 * 3180 * packobj, at offset n * sizeof (bufwad_t) 3181 * bigobj, at the head of the nth chunk 3182 * bigobj, at the tail of the nth chunk 3183 * 3184 * The chunk size is arbitrary. It doesn't have to be a power of two, 3185 * and it doesn't have any relation to the object blocksize. 3186 * The only requirement is that it can hold at least two bufwads. 3187 * 3188 * Normally, we write the bufwad to each of these locations. 3189 * However, free_percent of the time we instead write zeroes to 3190 * packobj and perform a dmu_free_range() on bigobj. By comparing 3191 * bigobj to packobj, we can verify that the DMU is correctly 3192 * tracking which parts of an object are allocated and free, 3193 * and that the contents of the allocated blocks are correct. 3194 */ 3195 3196 /* 3197 * Read the directory info. If it's the first time, set things up. 3198 */ 3199 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, 0, chunksize); 3200 ztest_od_init(&od[1], id, FTAG, 1, DMU_OT_UINT64_OTHER, 0, chunksize); 3201 3202 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0) 3203 return; 3204 3205 bigobj = od[0].od_object; 3206 packobj = od[1].od_object; 3207 chunksize = od[0].od_gen; 3208 ASSERT(chunksize == od[1].od_gen); 3209 3210 /* 3211 * Prefetch a random chunk of the big object. 3212 * Our aim here is to get some async reads in flight 3213 * for blocks that we may free below; the DMU should 3214 * handle this race correctly. 3215 */ 3216 n = ztest_random(regions) * stride + ztest_random(width); 3217 s = 1 + ztest_random(2 * width - 1); 3218 dmu_prefetch(os, bigobj, n * chunksize, s * chunksize); 3219 3220 /* 3221 * Pick a random index and compute the offsets into packobj and bigobj. 3222 */ 3223 n = ztest_random(regions) * stride + ztest_random(width); 3224 s = 1 + ztest_random(width - 1); 3225 3226 packoff = n * sizeof (bufwad_t); 3227 packsize = s * sizeof (bufwad_t); 3228 3229 bigoff = n * chunksize; 3230 bigsize = s * chunksize; 3231 3232 packbuf = umem_alloc(packsize, UMEM_NOFAIL); 3233 bigbuf = umem_alloc(bigsize, UMEM_NOFAIL); 3234 3235 /* 3236 * free_percent of the time, free a range of bigobj rather than 3237 * overwriting it. 3238 */ 3239 freeit = (ztest_random(100) < free_percent); 3240 3241 /* 3242 * Read the current contents of our objects. 3243 */ 3244 error = dmu_read(os, packobj, packoff, packsize, packbuf, 3245 DMU_READ_PREFETCH); 3246 ASSERT3U(error, ==, 0); 3247 error = dmu_read(os, bigobj, bigoff, bigsize, bigbuf, 3248 DMU_READ_PREFETCH); 3249 ASSERT3U(error, ==, 0); 3250 3251 /* 3252 * Get a tx for the mods to both packobj and bigobj. 3253 */ 3254 tx = dmu_tx_create(os); 3255 3256 dmu_tx_hold_write(tx, packobj, packoff, packsize); 3257 3258 if (freeit) 3259 dmu_tx_hold_free(tx, bigobj, bigoff, bigsize); 3260 else 3261 dmu_tx_hold_write(tx, bigobj, bigoff, bigsize); 3262 3263 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); 3264 if (txg == 0) { 3265 umem_free(packbuf, packsize); 3266 umem_free(bigbuf, bigsize); 3267 return; 3268 } 3269 3270 dmu_object_set_checksum(os, bigobj, 3271 (enum zio_checksum)ztest_random_dsl_prop(ZFS_PROP_CHECKSUM), tx); 3272 3273 dmu_object_set_compress(os, bigobj, 3274 (enum zio_compress)ztest_random_dsl_prop(ZFS_PROP_COMPRESSION), tx); 3275 3276 /* 3277 * For each index from n to n + s, verify that the existing bufwad 3278 * in packobj matches the bufwads at the head and tail of the 3279 * corresponding chunk in bigobj. Then update all three bufwads 3280 * with the new values we want to write out. 3281 */ 3282 for (i = 0; i < s; i++) { 3283 /* LINTED */ 3284 pack = (bufwad_t *)((char *)packbuf + i * sizeof (bufwad_t)); 3285 /* LINTED */ 3286 bigH = (bufwad_t *)((char *)bigbuf + i * chunksize); 3287 /* LINTED */ 3288 bigT = (bufwad_t *)((char *)bigH + chunksize) - 1; 3289 3290 ASSERT((uintptr_t)bigH - (uintptr_t)bigbuf < bigsize); 3291 ASSERT((uintptr_t)bigT - (uintptr_t)bigbuf < bigsize); 3292 3293 if (pack->bw_txg > txg) 3294 fatal(0, "future leak: got %llx, open txg is %llx", 3295 pack->bw_txg, txg); 3296 3297 if (pack->bw_data != 0 && pack->bw_index != n + i) 3298 fatal(0, "wrong index: got %llx, wanted %llx+%llx", 3299 pack->bw_index, n, i); 3300 3301 if (bcmp(pack, bigH, sizeof (bufwad_t)) != 0) 3302 fatal(0, "pack/bigH mismatch in %p/%p", pack, bigH); 3303 3304 if (bcmp(pack, bigT, sizeof (bufwad_t)) != 0) 3305 fatal(0, "pack/bigT mismatch in %p/%p", pack, bigT); 3306 3307 if (freeit) { 3308 bzero(pack, sizeof (bufwad_t)); 3309 } else { 3310 pack->bw_index = n + i; 3311 pack->bw_txg = txg; 3312 pack->bw_data = 1 + ztest_random(-2ULL); 3313 } 3314 *bigH = *pack; 3315 *bigT = *pack; 3316 } 3317 3318 /* 3319 * We've verified all the old bufwads, and made new ones. 3320 * Now write them out. 3321 */ 3322 dmu_write(os, packobj, packoff, packsize, packbuf, tx); 3323 3324 if (freeit) { 3325 if (zopt_verbose >= 7) { 3326 (void) printf("freeing offset %llx size %llx" 3327 " txg %llx\n", 3328 (u_longlong_t)bigoff, 3329 (u_longlong_t)bigsize, 3330 (u_longlong_t)txg); 3331 } 3332 VERIFY(0 == dmu_free_range(os, bigobj, bigoff, bigsize, tx)); 3333 } else { 3334 if (zopt_verbose >= 7) { 3335 (void) printf("writing offset %llx size %llx" 3336 " txg %llx\n", 3337 (u_longlong_t)bigoff, 3338 (u_longlong_t)bigsize, 3339 (u_longlong_t)txg); 3340 } 3341 dmu_write(os, bigobj, bigoff, bigsize, bigbuf, tx); 3342 } 3343 3344 dmu_tx_commit(tx); 3345 3346 /* 3347 * Sanity check the stuff we just wrote. 3348 */ 3349 { 3350 void *packcheck = umem_alloc(packsize, UMEM_NOFAIL); 3351 void *bigcheck = umem_alloc(bigsize, UMEM_NOFAIL); 3352 3353 VERIFY(0 == dmu_read(os, packobj, packoff, 3354 packsize, packcheck, DMU_READ_PREFETCH)); 3355 VERIFY(0 == dmu_read(os, bigobj, bigoff, 3356 bigsize, bigcheck, DMU_READ_PREFETCH)); 3357 3358 ASSERT(bcmp(packbuf, packcheck, packsize) == 0); 3359 ASSERT(bcmp(bigbuf, bigcheck, bigsize) == 0); 3360 3361 umem_free(packcheck, packsize); 3362 umem_free(bigcheck, bigsize); 3363 } 3364 3365 umem_free(packbuf, packsize); 3366 umem_free(bigbuf, bigsize); 3367 } 3368 3369 void 3370 compare_and_update_pbbufs(uint64_t s, bufwad_t *packbuf, bufwad_t *bigbuf, 3371 uint64_t bigsize, uint64_t n, uint64_t chunksize, uint64_t txg) 3372 { 3373 uint64_t i; 3374 bufwad_t *pack; 3375 bufwad_t *bigH; 3376 bufwad_t *bigT; 3377 3378 /* 3379 * For each index from n to n + s, verify that the existing bufwad 3380 * in packobj matches the bufwads at the head and tail of the 3381 * corresponding chunk in bigobj. Then update all three bufwads 3382 * with the new values we want to write out. 3383 */ 3384 for (i = 0; i < s; i++) { 3385 /* LINTED */ 3386 pack = (bufwad_t *)((char *)packbuf + i * sizeof (bufwad_t)); 3387 /* LINTED */ 3388 bigH = (bufwad_t *)((char *)bigbuf + i * chunksize); 3389 /* LINTED */ 3390 bigT = (bufwad_t *)((char *)bigH + chunksize) - 1; 3391 3392 ASSERT((uintptr_t)bigH - (uintptr_t)bigbuf < bigsize); 3393 ASSERT((uintptr_t)bigT - (uintptr_t)bigbuf < bigsize); 3394 3395 if (pack->bw_txg > txg) 3396 fatal(0, "future leak: got %llx, open txg is %llx", 3397 pack->bw_txg, txg); 3398 3399 if (pack->bw_data != 0 && pack->bw_index != n + i) 3400 fatal(0, "wrong index: got %llx, wanted %llx+%llx", 3401 pack->bw_index, n, i); 3402 3403 if (bcmp(pack, bigH, sizeof (bufwad_t)) != 0) 3404 fatal(0, "pack/bigH mismatch in %p/%p", pack, bigH); 3405 3406 if (bcmp(pack, bigT, sizeof (bufwad_t)) != 0) 3407 fatal(0, "pack/bigT mismatch in %p/%p", pack, bigT); 3408 3409 pack->bw_index = n + i; 3410 pack->bw_txg = txg; 3411 pack->bw_data = 1 + ztest_random(-2ULL); 3412 3413 *bigH = *pack; 3414 *bigT = *pack; 3415 } 3416 } 3417 3418 void 3419 ztest_dmu_read_write_zcopy(ztest_ds_t *zd, uint64_t id) 3420 { 3421 objset_t *os = zd->zd_os; 3422 ztest_od_t od[2]; 3423 dmu_tx_t *tx; 3424 uint64_t i; 3425 int error; 3426 uint64_t n, s, txg; 3427 bufwad_t *packbuf, *bigbuf; 3428 uint64_t packobj, packoff, packsize, bigobj, bigoff, bigsize; 3429 uint64_t blocksize = ztest_random_blocksize(); 3430 uint64_t chunksize = blocksize; 3431 uint64_t regions = 997; 3432 uint64_t stride = 123456789ULL; 3433 uint64_t width = 9; 3434 dmu_buf_t *bonus_db; 3435 arc_buf_t **bigbuf_arcbufs; 3436 dmu_object_info_t doi; 3437 3438 /* 3439 * This test uses two objects, packobj and bigobj, that are always 3440 * updated together (i.e. in the same tx) so that their contents are 3441 * in sync and can be compared. Their contents relate to each other 3442 * in a simple way: packobj is a dense array of 'bufwad' structures, 3443 * while bigobj is a sparse array of the same bufwads. Specifically, 3444 * for any index n, there are three bufwads that should be identical: 3445 * 3446 * packobj, at offset n * sizeof (bufwad_t) 3447 * bigobj, at the head of the nth chunk 3448 * bigobj, at the tail of the nth chunk 3449 * 3450 * The chunk size is set equal to bigobj block size so that 3451 * dmu_assign_arcbuf() can be tested for object updates. 3452 */ 3453 3454 /* 3455 * Read the directory info. If it's the first time, set things up. 3456 */ 3457 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0); 3458 ztest_od_init(&od[1], id, FTAG, 1, DMU_OT_UINT64_OTHER, 0, chunksize); 3459 3460 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0) 3461 return; 3462 3463 bigobj = od[0].od_object; 3464 packobj = od[1].od_object; 3465 blocksize = od[0].od_blocksize; 3466 chunksize = blocksize; 3467 ASSERT(chunksize == od[1].od_gen); 3468 3469 VERIFY(dmu_object_info(os, bigobj, &doi) == 0); 3470 VERIFY(ISP2(doi.doi_data_block_size)); 3471 VERIFY(chunksize == doi.doi_data_block_size); 3472 VERIFY(chunksize >= 2 * sizeof (bufwad_t)); 3473 3474 /* 3475 * Pick a random index and compute the offsets into packobj and bigobj. 3476 */ 3477 n = ztest_random(regions) * stride + ztest_random(width); 3478 s = 1 + ztest_random(width - 1); 3479 3480 packoff = n * sizeof (bufwad_t); 3481 packsize = s * sizeof (bufwad_t); 3482 3483 bigoff = n * chunksize; 3484 bigsize = s * chunksize; 3485 3486 packbuf = umem_zalloc(packsize, UMEM_NOFAIL); 3487 bigbuf = umem_zalloc(bigsize, UMEM_NOFAIL); 3488 3489 VERIFY3U(0, ==, dmu_bonus_hold(os, bigobj, FTAG, &bonus_db)); 3490 3491 bigbuf_arcbufs = umem_zalloc(2 * s * sizeof (arc_buf_t *), UMEM_NOFAIL); 3492 3493 /* 3494 * Iteration 0 test zcopy for DB_UNCACHED dbufs. 3495 * Iteration 1 test zcopy to already referenced dbufs. 3496 * Iteration 2 test zcopy to dirty dbuf in the same txg. 3497 * Iteration 3 test zcopy to dbuf dirty in previous txg. 3498 * Iteration 4 test zcopy when dbuf is no longer dirty. 3499 * Iteration 5 test zcopy when it can't be done. 3500 * Iteration 6 one more zcopy write. 3501 */ 3502 for (i = 0; i < 7; i++) { 3503 uint64_t j; 3504 uint64_t off; 3505 3506 /* 3507 * In iteration 5 (i == 5) use arcbufs 3508 * that don't match bigobj blksz to test 3509 * dmu_assign_arcbuf() when it can't directly 3510 * assign an arcbuf to a dbuf. 3511 */ 3512 for (j = 0; j < s; j++) { 3513 if (i != 5) { 3514 bigbuf_arcbufs[j] = 3515 dmu_request_arcbuf(bonus_db, chunksize); 3516 } else { 3517 bigbuf_arcbufs[2 * j] = 3518 dmu_request_arcbuf(bonus_db, chunksize / 2); 3519 bigbuf_arcbufs[2 * j + 1] = 3520 dmu_request_arcbuf(bonus_db, chunksize / 2); 3521 } 3522 } 3523 3524 /* 3525 * Get a tx for the mods to both packobj and bigobj. 3526 */ 3527 tx = dmu_tx_create(os); 3528 3529 dmu_tx_hold_write(tx, packobj, packoff, packsize); 3530 dmu_tx_hold_write(tx, bigobj, bigoff, bigsize); 3531 3532 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); 3533 if (txg == 0) { 3534 umem_free(packbuf, packsize); 3535 umem_free(bigbuf, bigsize); 3536 for (j = 0; j < s; j++) { 3537 if (i != 5) { 3538 dmu_return_arcbuf(bigbuf_arcbufs[j]); 3539 } else { 3540 dmu_return_arcbuf( 3541 bigbuf_arcbufs[2 * j]); 3542 dmu_return_arcbuf( 3543 bigbuf_arcbufs[2 * j + 1]); 3544 } 3545 } 3546 umem_free(bigbuf_arcbufs, 2 * s * sizeof (arc_buf_t *)); 3547 dmu_buf_rele(bonus_db, FTAG); 3548 return; 3549 } 3550 3551 /* 3552 * 50% of the time don't read objects in the 1st iteration to 3553 * test dmu_assign_arcbuf() for the case when there're no 3554 * existing dbufs for the specified offsets. 3555 */ 3556 if (i != 0 || ztest_random(2) != 0) { 3557 error = dmu_read(os, packobj, packoff, 3558 packsize, packbuf, DMU_READ_PREFETCH); 3559 ASSERT3U(error, ==, 0); 3560 error = dmu_read(os, bigobj, bigoff, bigsize, 3561 bigbuf, DMU_READ_PREFETCH); 3562 ASSERT3U(error, ==, 0); 3563 } 3564 compare_and_update_pbbufs(s, packbuf, bigbuf, bigsize, 3565 n, chunksize, txg); 3566 3567 /* 3568 * We've verified all the old bufwads, and made new ones. 3569 * Now write them out. 3570 */ 3571 dmu_write(os, packobj, packoff, packsize, packbuf, tx); 3572 if (zopt_verbose >= 7) { 3573 (void) printf("writing offset %llx size %llx" 3574 " txg %llx\n", 3575 (u_longlong_t)bigoff, 3576 (u_longlong_t)bigsize, 3577 (u_longlong_t)txg); 3578 } 3579 for (off = bigoff, j = 0; j < s; j++, off += chunksize) { 3580 dmu_buf_t *dbt; 3581 if (i != 5) { 3582 bcopy((caddr_t)bigbuf + (off - bigoff), 3583 bigbuf_arcbufs[j]->b_data, chunksize); 3584 } else { 3585 bcopy((caddr_t)bigbuf + (off - bigoff), 3586 bigbuf_arcbufs[2 * j]->b_data, 3587 chunksize / 2); 3588 bcopy((caddr_t)bigbuf + (off - bigoff) + 3589 chunksize / 2, 3590 bigbuf_arcbufs[2 * j + 1]->b_data, 3591 chunksize / 2); 3592 } 3593 3594 if (i == 1) { 3595 VERIFY(dmu_buf_hold(os, bigobj, off, 3596 FTAG, &dbt) == 0); 3597 } 3598 if (i != 5) { 3599 dmu_assign_arcbuf(bonus_db, off, 3600 bigbuf_arcbufs[j], tx); 3601 } else { 3602 dmu_assign_arcbuf(bonus_db, off, 3603 bigbuf_arcbufs[2 * j], tx); 3604 dmu_assign_arcbuf(bonus_db, 3605 off + chunksize / 2, 3606 bigbuf_arcbufs[2 * j + 1], tx); 3607 } 3608 if (i == 1) { 3609 dmu_buf_rele(dbt, FTAG); 3610 } 3611 } 3612 dmu_tx_commit(tx); 3613 3614 /* 3615 * Sanity check the stuff we just wrote. 3616 */ 3617 { 3618 void *packcheck = umem_alloc(packsize, UMEM_NOFAIL); 3619 void *bigcheck = umem_alloc(bigsize, UMEM_NOFAIL); 3620 3621 VERIFY(0 == dmu_read(os, packobj, packoff, 3622 packsize, packcheck, DMU_READ_PREFETCH)); 3623 VERIFY(0 == dmu_read(os, bigobj, bigoff, 3624 bigsize, bigcheck, DMU_READ_PREFETCH)); 3625 3626 ASSERT(bcmp(packbuf, packcheck, packsize) == 0); 3627 ASSERT(bcmp(bigbuf, bigcheck, bigsize) == 0); 3628 3629 umem_free(packcheck, packsize); 3630 umem_free(bigcheck, bigsize); 3631 } 3632 if (i == 2) { 3633 txg_wait_open(dmu_objset_pool(os), 0); 3634 } else if (i == 3) { 3635 txg_wait_synced(dmu_objset_pool(os), 0); 3636 } 3637 } 3638 3639 dmu_buf_rele(bonus_db, FTAG); 3640 umem_free(packbuf, packsize); 3641 umem_free(bigbuf, bigsize); 3642 umem_free(bigbuf_arcbufs, 2 * s * sizeof (arc_buf_t *)); 3643 } 3644 3645 /* ARGSUSED */ 3646 void 3647 ztest_dmu_write_parallel(ztest_ds_t *zd, uint64_t id) 3648 { 3649 ztest_od_t od[1]; 3650 uint64_t offset = (1ULL << (ztest_random(20) + 43)) + 3651 (ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT); 3652 3653 /* 3654 * Have multiple threads write to large offsets in an object 3655 * to verify that parallel writes to an object -- even to the 3656 * same blocks within the object -- doesn't cause any trouble. 3657 */ 3658 ztest_od_init(&od[0], ID_PARALLEL, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0); 3659 3660 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0) 3661 return; 3662 3663 while (ztest_random(10) != 0) 3664 ztest_io(zd, od[0].od_object, offset); 3665 } 3666 3667 void 3668 ztest_dmu_prealloc(ztest_ds_t *zd, uint64_t id) 3669 { 3670 ztest_od_t od[1]; 3671 uint64_t offset = (1ULL << (ztest_random(4) + SPA_MAXBLOCKSHIFT)) + 3672 (ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT); 3673 uint64_t count = ztest_random(20) + 1; 3674 uint64_t blocksize = ztest_random_blocksize(); 3675 void *data; 3676 3677 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0); 3678 3679 if (ztest_object_init(zd, od, sizeof (od), !ztest_random(2)) != 0) 3680 return; 3681 3682 if (ztest_truncate(zd, od[0].od_object, offset, count * blocksize) != 0) 3683 return; 3684 3685 ztest_prealloc(zd, od[0].od_object, offset, count * blocksize); 3686 3687 data = umem_zalloc(blocksize, UMEM_NOFAIL); 3688 3689 while (ztest_random(count) != 0) { 3690 uint64_t randoff = offset + (ztest_random(count) * blocksize); 3691 if (ztest_write(zd, od[0].od_object, randoff, blocksize, 3692 data) != 0) 3693 break; 3694 while (ztest_random(4) != 0) 3695 ztest_io(zd, od[0].od_object, randoff); 3696 } 3697 3698 umem_free(data, blocksize); 3699 } 3700 3701 /* 3702 * Verify that zap_{create,destroy,add,remove,update} work as expected. 3703 */ 3704 #define ZTEST_ZAP_MIN_INTS 1 3705 #define ZTEST_ZAP_MAX_INTS 4 3706 #define ZTEST_ZAP_MAX_PROPS 1000 3707 3708 void 3709 ztest_zap(ztest_ds_t *zd, uint64_t id) 3710 { 3711 objset_t *os = zd->zd_os; 3712 ztest_od_t od[1]; 3713 uint64_t object; 3714 uint64_t txg, last_txg; 3715 uint64_t value[ZTEST_ZAP_MAX_INTS]; 3716 uint64_t zl_ints, zl_intsize, prop; 3717 int i, ints; 3718 dmu_tx_t *tx; 3719 char propname[100], txgname[100]; 3720 int error; 3721 char *hc[2] = { "s.acl.h", ".s.open.h.hyLZlg" }; 3722 3723 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_ZAP_OTHER, 0, 0); 3724 3725 if (ztest_object_init(zd, od, sizeof (od), !ztest_random(2)) != 0) 3726 return; 3727 3728 object = od[0].od_object; 3729 3730 /* 3731 * Generate a known hash collision, and verify that 3732 * we can lookup and remove both entries. 3733 */ 3734 tx = dmu_tx_create(os); 3735 dmu_tx_hold_zap(tx, object, B_TRUE, NULL); 3736 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); 3737 if (txg == 0) 3738 return; 3739 for (i = 0; i < 2; i++) { 3740 value[i] = i; 3741 VERIFY3U(0, ==, zap_add(os, object, hc[i], sizeof (uint64_t), 3742 1, &value[i], tx)); 3743 } 3744 for (i = 0; i < 2; i++) { 3745 VERIFY3U(EEXIST, ==, zap_add(os, object, hc[i], 3746 sizeof (uint64_t), 1, &value[i], tx)); 3747 VERIFY3U(0, ==, 3748 zap_length(os, object, hc[i], &zl_intsize, &zl_ints)); 3749 ASSERT3U(zl_intsize, ==, sizeof (uint64_t)); 3750 ASSERT3U(zl_ints, ==, 1); 3751 } 3752 for (i = 0; i < 2; i++) { 3753 VERIFY3U(0, ==, zap_remove(os, object, hc[i], tx)); 3754 } 3755 dmu_tx_commit(tx); 3756 3757 /* 3758 * Generate a buch of random entries. 3759 */ 3760 ints = MAX(ZTEST_ZAP_MIN_INTS, object % ZTEST_ZAP_MAX_INTS); 3761 3762 prop = ztest_random(ZTEST_ZAP_MAX_PROPS); 3763 (void) sprintf(propname, "prop_%llu", (u_longlong_t)prop); 3764 (void) sprintf(txgname, "txg_%llu", (u_longlong_t)prop); 3765 bzero(value, sizeof (value)); 3766 last_txg = 0; 3767 3768 /* 3769 * If these zap entries already exist, validate their contents. 3770 */ 3771 error = zap_length(os, object, txgname, &zl_intsize, &zl_ints); 3772 if (error == 0) { 3773 ASSERT3U(zl_intsize, ==, sizeof (uint64_t)); 3774 ASSERT3U(zl_ints, ==, 1); 3775 3776 VERIFY(zap_lookup(os, object, txgname, zl_intsize, 3777 zl_ints, &last_txg) == 0); 3778 3779 VERIFY(zap_length(os, object, propname, &zl_intsize, 3780 &zl_ints) == 0); 3781 3782 ASSERT3U(zl_intsize, ==, sizeof (uint64_t)); 3783 ASSERT3U(zl_ints, ==, ints); 3784 3785 VERIFY(zap_lookup(os, object, propname, zl_intsize, 3786 zl_ints, value) == 0); 3787 3788 for (i = 0; i < ints; i++) { 3789 ASSERT3U(value[i], ==, last_txg + object + i); 3790 } 3791 } else { 3792 ASSERT3U(error, ==, ENOENT); 3793 } 3794 3795 /* 3796 * Atomically update two entries in our zap object. 3797 * The first is named txg_%llu, and contains the txg 3798 * in which the property was last updated. The second 3799 * is named prop_%llu, and the nth element of its value 3800 * should be txg + object + n. 3801 */ 3802 tx = dmu_tx_create(os); 3803 dmu_tx_hold_zap(tx, object, B_TRUE, NULL); 3804 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); 3805 if (txg == 0) 3806 return; 3807 3808 if (last_txg > txg) 3809 fatal(0, "zap future leak: old %llu new %llu", last_txg, txg); 3810 3811 for (i = 0; i < ints; i++) 3812 value[i] = txg + object + i; 3813 3814 VERIFY3U(0, ==, zap_update(os, object, txgname, sizeof (uint64_t), 3815 1, &txg, tx)); 3816 VERIFY3U(0, ==, zap_update(os, object, propname, sizeof (uint64_t), 3817 ints, value, tx)); 3818 3819 dmu_tx_commit(tx); 3820 3821 /* 3822 * Remove a random pair of entries. 3823 */ 3824 prop = ztest_random(ZTEST_ZAP_MAX_PROPS); 3825 (void) sprintf(propname, "prop_%llu", (u_longlong_t)prop); 3826 (void) sprintf(txgname, "txg_%llu", (u_longlong_t)prop); 3827 3828 error = zap_length(os, object, txgname, &zl_intsize, &zl_ints); 3829 3830 if (error == ENOENT) 3831 return; 3832 3833 ASSERT3U(error, ==, 0); 3834 3835 tx = dmu_tx_create(os); 3836 dmu_tx_hold_zap(tx, object, B_TRUE, NULL); 3837 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); 3838 if (txg == 0) 3839 return; 3840 VERIFY3U(0, ==, zap_remove(os, object, txgname, tx)); 3841 VERIFY3U(0, ==, zap_remove(os, object, propname, tx)); 3842 dmu_tx_commit(tx); 3843 } 3844 3845 /* 3846 * Testcase to test the upgrading of a microzap to fatzap. 3847 */ 3848 void 3849 ztest_fzap(ztest_ds_t *zd, uint64_t id) 3850 { 3851 objset_t *os = zd->zd_os; 3852 ztest_od_t od[1]; 3853 uint64_t object, txg; 3854 3855 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_ZAP_OTHER, 0, 0); 3856 3857 if (ztest_object_init(zd, od, sizeof (od), !ztest_random(2)) != 0) 3858 return; 3859 3860 object = od[0].od_object; 3861 3862 /* 3863 * Add entries to this ZAP and make sure it spills over 3864 * and gets upgraded to a fatzap. Also, since we are adding 3865 * 2050 entries we should see ptrtbl growth and leaf-block split. 3866 */ 3867 for (int i = 0; i < 2050; i++) { 3868 char name[MAXNAMELEN]; 3869 uint64_t value = i; 3870 dmu_tx_t *tx; 3871 int error; 3872 3873 (void) snprintf(name, sizeof (name), "fzap-%llu-%llu", 3874 id, value); 3875 3876 tx = dmu_tx_create(os); 3877 dmu_tx_hold_zap(tx, object, B_TRUE, name); 3878 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); 3879 if (txg == 0) 3880 return; 3881 error = zap_add(os, object, name, sizeof (uint64_t), 1, 3882 &value, tx); 3883 ASSERT(error == 0 || error == EEXIST); 3884 dmu_tx_commit(tx); 3885 } 3886 } 3887 3888 /* ARGSUSED */ 3889 void 3890 ztest_zap_parallel(ztest_ds_t *zd, uint64_t id) 3891 { 3892 objset_t *os = zd->zd_os; 3893 ztest_od_t od[1]; 3894 uint64_t txg, object, count, wsize, wc, zl_wsize, zl_wc; 3895 dmu_tx_t *tx; 3896 int i, namelen, error; 3897 int micro = ztest_random(2); 3898 char name[20], string_value[20]; 3899 void *data; 3900 3901 ztest_od_init(&od[0], ID_PARALLEL, FTAG, micro, DMU_OT_ZAP_OTHER, 0, 0); 3902 3903 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0) 3904 return; 3905 3906 object = od[0].od_object; 3907 3908 /* 3909 * Generate a random name of the form 'xxx.....' where each 3910 * x is a random printable character and the dots are dots. 3911 * There are 94 such characters, and the name length goes from 3912 * 6 to 20, so there are 94^3 * 15 = 12,458,760 possible names. 3913 */ 3914 namelen = ztest_random(sizeof (name) - 5) + 5 + 1; 3915 3916 for (i = 0; i < 3; i++) 3917 name[i] = '!' + ztest_random('~' - '!' + 1); 3918 for (; i < namelen - 1; i++) 3919 name[i] = '.'; 3920 name[i] = '\0'; 3921 3922 if ((namelen & 1) || micro) { 3923 wsize = sizeof (txg); 3924 wc = 1; 3925 data = &txg; 3926 } else { 3927 wsize = 1; 3928 wc = namelen; 3929 data = string_value; 3930 } 3931 3932 count = -1ULL; 3933 VERIFY(zap_count(os, object, &count) == 0); 3934 ASSERT(count != -1ULL); 3935 3936 /* 3937 * Select an operation: length, lookup, add, update, remove. 3938 */ 3939 i = ztest_random(5); 3940 3941 if (i >= 2) { 3942 tx = dmu_tx_create(os); 3943 dmu_tx_hold_zap(tx, object, B_TRUE, NULL); 3944 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); 3945 if (txg == 0) 3946 return; 3947 bcopy(name, string_value, namelen); 3948 } else { 3949 tx = NULL; 3950 txg = 0; 3951 bzero(string_value, namelen); 3952 } 3953 3954 switch (i) { 3955 3956 case 0: 3957 error = zap_length(os, object, name, &zl_wsize, &zl_wc); 3958 if (error == 0) { 3959 ASSERT3U(wsize, ==, zl_wsize); 3960 ASSERT3U(wc, ==, zl_wc); 3961 } else { 3962 ASSERT3U(error, ==, ENOENT); 3963 } 3964 break; 3965 3966 case 1: 3967 error = zap_lookup(os, object, name, wsize, wc, data); 3968 if (error == 0) { 3969 if (data == string_value && 3970 bcmp(name, data, namelen) != 0) 3971 fatal(0, "name '%s' != val '%s' len %d", 3972 name, data, namelen); 3973 } else { 3974 ASSERT3U(error, ==, ENOENT); 3975 } 3976 break; 3977 3978 case 2: 3979 error = zap_add(os, object, name, wsize, wc, data, tx); 3980 ASSERT(error == 0 || error == EEXIST); 3981 break; 3982 3983 case 3: 3984 VERIFY(zap_update(os, object, name, wsize, wc, data, tx) == 0); 3985 break; 3986 3987 case 4: 3988 error = zap_remove(os, object, name, tx); 3989 ASSERT(error == 0 || error == ENOENT); 3990 break; 3991 } 3992 3993 if (tx != NULL) 3994 dmu_tx_commit(tx); 3995 } 3996 3997 /* 3998 * Commit callback data. 3999 */ 4000 typedef struct ztest_cb_data { 4001 list_node_t zcd_node; 4002 uint64_t zcd_txg; 4003 int zcd_expected_err; 4004 boolean_t zcd_added; 4005 boolean_t zcd_called; 4006 spa_t *zcd_spa; 4007 } ztest_cb_data_t; 4008 4009 /* This is the actual commit callback function */ 4010 static void 4011 ztest_commit_callback(void *arg, int error) 4012 { 4013 ztest_cb_data_t *data = arg; 4014 uint64_t synced_txg; 4015 4016 VERIFY(data != NULL); 4017 VERIFY3S(data->zcd_expected_err, ==, error); 4018 VERIFY(!data->zcd_called); 4019 4020 synced_txg = spa_last_synced_txg(data->zcd_spa); 4021 if (data->zcd_txg > synced_txg) 4022 fatal(0, "commit callback of txg %" PRIu64 " called prematurely" 4023 ", last synced txg = %" PRIu64 "\n", data->zcd_txg, 4024 synced_txg); 4025 4026 data->zcd_called = B_TRUE; 4027 4028 if (error == ECANCELED) { 4029 ASSERT3U(data->zcd_txg, ==, 0); 4030 ASSERT(!data->zcd_added); 4031 4032 /* 4033 * The private callback data should be destroyed here, but 4034 * since we are going to check the zcd_called field after 4035 * dmu_tx_abort(), we will destroy it there. 4036 */ 4037 return; 4038 } 4039 4040 /* Was this callback added to the global callback list? */ 4041 if (!data->zcd_added) 4042 goto out; 4043 4044 ASSERT3U(data->zcd_txg, !=, 0); 4045 4046 /* Remove our callback from the list */ 4047 (void) mutex_lock(&zcl.zcl_callbacks_lock); 4048 list_remove(&zcl.zcl_callbacks, data); 4049 (void) mutex_unlock(&zcl.zcl_callbacks_lock); 4050 4051 out: 4052 umem_free(data, sizeof (ztest_cb_data_t)); 4053 } 4054 4055 /* Allocate and initialize callback data structure */ 4056 static ztest_cb_data_t * 4057 ztest_create_cb_data(objset_t *os, uint64_t txg) 4058 { 4059 ztest_cb_data_t *cb_data; 4060 4061 cb_data = umem_zalloc(sizeof (ztest_cb_data_t), UMEM_NOFAIL); 4062 4063 cb_data->zcd_txg = txg; 4064 cb_data->zcd_spa = dmu_objset_spa(os); 4065 4066 return (cb_data); 4067 } 4068 4069 /* 4070 * If a number of txgs equal to this threshold have been created after a commit 4071 * callback has been registered but not called, then we assume there is an 4072 * implementation bug. 4073 */ 4074 #define ZTEST_COMMIT_CALLBACK_THRESH (TXG_CONCURRENT_STATES + 2) 4075 4076 /* 4077 * Commit callback test. 4078 */ 4079 void 4080 ztest_dmu_commit_callbacks(ztest_ds_t *zd, uint64_t id) 4081 { 4082 objset_t *os = zd->zd_os; 4083 ztest_od_t od[1]; 4084 dmu_tx_t *tx; 4085 ztest_cb_data_t *cb_data[3], *tmp_cb; 4086 uint64_t old_txg, txg; 4087 int i, error; 4088 4089 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0); 4090 4091 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0) 4092 return; 4093 4094 tx = dmu_tx_create(os); 4095 4096 cb_data[0] = ztest_create_cb_data(os, 0); 4097 dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[0]); 4098 4099 dmu_tx_hold_write(tx, od[0].od_object, 0, sizeof (uint64_t)); 4100 4101 /* Every once in a while, abort the transaction on purpose */ 4102 if (ztest_random(100) == 0) 4103 error = -1; 4104 4105 if (!error) 4106 error = dmu_tx_assign(tx, TXG_NOWAIT); 4107 4108 txg = error ? 0 : dmu_tx_get_txg(tx); 4109 4110 cb_data[0]->zcd_txg = txg; 4111 cb_data[1] = ztest_create_cb_data(os, txg); 4112 dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[1]); 4113 4114 if (error) { 4115 /* 4116 * It's not a strict requirement to call the registered 4117 * callbacks from inside dmu_tx_abort(), but that's what 4118 * it's supposed to happen in the current implementation 4119 * so we will check for that. 4120 */ 4121 for (i = 0; i < 2; i++) { 4122 cb_data[i]->zcd_expected_err = ECANCELED; 4123 VERIFY(!cb_data[i]->zcd_called); 4124 } 4125 4126 dmu_tx_abort(tx); 4127 4128 for (i = 0; i < 2; i++) { 4129 VERIFY(cb_data[i]->zcd_called); 4130 umem_free(cb_data[i], sizeof (ztest_cb_data_t)); 4131 } 4132 4133 return; 4134 } 4135 4136 cb_data[2] = ztest_create_cb_data(os, txg); 4137 dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[2]); 4138 4139 /* 4140 * Read existing data to make sure there isn't a future leak. 4141 */ 4142 VERIFY(0 == dmu_read(os, od[0].od_object, 0, sizeof (uint64_t), 4143 &old_txg, DMU_READ_PREFETCH)); 4144 4145 if (old_txg > txg) 4146 fatal(0, "future leak: got %" PRIu64 ", open txg is %" PRIu64, 4147 old_txg, txg); 4148 4149 dmu_write(os, od[0].od_object, 0, sizeof (uint64_t), &txg, tx); 4150 4151 (void) mutex_lock(&zcl.zcl_callbacks_lock); 4152 4153 /* 4154 * Since commit callbacks don't have any ordering requirement and since 4155 * it is theoretically possible for a commit callback to be called 4156 * after an arbitrary amount of time has elapsed since its txg has been 4157 * synced, it is difficult to reliably determine whether a commit 4158 * callback hasn't been called due to high load or due to a flawed 4159 * implementation. 4160 * 4161 * In practice, we will assume that if after a certain number of txgs a 4162 * commit callback hasn't been called, then most likely there's an 4163 * implementation bug.. 4164 */ 4165 tmp_cb = list_head(&zcl.zcl_callbacks); 4166 if (tmp_cb != NULL && 4167 tmp_cb->zcd_txg > txg - ZTEST_COMMIT_CALLBACK_THRESH) { 4168 fatal(0, "Commit callback threshold exceeded, oldest txg: %" 4169 PRIu64 ", open txg: %" PRIu64 "\n", tmp_cb->zcd_txg, txg); 4170 } 4171 4172 /* 4173 * Let's find the place to insert our callbacks. 4174 * 4175 * Even though the list is ordered by txg, it is possible for the 4176 * insertion point to not be the end because our txg may already be 4177 * quiescing at this point and other callbacks in the open txg 4178 * (from other objsets) may have sneaked in. 4179 */ 4180 tmp_cb = list_tail(&zcl.zcl_callbacks); 4181 while (tmp_cb != NULL && tmp_cb->zcd_txg > txg) 4182 tmp_cb = list_prev(&zcl.zcl_callbacks, tmp_cb); 4183 4184 /* Add the 3 callbacks to the list */ 4185 for (i = 0; i < 3; i++) { 4186 if (tmp_cb == NULL) 4187 list_insert_head(&zcl.zcl_callbacks, cb_data[i]); 4188 else 4189 list_insert_after(&zcl.zcl_callbacks, tmp_cb, 4190 cb_data[i]); 4191 4192 cb_data[i]->zcd_added = B_TRUE; 4193 VERIFY(!cb_data[i]->zcd_called); 4194 4195 tmp_cb = cb_data[i]; 4196 } 4197 4198 (void) mutex_unlock(&zcl.zcl_callbacks_lock); 4199 4200 dmu_tx_commit(tx); 4201 } 4202 4203 /* ARGSUSED */ 4204 void 4205 ztest_dsl_prop_get_set(ztest_ds_t *zd, uint64_t id) 4206 { 4207 zfs_prop_t proplist[] = { 4208 ZFS_PROP_CHECKSUM, 4209 ZFS_PROP_COMPRESSION, 4210 ZFS_PROP_COPIES, 4211 ZFS_PROP_DEDUP 4212 }; 4213 ztest_shared_t *zs = ztest_shared; 4214 4215 (void) rw_rdlock(&zs->zs_name_lock); 4216 4217 for (int p = 0; p < sizeof (proplist) / sizeof (proplist[0]); p++) 4218 (void) ztest_dsl_prop_set_uint64(zd->zd_name, proplist[p], 4219 ztest_random_dsl_prop(proplist[p]), (int)ztest_random(2)); 4220 4221 (void) rw_unlock(&zs->zs_name_lock); 4222 } 4223 4224 /* ARGSUSED */ 4225 void 4226 ztest_spa_prop_get_set(ztest_ds_t *zd, uint64_t id) 4227 { 4228 ztest_shared_t *zs = ztest_shared; 4229 nvlist_t *props = NULL; 4230 4231 (void) rw_rdlock(&zs->zs_name_lock); 4232 4233 (void) ztest_spa_prop_set_uint64(zs, ZPOOL_PROP_DEDUPDITTO, 4234 ZIO_DEDUPDITTO_MIN + ztest_random(ZIO_DEDUPDITTO_MIN)); 4235 4236 VERIFY3U(spa_prop_get(zs->zs_spa, &props), ==, 0); 4237 4238 if (zopt_verbose >= 6) 4239 dump_nvlist(props, 4); 4240 4241 nvlist_free(props); 4242 4243 (void) rw_unlock(&zs->zs_name_lock); 4244 } 4245 4246 /* 4247 * Test snapshot hold/release and deferred destroy. 4248 */ 4249 void 4250 ztest_dmu_snapshot_hold(ztest_ds_t *zd, uint64_t id) 4251 { 4252 int error; 4253 objset_t *os = zd->zd_os; 4254 objset_t *origin; 4255 char snapname[100]; 4256 char fullname[100]; 4257 char clonename[100]; 4258 char tag[100]; 4259 char osname[MAXNAMELEN]; 4260 4261 (void) rw_rdlock(&ztest_shared->zs_name_lock); 4262 4263 dmu_objset_name(os, osname); 4264 4265 (void) snprintf(snapname, 100, "sh1_%llu", id); 4266 (void) snprintf(fullname, 100, "%s@%s", osname, snapname); 4267 (void) snprintf(clonename, 100, "%s/ch1_%llu", osname, id); 4268 (void) snprintf(tag, 100, "%tag_%llu", id); 4269 4270 /* 4271 * Clean up from any previous run. 4272 */ 4273 (void) dmu_objset_destroy(clonename, B_FALSE); 4274 (void) dsl_dataset_user_release(osname, snapname, tag, B_FALSE); 4275 (void) dmu_objset_destroy(fullname, B_FALSE); 4276 4277 /* 4278 * Create snapshot, clone it, mark snap for deferred destroy, 4279 * destroy clone, verify snap was also destroyed. 4280 */ 4281 error = dmu_objset_snapshot(osname, snapname, NULL, FALSE); 4282 if (error) { 4283 if (error == ENOSPC) { 4284 ztest_record_enospc("dmu_objset_snapshot"); 4285 goto out; 4286 } 4287 fatal(0, "dmu_objset_snapshot(%s) = %d", fullname, error); 4288 } 4289 4290 error = dmu_objset_hold(fullname, FTAG, &origin); 4291 if (error) 4292 fatal(0, "dmu_objset_hold(%s) = %d", fullname, error); 4293 4294 error = dmu_objset_clone(clonename, dmu_objset_ds(origin), 0); 4295 dmu_objset_rele(origin, FTAG); 4296 if (error) { 4297 if (error == ENOSPC) { 4298 ztest_record_enospc("dmu_objset_clone"); 4299 goto out; 4300 } 4301 fatal(0, "dmu_objset_clone(%s) = %d", clonename, error); 4302 } 4303 4304 error = dmu_objset_destroy(fullname, B_TRUE); 4305 if (error) { 4306 fatal(0, "dmu_objset_destroy(%s, B_TRUE) = %d", 4307 fullname, error); 4308 } 4309 4310 error = dmu_objset_destroy(clonename, B_FALSE); 4311 if (error) 4312 fatal(0, "dmu_objset_destroy(%s) = %d", clonename, error); 4313 4314 error = dmu_objset_hold(fullname, FTAG, &origin); 4315 if (error != ENOENT) 4316 fatal(0, "dmu_objset_hold(%s) = %d", fullname, error); 4317 4318 /* 4319 * Create snapshot, add temporary hold, verify that we can't 4320 * destroy a held snapshot, mark for deferred destroy, 4321 * release hold, verify snapshot was destroyed. 4322 */ 4323 error = dmu_objset_snapshot(osname, snapname, NULL, FALSE); 4324 if (error) { 4325 if (error == ENOSPC) { 4326 ztest_record_enospc("dmu_objset_snapshot"); 4327 goto out; 4328 } 4329 fatal(0, "dmu_objset_snapshot(%s) = %d", fullname, error); 4330 } 4331 4332 error = dsl_dataset_user_hold(osname, snapname, tag, B_FALSE, B_TRUE); 4333 if (error) 4334 fatal(0, "dsl_dataset_user_hold(%s)", fullname, tag); 4335 4336 error = dmu_objset_destroy(fullname, B_FALSE); 4337 if (error != EBUSY) { 4338 fatal(0, "dmu_objset_destroy(%s, B_FALSE) = %d", 4339 fullname, error); 4340 } 4341 4342 error = dmu_objset_destroy(fullname, B_TRUE); 4343 if (error) { 4344 fatal(0, "dmu_objset_destroy(%s, B_TRUE) = %d", 4345 fullname, error); 4346 } 4347 4348 error = dsl_dataset_user_release(osname, snapname, tag, B_FALSE); 4349 if (error) 4350 fatal(0, "dsl_dataset_user_release(%s)", fullname, tag); 4351 4352 VERIFY(dmu_objset_hold(fullname, FTAG, &origin) == ENOENT); 4353 4354 out: 4355 (void) rw_unlock(&ztest_shared->zs_name_lock); 4356 } 4357 4358 /* 4359 * Inject random faults into the on-disk data. 4360 */ 4361 /* ARGSUSED */ 4362 void 4363 ztest_fault_inject(ztest_ds_t *zd, uint64_t id) 4364 { 4365 ztest_shared_t *zs = ztest_shared; 4366 spa_t *spa = zs->zs_spa; 4367 int fd; 4368 uint64_t offset; 4369 uint64_t leaves; 4370 uint64_t bad = 0x1990c0ffeedecade; 4371 uint64_t top, leaf; 4372 char path0[MAXPATHLEN]; 4373 char pathrand[MAXPATHLEN]; 4374 size_t fsize; 4375 int bshift = SPA_MAXBLOCKSHIFT + 2; /* don't scrog all labels */ 4376 int iters = 1000; 4377 int maxfaults; 4378 int mirror_save; 4379 vdev_t *vd0 = NULL; 4380 uint64_t guid0 = 0; 4381 boolean_t islog = B_FALSE; 4382 4383 VERIFY(mutex_lock(&zs->zs_vdev_lock) == 0); 4384 maxfaults = MAXFAULTS(); 4385 leaves = MAX(zs->zs_mirrors, 1) * zopt_raidz; 4386 mirror_save = zs->zs_mirrors; 4387 VERIFY(mutex_unlock(&zs->zs_vdev_lock) == 0); 4388 4389 ASSERT(leaves >= 1); 4390 4391 /* 4392 * We need SCL_STATE here because we're going to look at vd0->vdev_tsd. 4393 */ 4394 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 4395 4396 if (ztest_random(2) == 0) { 4397 /* 4398 * Inject errors on a normal data device or slog device. 4399 */ 4400 top = ztest_random_vdev_top(spa, B_TRUE); 4401 leaf = ztest_random(leaves) + zs->zs_splits; 4402 4403 /* 4404 * Generate paths to the first leaf in this top-level vdev, 4405 * and to the random leaf we selected. We'll induce transient 4406 * write failures and random online/offline activity on leaf 0, 4407 * and we'll write random garbage to the randomly chosen leaf. 4408 */ 4409 (void) snprintf(path0, sizeof (path0), ztest_dev_template, 4410 zopt_dir, zopt_pool, top * leaves + zs->zs_splits); 4411 (void) snprintf(pathrand, sizeof (pathrand), ztest_dev_template, 4412 zopt_dir, zopt_pool, top * leaves + leaf); 4413 4414 vd0 = vdev_lookup_by_path(spa->spa_root_vdev, path0); 4415 if (vd0 != NULL && vd0->vdev_top->vdev_islog) 4416 islog = B_TRUE; 4417 4418 if (vd0 != NULL && maxfaults != 1) { 4419 /* 4420 * Make vd0 explicitly claim to be unreadable, 4421 * or unwriteable, or reach behind its back 4422 * and close the underlying fd. We can do this if 4423 * maxfaults == 0 because we'll fail and reexecute, 4424 * and we can do it if maxfaults >= 2 because we'll 4425 * have enough redundancy. If maxfaults == 1, the 4426 * combination of this with injection of random data 4427 * corruption below exceeds the pool's fault tolerance. 4428 */ 4429 vdev_file_t *vf = vd0->vdev_tsd; 4430 4431 if (vf != NULL && ztest_random(3) == 0) { 4432 (void) close(vf->vf_vnode->v_fd); 4433 vf->vf_vnode->v_fd = -1; 4434 } else if (ztest_random(2) == 0) { 4435 vd0->vdev_cant_read = B_TRUE; 4436 } else { 4437 vd0->vdev_cant_write = B_TRUE; 4438 } 4439 guid0 = vd0->vdev_guid; 4440 } 4441 } else { 4442 /* 4443 * Inject errors on an l2cache device. 4444 */ 4445 spa_aux_vdev_t *sav = &spa->spa_l2cache; 4446 4447 if (sav->sav_count == 0) { 4448 spa_config_exit(spa, SCL_STATE, FTAG); 4449 return; 4450 } 4451 vd0 = sav->sav_vdevs[ztest_random(sav->sav_count)]; 4452 guid0 = vd0->vdev_guid; 4453 (void) strcpy(path0, vd0->vdev_path); 4454 (void) strcpy(pathrand, vd0->vdev_path); 4455 4456 leaf = 0; 4457 leaves = 1; 4458 maxfaults = INT_MAX; /* no limit on cache devices */ 4459 } 4460 4461 spa_config_exit(spa, SCL_STATE, FTAG); 4462 4463 /* 4464 * If we can tolerate two or more faults, or we're dealing 4465 * with a slog, randomly online/offline vd0. 4466 */ 4467 if ((maxfaults >= 2 || islog) && guid0 != 0) { 4468 if (ztest_random(10) < 6) { 4469 int flags = (ztest_random(2) == 0 ? 4470 ZFS_OFFLINE_TEMPORARY : 0); 4471 4472 /* 4473 * We have to grab the zs_name_lock as writer to 4474 * prevent a race between offlining a slog and 4475 * destroying a dataset. Offlining the slog will 4476 * grab a reference on the dataset which may cause 4477 * dmu_objset_destroy() to fail with EBUSY thus 4478 * leaving the dataset in an inconsistent state. 4479 */ 4480 if (islog) 4481 (void) rw_wrlock(&ztest_shared->zs_name_lock); 4482 4483 VERIFY(vdev_offline(spa, guid0, flags) != EBUSY); 4484 4485 if (islog) 4486 (void) rw_unlock(&ztest_shared->zs_name_lock); 4487 } else { 4488 (void) vdev_online(spa, guid0, 0, NULL); 4489 } 4490 } 4491 4492 if (maxfaults == 0) 4493 return; 4494 4495 /* 4496 * We have at least single-fault tolerance, so inject data corruption. 4497 */ 4498 fd = open(pathrand, O_RDWR); 4499 4500 if (fd == -1) /* we hit a gap in the device namespace */ 4501 return; 4502 4503 fsize = lseek(fd, 0, SEEK_END); 4504 4505 while (--iters != 0) { 4506 offset = ztest_random(fsize / (leaves << bshift)) * 4507 (leaves << bshift) + (leaf << bshift) + 4508 (ztest_random(1ULL << (bshift - 1)) & -8ULL); 4509 4510 if (offset >= fsize) 4511 continue; 4512 4513 VERIFY(mutex_lock(&zs->zs_vdev_lock) == 0); 4514 if (mirror_save != zs->zs_mirrors) { 4515 VERIFY(mutex_unlock(&zs->zs_vdev_lock) == 0); 4516 (void) close(fd); 4517 return; 4518 } 4519 4520 if (pwrite(fd, &bad, sizeof (bad), offset) != sizeof (bad)) 4521 fatal(1, "can't inject bad word at 0x%llx in %s", 4522 offset, pathrand); 4523 4524 VERIFY(mutex_unlock(&zs->zs_vdev_lock) == 0); 4525 4526 if (zopt_verbose >= 7) 4527 (void) printf("injected bad word into %s," 4528 " offset 0x%llx\n", pathrand, (u_longlong_t)offset); 4529 } 4530 4531 (void) close(fd); 4532 } 4533 4534 /* 4535 * Verify that DDT repair works as expected. 4536 */ 4537 void 4538 ztest_ddt_repair(ztest_ds_t *zd, uint64_t id) 4539 { 4540 ztest_shared_t *zs = ztest_shared; 4541 spa_t *spa = zs->zs_spa; 4542 objset_t *os = zd->zd_os; 4543 ztest_od_t od[1]; 4544 uint64_t object, blocksize, txg, pattern, psize; 4545 enum zio_checksum checksum = spa_dedup_checksum(spa); 4546 dmu_buf_t *db; 4547 dmu_tx_t *tx; 4548 void *buf; 4549 blkptr_t blk; 4550 int copies = 2 * ZIO_DEDUPDITTO_MIN; 4551 4552 blocksize = ztest_random_blocksize(); 4553 blocksize = MIN(blocksize, 2048); /* because we write so many */ 4554 4555 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0); 4556 4557 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0) 4558 return; 4559 4560 /* 4561 * Take the name lock as writer to prevent anyone else from changing 4562 * the pool and dataset properies we need to maintain during this test. 4563 */ 4564 (void) rw_wrlock(&zs->zs_name_lock); 4565 4566 if (ztest_dsl_prop_set_uint64(zd->zd_name, ZFS_PROP_DEDUP, checksum, 4567 B_FALSE) != 0 || 4568 ztest_dsl_prop_set_uint64(zd->zd_name, ZFS_PROP_COPIES, 1, 4569 B_FALSE) != 0) { 4570 (void) rw_unlock(&zs->zs_name_lock); 4571 return; 4572 } 4573 4574 object = od[0].od_object; 4575 blocksize = od[0].od_blocksize; 4576 pattern = spa_guid(spa) ^ dmu_objset_fsid_guid(os); 4577 4578 ASSERT(object != 0); 4579 4580 tx = dmu_tx_create(os); 4581 dmu_tx_hold_write(tx, object, 0, copies * blocksize); 4582 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); 4583 if (txg == 0) { 4584 (void) rw_unlock(&zs->zs_name_lock); 4585 return; 4586 } 4587 4588 /* 4589 * Write all the copies of our block. 4590 */ 4591 for (int i = 0; i < copies; i++) { 4592 uint64_t offset = i * blocksize; 4593 VERIFY(dmu_buf_hold(os, object, offset, FTAG, &db) == 0); 4594 ASSERT(db->db_offset == offset); 4595 ASSERT(db->db_size == blocksize); 4596 ASSERT(ztest_pattern_match(db->db_data, db->db_size, pattern) || 4597 ztest_pattern_match(db->db_data, db->db_size, 0ULL)); 4598 dmu_buf_will_fill(db, tx); 4599 ztest_pattern_set(db->db_data, db->db_size, pattern); 4600 dmu_buf_rele(db, FTAG); 4601 } 4602 4603 dmu_tx_commit(tx); 4604 txg_wait_synced(spa_get_dsl(spa), txg); 4605 4606 /* 4607 * Find out what block we got. 4608 */ 4609 VERIFY(dmu_buf_hold(os, object, 0, FTAG, &db) == 0); 4610 blk = *((dmu_buf_impl_t *)db)->db_blkptr; 4611 dmu_buf_rele(db, FTAG); 4612 4613 /* 4614 * Damage the block. Dedup-ditto will save us when we read it later. 4615 */ 4616 psize = BP_GET_PSIZE(&blk); 4617 buf = zio_buf_alloc(psize); 4618 ztest_pattern_set(buf, psize, ~pattern); 4619 4620 (void) zio_wait(zio_rewrite(NULL, spa, 0, &blk, 4621 buf, psize, NULL, NULL, ZIO_PRIORITY_SYNC_WRITE, 4622 ZIO_FLAG_CANFAIL | ZIO_FLAG_INDUCE_DAMAGE, NULL)); 4623 4624 zio_buf_free(buf, psize); 4625 4626 (void) rw_unlock(&zs->zs_name_lock); 4627 } 4628 4629 /* 4630 * Scrub the pool. 4631 */ 4632 /* ARGSUSED */ 4633 void 4634 ztest_scrub(ztest_ds_t *zd, uint64_t id) 4635 { 4636 ztest_shared_t *zs = ztest_shared; 4637 spa_t *spa = zs->zs_spa; 4638 4639 (void) spa_scrub(spa, POOL_SCRUB_EVERYTHING); 4640 (void) poll(NULL, 0, 100); /* wait a moment, then force a restart */ 4641 (void) spa_scrub(spa, POOL_SCRUB_EVERYTHING); 4642 } 4643 4644 /* 4645 * Rename the pool to a different name and then rename it back. 4646 */ 4647 /* ARGSUSED */ 4648 void 4649 ztest_spa_rename(ztest_ds_t *zd, uint64_t id) 4650 { 4651 ztest_shared_t *zs = ztest_shared; 4652 char *oldname, *newname; 4653 spa_t *spa; 4654 4655 (void) rw_wrlock(&zs->zs_name_lock); 4656 4657 oldname = zs->zs_pool; 4658 newname = umem_alloc(strlen(oldname) + 5, UMEM_NOFAIL); 4659 (void) strcpy(newname, oldname); 4660 (void) strcat(newname, "_tmp"); 4661 4662 /* 4663 * Do the rename 4664 */ 4665 VERIFY3U(0, ==, spa_rename(oldname, newname)); 4666 4667 /* 4668 * Try to open it under the old name, which shouldn't exist 4669 */ 4670 VERIFY3U(ENOENT, ==, spa_open(oldname, &spa, FTAG)); 4671 4672 /* 4673 * Open it under the new name and make sure it's still the same spa_t. 4674 */ 4675 VERIFY3U(0, ==, spa_open(newname, &spa, FTAG)); 4676 4677 ASSERT(spa == zs->zs_spa); 4678 spa_close(spa, FTAG); 4679 4680 /* 4681 * Rename it back to the original 4682 */ 4683 VERIFY3U(0, ==, spa_rename(newname, oldname)); 4684 4685 /* 4686 * Make sure it can still be opened 4687 */ 4688 VERIFY3U(0, ==, spa_open(oldname, &spa, FTAG)); 4689 4690 ASSERT(spa == zs->zs_spa); 4691 spa_close(spa, FTAG); 4692 4693 umem_free(newname, strlen(newname) + 1); 4694 4695 (void) rw_unlock(&zs->zs_name_lock); 4696 } 4697 4698 /* 4699 * Verify pool integrity by running zdb. 4700 */ 4701 static void 4702 ztest_run_zdb(char *pool) 4703 { 4704 int status; 4705 char zdb[MAXPATHLEN + MAXNAMELEN + 20]; 4706 char zbuf[1024]; 4707 char *bin; 4708 char *ztest; 4709 char *isa; 4710 int isalen; 4711 FILE *fp; 4712 4713 (void) realpath(getexecname(), zdb); 4714 4715 /* zdb lives in /usr/sbin, while ztest lives in /usr/bin */ 4716 bin = strstr(zdb, "/usr/bin/"); 4717 ztest = strstr(bin, "/ztest"); 4718 isa = bin + 8; 4719 isalen = ztest - isa; 4720 isa = strdup(isa); 4721 /* LINTED */ 4722 (void) sprintf(bin, 4723 "/usr/sbin%.*s/zdb -bcc%s%s -U /tmp/zpool.cache %s", 4724 isalen, 4725 isa, 4726 zopt_verbose >= 3 ? "s" : "", 4727 zopt_verbose >= 4 ? "v" : "", 4728 pool); 4729 free(isa); 4730 4731 if (zopt_verbose >= 5) 4732 (void) printf("Executing %s\n", strstr(zdb, "zdb ")); 4733 4734 fp = popen(zdb, "r"); 4735 4736 while (fgets(zbuf, sizeof (zbuf), fp) != NULL) 4737 if (zopt_verbose >= 3) 4738 (void) printf("%s", zbuf); 4739 4740 status = pclose(fp); 4741 4742 if (status == 0) 4743 return; 4744 4745 ztest_dump_core = 0; 4746 if (WIFEXITED(status)) 4747 fatal(0, "'%s' exit code %d", zdb, WEXITSTATUS(status)); 4748 else 4749 fatal(0, "'%s' died with signal %d", zdb, WTERMSIG(status)); 4750 } 4751 4752 static void 4753 ztest_walk_pool_directory(char *header) 4754 { 4755 spa_t *spa = NULL; 4756 4757 if (zopt_verbose >= 6) 4758 (void) printf("%s\n", header); 4759 4760 mutex_enter(&spa_namespace_lock); 4761 while ((spa = spa_next(spa)) != NULL) 4762 if (zopt_verbose >= 6) 4763 (void) printf("\t%s\n", spa_name(spa)); 4764 mutex_exit(&spa_namespace_lock); 4765 } 4766 4767 static void 4768 ztest_spa_import_export(char *oldname, char *newname) 4769 { 4770 nvlist_t *config, *newconfig; 4771 uint64_t pool_guid; 4772 spa_t *spa; 4773 4774 if (zopt_verbose >= 4) { 4775 (void) printf("import/export: old = %s, new = %s\n", 4776 oldname, newname); 4777 } 4778 4779 /* 4780 * Clean up from previous runs. 4781 */ 4782 (void) spa_destroy(newname); 4783 4784 /* 4785 * Get the pool's configuration and guid. 4786 */ 4787 VERIFY3U(0, ==, spa_open(oldname, &spa, FTAG)); 4788 4789 /* 4790 * Kick off a scrub to tickle scrub/export races. 4791 */ 4792 if (ztest_random(2) == 0) 4793 (void) spa_scrub(spa, POOL_SCRUB_EVERYTHING); 4794 4795 pool_guid = spa_guid(spa); 4796 spa_close(spa, FTAG); 4797 4798 ztest_walk_pool_directory("pools before export"); 4799 4800 /* 4801 * Export it. 4802 */ 4803 VERIFY3U(0, ==, spa_export(oldname, &config, B_FALSE, B_FALSE)); 4804 4805 ztest_walk_pool_directory("pools after export"); 4806 4807 /* 4808 * Try to import it. 4809 */ 4810 newconfig = spa_tryimport(config); 4811 ASSERT(newconfig != NULL); 4812 nvlist_free(newconfig); 4813 4814 /* 4815 * Import it under the new name. 4816 */ 4817 VERIFY3U(0, ==, spa_import(newname, config, NULL)); 4818 4819 ztest_walk_pool_directory("pools after import"); 4820 4821 /* 4822 * Try to import it again -- should fail with EEXIST. 4823 */ 4824 VERIFY3U(EEXIST, ==, spa_import(newname, config, NULL)); 4825 4826 /* 4827 * Try to import it under a different name -- should fail with EEXIST. 4828 */ 4829 VERIFY3U(EEXIST, ==, spa_import(oldname, config, NULL)); 4830 4831 /* 4832 * Verify that the pool is no longer visible under the old name. 4833 */ 4834 VERIFY3U(ENOENT, ==, spa_open(oldname, &spa, FTAG)); 4835 4836 /* 4837 * Verify that we can open and close the pool using the new name. 4838 */ 4839 VERIFY3U(0, ==, spa_open(newname, &spa, FTAG)); 4840 ASSERT(pool_guid == spa_guid(spa)); 4841 spa_close(spa, FTAG); 4842 4843 nvlist_free(config); 4844 } 4845 4846 static void 4847 ztest_resume(spa_t *spa) 4848 { 4849 if (spa_suspended(spa) && zopt_verbose >= 6) 4850 (void) printf("resuming from suspended state\n"); 4851 spa_vdev_state_enter(spa, SCL_NONE); 4852 vdev_clear(spa, NULL); 4853 (void) spa_vdev_state_exit(spa, NULL, 0); 4854 (void) zio_resume(spa); 4855 } 4856 4857 static void * 4858 ztest_resume_thread(void *arg) 4859 { 4860 spa_t *spa = arg; 4861 4862 while (!ztest_exiting) { 4863 if (spa_suspended(spa)) 4864 ztest_resume(spa); 4865 (void) poll(NULL, 0, 100); 4866 } 4867 return (NULL); 4868 } 4869 4870 static void * 4871 ztest_deadman_thread(void *arg) 4872 { 4873 ztest_shared_t *zs = arg; 4874 int grace = 300; 4875 hrtime_t delta; 4876 4877 delta = (zs->zs_thread_stop - zs->zs_thread_start) / NANOSEC + grace; 4878 4879 (void) poll(NULL, 0, (int)(1000 * delta)); 4880 4881 fatal(0, "failed to complete within %d seconds of deadline", grace); 4882 4883 return (NULL); 4884 } 4885 4886 static void 4887 ztest_execute(ztest_info_t *zi, uint64_t id) 4888 { 4889 ztest_shared_t *zs = ztest_shared; 4890 ztest_ds_t *zd = &zs->zs_zd[id % zopt_datasets]; 4891 hrtime_t functime = gethrtime(); 4892 4893 for (int i = 0; i < zi->zi_iters; i++) 4894 zi->zi_func(zd, id); 4895 4896 functime = gethrtime() - functime; 4897 4898 atomic_add_64(&zi->zi_call_count, 1); 4899 atomic_add_64(&zi->zi_call_time, functime); 4900 4901 if (zopt_verbose >= 4) { 4902 Dl_info dli; 4903 (void) dladdr((void *)zi->zi_func, &dli); 4904 (void) printf("%6.2f sec in %s\n", 4905 (double)functime / NANOSEC, dli.dli_sname); 4906 } 4907 } 4908 4909 static void * 4910 ztest_thread(void *arg) 4911 { 4912 uint64_t id = (uintptr_t)arg; 4913 ztest_shared_t *zs = ztest_shared; 4914 uint64_t call_next; 4915 hrtime_t now; 4916 ztest_info_t *zi; 4917 4918 while ((now = gethrtime()) < zs->zs_thread_stop) { 4919 /* 4920 * See if it's time to force a crash. 4921 */ 4922 if (now > zs->zs_thread_kill) 4923 ztest_kill(zs); 4924 4925 /* 4926 * If we're getting ENOSPC with some regularity, stop. 4927 */ 4928 if (zs->zs_enospc_count > 10) 4929 break; 4930 4931 /* 4932 * Pick a random function to execute. 4933 */ 4934 zi = &zs->zs_info[ztest_random(ZTEST_FUNCS)]; 4935 call_next = zi->zi_call_next; 4936 4937 if (now >= call_next && 4938 atomic_cas_64(&zi->zi_call_next, call_next, call_next + 4939 ztest_random(2 * zi->zi_interval[0] + 1)) == call_next) 4940 ztest_execute(zi, id); 4941 } 4942 4943 return (NULL); 4944 } 4945 4946 static void 4947 ztest_dataset_name(char *dsname, char *pool, int d) 4948 { 4949 (void) snprintf(dsname, MAXNAMELEN, "%s/ds_%d", pool, d); 4950 } 4951 4952 static void 4953 ztest_dataset_destroy(ztest_shared_t *zs, int d) 4954 { 4955 char name[MAXNAMELEN]; 4956 4957 ztest_dataset_name(name, zs->zs_pool, d); 4958 4959 if (zopt_verbose >= 3) 4960 (void) printf("Destroying %s to free up space\n", name); 4961 4962 /* 4963 * Cleanup any non-standard clones and snapshots. In general, 4964 * ztest thread t operates on dataset (t % zopt_datasets), 4965 * so there may be more than one thing to clean up. 4966 */ 4967 for (int t = d; t < zopt_threads; t += zopt_datasets) 4968 ztest_dsl_dataset_cleanup(name, t); 4969 4970 (void) dmu_objset_find(name, ztest_objset_destroy_cb, NULL, 4971 DS_FIND_SNAPSHOTS | DS_FIND_CHILDREN); 4972 } 4973 4974 static void 4975 ztest_dataset_dirobj_verify(ztest_ds_t *zd) 4976 { 4977 uint64_t usedobjs, dirobjs, scratch; 4978 4979 /* 4980 * ZTEST_DIROBJ is the object directory for the entire dataset. 4981 * Therefore, the number of objects in use should equal the 4982 * number of ZTEST_DIROBJ entries, +1 for ZTEST_DIROBJ itself. 4983 * If not, we have an object leak. 4984 * 4985 * Note that we can only check this in ztest_dataset_open(), 4986 * when the open-context and syncing-context values agree. 4987 * That's because zap_count() returns the open-context value, 4988 * while dmu_objset_space() returns the rootbp fill count. 4989 */ 4990 VERIFY3U(0, ==, zap_count(zd->zd_os, ZTEST_DIROBJ, &dirobjs)); 4991 dmu_objset_space(zd->zd_os, &scratch, &scratch, &usedobjs, &scratch); 4992 ASSERT3U(dirobjs + 1, ==, usedobjs); 4993 } 4994 4995 static int 4996 ztest_dataset_open(ztest_shared_t *zs, int d) 4997 { 4998 ztest_ds_t *zd = &zs->zs_zd[d]; 4999 uint64_t committed_seq = zd->zd_seq; 5000 objset_t *os; 5001 zilog_t *zilog; 5002 char name[MAXNAMELEN]; 5003 int error; 5004 5005 ztest_dataset_name(name, zs->zs_pool, d); 5006 5007 (void) rw_rdlock(&zs->zs_name_lock); 5008 5009 error = dmu_objset_create(name, DMU_OST_OTHER, 0, 5010 ztest_objset_create_cb, NULL); 5011 if (error == ENOSPC) { 5012 (void) rw_unlock(&zs->zs_name_lock); 5013 ztest_record_enospc(FTAG); 5014 return (error); 5015 } 5016 ASSERT(error == 0 || error == EEXIST); 5017 5018 VERIFY3U(dmu_objset_hold(name, zd, &os), ==, 0); 5019 (void) rw_unlock(&zs->zs_name_lock); 5020 5021 ztest_zd_init(zd, os); 5022 5023 zilog = zd->zd_zilog; 5024 5025 if (zilog->zl_header->zh_claim_lr_seq != 0 && 5026 zilog->zl_header->zh_claim_lr_seq < committed_seq) 5027 fatal(0, "missing log records: claimed %llu < committed %llu", 5028 zilog->zl_header->zh_claim_lr_seq, committed_seq); 5029 5030 ztest_dataset_dirobj_verify(zd); 5031 5032 zil_replay(os, zd, ztest_replay_vector); 5033 5034 ztest_dataset_dirobj_verify(zd); 5035 5036 if (zopt_verbose >= 6) 5037 (void) printf("%s replay %llu blocks, %llu records, seq %llu\n", 5038 zd->zd_name, 5039 (u_longlong_t)zilog->zl_parse_blk_count, 5040 (u_longlong_t)zilog->zl_parse_lr_count, 5041 (u_longlong_t)zilog->zl_replaying_seq); 5042 5043 zilog = zil_open(os, ztest_get_data); 5044 5045 if (zilog->zl_replaying_seq != 0 && 5046 zilog->zl_replaying_seq < committed_seq) 5047 fatal(0, "missing log records: replayed %llu < committed %llu", 5048 zilog->zl_replaying_seq, committed_seq); 5049 5050 return (0); 5051 } 5052 5053 static void 5054 ztest_dataset_close(ztest_shared_t *zs, int d) 5055 { 5056 ztest_ds_t *zd = &zs->zs_zd[d]; 5057 5058 zil_close(zd->zd_zilog); 5059 dmu_objset_rele(zd->zd_os, zd); 5060 5061 ztest_zd_fini(zd); 5062 } 5063 5064 /* 5065 * Kick off threads to run tests on all datasets in parallel. 5066 */ 5067 static void 5068 ztest_run(ztest_shared_t *zs) 5069 { 5070 thread_t *tid; 5071 spa_t *spa; 5072 thread_t resume_tid; 5073 int error; 5074 5075 ztest_exiting = B_FALSE; 5076 5077 /* 5078 * Initialize parent/child shared state. 5079 */ 5080 VERIFY(_mutex_init(&zs->zs_vdev_lock, USYNC_THREAD, NULL) == 0); 5081 VERIFY(rwlock_init(&zs->zs_name_lock, USYNC_THREAD, NULL) == 0); 5082 5083 zs->zs_thread_start = gethrtime(); 5084 zs->zs_thread_stop = zs->zs_thread_start + zopt_passtime * NANOSEC; 5085 zs->zs_thread_stop = MIN(zs->zs_thread_stop, zs->zs_proc_stop); 5086 zs->zs_thread_kill = zs->zs_thread_stop; 5087 if (ztest_random(100) < zopt_killrate) 5088 zs->zs_thread_kill -= ztest_random(zopt_passtime * NANOSEC); 5089 5090 (void) _mutex_init(&zcl.zcl_callbacks_lock, USYNC_THREAD, NULL); 5091 5092 list_create(&zcl.zcl_callbacks, sizeof (ztest_cb_data_t), 5093 offsetof(ztest_cb_data_t, zcd_node)); 5094 5095 /* 5096 * Open our pool. 5097 */ 5098 kernel_init(FREAD | FWRITE); 5099 VERIFY(spa_open(zs->zs_pool, &spa, FTAG) == 0); 5100 zs->zs_spa = spa; 5101 5102 spa->spa_dedup_ditto = 2 * ZIO_DEDUPDITTO_MIN; 5103 5104 /* 5105 * We don't expect the pool to suspend unless maxfaults == 0, 5106 * in which case ztest_fault_inject() temporarily takes away 5107 * the only valid replica. 5108 */ 5109 if (MAXFAULTS() == 0) 5110 spa->spa_failmode = ZIO_FAILURE_MODE_WAIT; 5111 else 5112 spa->spa_failmode = ZIO_FAILURE_MODE_PANIC; 5113 5114 /* 5115 * Create a thread to periodically resume suspended I/O. 5116 */ 5117 VERIFY(thr_create(0, 0, ztest_resume_thread, spa, THR_BOUND, 5118 &resume_tid) == 0); 5119 5120 /* 5121 * Create a deadman thread to abort() if we hang. 5122 */ 5123 VERIFY(thr_create(0, 0, ztest_deadman_thread, zs, THR_BOUND, 5124 NULL) == 0); 5125 5126 /* 5127 * Verify that we can safely inquire about about any object, 5128 * whether it's allocated or not. To make it interesting, 5129 * we probe a 5-wide window around each power of two. 5130 * This hits all edge cases, including zero and the max. 5131 */ 5132 for (int t = 0; t < 64; t++) { 5133 for (int d = -5; d <= 5; d++) { 5134 error = dmu_object_info(spa->spa_meta_objset, 5135 (1ULL << t) + d, NULL); 5136 ASSERT(error == 0 || error == ENOENT || 5137 error == EINVAL); 5138 } 5139 } 5140 5141 /* 5142 * If we got any ENOSPC errors on the previous run, destroy something. 5143 */ 5144 if (zs->zs_enospc_count != 0) { 5145 int d = ztest_random(zopt_datasets); 5146 ztest_dataset_destroy(zs, d); 5147 } 5148 zs->zs_enospc_count = 0; 5149 5150 tid = umem_zalloc(zopt_threads * sizeof (thread_t), UMEM_NOFAIL); 5151 5152 if (zopt_verbose >= 4) 5153 (void) printf("starting main threads...\n"); 5154 5155 /* 5156 * Kick off all the tests that run in parallel. 5157 */ 5158 for (int t = 0; t < zopt_threads; t++) { 5159 if (t < zopt_datasets && ztest_dataset_open(zs, t) != 0) 5160 return; 5161 VERIFY(thr_create(0, 0, ztest_thread, (void *)(uintptr_t)t, 5162 THR_BOUND, &tid[t]) == 0); 5163 } 5164 5165 /* 5166 * Wait for all of the tests to complete. We go in reverse order 5167 * so we don't close datasets while threads are still using them. 5168 */ 5169 for (int t = zopt_threads - 1; t >= 0; t--) { 5170 VERIFY(thr_join(tid[t], NULL, NULL) == 0); 5171 if (t < zopt_datasets) 5172 ztest_dataset_close(zs, t); 5173 } 5174 5175 txg_wait_synced(spa_get_dsl(spa), 0); 5176 5177 zs->zs_alloc = metaslab_class_get_alloc(spa_normal_class(spa)); 5178 zs->zs_space = metaslab_class_get_space(spa_normal_class(spa)); 5179 5180 umem_free(tid, zopt_threads * sizeof (thread_t)); 5181 5182 /* Kill the resume thread */ 5183 ztest_exiting = B_TRUE; 5184 VERIFY(thr_join(resume_tid, NULL, NULL) == 0); 5185 ztest_resume(spa); 5186 5187 /* 5188 * Right before closing the pool, kick off a bunch of async I/O; 5189 * spa_close() should wait for it to complete. 5190 */ 5191 for (uint64_t object = 1; object < 50; object++) 5192 dmu_prefetch(spa->spa_meta_objset, object, 0, 1ULL << 20); 5193 5194 spa_close(spa, FTAG); 5195 5196 /* 5197 * Verify that we can loop over all pools. 5198 */ 5199 mutex_enter(&spa_namespace_lock); 5200 for (spa = spa_next(NULL); spa != NULL; spa = spa_next(spa)) 5201 if (zopt_verbose > 3) 5202 (void) printf("spa_next: found %s\n", spa_name(spa)); 5203 mutex_exit(&spa_namespace_lock); 5204 5205 /* 5206 * Verify that we can export the pool and reimport it under a 5207 * different name. 5208 */ 5209 if (ztest_random(2) == 0) { 5210 char name[MAXNAMELEN]; 5211 (void) snprintf(name, MAXNAMELEN, "%s_import", zs->zs_pool); 5212 ztest_spa_import_export(zs->zs_pool, name); 5213 ztest_spa_import_export(name, zs->zs_pool); 5214 } 5215 5216 kernel_fini(); 5217 } 5218 5219 static void 5220 ztest_freeze(ztest_shared_t *zs) 5221 { 5222 ztest_ds_t *zd = &zs->zs_zd[0]; 5223 spa_t *spa; 5224 5225 if (zopt_verbose >= 3) 5226 (void) printf("testing spa_freeze()...\n"); 5227 5228 kernel_init(FREAD | FWRITE); 5229 VERIFY3U(0, ==, spa_open(zs->zs_pool, &spa, FTAG)); 5230 VERIFY3U(0, ==, ztest_dataset_open(zs, 0)); 5231 5232 /* 5233 * Force the first log block to be transactionally allocated. 5234 * We have to do this before we freeze the pool -- otherwise 5235 * the log chain won't be anchored. 5236 */ 5237 while (BP_IS_HOLE(&zd->zd_zilog->zl_header->zh_log)) { 5238 ztest_dmu_object_alloc_free(zd, 0); 5239 zil_commit(zd->zd_zilog, UINT64_MAX, 0); 5240 } 5241 5242 txg_wait_synced(spa_get_dsl(spa), 0); 5243 5244 /* 5245 * Freeze the pool. This stops spa_sync() from doing anything, 5246 * so that the only way to record changes from now on is the ZIL. 5247 */ 5248 spa_freeze(spa); 5249 5250 /* 5251 * Run tests that generate log records but don't alter the pool config 5252 * or depend on DSL sync tasks (snapshots, objset create/destroy, etc). 5253 * We do a txg_wait_synced() after each iteration to force the txg 5254 * to increase well beyond the last synced value in the uberblock. 5255 * The ZIL should be OK with that. 5256 */ 5257 while (ztest_random(20) != 0) { 5258 ztest_dmu_write_parallel(zd, 0); 5259 ztest_dmu_object_alloc_free(zd, 0); 5260 txg_wait_synced(spa_get_dsl(spa), 0); 5261 } 5262 5263 /* 5264 * Commit all of the changes we just generated. 5265 */ 5266 zil_commit(zd->zd_zilog, UINT64_MAX, 0); 5267 txg_wait_synced(spa_get_dsl(spa), 0); 5268 5269 /* 5270 * Close our dataset and close the pool. 5271 */ 5272 ztest_dataset_close(zs, 0); 5273 spa_close(spa, FTAG); 5274 kernel_fini(); 5275 5276 /* 5277 * Open and close the pool and dataset to induce log replay. 5278 */ 5279 kernel_init(FREAD | FWRITE); 5280 VERIFY3U(0, ==, spa_open(zs->zs_pool, &spa, FTAG)); 5281 VERIFY3U(0, ==, ztest_dataset_open(zs, 0)); 5282 ztest_dataset_close(zs, 0); 5283 spa_close(spa, FTAG); 5284 kernel_fini(); 5285 5286 list_destroy(&zcl.zcl_callbacks); 5287 5288 (void) _mutex_destroy(&zcl.zcl_callbacks_lock); 5289 5290 (void) rwlock_destroy(&zs->zs_name_lock); 5291 (void) _mutex_destroy(&zs->zs_vdev_lock); 5292 } 5293 5294 void 5295 print_time(hrtime_t t, char *timebuf) 5296 { 5297 hrtime_t s = t / NANOSEC; 5298 hrtime_t m = s / 60; 5299 hrtime_t h = m / 60; 5300 hrtime_t d = h / 24; 5301 5302 s -= m * 60; 5303 m -= h * 60; 5304 h -= d * 24; 5305 5306 timebuf[0] = '\0'; 5307 5308 if (d) 5309 (void) sprintf(timebuf, 5310 "%llud%02lluh%02llum%02llus", d, h, m, s); 5311 else if (h) 5312 (void) sprintf(timebuf, "%lluh%02llum%02llus", h, m, s); 5313 else if (m) 5314 (void) sprintf(timebuf, "%llum%02llus", m, s); 5315 else 5316 (void) sprintf(timebuf, "%llus", s); 5317 } 5318 5319 static nvlist_t * 5320 make_random_props() 5321 { 5322 nvlist_t *props; 5323 5324 if (ztest_random(2) == 0) 5325 return (NULL); 5326 5327 VERIFY(nvlist_alloc(&props, NV_UNIQUE_NAME, 0) == 0); 5328 VERIFY(nvlist_add_uint64(props, "autoreplace", 1) == 0); 5329 5330 (void) printf("props:\n"); 5331 dump_nvlist(props, 4); 5332 5333 return (props); 5334 } 5335 5336 /* 5337 * Create a storage pool with the given name and initial vdev size. 5338 * Then test spa_freeze() functionality. 5339 */ 5340 static void 5341 ztest_init(ztest_shared_t *zs) 5342 { 5343 spa_t *spa; 5344 nvlist_t *nvroot, *props; 5345 5346 VERIFY(_mutex_init(&zs->zs_vdev_lock, USYNC_THREAD, NULL) == 0); 5347 VERIFY(rwlock_init(&zs->zs_name_lock, USYNC_THREAD, NULL) == 0); 5348 5349 kernel_init(FREAD | FWRITE); 5350 5351 /* 5352 * Create the storage pool. 5353 */ 5354 (void) spa_destroy(zs->zs_pool); 5355 ztest_shared->zs_vdev_next_leaf = 0; 5356 zs->zs_splits = 0; 5357 zs->zs_mirrors = zopt_mirrors; 5358 nvroot = make_vdev_root(NULL, NULL, zopt_vdev_size, 0, 5359 0, zopt_raidz, zs->zs_mirrors, 1); 5360 props = make_random_props(); 5361 VERIFY3U(0, ==, spa_create(zs->zs_pool, nvroot, props, NULL, NULL)); 5362 nvlist_free(nvroot); 5363 5364 VERIFY3U(0, ==, spa_open(zs->zs_pool, &spa, FTAG)); 5365 metaslab_sz = 1ULL << spa->spa_root_vdev->vdev_child[0]->vdev_ms_shift; 5366 spa_close(spa, FTAG); 5367 5368 kernel_fini(); 5369 5370 ztest_run_zdb(zs->zs_pool); 5371 5372 ztest_freeze(zs); 5373 5374 ztest_run_zdb(zs->zs_pool); 5375 } 5376 5377 int 5378 main(int argc, char **argv) 5379 { 5380 int kills = 0; 5381 int iters = 0; 5382 ztest_shared_t *zs; 5383 size_t shared_size; 5384 ztest_info_t *zi; 5385 char timebuf[100]; 5386 char numbuf[6]; 5387 spa_t *spa; 5388 5389 (void) setvbuf(stdout, NULL, _IOLBF, 0); 5390 5391 /* Override location of zpool.cache */ 5392 spa_config_path = "/tmp/zpool.cache"; 5393 5394 ztest_random_fd = open("/dev/urandom", O_RDONLY); 5395 5396 process_options(argc, argv); 5397 5398 /* 5399 * Blow away any existing copy of zpool.cache 5400 */ 5401 if (zopt_init != 0) 5402 (void) remove("/tmp/zpool.cache"); 5403 5404 shared_size = sizeof (*zs) + zopt_datasets * sizeof (ztest_ds_t); 5405 5406 zs = ztest_shared = (void *)mmap(0, 5407 P2ROUNDUP(shared_size, getpagesize()), 5408 PROT_READ | PROT_WRITE, MAP_SHARED | MAP_ANON, -1, 0); 5409 5410 if (zopt_verbose >= 1) { 5411 (void) printf("%llu vdevs, %d datasets, %d threads," 5412 " %llu seconds...\n", 5413 (u_longlong_t)zopt_vdevs, zopt_datasets, zopt_threads, 5414 (u_longlong_t)zopt_time); 5415 } 5416 5417 /* 5418 * Create and initialize our storage pool. 5419 */ 5420 for (int i = 1; i <= zopt_init; i++) { 5421 bzero(zs, sizeof (ztest_shared_t)); 5422 if (zopt_verbose >= 3 && zopt_init != 1) 5423 (void) printf("ztest_init(), pass %d\n", i); 5424 zs->zs_pool = zopt_pool; 5425 ztest_init(zs); 5426 } 5427 5428 zs->zs_pool = zopt_pool; 5429 zs->zs_proc_start = gethrtime(); 5430 zs->zs_proc_stop = zs->zs_proc_start + zopt_time * NANOSEC; 5431 5432 for (int f = 0; f < ZTEST_FUNCS; f++) { 5433 zi = &zs->zs_info[f]; 5434 *zi = ztest_info[f]; 5435 if (zs->zs_proc_start + zi->zi_interval[0] > zs->zs_proc_stop) 5436 zi->zi_call_next = UINT64_MAX; 5437 else 5438 zi->zi_call_next = zs->zs_proc_start + 5439 ztest_random(2 * zi->zi_interval[0] + 1); 5440 } 5441 5442 /* 5443 * Run the tests in a loop. These tests include fault injection 5444 * to verify that self-healing data works, and forced crashes 5445 * to verify that we never lose on-disk consistency. 5446 */ 5447 while (gethrtime() < zs->zs_proc_stop) { 5448 int status; 5449 pid_t pid; 5450 5451 /* 5452 * Initialize the workload counters for each function. 5453 */ 5454 for (int f = 0; f < ZTEST_FUNCS; f++) { 5455 zi = &zs->zs_info[f]; 5456 zi->zi_call_count = 0; 5457 zi->zi_call_time = 0; 5458 } 5459 5460 /* Set the allocation switch size */ 5461 metaslab_df_alloc_threshold = ztest_random(metaslab_sz / 4) + 1; 5462 5463 pid = fork(); 5464 5465 if (pid == -1) 5466 fatal(1, "fork failed"); 5467 5468 if (pid == 0) { /* child */ 5469 struct rlimit rl = { 1024, 1024 }; 5470 (void) setrlimit(RLIMIT_NOFILE, &rl); 5471 (void) enable_extended_FILE_stdio(-1, -1); 5472 ztest_run(zs); 5473 exit(0); 5474 } 5475 5476 while (waitpid(pid, &status, 0) != pid) 5477 continue; 5478 5479 if (WIFEXITED(status)) { 5480 if (WEXITSTATUS(status) != 0) { 5481 (void) fprintf(stderr, 5482 "child exited with code %d\n", 5483 WEXITSTATUS(status)); 5484 exit(2); 5485 } 5486 } else if (WIFSIGNALED(status)) { 5487 if (WTERMSIG(status) != SIGKILL) { 5488 (void) fprintf(stderr, 5489 "child died with signal %d\n", 5490 WTERMSIG(status)); 5491 exit(3); 5492 } 5493 kills++; 5494 } else { 5495 (void) fprintf(stderr, "something strange happened " 5496 "to child\n"); 5497 exit(4); 5498 } 5499 5500 iters++; 5501 5502 if (zopt_verbose >= 1) { 5503 hrtime_t now = gethrtime(); 5504 5505 now = MIN(now, zs->zs_proc_stop); 5506 print_time(zs->zs_proc_stop - now, timebuf); 5507 nicenum(zs->zs_space, numbuf); 5508 5509 (void) printf("Pass %3d, %8s, %3llu ENOSPC, " 5510 "%4.1f%% of %5s used, %3.0f%% done, %8s to go\n", 5511 iters, 5512 WIFEXITED(status) ? "Complete" : "SIGKILL", 5513 (u_longlong_t)zs->zs_enospc_count, 5514 100.0 * zs->zs_alloc / zs->zs_space, 5515 numbuf, 5516 100.0 * (now - zs->zs_proc_start) / 5517 (zopt_time * NANOSEC), timebuf); 5518 } 5519 5520 if (zopt_verbose >= 2) { 5521 (void) printf("\nWorkload summary:\n\n"); 5522 (void) printf("%7s %9s %s\n", 5523 "Calls", "Time", "Function"); 5524 (void) printf("%7s %9s %s\n", 5525 "-----", "----", "--------"); 5526 for (int f = 0; f < ZTEST_FUNCS; f++) { 5527 Dl_info dli; 5528 5529 zi = &zs->zs_info[f]; 5530 print_time(zi->zi_call_time, timebuf); 5531 (void) dladdr((void *)zi->zi_func, &dli); 5532 (void) printf("%7llu %9s %s\n", 5533 (u_longlong_t)zi->zi_call_count, timebuf, 5534 dli.dli_sname); 5535 } 5536 (void) printf("\n"); 5537 } 5538 5539 /* 5540 * It's possible that we killed a child during a rename test, 5541 * in which case we'll have a 'ztest_tmp' pool lying around 5542 * instead of 'ztest'. Do a blind rename in case this happened. 5543 */ 5544 kernel_init(FREAD); 5545 if (spa_open(zopt_pool, &spa, FTAG) == 0) { 5546 spa_close(spa, FTAG); 5547 } else { 5548 char tmpname[MAXNAMELEN]; 5549 kernel_fini(); 5550 kernel_init(FREAD | FWRITE); 5551 (void) snprintf(tmpname, sizeof (tmpname), "%s_tmp", 5552 zopt_pool); 5553 (void) spa_rename(tmpname, zopt_pool); 5554 } 5555 kernel_fini(); 5556 5557 ztest_run_zdb(zopt_pool); 5558 } 5559 5560 if (zopt_verbose >= 1) { 5561 (void) printf("%d killed, %d completed, %.0f%% kill rate\n", 5562 kills, iters - kills, (100.0 * kills) / MAX(1, iters)); 5563 } 5564 5565 return (0); 5566 } 5567