1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2011, 2015 by Delphix. All rights reserved. 24 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 25 * Copyright (c) 2013 Steven Hartland. All rights reserved. 26 */ 27 28 /* 29 * The objective of this program is to provide a DMU/ZAP/SPA stress test 30 * that runs entirely in userland, is easy to use, and easy to extend. 31 * 32 * The overall design of the ztest program is as follows: 33 * 34 * (1) For each major functional area (e.g. adding vdevs to a pool, 35 * creating and destroying datasets, reading and writing objects, etc) 36 * we have a simple routine to test that functionality. These 37 * individual routines do not have to do anything "stressful". 38 * 39 * (2) We turn these simple functionality tests into a stress test by 40 * running them all in parallel, with as many threads as desired, 41 * and spread across as many datasets, objects, and vdevs as desired. 42 * 43 * (3) While all this is happening, we inject faults into the pool to 44 * verify that self-healing data really works. 45 * 46 * (4) Every time we open a dataset, we change its checksum and compression 47 * functions. Thus even individual objects vary from block to block 48 * in which checksum they use and whether they're compressed. 49 * 50 * (5) To verify that we never lose on-disk consistency after a crash, 51 * we run the entire test in a child of the main process. 52 * At random times, the child self-immolates with a SIGKILL. 53 * This is the software equivalent of pulling the power cord. 54 * The parent then runs the test again, using the existing 55 * storage pool, as many times as desired. If backwards compatibility 56 * testing is enabled ztest will sometimes run the "older" version 57 * of ztest after a SIGKILL. 58 * 59 * (6) To verify that we don't have future leaks or temporal incursions, 60 * many of the functional tests record the transaction group number 61 * as part of their data. When reading old data, they verify that 62 * the transaction group number is less than the current, open txg. 63 * If you add a new test, please do this if applicable. 64 * 65 * When run with no arguments, ztest runs for about five minutes and 66 * produces no output if successful. To get a little bit of information, 67 * specify -V. To get more information, specify -VV, and so on. 68 * 69 * To turn this into an overnight stress test, use -T to specify run time. 70 * 71 * You can ask more more vdevs [-v], datasets [-d], or threads [-t] 72 * to increase the pool capacity, fanout, and overall stress level. 73 * 74 * Use the -k option to set the desired frequency of kills. 75 * 76 * When ztest invokes itself it passes all relevant information through a 77 * temporary file which is mmap-ed in the child process. This allows shared 78 * memory to survive the exec syscall. The ztest_shared_hdr_t struct is always 79 * stored at offset 0 of this file and contains information on the size and 80 * number of shared structures in the file. The information stored in this file 81 * must remain backwards compatible with older versions of ztest so that 82 * ztest can invoke them during backwards compatibility testing (-B). 83 */ 84 85 #include <sys/zfs_context.h> 86 #include <sys/spa.h> 87 #include <sys/dmu.h> 88 #include <sys/txg.h> 89 #include <sys/dbuf.h> 90 #include <sys/zap.h> 91 #include <sys/dmu_objset.h> 92 #include <sys/poll.h> 93 #include <sys/stat.h> 94 #include <sys/time.h> 95 #include <sys/wait.h> 96 #include <sys/mman.h> 97 #include <sys/resource.h> 98 #include <sys/zio.h> 99 #include <sys/zil.h> 100 #include <sys/zil_impl.h> 101 #include <sys/vdev_impl.h> 102 #include <sys/vdev_file.h> 103 #include <sys/spa_impl.h> 104 #include <sys/metaslab_impl.h> 105 #include <sys/dsl_prop.h> 106 #include <sys/dsl_dataset.h> 107 #include <sys/dsl_destroy.h> 108 #include <sys/dsl_scan.h> 109 #include <sys/zio_checksum.h> 110 #include <sys/refcount.h> 111 #include <sys/zfeature.h> 112 #include <sys/dsl_userhold.h> 113 #include <stdio.h> 114 #include <stdio_ext.h> 115 #include <stdlib.h> 116 #include <unistd.h> 117 #include <signal.h> 118 #include <umem.h> 119 #include <dlfcn.h> 120 #include <ctype.h> 121 #include <math.h> 122 #include <sys/fs/zfs.h> 123 #include <libnvpair.h> 124 125 static int ztest_fd_data = -1; 126 static int ztest_fd_rand = -1; 127 128 typedef struct ztest_shared_hdr { 129 uint64_t zh_hdr_size; 130 uint64_t zh_opts_size; 131 uint64_t zh_size; 132 uint64_t zh_stats_size; 133 uint64_t zh_stats_count; 134 uint64_t zh_ds_size; 135 uint64_t zh_ds_count; 136 } ztest_shared_hdr_t; 137 138 static ztest_shared_hdr_t *ztest_shared_hdr; 139 140 typedef struct ztest_shared_opts { 141 char zo_pool[MAXNAMELEN]; 142 char zo_dir[MAXNAMELEN]; 143 char zo_alt_ztest[MAXNAMELEN]; 144 char zo_alt_libpath[MAXNAMELEN]; 145 uint64_t zo_vdevs; 146 uint64_t zo_vdevtime; 147 size_t zo_vdev_size; 148 int zo_ashift; 149 int zo_mirrors; 150 int zo_raidz; 151 int zo_raidz_parity; 152 int zo_datasets; 153 int zo_threads; 154 uint64_t zo_passtime; 155 uint64_t zo_killrate; 156 int zo_verbose; 157 int zo_init; 158 uint64_t zo_time; 159 uint64_t zo_maxloops; 160 uint64_t zo_metaslab_gang_bang; 161 } ztest_shared_opts_t; 162 163 static const ztest_shared_opts_t ztest_opts_defaults = { 164 .zo_pool = { 'z', 't', 'e', 's', 't', '\0' }, 165 .zo_dir = { '/', 't', 'm', 'p', '\0' }, 166 .zo_alt_ztest = { '\0' }, 167 .zo_alt_libpath = { '\0' }, 168 .zo_vdevs = 5, 169 .zo_ashift = SPA_MINBLOCKSHIFT, 170 .zo_mirrors = 2, 171 .zo_raidz = 4, 172 .zo_raidz_parity = 1, 173 .zo_vdev_size = SPA_MINDEVSIZE * 2, 174 .zo_datasets = 7, 175 .zo_threads = 23, 176 .zo_passtime = 60, /* 60 seconds */ 177 .zo_killrate = 70, /* 70% kill rate */ 178 .zo_verbose = 0, 179 .zo_init = 1, 180 .zo_time = 300, /* 5 minutes */ 181 .zo_maxloops = 50, /* max loops during spa_freeze() */ 182 .zo_metaslab_gang_bang = 32 << 10 183 }; 184 185 extern uint64_t metaslab_gang_bang; 186 extern uint64_t metaslab_df_alloc_threshold; 187 extern uint64_t zfs_deadman_synctime_ms; 188 extern int metaslab_preload_limit; 189 190 static ztest_shared_opts_t *ztest_shared_opts; 191 static ztest_shared_opts_t ztest_opts; 192 193 typedef struct ztest_shared_ds { 194 uint64_t zd_seq; 195 } ztest_shared_ds_t; 196 197 static ztest_shared_ds_t *ztest_shared_ds; 198 #define ZTEST_GET_SHARED_DS(d) (&ztest_shared_ds[d]) 199 200 #define BT_MAGIC 0x123456789abcdefULL 201 #define MAXFAULTS() \ 202 (MAX(zs->zs_mirrors, 1) * (ztest_opts.zo_raidz_parity + 1) - 1) 203 204 enum ztest_io_type { 205 ZTEST_IO_WRITE_TAG, 206 ZTEST_IO_WRITE_PATTERN, 207 ZTEST_IO_WRITE_ZEROES, 208 ZTEST_IO_TRUNCATE, 209 ZTEST_IO_SETATTR, 210 ZTEST_IO_REWRITE, 211 ZTEST_IO_TYPES 212 }; 213 214 typedef struct ztest_block_tag { 215 uint64_t bt_magic; 216 uint64_t bt_objset; 217 uint64_t bt_object; 218 uint64_t bt_offset; 219 uint64_t bt_gen; 220 uint64_t bt_txg; 221 uint64_t bt_crtxg; 222 } ztest_block_tag_t; 223 224 typedef struct bufwad { 225 uint64_t bw_index; 226 uint64_t bw_txg; 227 uint64_t bw_data; 228 } bufwad_t; 229 230 /* 231 * XXX -- fix zfs range locks to be generic so we can use them here. 232 */ 233 typedef enum { 234 RL_READER, 235 RL_WRITER, 236 RL_APPEND 237 } rl_type_t; 238 239 typedef struct rll { 240 void *rll_writer; 241 int rll_readers; 242 mutex_t rll_lock; 243 cond_t rll_cv; 244 } rll_t; 245 246 typedef struct rl { 247 uint64_t rl_object; 248 uint64_t rl_offset; 249 uint64_t rl_size; 250 rll_t *rl_lock; 251 } rl_t; 252 253 #define ZTEST_RANGE_LOCKS 64 254 #define ZTEST_OBJECT_LOCKS 64 255 256 /* 257 * Object descriptor. Used as a template for object lookup/create/remove. 258 */ 259 typedef struct ztest_od { 260 uint64_t od_dir; 261 uint64_t od_object; 262 dmu_object_type_t od_type; 263 dmu_object_type_t od_crtype; 264 uint64_t od_blocksize; 265 uint64_t od_crblocksize; 266 uint64_t od_gen; 267 uint64_t od_crgen; 268 char od_name[MAXNAMELEN]; 269 } ztest_od_t; 270 271 /* 272 * Per-dataset state. 273 */ 274 typedef struct ztest_ds { 275 ztest_shared_ds_t *zd_shared; 276 objset_t *zd_os; 277 rwlock_t zd_zilog_lock; 278 zilog_t *zd_zilog; 279 ztest_od_t *zd_od; /* debugging aid */ 280 char zd_name[MAXNAMELEN]; 281 mutex_t zd_dirobj_lock; 282 rll_t zd_object_lock[ZTEST_OBJECT_LOCKS]; 283 rll_t zd_range_lock[ZTEST_RANGE_LOCKS]; 284 } ztest_ds_t; 285 286 /* 287 * Per-iteration state. 288 */ 289 typedef void ztest_func_t(ztest_ds_t *zd, uint64_t id); 290 291 typedef struct ztest_info { 292 ztest_func_t *zi_func; /* test function */ 293 uint64_t zi_iters; /* iterations per execution */ 294 uint64_t *zi_interval; /* execute every <interval> seconds */ 295 } ztest_info_t; 296 297 typedef struct ztest_shared_callstate { 298 uint64_t zc_count; /* per-pass count */ 299 uint64_t zc_time; /* per-pass time */ 300 uint64_t zc_next; /* next time to call this function */ 301 } ztest_shared_callstate_t; 302 303 static ztest_shared_callstate_t *ztest_shared_callstate; 304 #define ZTEST_GET_SHARED_CALLSTATE(c) (&ztest_shared_callstate[c]) 305 306 /* 307 * Note: these aren't static because we want dladdr() to work. 308 */ 309 ztest_func_t ztest_dmu_read_write; 310 ztest_func_t ztest_dmu_write_parallel; 311 ztest_func_t ztest_dmu_object_alloc_free; 312 ztest_func_t ztest_dmu_commit_callbacks; 313 ztest_func_t ztest_zap; 314 ztest_func_t ztest_zap_parallel; 315 ztest_func_t ztest_zil_commit; 316 ztest_func_t ztest_zil_remount; 317 ztest_func_t ztest_dmu_read_write_zcopy; 318 ztest_func_t ztest_dmu_objset_create_destroy; 319 ztest_func_t ztest_dmu_prealloc; 320 ztest_func_t ztest_fzap; 321 ztest_func_t ztest_dmu_snapshot_create_destroy; 322 ztest_func_t ztest_dsl_prop_get_set; 323 ztest_func_t ztest_spa_prop_get_set; 324 ztest_func_t ztest_spa_create_destroy; 325 ztest_func_t ztest_fault_inject; 326 ztest_func_t ztest_ddt_repair; 327 ztest_func_t ztest_dmu_snapshot_hold; 328 ztest_func_t ztest_spa_rename; 329 ztest_func_t ztest_scrub; 330 ztest_func_t ztest_dsl_dataset_promote_busy; 331 ztest_func_t ztest_vdev_attach_detach; 332 ztest_func_t ztest_vdev_LUN_growth; 333 ztest_func_t ztest_vdev_add_remove; 334 ztest_func_t ztest_vdev_aux_add_remove; 335 ztest_func_t ztest_split_pool; 336 ztest_func_t ztest_reguid; 337 ztest_func_t ztest_spa_upgrade; 338 339 uint64_t zopt_always = 0ULL * NANOSEC; /* all the time */ 340 uint64_t zopt_incessant = 1ULL * NANOSEC / 10; /* every 1/10 second */ 341 uint64_t zopt_often = 1ULL * NANOSEC; /* every second */ 342 uint64_t zopt_sometimes = 10ULL * NANOSEC; /* every 10 seconds */ 343 uint64_t zopt_rarely = 60ULL * NANOSEC; /* every 60 seconds */ 344 345 ztest_info_t ztest_info[] = { 346 { ztest_dmu_read_write, 1, &zopt_always }, 347 { ztest_dmu_write_parallel, 10, &zopt_always }, 348 { ztest_dmu_object_alloc_free, 1, &zopt_always }, 349 { ztest_dmu_commit_callbacks, 1, &zopt_always }, 350 { ztest_zap, 30, &zopt_always }, 351 { ztest_zap_parallel, 100, &zopt_always }, 352 { ztest_split_pool, 1, &zopt_always }, 353 { ztest_zil_commit, 1, &zopt_incessant }, 354 { ztest_zil_remount, 1, &zopt_sometimes }, 355 { ztest_dmu_read_write_zcopy, 1, &zopt_often }, 356 { ztest_dmu_objset_create_destroy, 1, &zopt_often }, 357 { ztest_dsl_prop_get_set, 1, &zopt_often }, 358 { ztest_spa_prop_get_set, 1, &zopt_sometimes }, 359 #if 0 360 { ztest_dmu_prealloc, 1, &zopt_sometimes }, 361 #endif 362 { ztest_fzap, 1, &zopt_sometimes }, 363 { ztest_dmu_snapshot_create_destroy, 1, &zopt_sometimes }, 364 { ztest_spa_create_destroy, 1, &zopt_sometimes }, 365 { ztest_fault_inject, 1, &zopt_sometimes }, 366 { ztest_ddt_repair, 1, &zopt_sometimes }, 367 { ztest_dmu_snapshot_hold, 1, &zopt_sometimes }, 368 { ztest_reguid, 1, &zopt_rarely }, 369 { ztest_spa_rename, 1, &zopt_rarely }, 370 { ztest_scrub, 1, &zopt_rarely }, 371 { ztest_spa_upgrade, 1, &zopt_rarely }, 372 { ztest_dsl_dataset_promote_busy, 1, &zopt_rarely }, 373 { ztest_vdev_attach_detach, 1, &zopt_sometimes }, 374 { ztest_vdev_LUN_growth, 1, &zopt_rarely }, 375 { ztest_vdev_add_remove, 1, 376 &ztest_opts.zo_vdevtime }, 377 { ztest_vdev_aux_add_remove, 1, 378 &ztest_opts.zo_vdevtime }, 379 }; 380 381 #define ZTEST_FUNCS (sizeof (ztest_info) / sizeof (ztest_info_t)) 382 383 /* 384 * The following struct is used to hold a list of uncalled commit callbacks. 385 * The callbacks are ordered by txg number. 386 */ 387 typedef struct ztest_cb_list { 388 mutex_t zcl_callbacks_lock; 389 list_t zcl_callbacks; 390 } ztest_cb_list_t; 391 392 /* 393 * Stuff we need to share writably between parent and child. 394 */ 395 typedef struct ztest_shared { 396 boolean_t zs_do_init; 397 hrtime_t zs_proc_start; 398 hrtime_t zs_proc_stop; 399 hrtime_t zs_thread_start; 400 hrtime_t zs_thread_stop; 401 hrtime_t zs_thread_kill; 402 uint64_t zs_enospc_count; 403 uint64_t zs_vdev_next_leaf; 404 uint64_t zs_vdev_aux; 405 uint64_t zs_alloc; 406 uint64_t zs_space; 407 uint64_t zs_splits; 408 uint64_t zs_mirrors; 409 uint64_t zs_metaslab_sz; 410 uint64_t zs_metaslab_df_alloc_threshold; 411 uint64_t zs_guid; 412 } ztest_shared_t; 413 414 #define ID_PARALLEL -1ULL 415 416 static char ztest_dev_template[] = "%s/%s.%llua"; 417 static char ztest_aux_template[] = "%s/%s.%s.%llu"; 418 ztest_shared_t *ztest_shared; 419 420 static spa_t *ztest_spa = NULL; 421 static ztest_ds_t *ztest_ds; 422 423 static mutex_t ztest_vdev_lock; 424 425 /* 426 * The ztest_name_lock protects the pool and dataset namespace used by 427 * the individual tests. To modify the namespace, consumers must grab 428 * this lock as writer. Grabbing the lock as reader will ensure that the 429 * namespace does not change while the lock is held. 430 */ 431 static rwlock_t ztest_name_lock; 432 433 static boolean_t ztest_dump_core = B_TRUE; 434 static boolean_t ztest_exiting; 435 436 /* Global commit callback list */ 437 static ztest_cb_list_t zcl; 438 439 enum ztest_object { 440 ZTEST_META_DNODE = 0, 441 ZTEST_DIROBJ, 442 ZTEST_OBJECTS 443 }; 444 445 static void usage(boolean_t) __NORETURN; 446 447 /* 448 * These libumem hooks provide a reasonable set of defaults for the allocator's 449 * debugging facilities. 450 */ 451 const char * 452 _umem_debug_init() 453 { 454 return ("default,verbose"); /* $UMEM_DEBUG setting */ 455 } 456 457 const char * 458 _umem_logging_init(void) 459 { 460 return ("fail,contents"); /* $UMEM_LOGGING setting */ 461 } 462 463 #define FATAL_MSG_SZ 1024 464 465 char *fatal_msg; 466 467 static void 468 fatal(int do_perror, char *message, ...) 469 { 470 va_list args; 471 int save_errno = errno; 472 char buf[FATAL_MSG_SZ]; 473 474 (void) fflush(stdout); 475 476 va_start(args, message); 477 (void) sprintf(buf, "ztest: "); 478 /* LINTED */ 479 (void) vsprintf(buf + strlen(buf), message, args); 480 va_end(args); 481 if (do_perror) { 482 (void) snprintf(buf + strlen(buf), FATAL_MSG_SZ - strlen(buf), 483 ": %s", strerror(save_errno)); 484 } 485 (void) fprintf(stderr, "%s\n", buf); 486 fatal_msg = buf; /* to ease debugging */ 487 if (ztest_dump_core) 488 abort(); 489 exit(3); 490 } 491 492 static int 493 str2shift(const char *buf) 494 { 495 const char *ends = "BKMGTPEZ"; 496 int i; 497 498 if (buf[0] == '\0') 499 return (0); 500 for (i = 0; i < strlen(ends); i++) { 501 if (toupper(buf[0]) == ends[i]) 502 break; 503 } 504 if (i == strlen(ends)) { 505 (void) fprintf(stderr, "ztest: invalid bytes suffix: %s\n", 506 buf); 507 usage(B_FALSE); 508 } 509 if (buf[1] == '\0' || (toupper(buf[1]) == 'B' && buf[2] == '\0')) { 510 return (10*i); 511 } 512 (void) fprintf(stderr, "ztest: invalid bytes suffix: %s\n", buf); 513 usage(B_FALSE); 514 /* NOTREACHED */ 515 } 516 517 static uint64_t 518 nicenumtoull(const char *buf) 519 { 520 char *end; 521 uint64_t val; 522 523 val = strtoull(buf, &end, 0); 524 if (end == buf) { 525 (void) fprintf(stderr, "ztest: bad numeric value: %s\n", buf); 526 usage(B_FALSE); 527 } else if (end[0] == '.') { 528 double fval = strtod(buf, &end); 529 fval *= pow(2, str2shift(end)); 530 if (fval > UINT64_MAX) { 531 (void) fprintf(stderr, "ztest: value too large: %s\n", 532 buf); 533 usage(B_FALSE); 534 } 535 val = (uint64_t)fval; 536 } else { 537 int shift = str2shift(end); 538 if (shift >= 64 || (val << shift) >> shift != val) { 539 (void) fprintf(stderr, "ztest: value too large: %s\n", 540 buf); 541 usage(B_FALSE); 542 } 543 val <<= shift; 544 } 545 return (val); 546 } 547 548 static void 549 usage(boolean_t requested) 550 { 551 const ztest_shared_opts_t *zo = &ztest_opts_defaults; 552 553 char nice_vdev_size[10]; 554 char nice_gang_bang[10]; 555 FILE *fp = requested ? stdout : stderr; 556 557 nicenum(zo->zo_vdev_size, nice_vdev_size); 558 nicenum(zo->zo_metaslab_gang_bang, nice_gang_bang); 559 560 (void) fprintf(fp, "Usage: %s\n" 561 "\t[-v vdevs (default: %llu)]\n" 562 "\t[-s size_of_each_vdev (default: %s)]\n" 563 "\t[-a alignment_shift (default: %d)] use 0 for random\n" 564 "\t[-m mirror_copies (default: %d)]\n" 565 "\t[-r raidz_disks (default: %d)]\n" 566 "\t[-R raidz_parity (default: %d)]\n" 567 "\t[-d datasets (default: %d)]\n" 568 "\t[-t threads (default: %d)]\n" 569 "\t[-g gang_block_threshold (default: %s)]\n" 570 "\t[-i init_count (default: %d)] initialize pool i times\n" 571 "\t[-k kill_percentage (default: %llu%%)]\n" 572 "\t[-p pool_name (default: %s)]\n" 573 "\t[-f dir (default: %s)] file directory for vdev files\n" 574 "\t[-V] verbose (use multiple times for ever more blather)\n" 575 "\t[-E] use existing pool instead of creating new one\n" 576 "\t[-T time (default: %llu sec)] total run time\n" 577 "\t[-F freezeloops (default: %llu)] max loops in spa_freeze()\n" 578 "\t[-P passtime (default: %llu sec)] time per pass\n" 579 "\t[-B alt_ztest (default: <none>)] alternate ztest path\n" 580 "\t[-h] (print help)\n" 581 "", 582 zo->zo_pool, 583 (u_longlong_t)zo->zo_vdevs, /* -v */ 584 nice_vdev_size, /* -s */ 585 zo->zo_ashift, /* -a */ 586 zo->zo_mirrors, /* -m */ 587 zo->zo_raidz, /* -r */ 588 zo->zo_raidz_parity, /* -R */ 589 zo->zo_datasets, /* -d */ 590 zo->zo_threads, /* -t */ 591 nice_gang_bang, /* -g */ 592 zo->zo_init, /* -i */ 593 (u_longlong_t)zo->zo_killrate, /* -k */ 594 zo->zo_pool, /* -p */ 595 zo->zo_dir, /* -f */ 596 (u_longlong_t)zo->zo_time, /* -T */ 597 (u_longlong_t)zo->zo_maxloops, /* -F */ 598 (u_longlong_t)zo->zo_passtime); 599 exit(requested ? 0 : 1); 600 } 601 602 static void 603 process_options(int argc, char **argv) 604 { 605 char *path; 606 ztest_shared_opts_t *zo = &ztest_opts; 607 608 int opt; 609 uint64_t value; 610 char altdir[MAXNAMELEN] = { 0 }; 611 612 bcopy(&ztest_opts_defaults, zo, sizeof (*zo)); 613 614 while ((opt = getopt(argc, argv, 615 "v:s:a:m:r:R:d:t:g:i:k:p:f:VET:P:hF:B:")) != EOF) { 616 value = 0; 617 switch (opt) { 618 case 'v': 619 case 's': 620 case 'a': 621 case 'm': 622 case 'r': 623 case 'R': 624 case 'd': 625 case 't': 626 case 'g': 627 case 'i': 628 case 'k': 629 case 'T': 630 case 'P': 631 case 'F': 632 value = nicenumtoull(optarg); 633 } 634 switch (opt) { 635 case 'v': 636 zo->zo_vdevs = value; 637 break; 638 case 's': 639 zo->zo_vdev_size = MAX(SPA_MINDEVSIZE, value); 640 break; 641 case 'a': 642 zo->zo_ashift = value; 643 break; 644 case 'm': 645 zo->zo_mirrors = value; 646 break; 647 case 'r': 648 zo->zo_raidz = MAX(1, value); 649 break; 650 case 'R': 651 zo->zo_raidz_parity = MIN(MAX(value, 1), 3); 652 break; 653 case 'd': 654 zo->zo_datasets = MAX(1, value); 655 break; 656 case 't': 657 zo->zo_threads = MAX(1, value); 658 break; 659 case 'g': 660 zo->zo_metaslab_gang_bang = MAX(SPA_MINBLOCKSIZE << 1, 661 value); 662 break; 663 case 'i': 664 zo->zo_init = value; 665 break; 666 case 'k': 667 zo->zo_killrate = value; 668 break; 669 case 'p': 670 (void) strlcpy(zo->zo_pool, optarg, 671 sizeof (zo->zo_pool)); 672 break; 673 case 'f': 674 path = realpath(optarg, NULL); 675 if (path == NULL) { 676 (void) fprintf(stderr, "error: %s: %s\n", 677 optarg, strerror(errno)); 678 usage(B_FALSE); 679 } else { 680 (void) strlcpy(zo->zo_dir, path, 681 sizeof (zo->zo_dir)); 682 } 683 break; 684 case 'V': 685 zo->zo_verbose++; 686 break; 687 case 'E': 688 zo->zo_init = 0; 689 break; 690 case 'T': 691 zo->zo_time = value; 692 break; 693 case 'P': 694 zo->zo_passtime = MAX(1, value); 695 break; 696 case 'F': 697 zo->zo_maxloops = MAX(1, value); 698 break; 699 case 'B': 700 (void) strlcpy(altdir, optarg, sizeof (altdir)); 701 break; 702 case 'h': 703 usage(B_TRUE); 704 break; 705 case '?': 706 default: 707 usage(B_FALSE); 708 break; 709 } 710 } 711 712 zo->zo_raidz_parity = MIN(zo->zo_raidz_parity, zo->zo_raidz - 1); 713 714 zo->zo_vdevtime = 715 (zo->zo_vdevs > 0 ? zo->zo_time * NANOSEC / zo->zo_vdevs : 716 UINT64_MAX >> 2); 717 718 if (strlen(altdir) > 0) { 719 char *cmd; 720 char *realaltdir; 721 char *bin; 722 char *ztest; 723 char *isa; 724 int isalen; 725 726 cmd = umem_alloc(MAXPATHLEN, UMEM_NOFAIL); 727 realaltdir = umem_alloc(MAXPATHLEN, UMEM_NOFAIL); 728 729 VERIFY(NULL != realpath(getexecname(), cmd)); 730 if (0 != access(altdir, F_OK)) { 731 ztest_dump_core = B_FALSE; 732 fatal(B_TRUE, "invalid alternate ztest path: %s", 733 altdir); 734 } 735 VERIFY(NULL != realpath(altdir, realaltdir)); 736 737 /* 738 * 'cmd' should be of the form "<anything>/usr/bin/<isa>/ztest". 739 * We want to extract <isa> to determine if we should use 740 * 32 or 64 bit binaries. 741 */ 742 bin = strstr(cmd, "/usr/bin/"); 743 ztest = strstr(bin, "/ztest"); 744 isa = bin + 9; 745 isalen = ztest - isa; 746 (void) snprintf(zo->zo_alt_ztest, sizeof (zo->zo_alt_ztest), 747 "%s/usr/bin/%.*s/ztest", realaltdir, isalen, isa); 748 (void) snprintf(zo->zo_alt_libpath, sizeof (zo->zo_alt_libpath), 749 "%s/usr/lib/%.*s", realaltdir, isalen, isa); 750 751 if (0 != access(zo->zo_alt_ztest, X_OK)) { 752 ztest_dump_core = B_FALSE; 753 fatal(B_TRUE, "invalid alternate ztest: %s", 754 zo->zo_alt_ztest); 755 } else if (0 != access(zo->zo_alt_libpath, X_OK)) { 756 ztest_dump_core = B_FALSE; 757 fatal(B_TRUE, "invalid alternate lib directory %s", 758 zo->zo_alt_libpath); 759 } 760 761 umem_free(cmd, MAXPATHLEN); 762 umem_free(realaltdir, MAXPATHLEN); 763 } 764 } 765 766 static void 767 ztest_kill(ztest_shared_t *zs) 768 { 769 zs->zs_alloc = metaslab_class_get_alloc(spa_normal_class(ztest_spa)); 770 zs->zs_space = metaslab_class_get_space(spa_normal_class(ztest_spa)); 771 772 /* 773 * Before we kill off ztest, make sure that the config is updated. 774 * See comment above spa_config_sync(). 775 */ 776 mutex_enter(&spa_namespace_lock); 777 spa_config_sync(ztest_spa, B_FALSE, B_FALSE); 778 mutex_exit(&spa_namespace_lock); 779 780 zfs_dbgmsg_print(FTAG); 781 (void) kill(getpid(), SIGKILL); 782 } 783 784 static uint64_t 785 ztest_random(uint64_t range) 786 { 787 uint64_t r; 788 789 ASSERT3S(ztest_fd_rand, >=, 0); 790 791 if (range == 0) 792 return (0); 793 794 if (read(ztest_fd_rand, &r, sizeof (r)) != sizeof (r)) 795 fatal(1, "short read from /dev/urandom"); 796 797 return (r % range); 798 } 799 800 /* ARGSUSED */ 801 static void 802 ztest_record_enospc(const char *s) 803 { 804 ztest_shared->zs_enospc_count++; 805 } 806 807 static uint64_t 808 ztest_get_ashift(void) 809 { 810 if (ztest_opts.zo_ashift == 0) 811 return (SPA_MINBLOCKSHIFT + ztest_random(5)); 812 return (ztest_opts.zo_ashift); 813 } 814 815 static nvlist_t * 816 make_vdev_file(char *path, char *aux, char *pool, size_t size, uint64_t ashift) 817 { 818 char pathbuf[MAXPATHLEN]; 819 uint64_t vdev; 820 nvlist_t *file; 821 822 if (ashift == 0) 823 ashift = ztest_get_ashift(); 824 825 if (path == NULL) { 826 path = pathbuf; 827 828 if (aux != NULL) { 829 vdev = ztest_shared->zs_vdev_aux; 830 (void) snprintf(path, sizeof (pathbuf), 831 ztest_aux_template, ztest_opts.zo_dir, 832 pool == NULL ? ztest_opts.zo_pool : pool, 833 aux, vdev); 834 } else { 835 vdev = ztest_shared->zs_vdev_next_leaf++; 836 (void) snprintf(path, sizeof (pathbuf), 837 ztest_dev_template, ztest_opts.zo_dir, 838 pool == NULL ? ztest_opts.zo_pool : pool, vdev); 839 } 840 } 841 842 if (size != 0) { 843 int fd = open(path, O_RDWR | O_CREAT | O_TRUNC, 0666); 844 if (fd == -1) 845 fatal(1, "can't open %s", path); 846 if (ftruncate(fd, size) != 0) 847 fatal(1, "can't ftruncate %s", path); 848 (void) close(fd); 849 } 850 851 VERIFY(nvlist_alloc(&file, NV_UNIQUE_NAME, 0) == 0); 852 VERIFY(nvlist_add_string(file, ZPOOL_CONFIG_TYPE, VDEV_TYPE_FILE) == 0); 853 VERIFY(nvlist_add_string(file, ZPOOL_CONFIG_PATH, path) == 0); 854 VERIFY(nvlist_add_uint64(file, ZPOOL_CONFIG_ASHIFT, ashift) == 0); 855 856 return (file); 857 } 858 859 static nvlist_t * 860 make_vdev_raidz(char *path, char *aux, char *pool, size_t size, 861 uint64_t ashift, int r) 862 { 863 nvlist_t *raidz, **child; 864 int c; 865 866 if (r < 2) 867 return (make_vdev_file(path, aux, pool, size, ashift)); 868 child = umem_alloc(r * sizeof (nvlist_t *), UMEM_NOFAIL); 869 870 for (c = 0; c < r; c++) 871 child[c] = make_vdev_file(path, aux, pool, size, ashift); 872 873 VERIFY(nvlist_alloc(&raidz, NV_UNIQUE_NAME, 0) == 0); 874 VERIFY(nvlist_add_string(raidz, ZPOOL_CONFIG_TYPE, 875 VDEV_TYPE_RAIDZ) == 0); 876 VERIFY(nvlist_add_uint64(raidz, ZPOOL_CONFIG_NPARITY, 877 ztest_opts.zo_raidz_parity) == 0); 878 VERIFY(nvlist_add_nvlist_array(raidz, ZPOOL_CONFIG_CHILDREN, 879 child, r) == 0); 880 881 for (c = 0; c < r; c++) 882 nvlist_free(child[c]); 883 884 umem_free(child, r * sizeof (nvlist_t *)); 885 886 return (raidz); 887 } 888 889 static nvlist_t * 890 make_vdev_mirror(char *path, char *aux, char *pool, size_t size, 891 uint64_t ashift, int r, int m) 892 { 893 nvlist_t *mirror, **child; 894 int c; 895 896 if (m < 1) 897 return (make_vdev_raidz(path, aux, pool, size, ashift, r)); 898 899 child = umem_alloc(m * sizeof (nvlist_t *), UMEM_NOFAIL); 900 901 for (c = 0; c < m; c++) 902 child[c] = make_vdev_raidz(path, aux, pool, size, ashift, r); 903 904 VERIFY(nvlist_alloc(&mirror, NV_UNIQUE_NAME, 0) == 0); 905 VERIFY(nvlist_add_string(mirror, ZPOOL_CONFIG_TYPE, 906 VDEV_TYPE_MIRROR) == 0); 907 VERIFY(nvlist_add_nvlist_array(mirror, ZPOOL_CONFIG_CHILDREN, 908 child, m) == 0); 909 910 for (c = 0; c < m; c++) 911 nvlist_free(child[c]); 912 913 umem_free(child, m * sizeof (nvlist_t *)); 914 915 return (mirror); 916 } 917 918 static nvlist_t * 919 make_vdev_root(char *path, char *aux, char *pool, size_t size, uint64_t ashift, 920 int log, int r, int m, int t) 921 { 922 nvlist_t *root, **child; 923 int c; 924 925 ASSERT(t > 0); 926 927 child = umem_alloc(t * sizeof (nvlist_t *), UMEM_NOFAIL); 928 929 for (c = 0; c < t; c++) { 930 child[c] = make_vdev_mirror(path, aux, pool, size, ashift, 931 r, m); 932 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_IS_LOG, 933 log) == 0); 934 } 935 936 VERIFY(nvlist_alloc(&root, NV_UNIQUE_NAME, 0) == 0); 937 VERIFY(nvlist_add_string(root, ZPOOL_CONFIG_TYPE, VDEV_TYPE_ROOT) == 0); 938 VERIFY(nvlist_add_nvlist_array(root, aux ? aux : ZPOOL_CONFIG_CHILDREN, 939 child, t) == 0); 940 941 for (c = 0; c < t; c++) 942 nvlist_free(child[c]); 943 944 umem_free(child, t * sizeof (nvlist_t *)); 945 946 return (root); 947 } 948 949 /* 950 * Find a random spa version. Returns back a random spa version in the 951 * range [initial_version, SPA_VERSION_FEATURES]. 952 */ 953 static uint64_t 954 ztest_random_spa_version(uint64_t initial_version) 955 { 956 uint64_t version = initial_version; 957 958 if (version <= SPA_VERSION_BEFORE_FEATURES) { 959 version = version + 960 ztest_random(SPA_VERSION_BEFORE_FEATURES - version + 1); 961 } 962 963 if (version > SPA_VERSION_BEFORE_FEATURES) 964 version = SPA_VERSION_FEATURES; 965 966 ASSERT(SPA_VERSION_IS_SUPPORTED(version)); 967 return (version); 968 } 969 970 static int 971 ztest_random_blocksize(void) 972 { 973 uint64_t block_shift; 974 /* 975 * Choose a block size >= the ashift. 976 * If the SPA supports new MAXBLOCKSIZE, test up to 1MB blocks. 977 */ 978 int maxbs = SPA_OLD_MAXBLOCKSHIFT; 979 if (spa_maxblocksize(ztest_spa) == SPA_MAXBLOCKSIZE) 980 maxbs = 20; 981 block_shift = ztest_random(maxbs - ztest_spa->spa_max_ashift + 1); 982 return (1 << (SPA_MINBLOCKSHIFT + block_shift)); 983 } 984 985 static int 986 ztest_random_ibshift(void) 987 { 988 return (DN_MIN_INDBLKSHIFT + 989 ztest_random(DN_MAX_INDBLKSHIFT - DN_MIN_INDBLKSHIFT + 1)); 990 } 991 992 static uint64_t 993 ztest_random_vdev_top(spa_t *spa, boolean_t log_ok) 994 { 995 uint64_t top; 996 vdev_t *rvd = spa->spa_root_vdev; 997 vdev_t *tvd; 998 999 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); 1000 1001 do { 1002 top = ztest_random(rvd->vdev_children); 1003 tvd = rvd->vdev_child[top]; 1004 } while (tvd->vdev_ishole || (tvd->vdev_islog && !log_ok) || 1005 tvd->vdev_mg == NULL || tvd->vdev_mg->mg_class == NULL); 1006 1007 return (top); 1008 } 1009 1010 static uint64_t 1011 ztest_random_dsl_prop(zfs_prop_t prop) 1012 { 1013 uint64_t value; 1014 1015 do { 1016 value = zfs_prop_random_value(prop, ztest_random(-1ULL)); 1017 } while (prop == ZFS_PROP_CHECKSUM && value == ZIO_CHECKSUM_OFF); 1018 1019 return (value); 1020 } 1021 1022 static int 1023 ztest_dsl_prop_set_uint64(char *osname, zfs_prop_t prop, uint64_t value, 1024 boolean_t inherit) 1025 { 1026 const char *propname = zfs_prop_to_name(prop); 1027 const char *valname; 1028 char setpoint[MAXPATHLEN]; 1029 uint64_t curval; 1030 int error; 1031 1032 error = dsl_prop_set_int(osname, propname, 1033 (inherit ? ZPROP_SRC_NONE : ZPROP_SRC_LOCAL), value); 1034 1035 if (error == ENOSPC) { 1036 ztest_record_enospc(FTAG); 1037 return (error); 1038 } 1039 ASSERT0(error); 1040 1041 VERIFY0(dsl_prop_get_integer(osname, propname, &curval, setpoint)); 1042 1043 if (ztest_opts.zo_verbose >= 6) { 1044 VERIFY(zfs_prop_index_to_string(prop, curval, &valname) == 0); 1045 (void) printf("%s %s = %s at '%s'\n", 1046 osname, propname, valname, setpoint); 1047 } 1048 1049 return (error); 1050 } 1051 1052 static int 1053 ztest_spa_prop_set_uint64(zpool_prop_t prop, uint64_t value) 1054 { 1055 spa_t *spa = ztest_spa; 1056 nvlist_t *props = NULL; 1057 int error; 1058 1059 VERIFY(nvlist_alloc(&props, NV_UNIQUE_NAME, 0) == 0); 1060 VERIFY(nvlist_add_uint64(props, zpool_prop_to_name(prop), value) == 0); 1061 1062 error = spa_prop_set(spa, props); 1063 1064 nvlist_free(props); 1065 1066 if (error == ENOSPC) { 1067 ztest_record_enospc(FTAG); 1068 return (error); 1069 } 1070 ASSERT0(error); 1071 1072 return (error); 1073 } 1074 1075 static void 1076 ztest_rll_init(rll_t *rll) 1077 { 1078 rll->rll_writer = NULL; 1079 rll->rll_readers = 0; 1080 VERIFY(_mutex_init(&rll->rll_lock, USYNC_THREAD, NULL) == 0); 1081 VERIFY(cond_init(&rll->rll_cv, USYNC_THREAD, NULL) == 0); 1082 } 1083 1084 static void 1085 ztest_rll_destroy(rll_t *rll) 1086 { 1087 ASSERT(rll->rll_writer == NULL); 1088 ASSERT(rll->rll_readers == 0); 1089 VERIFY(_mutex_destroy(&rll->rll_lock) == 0); 1090 VERIFY(cond_destroy(&rll->rll_cv) == 0); 1091 } 1092 1093 static void 1094 ztest_rll_lock(rll_t *rll, rl_type_t type) 1095 { 1096 VERIFY(mutex_lock(&rll->rll_lock) == 0); 1097 1098 if (type == RL_READER) { 1099 while (rll->rll_writer != NULL) 1100 (void) cond_wait(&rll->rll_cv, &rll->rll_lock); 1101 rll->rll_readers++; 1102 } else { 1103 while (rll->rll_writer != NULL || rll->rll_readers) 1104 (void) cond_wait(&rll->rll_cv, &rll->rll_lock); 1105 rll->rll_writer = curthread; 1106 } 1107 1108 VERIFY(mutex_unlock(&rll->rll_lock) == 0); 1109 } 1110 1111 static void 1112 ztest_rll_unlock(rll_t *rll) 1113 { 1114 VERIFY(mutex_lock(&rll->rll_lock) == 0); 1115 1116 if (rll->rll_writer) { 1117 ASSERT(rll->rll_readers == 0); 1118 rll->rll_writer = NULL; 1119 } else { 1120 ASSERT(rll->rll_readers != 0); 1121 ASSERT(rll->rll_writer == NULL); 1122 rll->rll_readers--; 1123 } 1124 1125 if (rll->rll_writer == NULL && rll->rll_readers == 0) 1126 VERIFY(cond_broadcast(&rll->rll_cv) == 0); 1127 1128 VERIFY(mutex_unlock(&rll->rll_lock) == 0); 1129 } 1130 1131 static void 1132 ztest_object_lock(ztest_ds_t *zd, uint64_t object, rl_type_t type) 1133 { 1134 rll_t *rll = &zd->zd_object_lock[object & (ZTEST_OBJECT_LOCKS - 1)]; 1135 1136 ztest_rll_lock(rll, type); 1137 } 1138 1139 static void 1140 ztest_object_unlock(ztest_ds_t *zd, uint64_t object) 1141 { 1142 rll_t *rll = &zd->zd_object_lock[object & (ZTEST_OBJECT_LOCKS - 1)]; 1143 1144 ztest_rll_unlock(rll); 1145 } 1146 1147 static rl_t * 1148 ztest_range_lock(ztest_ds_t *zd, uint64_t object, uint64_t offset, 1149 uint64_t size, rl_type_t type) 1150 { 1151 uint64_t hash = object ^ (offset % (ZTEST_RANGE_LOCKS + 1)); 1152 rll_t *rll = &zd->zd_range_lock[hash & (ZTEST_RANGE_LOCKS - 1)]; 1153 rl_t *rl; 1154 1155 rl = umem_alloc(sizeof (*rl), UMEM_NOFAIL); 1156 rl->rl_object = object; 1157 rl->rl_offset = offset; 1158 rl->rl_size = size; 1159 rl->rl_lock = rll; 1160 1161 ztest_rll_lock(rll, type); 1162 1163 return (rl); 1164 } 1165 1166 static void 1167 ztest_range_unlock(rl_t *rl) 1168 { 1169 rll_t *rll = rl->rl_lock; 1170 1171 ztest_rll_unlock(rll); 1172 1173 umem_free(rl, sizeof (*rl)); 1174 } 1175 1176 static void 1177 ztest_zd_init(ztest_ds_t *zd, ztest_shared_ds_t *szd, objset_t *os) 1178 { 1179 zd->zd_os = os; 1180 zd->zd_zilog = dmu_objset_zil(os); 1181 zd->zd_shared = szd; 1182 dmu_objset_name(os, zd->zd_name); 1183 1184 if (zd->zd_shared != NULL) 1185 zd->zd_shared->zd_seq = 0; 1186 1187 VERIFY(rwlock_init(&zd->zd_zilog_lock, USYNC_THREAD, NULL) == 0); 1188 VERIFY(_mutex_init(&zd->zd_dirobj_lock, USYNC_THREAD, NULL) == 0); 1189 1190 for (int l = 0; l < ZTEST_OBJECT_LOCKS; l++) 1191 ztest_rll_init(&zd->zd_object_lock[l]); 1192 1193 for (int l = 0; l < ZTEST_RANGE_LOCKS; l++) 1194 ztest_rll_init(&zd->zd_range_lock[l]); 1195 } 1196 1197 static void 1198 ztest_zd_fini(ztest_ds_t *zd) 1199 { 1200 VERIFY(_mutex_destroy(&zd->zd_dirobj_lock) == 0); 1201 1202 for (int l = 0; l < ZTEST_OBJECT_LOCKS; l++) 1203 ztest_rll_destroy(&zd->zd_object_lock[l]); 1204 1205 for (int l = 0; l < ZTEST_RANGE_LOCKS; l++) 1206 ztest_rll_destroy(&zd->zd_range_lock[l]); 1207 } 1208 1209 #define TXG_MIGHTWAIT (ztest_random(10) == 0 ? TXG_NOWAIT : TXG_WAIT) 1210 1211 static uint64_t 1212 ztest_tx_assign(dmu_tx_t *tx, uint64_t txg_how, const char *tag) 1213 { 1214 uint64_t txg; 1215 int error; 1216 1217 /* 1218 * Attempt to assign tx to some transaction group. 1219 */ 1220 error = dmu_tx_assign(tx, txg_how); 1221 if (error) { 1222 if (error == ERESTART) { 1223 ASSERT(txg_how == TXG_NOWAIT); 1224 dmu_tx_wait(tx); 1225 } else { 1226 ASSERT3U(error, ==, ENOSPC); 1227 ztest_record_enospc(tag); 1228 } 1229 dmu_tx_abort(tx); 1230 return (0); 1231 } 1232 txg = dmu_tx_get_txg(tx); 1233 ASSERT(txg != 0); 1234 return (txg); 1235 } 1236 1237 static void 1238 ztest_pattern_set(void *buf, uint64_t size, uint64_t value) 1239 { 1240 uint64_t *ip = buf; 1241 uint64_t *ip_end = (uint64_t *)((uintptr_t)buf + (uintptr_t)size); 1242 1243 while (ip < ip_end) 1244 *ip++ = value; 1245 } 1246 1247 static boolean_t 1248 ztest_pattern_match(void *buf, uint64_t size, uint64_t value) 1249 { 1250 uint64_t *ip = buf; 1251 uint64_t *ip_end = (uint64_t *)((uintptr_t)buf + (uintptr_t)size); 1252 uint64_t diff = 0; 1253 1254 while (ip < ip_end) 1255 diff |= (value - *ip++); 1256 1257 return (diff == 0); 1258 } 1259 1260 static void 1261 ztest_bt_generate(ztest_block_tag_t *bt, objset_t *os, uint64_t object, 1262 uint64_t offset, uint64_t gen, uint64_t txg, uint64_t crtxg) 1263 { 1264 bt->bt_magic = BT_MAGIC; 1265 bt->bt_objset = dmu_objset_id(os); 1266 bt->bt_object = object; 1267 bt->bt_offset = offset; 1268 bt->bt_gen = gen; 1269 bt->bt_txg = txg; 1270 bt->bt_crtxg = crtxg; 1271 } 1272 1273 static void 1274 ztest_bt_verify(ztest_block_tag_t *bt, objset_t *os, uint64_t object, 1275 uint64_t offset, uint64_t gen, uint64_t txg, uint64_t crtxg) 1276 { 1277 ASSERT3U(bt->bt_magic, ==, BT_MAGIC); 1278 ASSERT3U(bt->bt_objset, ==, dmu_objset_id(os)); 1279 ASSERT3U(bt->bt_object, ==, object); 1280 ASSERT3U(bt->bt_offset, ==, offset); 1281 ASSERT3U(bt->bt_gen, <=, gen); 1282 ASSERT3U(bt->bt_txg, <=, txg); 1283 ASSERT3U(bt->bt_crtxg, ==, crtxg); 1284 } 1285 1286 static ztest_block_tag_t * 1287 ztest_bt_bonus(dmu_buf_t *db) 1288 { 1289 dmu_object_info_t doi; 1290 ztest_block_tag_t *bt; 1291 1292 dmu_object_info_from_db(db, &doi); 1293 ASSERT3U(doi.doi_bonus_size, <=, db->db_size); 1294 ASSERT3U(doi.doi_bonus_size, >=, sizeof (*bt)); 1295 bt = (void *)((char *)db->db_data + doi.doi_bonus_size - sizeof (*bt)); 1296 1297 return (bt); 1298 } 1299 1300 /* 1301 * ZIL logging ops 1302 */ 1303 1304 #define lrz_type lr_mode 1305 #define lrz_blocksize lr_uid 1306 #define lrz_ibshift lr_gid 1307 #define lrz_bonustype lr_rdev 1308 #define lrz_bonuslen lr_crtime[1] 1309 1310 static void 1311 ztest_log_create(ztest_ds_t *zd, dmu_tx_t *tx, lr_create_t *lr) 1312 { 1313 char *name = (void *)(lr + 1); /* name follows lr */ 1314 size_t namesize = strlen(name) + 1; 1315 itx_t *itx; 1316 1317 if (zil_replaying(zd->zd_zilog, tx)) 1318 return; 1319 1320 itx = zil_itx_create(TX_CREATE, sizeof (*lr) + namesize); 1321 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1, 1322 sizeof (*lr) + namesize - sizeof (lr_t)); 1323 1324 zil_itx_assign(zd->zd_zilog, itx, tx); 1325 } 1326 1327 static void 1328 ztest_log_remove(ztest_ds_t *zd, dmu_tx_t *tx, lr_remove_t *lr, uint64_t object) 1329 { 1330 char *name = (void *)(lr + 1); /* name follows lr */ 1331 size_t namesize = strlen(name) + 1; 1332 itx_t *itx; 1333 1334 if (zil_replaying(zd->zd_zilog, tx)) 1335 return; 1336 1337 itx = zil_itx_create(TX_REMOVE, sizeof (*lr) + namesize); 1338 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1, 1339 sizeof (*lr) + namesize - sizeof (lr_t)); 1340 1341 itx->itx_oid = object; 1342 zil_itx_assign(zd->zd_zilog, itx, tx); 1343 } 1344 1345 static void 1346 ztest_log_write(ztest_ds_t *zd, dmu_tx_t *tx, lr_write_t *lr) 1347 { 1348 itx_t *itx; 1349 itx_wr_state_t write_state = ztest_random(WR_NUM_STATES); 1350 1351 if (zil_replaying(zd->zd_zilog, tx)) 1352 return; 1353 1354 if (lr->lr_length > ZIL_MAX_LOG_DATA) 1355 write_state = WR_INDIRECT; 1356 1357 itx = zil_itx_create(TX_WRITE, 1358 sizeof (*lr) + (write_state == WR_COPIED ? lr->lr_length : 0)); 1359 1360 if (write_state == WR_COPIED && 1361 dmu_read(zd->zd_os, lr->lr_foid, lr->lr_offset, lr->lr_length, 1362 ((lr_write_t *)&itx->itx_lr) + 1, DMU_READ_NO_PREFETCH) != 0) { 1363 zil_itx_destroy(itx); 1364 itx = zil_itx_create(TX_WRITE, sizeof (*lr)); 1365 write_state = WR_NEED_COPY; 1366 } 1367 itx->itx_private = zd; 1368 itx->itx_wr_state = write_state; 1369 itx->itx_sync = (ztest_random(8) == 0); 1370 itx->itx_sod += (write_state == WR_NEED_COPY ? lr->lr_length : 0); 1371 1372 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1, 1373 sizeof (*lr) - sizeof (lr_t)); 1374 1375 zil_itx_assign(zd->zd_zilog, itx, tx); 1376 } 1377 1378 static void 1379 ztest_log_truncate(ztest_ds_t *zd, dmu_tx_t *tx, lr_truncate_t *lr) 1380 { 1381 itx_t *itx; 1382 1383 if (zil_replaying(zd->zd_zilog, tx)) 1384 return; 1385 1386 itx = zil_itx_create(TX_TRUNCATE, sizeof (*lr)); 1387 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1, 1388 sizeof (*lr) - sizeof (lr_t)); 1389 1390 itx->itx_sync = B_FALSE; 1391 zil_itx_assign(zd->zd_zilog, itx, tx); 1392 } 1393 1394 static void 1395 ztest_log_setattr(ztest_ds_t *zd, dmu_tx_t *tx, lr_setattr_t *lr) 1396 { 1397 itx_t *itx; 1398 1399 if (zil_replaying(zd->zd_zilog, tx)) 1400 return; 1401 1402 itx = zil_itx_create(TX_SETATTR, sizeof (*lr)); 1403 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1, 1404 sizeof (*lr) - sizeof (lr_t)); 1405 1406 itx->itx_sync = B_FALSE; 1407 zil_itx_assign(zd->zd_zilog, itx, tx); 1408 } 1409 1410 /* 1411 * ZIL replay ops 1412 */ 1413 static int 1414 ztest_replay_create(ztest_ds_t *zd, lr_create_t *lr, boolean_t byteswap) 1415 { 1416 char *name = (void *)(lr + 1); /* name follows lr */ 1417 objset_t *os = zd->zd_os; 1418 ztest_block_tag_t *bbt; 1419 dmu_buf_t *db; 1420 dmu_tx_t *tx; 1421 uint64_t txg; 1422 int error = 0; 1423 1424 if (byteswap) 1425 byteswap_uint64_array(lr, sizeof (*lr)); 1426 1427 ASSERT(lr->lr_doid == ZTEST_DIROBJ); 1428 ASSERT(name[0] != '\0'); 1429 1430 tx = dmu_tx_create(os); 1431 1432 dmu_tx_hold_zap(tx, lr->lr_doid, B_TRUE, name); 1433 1434 if (lr->lrz_type == DMU_OT_ZAP_OTHER) { 1435 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, B_TRUE, NULL); 1436 } else { 1437 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); 1438 } 1439 1440 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); 1441 if (txg == 0) 1442 return (ENOSPC); 1443 1444 ASSERT(dmu_objset_zil(os)->zl_replay == !!lr->lr_foid); 1445 1446 if (lr->lrz_type == DMU_OT_ZAP_OTHER) { 1447 if (lr->lr_foid == 0) { 1448 lr->lr_foid = zap_create(os, 1449 lr->lrz_type, lr->lrz_bonustype, 1450 lr->lrz_bonuslen, tx); 1451 } else { 1452 error = zap_create_claim(os, lr->lr_foid, 1453 lr->lrz_type, lr->lrz_bonustype, 1454 lr->lrz_bonuslen, tx); 1455 } 1456 } else { 1457 if (lr->lr_foid == 0) { 1458 lr->lr_foid = dmu_object_alloc(os, 1459 lr->lrz_type, 0, lr->lrz_bonustype, 1460 lr->lrz_bonuslen, tx); 1461 } else { 1462 error = dmu_object_claim(os, lr->lr_foid, 1463 lr->lrz_type, 0, lr->lrz_bonustype, 1464 lr->lrz_bonuslen, tx); 1465 } 1466 } 1467 1468 if (error) { 1469 ASSERT3U(error, ==, EEXIST); 1470 ASSERT(zd->zd_zilog->zl_replay); 1471 dmu_tx_commit(tx); 1472 return (error); 1473 } 1474 1475 ASSERT(lr->lr_foid != 0); 1476 1477 if (lr->lrz_type != DMU_OT_ZAP_OTHER) 1478 VERIFY3U(0, ==, dmu_object_set_blocksize(os, lr->lr_foid, 1479 lr->lrz_blocksize, lr->lrz_ibshift, tx)); 1480 1481 VERIFY3U(0, ==, dmu_bonus_hold(os, lr->lr_foid, FTAG, &db)); 1482 bbt = ztest_bt_bonus(db); 1483 dmu_buf_will_dirty(db, tx); 1484 ztest_bt_generate(bbt, os, lr->lr_foid, -1ULL, lr->lr_gen, txg, txg); 1485 dmu_buf_rele(db, FTAG); 1486 1487 VERIFY3U(0, ==, zap_add(os, lr->lr_doid, name, sizeof (uint64_t), 1, 1488 &lr->lr_foid, tx)); 1489 1490 (void) ztest_log_create(zd, tx, lr); 1491 1492 dmu_tx_commit(tx); 1493 1494 return (0); 1495 } 1496 1497 static int 1498 ztest_replay_remove(ztest_ds_t *zd, lr_remove_t *lr, boolean_t byteswap) 1499 { 1500 char *name = (void *)(lr + 1); /* name follows lr */ 1501 objset_t *os = zd->zd_os; 1502 dmu_object_info_t doi; 1503 dmu_tx_t *tx; 1504 uint64_t object, txg; 1505 1506 if (byteswap) 1507 byteswap_uint64_array(lr, sizeof (*lr)); 1508 1509 ASSERT(lr->lr_doid == ZTEST_DIROBJ); 1510 ASSERT(name[0] != '\0'); 1511 1512 VERIFY3U(0, ==, 1513 zap_lookup(os, lr->lr_doid, name, sizeof (object), 1, &object)); 1514 ASSERT(object != 0); 1515 1516 ztest_object_lock(zd, object, RL_WRITER); 1517 1518 VERIFY3U(0, ==, dmu_object_info(os, object, &doi)); 1519 1520 tx = dmu_tx_create(os); 1521 1522 dmu_tx_hold_zap(tx, lr->lr_doid, B_FALSE, name); 1523 dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END); 1524 1525 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); 1526 if (txg == 0) { 1527 ztest_object_unlock(zd, object); 1528 return (ENOSPC); 1529 } 1530 1531 if (doi.doi_type == DMU_OT_ZAP_OTHER) { 1532 VERIFY3U(0, ==, zap_destroy(os, object, tx)); 1533 } else { 1534 VERIFY3U(0, ==, dmu_object_free(os, object, tx)); 1535 } 1536 1537 VERIFY3U(0, ==, zap_remove(os, lr->lr_doid, name, tx)); 1538 1539 (void) ztest_log_remove(zd, tx, lr, object); 1540 1541 dmu_tx_commit(tx); 1542 1543 ztest_object_unlock(zd, object); 1544 1545 return (0); 1546 } 1547 1548 static int 1549 ztest_replay_write(ztest_ds_t *zd, lr_write_t *lr, boolean_t byteswap) 1550 { 1551 objset_t *os = zd->zd_os; 1552 void *data = lr + 1; /* data follows lr */ 1553 uint64_t offset, length; 1554 ztest_block_tag_t *bt = data; 1555 ztest_block_tag_t *bbt; 1556 uint64_t gen, txg, lrtxg, crtxg; 1557 dmu_object_info_t doi; 1558 dmu_tx_t *tx; 1559 dmu_buf_t *db; 1560 arc_buf_t *abuf = NULL; 1561 rl_t *rl; 1562 1563 if (byteswap) 1564 byteswap_uint64_array(lr, sizeof (*lr)); 1565 1566 offset = lr->lr_offset; 1567 length = lr->lr_length; 1568 1569 /* If it's a dmu_sync() block, write the whole block */ 1570 if (lr->lr_common.lrc_reclen == sizeof (lr_write_t)) { 1571 uint64_t blocksize = BP_GET_LSIZE(&lr->lr_blkptr); 1572 if (length < blocksize) { 1573 offset -= offset % blocksize; 1574 length = blocksize; 1575 } 1576 } 1577 1578 if (bt->bt_magic == BSWAP_64(BT_MAGIC)) 1579 byteswap_uint64_array(bt, sizeof (*bt)); 1580 1581 if (bt->bt_magic != BT_MAGIC) 1582 bt = NULL; 1583 1584 ztest_object_lock(zd, lr->lr_foid, RL_READER); 1585 rl = ztest_range_lock(zd, lr->lr_foid, offset, length, RL_WRITER); 1586 1587 VERIFY3U(0, ==, dmu_bonus_hold(os, lr->lr_foid, FTAG, &db)); 1588 1589 dmu_object_info_from_db(db, &doi); 1590 1591 bbt = ztest_bt_bonus(db); 1592 ASSERT3U(bbt->bt_magic, ==, BT_MAGIC); 1593 gen = bbt->bt_gen; 1594 crtxg = bbt->bt_crtxg; 1595 lrtxg = lr->lr_common.lrc_txg; 1596 1597 tx = dmu_tx_create(os); 1598 1599 dmu_tx_hold_write(tx, lr->lr_foid, offset, length); 1600 1601 if (ztest_random(8) == 0 && length == doi.doi_data_block_size && 1602 P2PHASE(offset, length) == 0) 1603 abuf = dmu_request_arcbuf(db, length); 1604 1605 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); 1606 if (txg == 0) { 1607 if (abuf != NULL) 1608 dmu_return_arcbuf(abuf); 1609 dmu_buf_rele(db, FTAG); 1610 ztest_range_unlock(rl); 1611 ztest_object_unlock(zd, lr->lr_foid); 1612 return (ENOSPC); 1613 } 1614 1615 if (bt != NULL) { 1616 /* 1617 * Usually, verify the old data before writing new data -- 1618 * but not always, because we also want to verify correct 1619 * behavior when the data was not recently read into cache. 1620 */ 1621 ASSERT(offset % doi.doi_data_block_size == 0); 1622 if (ztest_random(4) != 0) { 1623 int prefetch = ztest_random(2) ? 1624 DMU_READ_PREFETCH : DMU_READ_NO_PREFETCH; 1625 ztest_block_tag_t rbt; 1626 1627 VERIFY(dmu_read(os, lr->lr_foid, offset, 1628 sizeof (rbt), &rbt, prefetch) == 0); 1629 if (rbt.bt_magic == BT_MAGIC) { 1630 ztest_bt_verify(&rbt, os, lr->lr_foid, 1631 offset, gen, txg, crtxg); 1632 } 1633 } 1634 1635 /* 1636 * Writes can appear to be newer than the bonus buffer because 1637 * the ztest_get_data() callback does a dmu_read() of the 1638 * open-context data, which may be different than the data 1639 * as it was when the write was generated. 1640 */ 1641 if (zd->zd_zilog->zl_replay) { 1642 ztest_bt_verify(bt, os, lr->lr_foid, offset, 1643 MAX(gen, bt->bt_gen), MAX(txg, lrtxg), 1644 bt->bt_crtxg); 1645 } 1646 1647 /* 1648 * Set the bt's gen/txg to the bonus buffer's gen/txg 1649 * so that all of the usual ASSERTs will work. 1650 */ 1651 ztest_bt_generate(bt, os, lr->lr_foid, offset, gen, txg, crtxg); 1652 } 1653 1654 if (abuf == NULL) { 1655 dmu_write(os, lr->lr_foid, offset, length, data, tx); 1656 } else { 1657 bcopy(data, abuf->b_data, length); 1658 dmu_assign_arcbuf(db, offset, abuf, tx); 1659 } 1660 1661 (void) ztest_log_write(zd, tx, lr); 1662 1663 dmu_buf_rele(db, FTAG); 1664 1665 dmu_tx_commit(tx); 1666 1667 ztest_range_unlock(rl); 1668 ztest_object_unlock(zd, lr->lr_foid); 1669 1670 return (0); 1671 } 1672 1673 static int 1674 ztest_replay_truncate(ztest_ds_t *zd, lr_truncate_t *lr, boolean_t byteswap) 1675 { 1676 objset_t *os = zd->zd_os; 1677 dmu_tx_t *tx; 1678 uint64_t txg; 1679 rl_t *rl; 1680 1681 if (byteswap) 1682 byteswap_uint64_array(lr, sizeof (*lr)); 1683 1684 ztest_object_lock(zd, lr->lr_foid, RL_READER); 1685 rl = ztest_range_lock(zd, lr->lr_foid, lr->lr_offset, lr->lr_length, 1686 RL_WRITER); 1687 1688 tx = dmu_tx_create(os); 1689 1690 dmu_tx_hold_free(tx, lr->lr_foid, lr->lr_offset, lr->lr_length); 1691 1692 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); 1693 if (txg == 0) { 1694 ztest_range_unlock(rl); 1695 ztest_object_unlock(zd, lr->lr_foid); 1696 return (ENOSPC); 1697 } 1698 1699 VERIFY(dmu_free_range(os, lr->lr_foid, lr->lr_offset, 1700 lr->lr_length, tx) == 0); 1701 1702 (void) ztest_log_truncate(zd, tx, lr); 1703 1704 dmu_tx_commit(tx); 1705 1706 ztest_range_unlock(rl); 1707 ztest_object_unlock(zd, lr->lr_foid); 1708 1709 return (0); 1710 } 1711 1712 static int 1713 ztest_replay_setattr(ztest_ds_t *zd, lr_setattr_t *lr, boolean_t byteswap) 1714 { 1715 objset_t *os = zd->zd_os; 1716 dmu_tx_t *tx; 1717 dmu_buf_t *db; 1718 ztest_block_tag_t *bbt; 1719 uint64_t txg, lrtxg, crtxg; 1720 1721 if (byteswap) 1722 byteswap_uint64_array(lr, sizeof (*lr)); 1723 1724 ztest_object_lock(zd, lr->lr_foid, RL_WRITER); 1725 1726 VERIFY3U(0, ==, dmu_bonus_hold(os, lr->lr_foid, FTAG, &db)); 1727 1728 tx = dmu_tx_create(os); 1729 dmu_tx_hold_bonus(tx, lr->lr_foid); 1730 1731 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); 1732 if (txg == 0) { 1733 dmu_buf_rele(db, FTAG); 1734 ztest_object_unlock(zd, lr->lr_foid); 1735 return (ENOSPC); 1736 } 1737 1738 bbt = ztest_bt_bonus(db); 1739 ASSERT3U(bbt->bt_magic, ==, BT_MAGIC); 1740 crtxg = bbt->bt_crtxg; 1741 lrtxg = lr->lr_common.lrc_txg; 1742 1743 if (zd->zd_zilog->zl_replay) { 1744 ASSERT(lr->lr_size != 0); 1745 ASSERT(lr->lr_mode != 0); 1746 ASSERT(lrtxg != 0); 1747 } else { 1748 /* 1749 * Randomly change the size and increment the generation. 1750 */ 1751 lr->lr_size = (ztest_random(db->db_size / sizeof (*bbt)) + 1) * 1752 sizeof (*bbt); 1753 lr->lr_mode = bbt->bt_gen + 1; 1754 ASSERT(lrtxg == 0); 1755 } 1756 1757 /* 1758 * Verify that the current bonus buffer is not newer than our txg. 1759 */ 1760 ztest_bt_verify(bbt, os, lr->lr_foid, -1ULL, lr->lr_mode, 1761 MAX(txg, lrtxg), crtxg); 1762 1763 dmu_buf_will_dirty(db, tx); 1764 1765 ASSERT3U(lr->lr_size, >=, sizeof (*bbt)); 1766 ASSERT3U(lr->lr_size, <=, db->db_size); 1767 VERIFY0(dmu_set_bonus(db, lr->lr_size, tx)); 1768 bbt = ztest_bt_bonus(db); 1769 1770 ztest_bt_generate(bbt, os, lr->lr_foid, -1ULL, lr->lr_mode, txg, crtxg); 1771 1772 dmu_buf_rele(db, FTAG); 1773 1774 (void) ztest_log_setattr(zd, tx, lr); 1775 1776 dmu_tx_commit(tx); 1777 1778 ztest_object_unlock(zd, lr->lr_foid); 1779 1780 return (0); 1781 } 1782 1783 zil_replay_func_t *ztest_replay_vector[TX_MAX_TYPE] = { 1784 NULL, /* 0 no such transaction type */ 1785 ztest_replay_create, /* TX_CREATE */ 1786 NULL, /* TX_MKDIR */ 1787 NULL, /* TX_MKXATTR */ 1788 NULL, /* TX_SYMLINK */ 1789 ztest_replay_remove, /* TX_REMOVE */ 1790 NULL, /* TX_RMDIR */ 1791 NULL, /* TX_LINK */ 1792 NULL, /* TX_RENAME */ 1793 ztest_replay_write, /* TX_WRITE */ 1794 ztest_replay_truncate, /* TX_TRUNCATE */ 1795 ztest_replay_setattr, /* TX_SETATTR */ 1796 NULL, /* TX_ACL */ 1797 NULL, /* TX_CREATE_ACL */ 1798 NULL, /* TX_CREATE_ATTR */ 1799 NULL, /* TX_CREATE_ACL_ATTR */ 1800 NULL, /* TX_MKDIR_ACL */ 1801 NULL, /* TX_MKDIR_ATTR */ 1802 NULL, /* TX_MKDIR_ACL_ATTR */ 1803 NULL, /* TX_WRITE2 */ 1804 }; 1805 1806 /* 1807 * ZIL get_data callbacks 1808 */ 1809 1810 static void 1811 ztest_get_done(zgd_t *zgd, int error) 1812 { 1813 ztest_ds_t *zd = zgd->zgd_private; 1814 uint64_t object = zgd->zgd_rl->rl_object; 1815 1816 if (zgd->zgd_db) 1817 dmu_buf_rele(zgd->zgd_db, zgd); 1818 1819 ztest_range_unlock(zgd->zgd_rl); 1820 ztest_object_unlock(zd, object); 1821 1822 if (error == 0 && zgd->zgd_bp) 1823 zil_add_block(zgd->zgd_zilog, zgd->zgd_bp); 1824 1825 umem_free(zgd, sizeof (*zgd)); 1826 } 1827 1828 static int 1829 ztest_get_data(void *arg, lr_write_t *lr, char *buf, zio_t *zio) 1830 { 1831 ztest_ds_t *zd = arg; 1832 objset_t *os = zd->zd_os; 1833 uint64_t object = lr->lr_foid; 1834 uint64_t offset = lr->lr_offset; 1835 uint64_t size = lr->lr_length; 1836 blkptr_t *bp = &lr->lr_blkptr; 1837 uint64_t txg = lr->lr_common.lrc_txg; 1838 uint64_t crtxg; 1839 dmu_object_info_t doi; 1840 dmu_buf_t *db; 1841 zgd_t *zgd; 1842 int error; 1843 1844 ztest_object_lock(zd, object, RL_READER); 1845 error = dmu_bonus_hold(os, object, FTAG, &db); 1846 if (error) { 1847 ztest_object_unlock(zd, object); 1848 return (error); 1849 } 1850 1851 crtxg = ztest_bt_bonus(db)->bt_crtxg; 1852 1853 if (crtxg == 0 || crtxg > txg) { 1854 dmu_buf_rele(db, FTAG); 1855 ztest_object_unlock(zd, object); 1856 return (ENOENT); 1857 } 1858 1859 dmu_object_info_from_db(db, &doi); 1860 dmu_buf_rele(db, FTAG); 1861 db = NULL; 1862 1863 zgd = umem_zalloc(sizeof (*zgd), UMEM_NOFAIL); 1864 zgd->zgd_zilog = zd->zd_zilog; 1865 zgd->zgd_private = zd; 1866 1867 if (buf != NULL) { /* immediate write */ 1868 zgd->zgd_rl = ztest_range_lock(zd, object, offset, size, 1869 RL_READER); 1870 1871 error = dmu_read(os, object, offset, size, buf, 1872 DMU_READ_NO_PREFETCH); 1873 ASSERT(error == 0); 1874 } else { 1875 size = doi.doi_data_block_size; 1876 if (ISP2(size)) { 1877 offset = P2ALIGN(offset, size); 1878 } else { 1879 ASSERT(offset < size); 1880 offset = 0; 1881 } 1882 1883 zgd->zgd_rl = ztest_range_lock(zd, object, offset, size, 1884 RL_READER); 1885 1886 error = dmu_buf_hold(os, object, offset, zgd, &db, 1887 DMU_READ_NO_PREFETCH); 1888 1889 if (error == 0) { 1890 blkptr_t *obp = dmu_buf_get_blkptr(db); 1891 if (obp) { 1892 ASSERT(BP_IS_HOLE(bp)); 1893 *bp = *obp; 1894 } 1895 1896 zgd->zgd_db = db; 1897 zgd->zgd_bp = bp; 1898 1899 ASSERT(db->db_offset == offset); 1900 ASSERT(db->db_size == size); 1901 1902 error = dmu_sync(zio, lr->lr_common.lrc_txg, 1903 ztest_get_done, zgd); 1904 1905 if (error == 0) 1906 return (0); 1907 } 1908 } 1909 1910 ztest_get_done(zgd, error); 1911 1912 return (error); 1913 } 1914 1915 static void * 1916 ztest_lr_alloc(size_t lrsize, char *name) 1917 { 1918 char *lr; 1919 size_t namesize = name ? strlen(name) + 1 : 0; 1920 1921 lr = umem_zalloc(lrsize + namesize, UMEM_NOFAIL); 1922 1923 if (name) 1924 bcopy(name, lr + lrsize, namesize); 1925 1926 return (lr); 1927 } 1928 1929 void 1930 ztest_lr_free(void *lr, size_t lrsize, char *name) 1931 { 1932 size_t namesize = name ? strlen(name) + 1 : 0; 1933 1934 umem_free(lr, lrsize + namesize); 1935 } 1936 1937 /* 1938 * Lookup a bunch of objects. Returns the number of objects not found. 1939 */ 1940 static int 1941 ztest_lookup(ztest_ds_t *zd, ztest_od_t *od, int count) 1942 { 1943 int missing = 0; 1944 int error; 1945 1946 ASSERT(_mutex_held(&zd->zd_dirobj_lock)); 1947 1948 for (int i = 0; i < count; i++, od++) { 1949 od->od_object = 0; 1950 error = zap_lookup(zd->zd_os, od->od_dir, od->od_name, 1951 sizeof (uint64_t), 1, &od->od_object); 1952 if (error) { 1953 ASSERT(error == ENOENT); 1954 ASSERT(od->od_object == 0); 1955 missing++; 1956 } else { 1957 dmu_buf_t *db; 1958 ztest_block_tag_t *bbt; 1959 dmu_object_info_t doi; 1960 1961 ASSERT(od->od_object != 0); 1962 ASSERT(missing == 0); /* there should be no gaps */ 1963 1964 ztest_object_lock(zd, od->od_object, RL_READER); 1965 VERIFY3U(0, ==, dmu_bonus_hold(zd->zd_os, 1966 od->od_object, FTAG, &db)); 1967 dmu_object_info_from_db(db, &doi); 1968 bbt = ztest_bt_bonus(db); 1969 ASSERT3U(bbt->bt_magic, ==, BT_MAGIC); 1970 od->od_type = doi.doi_type; 1971 od->od_blocksize = doi.doi_data_block_size; 1972 od->od_gen = bbt->bt_gen; 1973 dmu_buf_rele(db, FTAG); 1974 ztest_object_unlock(zd, od->od_object); 1975 } 1976 } 1977 1978 return (missing); 1979 } 1980 1981 static int 1982 ztest_create(ztest_ds_t *zd, ztest_od_t *od, int count) 1983 { 1984 int missing = 0; 1985 1986 ASSERT(_mutex_held(&zd->zd_dirobj_lock)); 1987 1988 for (int i = 0; i < count; i++, od++) { 1989 if (missing) { 1990 od->od_object = 0; 1991 missing++; 1992 continue; 1993 } 1994 1995 lr_create_t *lr = ztest_lr_alloc(sizeof (*lr), od->od_name); 1996 1997 lr->lr_doid = od->od_dir; 1998 lr->lr_foid = 0; /* 0 to allocate, > 0 to claim */ 1999 lr->lrz_type = od->od_crtype; 2000 lr->lrz_blocksize = od->od_crblocksize; 2001 lr->lrz_ibshift = ztest_random_ibshift(); 2002 lr->lrz_bonustype = DMU_OT_UINT64_OTHER; 2003 lr->lrz_bonuslen = dmu_bonus_max(); 2004 lr->lr_gen = od->od_crgen; 2005 lr->lr_crtime[0] = time(NULL); 2006 2007 if (ztest_replay_create(zd, lr, B_FALSE) != 0) { 2008 ASSERT(missing == 0); 2009 od->od_object = 0; 2010 missing++; 2011 } else { 2012 od->od_object = lr->lr_foid; 2013 od->od_type = od->od_crtype; 2014 od->od_blocksize = od->od_crblocksize; 2015 od->od_gen = od->od_crgen; 2016 ASSERT(od->od_object != 0); 2017 } 2018 2019 ztest_lr_free(lr, sizeof (*lr), od->od_name); 2020 } 2021 2022 return (missing); 2023 } 2024 2025 static int 2026 ztest_remove(ztest_ds_t *zd, ztest_od_t *od, int count) 2027 { 2028 int missing = 0; 2029 int error; 2030 2031 ASSERT(_mutex_held(&zd->zd_dirobj_lock)); 2032 2033 od += count - 1; 2034 2035 for (int i = count - 1; i >= 0; i--, od--) { 2036 if (missing) { 2037 missing++; 2038 continue; 2039 } 2040 2041 /* 2042 * No object was found. 2043 */ 2044 if (od->od_object == 0) 2045 continue; 2046 2047 lr_remove_t *lr = ztest_lr_alloc(sizeof (*lr), od->od_name); 2048 2049 lr->lr_doid = od->od_dir; 2050 2051 if ((error = ztest_replay_remove(zd, lr, B_FALSE)) != 0) { 2052 ASSERT3U(error, ==, ENOSPC); 2053 missing++; 2054 } else { 2055 od->od_object = 0; 2056 } 2057 ztest_lr_free(lr, sizeof (*lr), od->od_name); 2058 } 2059 2060 return (missing); 2061 } 2062 2063 static int 2064 ztest_write(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size, 2065 void *data) 2066 { 2067 lr_write_t *lr; 2068 int error; 2069 2070 lr = ztest_lr_alloc(sizeof (*lr) + size, NULL); 2071 2072 lr->lr_foid = object; 2073 lr->lr_offset = offset; 2074 lr->lr_length = size; 2075 lr->lr_blkoff = 0; 2076 BP_ZERO(&lr->lr_blkptr); 2077 2078 bcopy(data, lr + 1, size); 2079 2080 error = ztest_replay_write(zd, lr, B_FALSE); 2081 2082 ztest_lr_free(lr, sizeof (*lr) + size, NULL); 2083 2084 return (error); 2085 } 2086 2087 static int 2088 ztest_truncate(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size) 2089 { 2090 lr_truncate_t *lr; 2091 int error; 2092 2093 lr = ztest_lr_alloc(sizeof (*lr), NULL); 2094 2095 lr->lr_foid = object; 2096 lr->lr_offset = offset; 2097 lr->lr_length = size; 2098 2099 error = ztest_replay_truncate(zd, lr, B_FALSE); 2100 2101 ztest_lr_free(lr, sizeof (*lr), NULL); 2102 2103 return (error); 2104 } 2105 2106 static int 2107 ztest_setattr(ztest_ds_t *zd, uint64_t object) 2108 { 2109 lr_setattr_t *lr; 2110 int error; 2111 2112 lr = ztest_lr_alloc(sizeof (*lr), NULL); 2113 2114 lr->lr_foid = object; 2115 lr->lr_size = 0; 2116 lr->lr_mode = 0; 2117 2118 error = ztest_replay_setattr(zd, lr, B_FALSE); 2119 2120 ztest_lr_free(lr, sizeof (*lr), NULL); 2121 2122 return (error); 2123 } 2124 2125 static void 2126 ztest_prealloc(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size) 2127 { 2128 objset_t *os = zd->zd_os; 2129 dmu_tx_t *tx; 2130 uint64_t txg; 2131 rl_t *rl; 2132 2133 txg_wait_synced(dmu_objset_pool(os), 0); 2134 2135 ztest_object_lock(zd, object, RL_READER); 2136 rl = ztest_range_lock(zd, object, offset, size, RL_WRITER); 2137 2138 tx = dmu_tx_create(os); 2139 2140 dmu_tx_hold_write(tx, object, offset, size); 2141 2142 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); 2143 2144 if (txg != 0) { 2145 dmu_prealloc(os, object, offset, size, tx); 2146 dmu_tx_commit(tx); 2147 txg_wait_synced(dmu_objset_pool(os), txg); 2148 } else { 2149 (void) dmu_free_long_range(os, object, offset, size); 2150 } 2151 2152 ztest_range_unlock(rl); 2153 ztest_object_unlock(zd, object); 2154 } 2155 2156 static void 2157 ztest_io(ztest_ds_t *zd, uint64_t object, uint64_t offset) 2158 { 2159 int err; 2160 ztest_block_tag_t wbt; 2161 dmu_object_info_t doi; 2162 enum ztest_io_type io_type; 2163 uint64_t blocksize; 2164 void *data; 2165 2166 VERIFY(dmu_object_info(zd->zd_os, object, &doi) == 0); 2167 blocksize = doi.doi_data_block_size; 2168 data = umem_alloc(blocksize, UMEM_NOFAIL); 2169 2170 /* 2171 * Pick an i/o type at random, biased toward writing block tags. 2172 */ 2173 io_type = ztest_random(ZTEST_IO_TYPES); 2174 if (ztest_random(2) == 0) 2175 io_type = ZTEST_IO_WRITE_TAG; 2176 2177 (void) rw_rdlock(&zd->zd_zilog_lock); 2178 2179 switch (io_type) { 2180 2181 case ZTEST_IO_WRITE_TAG: 2182 ztest_bt_generate(&wbt, zd->zd_os, object, offset, 0, 0, 0); 2183 (void) ztest_write(zd, object, offset, sizeof (wbt), &wbt); 2184 break; 2185 2186 case ZTEST_IO_WRITE_PATTERN: 2187 (void) memset(data, 'a' + (object + offset) % 5, blocksize); 2188 if (ztest_random(2) == 0) { 2189 /* 2190 * Induce fletcher2 collisions to ensure that 2191 * zio_ddt_collision() detects and resolves them 2192 * when using fletcher2-verify for deduplication. 2193 */ 2194 ((uint64_t *)data)[0] ^= 1ULL << 63; 2195 ((uint64_t *)data)[4] ^= 1ULL << 63; 2196 } 2197 (void) ztest_write(zd, object, offset, blocksize, data); 2198 break; 2199 2200 case ZTEST_IO_WRITE_ZEROES: 2201 bzero(data, blocksize); 2202 (void) ztest_write(zd, object, offset, blocksize, data); 2203 break; 2204 2205 case ZTEST_IO_TRUNCATE: 2206 (void) ztest_truncate(zd, object, offset, blocksize); 2207 break; 2208 2209 case ZTEST_IO_SETATTR: 2210 (void) ztest_setattr(zd, object); 2211 break; 2212 2213 case ZTEST_IO_REWRITE: 2214 (void) rw_rdlock(&ztest_name_lock); 2215 err = ztest_dsl_prop_set_uint64(zd->zd_name, 2216 ZFS_PROP_CHECKSUM, spa_dedup_checksum(ztest_spa), 2217 B_FALSE); 2218 VERIFY(err == 0 || err == ENOSPC); 2219 err = ztest_dsl_prop_set_uint64(zd->zd_name, 2220 ZFS_PROP_COMPRESSION, 2221 ztest_random_dsl_prop(ZFS_PROP_COMPRESSION), 2222 B_FALSE); 2223 VERIFY(err == 0 || err == ENOSPC); 2224 (void) rw_unlock(&ztest_name_lock); 2225 2226 VERIFY0(dmu_read(zd->zd_os, object, offset, blocksize, data, 2227 DMU_READ_NO_PREFETCH)); 2228 2229 (void) ztest_write(zd, object, offset, blocksize, data); 2230 break; 2231 } 2232 2233 (void) rw_unlock(&zd->zd_zilog_lock); 2234 2235 umem_free(data, blocksize); 2236 } 2237 2238 /* 2239 * Initialize an object description template. 2240 */ 2241 static void 2242 ztest_od_init(ztest_od_t *od, uint64_t id, char *tag, uint64_t index, 2243 dmu_object_type_t type, uint64_t blocksize, uint64_t gen) 2244 { 2245 od->od_dir = ZTEST_DIROBJ; 2246 od->od_object = 0; 2247 2248 od->od_crtype = type; 2249 od->od_crblocksize = blocksize ? blocksize : ztest_random_blocksize(); 2250 od->od_crgen = gen; 2251 2252 od->od_type = DMU_OT_NONE; 2253 od->od_blocksize = 0; 2254 od->od_gen = 0; 2255 2256 (void) snprintf(od->od_name, sizeof (od->od_name), "%s(%lld)[%llu]", 2257 tag, (int64_t)id, index); 2258 } 2259 2260 /* 2261 * Lookup or create the objects for a test using the od template. 2262 * If the objects do not all exist, or if 'remove' is specified, 2263 * remove any existing objects and create new ones. Otherwise, 2264 * use the existing objects. 2265 */ 2266 static int 2267 ztest_object_init(ztest_ds_t *zd, ztest_od_t *od, size_t size, boolean_t remove) 2268 { 2269 int count = size / sizeof (*od); 2270 int rv = 0; 2271 2272 VERIFY(mutex_lock(&zd->zd_dirobj_lock) == 0); 2273 if ((ztest_lookup(zd, od, count) != 0 || remove) && 2274 (ztest_remove(zd, od, count) != 0 || 2275 ztest_create(zd, od, count) != 0)) 2276 rv = -1; 2277 zd->zd_od = od; 2278 VERIFY(mutex_unlock(&zd->zd_dirobj_lock) == 0); 2279 2280 return (rv); 2281 } 2282 2283 /* ARGSUSED */ 2284 void 2285 ztest_zil_commit(ztest_ds_t *zd, uint64_t id) 2286 { 2287 zilog_t *zilog = zd->zd_zilog; 2288 2289 (void) rw_rdlock(&zd->zd_zilog_lock); 2290 2291 zil_commit(zilog, ztest_random(ZTEST_OBJECTS)); 2292 2293 /* 2294 * Remember the committed values in zd, which is in parent/child 2295 * shared memory. If we die, the next iteration of ztest_run() 2296 * will verify that the log really does contain this record. 2297 */ 2298 mutex_enter(&zilog->zl_lock); 2299 ASSERT(zd->zd_shared != NULL); 2300 ASSERT3U(zd->zd_shared->zd_seq, <=, zilog->zl_commit_lr_seq); 2301 zd->zd_shared->zd_seq = zilog->zl_commit_lr_seq; 2302 mutex_exit(&zilog->zl_lock); 2303 2304 (void) rw_unlock(&zd->zd_zilog_lock); 2305 } 2306 2307 /* 2308 * This function is designed to simulate the operations that occur during a 2309 * mount/unmount operation. We hold the dataset across these operations in an 2310 * attempt to expose any implicit assumptions about ZIL management. 2311 */ 2312 /* ARGSUSED */ 2313 void 2314 ztest_zil_remount(ztest_ds_t *zd, uint64_t id) 2315 { 2316 objset_t *os = zd->zd_os; 2317 2318 /* 2319 * We grab the zd_dirobj_lock to ensure that no other thread is 2320 * updating the zil (i.e. adding in-memory log records) and the 2321 * zd_zilog_lock to block any I/O. 2322 */ 2323 VERIFY0(mutex_lock(&zd->zd_dirobj_lock)); 2324 (void) rw_wrlock(&zd->zd_zilog_lock); 2325 2326 /* zfsvfs_teardown() */ 2327 zil_close(zd->zd_zilog); 2328 2329 /* zfsvfs_setup() */ 2330 VERIFY(zil_open(os, ztest_get_data) == zd->zd_zilog); 2331 zil_replay(os, zd, ztest_replay_vector); 2332 2333 (void) rw_unlock(&zd->zd_zilog_lock); 2334 VERIFY(mutex_unlock(&zd->zd_dirobj_lock) == 0); 2335 } 2336 2337 /* 2338 * Verify that we can't destroy an active pool, create an existing pool, 2339 * or create a pool with a bad vdev spec. 2340 */ 2341 /* ARGSUSED */ 2342 void 2343 ztest_spa_create_destroy(ztest_ds_t *zd, uint64_t id) 2344 { 2345 ztest_shared_opts_t *zo = &ztest_opts; 2346 spa_t *spa; 2347 nvlist_t *nvroot; 2348 2349 /* 2350 * Attempt to create using a bad file. 2351 */ 2352 nvroot = make_vdev_root("/dev/bogus", NULL, NULL, 0, 0, 0, 0, 0, 1); 2353 VERIFY3U(ENOENT, ==, 2354 spa_create("ztest_bad_file", nvroot, NULL, NULL)); 2355 nvlist_free(nvroot); 2356 2357 /* 2358 * Attempt to create using a bad mirror. 2359 */ 2360 nvroot = make_vdev_root("/dev/bogus", NULL, NULL, 0, 0, 0, 0, 2, 1); 2361 VERIFY3U(ENOENT, ==, 2362 spa_create("ztest_bad_mirror", nvroot, NULL, NULL)); 2363 nvlist_free(nvroot); 2364 2365 /* 2366 * Attempt to create an existing pool. It shouldn't matter 2367 * what's in the nvroot; we should fail with EEXIST. 2368 */ 2369 (void) rw_rdlock(&ztest_name_lock); 2370 nvroot = make_vdev_root("/dev/bogus", NULL, NULL, 0, 0, 0, 0, 0, 1); 2371 VERIFY3U(EEXIST, ==, spa_create(zo->zo_pool, nvroot, NULL, NULL)); 2372 nvlist_free(nvroot); 2373 VERIFY3U(0, ==, spa_open(zo->zo_pool, &spa, FTAG)); 2374 VERIFY3U(EBUSY, ==, spa_destroy(zo->zo_pool)); 2375 spa_close(spa, FTAG); 2376 2377 (void) rw_unlock(&ztest_name_lock); 2378 } 2379 2380 /* ARGSUSED */ 2381 void 2382 ztest_spa_upgrade(ztest_ds_t *zd, uint64_t id) 2383 { 2384 spa_t *spa; 2385 uint64_t initial_version = SPA_VERSION_INITIAL; 2386 uint64_t version, newversion; 2387 nvlist_t *nvroot, *props; 2388 char *name; 2389 2390 VERIFY0(mutex_lock(&ztest_vdev_lock)); 2391 name = kmem_asprintf("%s_upgrade", ztest_opts.zo_pool); 2392 2393 /* 2394 * Clean up from previous runs. 2395 */ 2396 (void) spa_destroy(name); 2397 2398 nvroot = make_vdev_root(NULL, NULL, name, ztest_opts.zo_vdev_size, 0, 2399 0, ztest_opts.zo_raidz, ztest_opts.zo_mirrors, 1); 2400 2401 /* 2402 * If we're configuring a RAIDZ device then make sure that the 2403 * the initial version is capable of supporting that feature. 2404 */ 2405 switch (ztest_opts.zo_raidz_parity) { 2406 case 0: 2407 case 1: 2408 initial_version = SPA_VERSION_INITIAL; 2409 break; 2410 case 2: 2411 initial_version = SPA_VERSION_RAIDZ2; 2412 break; 2413 case 3: 2414 initial_version = SPA_VERSION_RAIDZ3; 2415 break; 2416 } 2417 2418 /* 2419 * Create a pool with a spa version that can be upgraded. Pick 2420 * a value between initial_version and SPA_VERSION_BEFORE_FEATURES. 2421 */ 2422 do { 2423 version = ztest_random_spa_version(initial_version); 2424 } while (version > SPA_VERSION_BEFORE_FEATURES); 2425 2426 props = fnvlist_alloc(); 2427 fnvlist_add_uint64(props, 2428 zpool_prop_to_name(ZPOOL_PROP_VERSION), version); 2429 VERIFY0(spa_create(name, nvroot, props, NULL)); 2430 fnvlist_free(nvroot); 2431 fnvlist_free(props); 2432 2433 VERIFY0(spa_open(name, &spa, FTAG)); 2434 VERIFY3U(spa_version(spa), ==, version); 2435 newversion = ztest_random_spa_version(version + 1); 2436 2437 if (ztest_opts.zo_verbose >= 4) { 2438 (void) printf("upgrading spa version from %llu to %llu\n", 2439 (u_longlong_t)version, (u_longlong_t)newversion); 2440 } 2441 2442 spa_upgrade(spa, newversion); 2443 VERIFY3U(spa_version(spa), >, version); 2444 VERIFY3U(spa_version(spa), ==, fnvlist_lookup_uint64(spa->spa_config, 2445 zpool_prop_to_name(ZPOOL_PROP_VERSION))); 2446 spa_close(spa, FTAG); 2447 2448 strfree(name); 2449 VERIFY0(mutex_unlock(&ztest_vdev_lock)); 2450 } 2451 2452 static vdev_t * 2453 vdev_lookup_by_path(vdev_t *vd, const char *path) 2454 { 2455 vdev_t *mvd; 2456 2457 if (vd->vdev_path != NULL && strcmp(path, vd->vdev_path) == 0) 2458 return (vd); 2459 2460 for (int c = 0; c < vd->vdev_children; c++) 2461 if ((mvd = vdev_lookup_by_path(vd->vdev_child[c], path)) != 2462 NULL) 2463 return (mvd); 2464 2465 return (NULL); 2466 } 2467 2468 /* 2469 * Find the first available hole which can be used as a top-level. 2470 */ 2471 int 2472 find_vdev_hole(spa_t *spa) 2473 { 2474 vdev_t *rvd = spa->spa_root_vdev; 2475 int c; 2476 2477 ASSERT(spa_config_held(spa, SCL_VDEV, RW_READER) == SCL_VDEV); 2478 2479 for (c = 0; c < rvd->vdev_children; c++) { 2480 vdev_t *cvd = rvd->vdev_child[c]; 2481 2482 if (cvd->vdev_ishole) 2483 break; 2484 } 2485 return (c); 2486 } 2487 2488 /* 2489 * Verify that vdev_add() works as expected. 2490 */ 2491 /* ARGSUSED */ 2492 void 2493 ztest_vdev_add_remove(ztest_ds_t *zd, uint64_t id) 2494 { 2495 ztest_shared_t *zs = ztest_shared; 2496 spa_t *spa = ztest_spa; 2497 uint64_t leaves; 2498 uint64_t guid; 2499 nvlist_t *nvroot; 2500 int error; 2501 2502 VERIFY(mutex_lock(&ztest_vdev_lock) == 0); 2503 leaves = MAX(zs->zs_mirrors + zs->zs_splits, 1) * ztest_opts.zo_raidz; 2504 2505 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 2506 2507 ztest_shared->zs_vdev_next_leaf = find_vdev_hole(spa) * leaves; 2508 2509 /* 2510 * If we have slogs then remove them 1/4 of the time. 2511 */ 2512 if (spa_has_slogs(spa) && ztest_random(4) == 0) { 2513 /* 2514 * Grab the guid from the head of the log class rotor. 2515 */ 2516 guid = spa_log_class(spa)->mc_rotor->mg_vd->vdev_guid; 2517 2518 spa_config_exit(spa, SCL_VDEV, FTAG); 2519 2520 /* 2521 * We have to grab the zs_name_lock as writer to 2522 * prevent a race between removing a slog (dmu_objset_find) 2523 * and destroying a dataset. Removing the slog will 2524 * grab a reference on the dataset which may cause 2525 * dmu_objset_destroy() to fail with EBUSY thus 2526 * leaving the dataset in an inconsistent state. 2527 */ 2528 VERIFY(rw_wrlock(&ztest_name_lock) == 0); 2529 error = spa_vdev_remove(spa, guid, B_FALSE); 2530 VERIFY(rw_unlock(&ztest_name_lock) == 0); 2531 2532 if (error && error != EEXIST) 2533 fatal(0, "spa_vdev_remove() = %d", error); 2534 } else { 2535 spa_config_exit(spa, SCL_VDEV, FTAG); 2536 2537 /* 2538 * Make 1/4 of the devices be log devices. 2539 */ 2540 nvroot = make_vdev_root(NULL, NULL, NULL, 2541 ztest_opts.zo_vdev_size, 0, 2542 ztest_random(4) == 0, ztest_opts.zo_raidz, 2543 zs->zs_mirrors, 1); 2544 2545 error = spa_vdev_add(spa, nvroot); 2546 nvlist_free(nvroot); 2547 2548 if (error == ENOSPC) 2549 ztest_record_enospc("spa_vdev_add"); 2550 else if (error != 0) 2551 fatal(0, "spa_vdev_add() = %d", error); 2552 } 2553 2554 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 2555 } 2556 2557 /* 2558 * Verify that adding/removing aux devices (l2arc, hot spare) works as expected. 2559 */ 2560 /* ARGSUSED */ 2561 void 2562 ztest_vdev_aux_add_remove(ztest_ds_t *zd, uint64_t id) 2563 { 2564 ztest_shared_t *zs = ztest_shared; 2565 spa_t *spa = ztest_spa; 2566 vdev_t *rvd = spa->spa_root_vdev; 2567 spa_aux_vdev_t *sav; 2568 char *aux; 2569 uint64_t guid = 0; 2570 int error; 2571 2572 if (ztest_random(2) == 0) { 2573 sav = &spa->spa_spares; 2574 aux = ZPOOL_CONFIG_SPARES; 2575 } else { 2576 sav = &spa->spa_l2cache; 2577 aux = ZPOOL_CONFIG_L2CACHE; 2578 } 2579 2580 VERIFY(mutex_lock(&ztest_vdev_lock) == 0); 2581 2582 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 2583 2584 if (sav->sav_count != 0 && ztest_random(4) == 0) { 2585 /* 2586 * Pick a random device to remove. 2587 */ 2588 guid = sav->sav_vdevs[ztest_random(sav->sav_count)]->vdev_guid; 2589 } else { 2590 /* 2591 * Find an unused device we can add. 2592 */ 2593 zs->zs_vdev_aux = 0; 2594 for (;;) { 2595 char path[MAXPATHLEN]; 2596 int c; 2597 (void) snprintf(path, sizeof (path), ztest_aux_template, 2598 ztest_opts.zo_dir, ztest_opts.zo_pool, aux, 2599 zs->zs_vdev_aux); 2600 for (c = 0; c < sav->sav_count; c++) 2601 if (strcmp(sav->sav_vdevs[c]->vdev_path, 2602 path) == 0) 2603 break; 2604 if (c == sav->sav_count && 2605 vdev_lookup_by_path(rvd, path) == NULL) 2606 break; 2607 zs->zs_vdev_aux++; 2608 } 2609 } 2610 2611 spa_config_exit(spa, SCL_VDEV, FTAG); 2612 2613 if (guid == 0) { 2614 /* 2615 * Add a new device. 2616 */ 2617 nvlist_t *nvroot = make_vdev_root(NULL, aux, NULL, 2618 (ztest_opts.zo_vdev_size * 5) / 4, 0, 0, 0, 0, 1); 2619 error = spa_vdev_add(spa, nvroot); 2620 if (error != 0) 2621 fatal(0, "spa_vdev_add(%p) = %d", nvroot, error); 2622 nvlist_free(nvroot); 2623 } else { 2624 /* 2625 * Remove an existing device. Sometimes, dirty its 2626 * vdev state first to make sure we handle removal 2627 * of devices that have pending state changes. 2628 */ 2629 if (ztest_random(2) == 0) 2630 (void) vdev_online(spa, guid, 0, NULL); 2631 2632 error = spa_vdev_remove(spa, guid, B_FALSE); 2633 if (error != 0 && error != EBUSY) 2634 fatal(0, "spa_vdev_remove(%llu) = %d", guid, error); 2635 } 2636 2637 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 2638 } 2639 2640 /* 2641 * split a pool if it has mirror tlvdevs 2642 */ 2643 /* ARGSUSED */ 2644 void 2645 ztest_split_pool(ztest_ds_t *zd, uint64_t id) 2646 { 2647 ztest_shared_t *zs = ztest_shared; 2648 spa_t *spa = ztest_spa; 2649 vdev_t *rvd = spa->spa_root_vdev; 2650 nvlist_t *tree, **child, *config, *split, **schild; 2651 uint_t c, children, schildren = 0, lastlogid = 0; 2652 int error = 0; 2653 2654 VERIFY(mutex_lock(&ztest_vdev_lock) == 0); 2655 2656 /* ensure we have a useable config; mirrors of raidz aren't supported */ 2657 if (zs->zs_mirrors < 3 || ztest_opts.zo_raidz > 1) { 2658 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 2659 return; 2660 } 2661 2662 /* clean up the old pool, if any */ 2663 (void) spa_destroy("splitp"); 2664 2665 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 2666 2667 /* generate a config from the existing config */ 2668 mutex_enter(&spa->spa_props_lock); 2669 VERIFY(nvlist_lookup_nvlist(spa->spa_config, ZPOOL_CONFIG_VDEV_TREE, 2670 &tree) == 0); 2671 mutex_exit(&spa->spa_props_lock); 2672 2673 VERIFY(nvlist_lookup_nvlist_array(tree, ZPOOL_CONFIG_CHILDREN, &child, 2674 &children) == 0); 2675 2676 schild = malloc(rvd->vdev_children * sizeof (nvlist_t *)); 2677 for (c = 0; c < children; c++) { 2678 vdev_t *tvd = rvd->vdev_child[c]; 2679 nvlist_t **mchild; 2680 uint_t mchildren; 2681 2682 if (tvd->vdev_islog || tvd->vdev_ops == &vdev_hole_ops) { 2683 VERIFY(nvlist_alloc(&schild[schildren], NV_UNIQUE_NAME, 2684 0) == 0); 2685 VERIFY(nvlist_add_string(schild[schildren], 2686 ZPOOL_CONFIG_TYPE, VDEV_TYPE_HOLE) == 0); 2687 VERIFY(nvlist_add_uint64(schild[schildren], 2688 ZPOOL_CONFIG_IS_HOLE, 1) == 0); 2689 if (lastlogid == 0) 2690 lastlogid = schildren; 2691 ++schildren; 2692 continue; 2693 } 2694 lastlogid = 0; 2695 VERIFY(nvlist_lookup_nvlist_array(child[c], 2696 ZPOOL_CONFIG_CHILDREN, &mchild, &mchildren) == 0); 2697 VERIFY(nvlist_dup(mchild[0], &schild[schildren++], 0) == 0); 2698 } 2699 2700 /* OK, create a config that can be used to split */ 2701 VERIFY(nvlist_alloc(&split, NV_UNIQUE_NAME, 0) == 0); 2702 VERIFY(nvlist_add_string(split, ZPOOL_CONFIG_TYPE, 2703 VDEV_TYPE_ROOT) == 0); 2704 VERIFY(nvlist_add_nvlist_array(split, ZPOOL_CONFIG_CHILDREN, schild, 2705 lastlogid != 0 ? lastlogid : schildren) == 0); 2706 2707 VERIFY(nvlist_alloc(&config, NV_UNIQUE_NAME, 0) == 0); 2708 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, split) == 0); 2709 2710 for (c = 0; c < schildren; c++) 2711 nvlist_free(schild[c]); 2712 free(schild); 2713 nvlist_free(split); 2714 2715 spa_config_exit(spa, SCL_VDEV, FTAG); 2716 2717 (void) rw_wrlock(&ztest_name_lock); 2718 error = spa_vdev_split_mirror(spa, "splitp", config, NULL, B_FALSE); 2719 (void) rw_unlock(&ztest_name_lock); 2720 2721 nvlist_free(config); 2722 2723 if (error == 0) { 2724 (void) printf("successful split - results:\n"); 2725 mutex_enter(&spa_namespace_lock); 2726 show_pool_stats(spa); 2727 show_pool_stats(spa_lookup("splitp")); 2728 mutex_exit(&spa_namespace_lock); 2729 ++zs->zs_splits; 2730 --zs->zs_mirrors; 2731 } 2732 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 2733 2734 } 2735 2736 /* 2737 * Verify that we can attach and detach devices. 2738 */ 2739 /* ARGSUSED */ 2740 void 2741 ztest_vdev_attach_detach(ztest_ds_t *zd, uint64_t id) 2742 { 2743 ztest_shared_t *zs = ztest_shared; 2744 spa_t *spa = ztest_spa; 2745 spa_aux_vdev_t *sav = &spa->spa_spares; 2746 vdev_t *rvd = spa->spa_root_vdev; 2747 vdev_t *oldvd, *newvd, *pvd; 2748 nvlist_t *root; 2749 uint64_t leaves; 2750 uint64_t leaf, top; 2751 uint64_t ashift = ztest_get_ashift(); 2752 uint64_t oldguid, pguid; 2753 uint64_t oldsize, newsize; 2754 char oldpath[MAXPATHLEN], newpath[MAXPATHLEN]; 2755 int replacing; 2756 int oldvd_has_siblings = B_FALSE; 2757 int newvd_is_spare = B_FALSE; 2758 int oldvd_is_log; 2759 int error, expected_error; 2760 2761 VERIFY(mutex_lock(&ztest_vdev_lock) == 0); 2762 leaves = MAX(zs->zs_mirrors, 1) * ztest_opts.zo_raidz; 2763 2764 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 2765 2766 /* 2767 * Decide whether to do an attach or a replace. 2768 */ 2769 replacing = ztest_random(2); 2770 2771 /* 2772 * Pick a random top-level vdev. 2773 */ 2774 top = ztest_random_vdev_top(spa, B_TRUE); 2775 2776 /* 2777 * Pick a random leaf within it. 2778 */ 2779 leaf = ztest_random(leaves); 2780 2781 /* 2782 * Locate this vdev. 2783 */ 2784 oldvd = rvd->vdev_child[top]; 2785 if (zs->zs_mirrors >= 1) { 2786 ASSERT(oldvd->vdev_ops == &vdev_mirror_ops); 2787 ASSERT(oldvd->vdev_children >= zs->zs_mirrors); 2788 oldvd = oldvd->vdev_child[leaf / ztest_opts.zo_raidz]; 2789 } 2790 if (ztest_opts.zo_raidz > 1) { 2791 ASSERT(oldvd->vdev_ops == &vdev_raidz_ops); 2792 ASSERT(oldvd->vdev_children == ztest_opts.zo_raidz); 2793 oldvd = oldvd->vdev_child[leaf % ztest_opts.zo_raidz]; 2794 } 2795 2796 /* 2797 * If we're already doing an attach or replace, oldvd may be a 2798 * mirror vdev -- in which case, pick a random child. 2799 */ 2800 while (oldvd->vdev_children != 0) { 2801 oldvd_has_siblings = B_TRUE; 2802 ASSERT(oldvd->vdev_children >= 2); 2803 oldvd = oldvd->vdev_child[ztest_random(oldvd->vdev_children)]; 2804 } 2805 2806 oldguid = oldvd->vdev_guid; 2807 oldsize = vdev_get_min_asize(oldvd); 2808 oldvd_is_log = oldvd->vdev_top->vdev_islog; 2809 (void) strcpy(oldpath, oldvd->vdev_path); 2810 pvd = oldvd->vdev_parent; 2811 pguid = pvd->vdev_guid; 2812 2813 /* 2814 * If oldvd has siblings, then half of the time, detach it. 2815 */ 2816 if (oldvd_has_siblings && ztest_random(2) == 0) { 2817 spa_config_exit(spa, SCL_VDEV, FTAG); 2818 error = spa_vdev_detach(spa, oldguid, pguid, B_FALSE); 2819 if (error != 0 && error != ENODEV && error != EBUSY && 2820 error != ENOTSUP) 2821 fatal(0, "detach (%s) returned %d", oldpath, error); 2822 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 2823 return; 2824 } 2825 2826 /* 2827 * For the new vdev, choose with equal probability between the two 2828 * standard paths (ending in either 'a' or 'b') or a random hot spare. 2829 */ 2830 if (sav->sav_count != 0 && ztest_random(3) == 0) { 2831 newvd = sav->sav_vdevs[ztest_random(sav->sav_count)]; 2832 newvd_is_spare = B_TRUE; 2833 (void) strcpy(newpath, newvd->vdev_path); 2834 } else { 2835 (void) snprintf(newpath, sizeof (newpath), ztest_dev_template, 2836 ztest_opts.zo_dir, ztest_opts.zo_pool, 2837 top * leaves + leaf); 2838 if (ztest_random(2) == 0) 2839 newpath[strlen(newpath) - 1] = 'b'; 2840 newvd = vdev_lookup_by_path(rvd, newpath); 2841 } 2842 2843 if (newvd) { 2844 newsize = vdev_get_min_asize(newvd); 2845 } else { 2846 /* 2847 * Make newsize a little bigger or smaller than oldsize. 2848 * If it's smaller, the attach should fail. 2849 * If it's larger, and we're doing a replace, 2850 * we should get dynamic LUN growth when we're done. 2851 */ 2852 newsize = 10 * oldsize / (9 + ztest_random(3)); 2853 } 2854 2855 /* 2856 * If pvd is not a mirror or root, the attach should fail with ENOTSUP, 2857 * unless it's a replace; in that case any non-replacing parent is OK. 2858 * 2859 * If newvd is already part of the pool, it should fail with EBUSY. 2860 * 2861 * If newvd is too small, it should fail with EOVERFLOW. 2862 */ 2863 if (pvd->vdev_ops != &vdev_mirror_ops && 2864 pvd->vdev_ops != &vdev_root_ops && (!replacing || 2865 pvd->vdev_ops == &vdev_replacing_ops || 2866 pvd->vdev_ops == &vdev_spare_ops)) 2867 expected_error = ENOTSUP; 2868 else if (newvd_is_spare && (!replacing || oldvd_is_log)) 2869 expected_error = ENOTSUP; 2870 else if (newvd == oldvd) 2871 expected_error = replacing ? 0 : EBUSY; 2872 else if (vdev_lookup_by_path(rvd, newpath) != NULL) 2873 expected_error = EBUSY; 2874 else if (newsize < oldsize) 2875 expected_error = EOVERFLOW; 2876 else if (ashift > oldvd->vdev_top->vdev_ashift) 2877 expected_error = EDOM; 2878 else 2879 expected_error = 0; 2880 2881 spa_config_exit(spa, SCL_VDEV, FTAG); 2882 2883 /* 2884 * Build the nvlist describing newpath. 2885 */ 2886 root = make_vdev_root(newpath, NULL, NULL, newvd == NULL ? newsize : 0, 2887 ashift, 0, 0, 0, 1); 2888 2889 error = spa_vdev_attach(spa, oldguid, root, replacing); 2890 2891 nvlist_free(root); 2892 2893 /* 2894 * If our parent was the replacing vdev, but the replace completed, 2895 * then instead of failing with ENOTSUP we may either succeed, 2896 * fail with ENODEV, or fail with EOVERFLOW. 2897 */ 2898 if (expected_error == ENOTSUP && 2899 (error == 0 || error == ENODEV || error == EOVERFLOW)) 2900 expected_error = error; 2901 2902 /* 2903 * If someone grew the LUN, the replacement may be too small. 2904 */ 2905 if (error == EOVERFLOW || error == EBUSY) 2906 expected_error = error; 2907 2908 /* XXX workaround 6690467 */ 2909 if (error != expected_error && expected_error != EBUSY) { 2910 fatal(0, "attach (%s %llu, %s %llu, %d) " 2911 "returned %d, expected %d", 2912 oldpath, oldsize, newpath, 2913 newsize, replacing, error, expected_error); 2914 } 2915 2916 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 2917 } 2918 2919 /* 2920 * Callback function which expands the physical size of the vdev. 2921 */ 2922 vdev_t * 2923 grow_vdev(vdev_t *vd, void *arg) 2924 { 2925 spa_t *spa = vd->vdev_spa; 2926 size_t *newsize = arg; 2927 size_t fsize; 2928 int fd; 2929 2930 ASSERT(spa_config_held(spa, SCL_STATE, RW_READER) == SCL_STATE); 2931 ASSERT(vd->vdev_ops->vdev_op_leaf); 2932 2933 if ((fd = open(vd->vdev_path, O_RDWR)) == -1) 2934 return (vd); 2935 2936 fsize = lseek(fd, 0, SEEK_END); 2937 (void) ftruncate(fd, *newsize); 2938 2939 if (ztest_opts.zo_verbose >= 6) { 2940 (void) printf("%s grew from %lu to %lu bytes\n", 2941 vd->vdev_path, (ulong_t)fsize, (ulong_t)*newsize); 2942 } 2943 (void) close(fd); 2944 return (NULL); 2945 } 2946 2947 /* 2948 * Callback function which expands a given vdev by calling vdev_online(). 2949 */ 2950 /* ARGSUSED */ 2951 vdev_t * 2952 online_vdev(vdev_t *vd, void *arg) 2953 { 2954 spa_t *spa = vd->vdev_spa; 2955 vdev_t *tvd = vd->vdev_top; 2956 uint64_t guid = vd->vdev_guid; 2957 uint64_t generation = spa->spa_config_generation + 1; 2958 vdev_state_t newstate = VDEV_STATE_UNKNOWN; 2959 int error; 2960 2961 ASSERT(spa_config_held(spa, SCL_STATE, RW_READER) == SCL_STATE); 2962 ASSERT(vd->vdev_ops->vdev_op_leaf); 2963 2964 /* Calling vdev_online will initialize the new metaslabs */ 2965 spa_config_exit(spa, SCL_STATE, spa); 2966 error = vdev_online(spa, guid, ZFS_ONLINE_EXPAND, &newstate); 2967 spa_config_enter(spa, SCL_STATE, spa, RW_READER); 2968 2969 /* 2970 * If vdev_online returned an error or the underlying vdev_open 2971 * failed then we abort the expand. The only way to know that 2972 * vdev_open fails is by checking the returned newstate. 2973 */ 2974 if (error || newstate != VDEV_STATE_HEALTHY) { 2975 if (ztest_opts.zo_verbose >= 5) { 2976 (void) printf("Unable to expand vdev, state %llu, " 2977 "error %d\n", (u_longlong_t)newstate, error); 2978 } 2979 return (vd); 2980 } 2981 ASSERT3U(newstate, ==, VDEV_STATE_HEALTHY); 2982 2983 /* 2984 * Since we dropped the lock we need to ensure that we're 2985 * still talking to the original vdev. It's possible this 2986 * vdev may have been detached/replaced while we were 2987 * trying to online it. 2988 */ 2989 if (generation != spa->spa_config_generation) { 2990 if (ztest_opts.zo_verbose >= 5) { 2991 (void) printf("vdev configuration has changed, " 2992 "guid %llu, state %llu, expected gen %llu, " 2993 "got gen %llu\n", 2994 (u_longlong_t)guid, 2995 (u_longlong_t)tvd->vdev_state, 2996 (u_longlong_t)generation, 2997 (u_longlong_t)spa->spa_config_generation); 2998 } 2999 return (vd); 3000 } 3001 return (NULL); 3002 } 3003 3004 /* 3005 * Traverse the vdev tree calling the supplied function. 3006 * We continue to walk the tree until we either have walked all 3007 * children or we receive a non-NULL return from the callback. 3008 * If a NULL callback is passed, then we just return back the first 3009 * leaf vdev we encounter. 3010 */ 3011 vdev_t * 3012 vdev_walk_tree(vdev_t *vd, vdev_t *(*func)(vdev_t *, void *), void *arg) 3013 { 3014 if (vd->vdev_ops->vdev_op_leaf) { 3015 if (func == NULL) 3016 return (vd); 3017 else 3018 return (func(vd, arg)); 3019 } 3020 3021 for (uint_t c = 0; c < vd->vdev_children; c++) { 3022 vdev_t *cvd = vd->vdev_child[c]; 3023 if ((cvd = vdev_walk_tree(cvd, func, arg)) != NULL) 3024 return (cvd); 3025 } 3026 return (NULL); 3027 } 3028 3029 /* 3030 * Verify that dynamic LUN growth works as expected. 3031 */ 3032 /* ARGSUSED */ 3033 void 3034 ztest_vdev_LUN_growth(ztest_ds_t *zd, uint64_t id) 3035 { 3036 spa_t *spa = ztest_spa; 3037 vdev_t *vd, *tvd; 3038 metaslab_class_t *mc; 3039 metaslab_group_t *mg; 3040 size_t psize, newsize; 3041 uint64_t top; 3042 uint64_t old_class_space, new_class_space, old_ms_count, new_ms_count; 3043 3044 VERIFY(mutex_lock(&ztest_vdev_lock) == 0); 3045 spa_config_enter(spa, SCL_STATE, spa, RW_READER); 3046 3047 top = ztest_random_vdev_top(spa, B_TRUE); 3048 3049 tvd = spa->spa_root_vdev->vdev_child[top]; 3050 mg = tvd->vdev_mg; 3051 mc = mg->mg_class; 3052 old_ms_count = tvd->vdev_ms_count; 3053 old_class_space = metaslab_class_get_space(mc); 3054 3055 /* 3056 * Determine the size of the first leaf vdev associated with 3057 * our top-level device. 3058 */ 3059 vd = vdev_walk_tree(tvd, NULL, NULL); 3060 ASSERT3P(vd, !=, NULL); 3061 ASSERT(vd->vdev_ops->vdev_op_leaf); 3062 3063 psize = vd->vdev_psize; 3064 3065 /* 3066 * We only try to expand the vdev if it's healthy, less than 4x its 3067 * original size, and it has a valid psize. 3068 */ 3069 if (tvd->vdev_state != VDEV_STATE_HEALTHY || 3070 psize == 0 || psize >= 4 * ztest_opts.zo_vdev_size) { 3071 spa_config_exit(spa, SCL_STATE, spa); 3072 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 3073 return; 3074 } 3075 ASSERT(psize > 0); 3076 newsize = psize + psize / 8; 3077 ASSERT3U(newsize, >, psize); 3078 3079 if (ztest_opts.zo_verbose >= 6) { 3080 (void) printf("Expanding LUN %s from %lu to %lu\n", 3081 vd->vdev_path, (ulong_t)psize, (ulong_t)newsize); 3082 } 3083 3084 /* 3085 * Growing the vdev is a two step process: 3086 * 1). expand the physical size (i.e. relabel) 3087 * 2). online the vdev to create the new metaslabs 3088 */ 3089 if (vdev_walk_tree(tvd, grow_vdev, &newsize) != NULL || 3090 vdev_walk_tree(tvd, online_vdev, NULL) != NULL || 3091 tvd->vdev_state != VDEV_STATE_HEALTHY) { 3092 if (ztest_opts.zo_verbose >= 5) { 3093 (void) printf("Could not expand LUN because " 3094 "the vdev configuration changed.\n"); 3095 } 3096 spa_config_exit(spa, SCL_STATE, spa); 3097 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 3098 return; 3099 } 3100 3101 spa_config_exit(spa, SCL_STATE, spa); 3102 3103 /* 3104 * Expanding the LUN will update the config asynchronously, 3105 * thus we must wait for the async thread to complete any 3106 * pending tasks before proceeding. 3107 */ 3108 for (;;) { 3109 boolean_t done; 3110 mutex_enter(&spa->spa_async_lock); 3111 done = (spa->spa_async_thread == NULL && !spa->spa_async_tasks); 3112 mutex_exit(&spa->spa_async_lock); 3113 if (done) 3114 break; 3115 txg_wait_synced(spa_get_dsl(spa), 0); 3116 (void) poll(NULL, 0, 100); 3117 } 3118 3119 spa_config_enter(spa, SCL_STATE, spa, RW_READER); 3120 3121 tvd = spa->spa_root_vdev->vdev_child[top]; 3122 new_ms_count = tvd->vdev_ms_count; 3123 new_class_space = metaslab_class_get_space(mc); 3124 3125 if (tvd->vdev_mg != mg || mg->mg_class != mc) { 3126 if (ztest_opts.zo_verbose >= 5) { 3127 (void) printf("Could not verify LUN expansion due to " 3128 "intervening vdev offline or remove.\n"); 3129 } 3130 spa_config_exit(spa, SCL_STATE, spa); 3131 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 3132 return; 3133 } 3134 3135 /* 3136 * Make sure we were able to grow the vdev. 3137 */ 3138 if (new_ms_count <= old_ms_count) 3139 fatal(0, "LUN expansion failed: ms_count %llu <= %llu\n", 3140 old_ms_count, new_ms_count); 3141 3142 /* 3143 * Make sure we were able to grow the pool. 3144 */ 3145 if (new_class_space <= old_class_space) 3146 fatal(0, "LUN expansion failed: class_space %llu <= %llu\n", 3147 old_class_space, new_class_space); 3148 3149 if (ztest_opts.zo_verbose >= 5) { 3150 char oldnumbuf[6], newnumbuf[6]; 3151 3152 nicenum(old_class_space, oldnumbuf); 3153 nicenum(new_class_space, newnumbuf); 3154 (void) printf("%s grew from %s to %s\n", 3155 spa->spa_name, oldnumbuf, newnumbuf); 3156 } 3157 3158 spa_config_exit(spa, SCL_STATE, spa); 3159 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 3160 } 3161 3162 /* 3163 * Verify that dmu_objset_{create,destroy,open,close} work as expected. 3164 */ 3165 /* ARGSUSED */ 3166 static void 3167 ztest_objset_create_cb(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx) 3168 { 3169 /* 3170 * Create the objects common to all ztest datasets. 3171 */ 3172 VERIFY(zap_create_claim(os, ZTEST_DIROBJ, 3173 DMU_OT_ZAP_OTHER, DMU_OT_NONE, 0, tx) == 0); 3174 } 3175 3176 static int 3177 ztest_dataset_create(char *dsname) 3178 { 3179 uint64_t zilset = ztest_random(100); 3180 int err = dmu_objset_create(dsname, DMU_OST_OTHER, 0, 3181 ztest_objset_create_cb, NULL); 3182 3183 if (err || zilset < 80) 3184 return (err); 3185 3186 if (ztest_opts.zo_verbose >= 6) 3187 (void) printf("Setting dataset %s to sync always\n", dsname); 3188 return (ztest_dsl_prop_set_uint64(dsname, ZFS_PROP_SYNC, 3189 ZFS_SYNC_ALWAYS, B_FALSE)); 3190 } 3191 3192 /* ARGSUSED */ 3193 static int 3194 ztest_objset_destroy_cb(const char *name, void *arg) 3195 { 3196 objset_t *os; 3197 dmu_object_info_t doi; 3198 int error; 3199 3200 /* 3201 * Verify that the dataset contains a directory object. 3202 */ 3203 VERIFY0(dmu_objset_own(name, DMU_OST_OTHER, B_TRUE, FTAG, &os)); 3204 error = dmu_object_info(os, ZTEST_DIROBJ, &doi); 3205 if (error != ENOENT) { 3206 /* We could have crashed in the middle of destroying it */ 3207 ASSERT0(error); 3208 ASSERT3U(doi.doi_type, ==, DMU_OT_ZAP_OTHER); 3209 ASSERT3S(doi.doi_physical_blocks_512, >=, 0); 3210 } 3211 dmu_objset_disown(os, FTAG); 3212 3213 /* 3214 * Destroy the dataset. 3215 */ 3216 if (strchr(name, '@') != NULL) { 3217 VERIFY0(dsl_destroy_snapshot(name, B_FALSE)); 3218 } else { 3219 VERIFY0(dsl_destroy_head(name)); 3220 } 3221 return (0); 3222 } 3223 3224 static boolean_t 3225 ztest_snapshot_create(char *osname, uint64_t id) 3226 { 3227 char snapname[MAXNAMELEN]; 3228 int error; 3229 3230 (void) snprintf(snapname, sizeof (snapname), "%llu", (u_longlong_t)id); 3231 3232 error = dmu_objset_snapshot_one(osname, snapname); 3233 if (error == ENOSPC) { 3234 ztest_record_enospc(FTAG); 3235 return (B_FALSE); 3236 } 3237 if (error != 0 && error != EEXIST) { 3238 fatal(0, "ztest_snapshot_create(%s@%s) = %d", osname, 3239 snapname, error); 3240 } 3241 return (B_TRUE); 3242 } 3243 3244 static boolean_t 3245 ztest_snapshot_destroy(char *osname, uint64_t id) 3246 { 3247 char snapname[MAXNAMELEN]; 3248 int error; 3249 3250 (void) snprintf(snapname, MAXNAMELEN, "%s@%llu", osname, 3251 (u_longlong_t)id); 3252 3253 error = dsl_destroy_snapshot(snapname, B_FALSE); 3254 if (error != 0 && error != ENOENT) 3255 fatal(0, "ztest_snapshot_destroy(%s) = %d", snapname, error); 3256 return (B_TRUE); 3257 } 3258 3259 /* ARGSUSED */ 3260 void 3261 ztest_dmu_objset_create_destroy(ztest_ds_t *zd, uint64_t id) 3262 { 3263 ztest_ds_t zdtmp; 3264 int iters; 3265 int error; 3266 objset_t *os, *os2; 3267 char name[MAXNAMELEN]; 3268 zilog_t *zilog; 3269 3270 (void) rw_rdlock(&ztest_name_lock); 3271 3272 (void) snprintf(name, MAXNAMELEN, "%s/temp_%llu", 3273 ztest_opts.zo_pool, (u_longlong_t)id); 3274 3275 /* 3276 * If this dataset exists from a previous run, process its replay log 3277 * half of the time. If we don't replay it, then dmu_objset_destroy() 3278 * (invoked from ztest_objset_destroy_cb()) should just throw it away. 3279 */ 3280 if (ztest_random(2) == 0 && 3281 dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, FTAG, &os) == 0) { 3282 ztest_zd_init(&zdtmp, NULL, os); 3283 zil_replay(os, &zdtmp, ztest_replay_vector); 3284 ztest_zd_fini(&zdtmp); 3285 dmu_objset_disown(os, FTAG); 3286 } 3287 3288 /* 3289 * There may be an old instance of the dataset we're about to 3290 * create lying around from a previous run. If so, destroy it 3291 * and all of its snapshots. 3292 */ 3293 (void) dmu_objset_find(name, ztest_objset_destroy_cb, NULL, 3294 DS_FIND_CHILDREN | DS_FIND_SNAPSHOTS); 3295 3296 /* 3297 * Verify that the destroyed dataset is no longer in the namespace. 3298 */ 3299 VERIFY3U(ENOENT, ==, dmu_objset_own(name, DMU_OST_OTHER, B_TRUE, 3300 FTAG, &os)); 3301 3302 /* 3303 * Verify that we can create a new dataset. 3304 */ 3305 error = ztest_dataset_create(name); 3306 if (error) { 3307 if (error == ENOSPC) { 3308 ztest_record_enospc(FTAG); 3309 (void) rw_unlock(&ztest_name_lock); 3310 return; 3311 } 3312 fatal(0, "dmu_objset_create(%s) = %d", name, error); 3313 } 3314 3315 VERIFY0(dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, FTAG, &os)); 3316 3317 ztest_zd_init(&zdtmp, NULL, os); 3318 3319 /* 3320 * Open the intent log for it. 3321 */ 3322 zilog = zil_open(os, ztest_get_data); 3323 3324 /* 3325 * Put some objects in there, do a little I/O to them, 3326 * and randomly take a couple of snapshots along the way. 3327 */ 3328 iters = ztest_random(5); 3329 for (int i = 0; i < iters; i++) { 3330 ztest_dmu_object_alloc_free(&zdtmp, id); 3331 if (ztest_random(iters) == 0) 3332 (void) ztest_snapshot_create(name, i); 3333 } 3334 3335 /* 3336 * Verify that we cannot create an existing dataset. 3337 */ 3338 VERIFY3U(EEXIST, ==, 3339 dmu_objset_create(name, DMU_OST_OTHER, 0, NULL, NULL)); 3340 3341 /* 3342 * Verify that we can hold an objset that is also owned. 3343 */ 3344 VERIFY3U(0, ==, dmu_objset_hold(name, FTAG, &os2)); 3345 dmu_objset_rele(os2, FTAG); 3346 3347 /* 3348 * Verify that we cannot own an objset that is already owned. 3349 */ 3350 VERIFY3U(EBUSY, ==, 3351 dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, FTAG, &os2)); 3352 3353 zil_close(zilog); 3354 dmu_objset_disown(os, FTAG); 3355 ztest_zd_fini(&zdtmp); 3356 3357 (void) rw_unlock(&ztest_name_lock); 3358 } 3359 3360 /* 3361 * Verify that dmu_snapshot_{create,destroy,open,close} work as expected. 3362 */ 3363 void 3364 ztest_dmu_snapshot_create_destroy(ztest_ds_t *zd, uint64_t id) 3365 { 3366 (void) rw_rdlock(&ztest_name_lock); 3367 (void) ztest_snapshot_destroy(zd->zd_name, id); 3368 (void) ztest_snapshot_create(zd->zd_name, id); 3369 (void) rw_unlock(&ztest_name_lock); 3370 } 3371 3372 /* 3373 * Cleanup non-standard snapshots and clones. 3374 */ 3375 void 3376 ztest_dsl_dataset_cleanup(char *osname, uint64_t id) 3377 { 3378 char snap1name[MAXNAMELEN]; 3379 char clone1name[MAXNAMELEN]; 3380 char snap2name[MAXNAMELEN]; 3381 char clone2name[MAXNAMELEN]; 3382 char snap3name[MAXNAMELEN]; 3383 int error; 3384 3385 (void) snprintf(snap1name, MAXNAMELEN, "%s@s1_%llu", osname, id); 3386 (void) snprintf(clone1name, MAXNAMELEN, "%s/c1_%llu", osname, id); 3387 (void) snprintf(snap2name, MAXNAMELEN, "%s@s2_%llu", clone1name, id); 3388 (void) snprintf(clone2name, MAXNAMELEN, "%s/c2_%llu", osname, id); 3389 (void) snprintf(snap3name, MAXNAMELEN, "%s@s3_%llu", clone1name, id); 3390 3391 error = dsl_destroy_head(clone2name); 3392 if (error && error != ENOENT) 3393 fatal(0, "dsl_destroy_head(%s) = %d", clone2name, error); 3394 error = dsl_destroy_snapshot(snap3name, B_FALSE); 3395 if (error && error != ENOENT) 3396 fatal(0, "dsl_destroy_snapshot(%s) = %d", snap3name, error); 3397 error = dsl_destroy_snapshot(snap2name, B_FALSE); 3398 if (error && error != ENOENT) 3399 fatal(0, "dsl_destroy_snapshot(%s) = %d", snap2name, error); 3400 error = dsl_destroy_head(clone1name); 3401 if (error && error != ENOENT) 3402 fatal(0, "dsl_destroy_head(%s) = %d", clone1name, error); 3403 error = dsl_destroy_snapshot(snap1name, B_FALSE); 3404 if (error && error != ENOENT) 3405 fatal(0, "dsl_destroy_snapshot(%s) = %d", snap1name, error); 3406 } 3407 3408 /* 3409 * Verify dsl_dataset_promote handles EBUSY 3410 */ 3411 void 3412 ztest_dsl_dataset_promote_busy(ztest_ds_t *zd, uint64_t id) 3413 { 3414 objset_t *os; 3415 char snap1name[MAXNAMELEN]; 3416 char clone1name[MAXNAMELEN]; 3417 char snap2name[MAXNAMELEN]; 3418 char clone2name[MAXNAMELEN]; 3419 char snap3name[MAXNAMELEN]; 3420 char *osname = zd->zd_name; 3421 int error; 3422 3423 (void) rw_rdlock(&ztest_name_lock); 3424 3425 ztest_dsl_dataset_cleanup(osname, id); 3426 3427 (void) snprintf(snap1name, MAXNAMELEN, "%s@s1_%llu", osname, id); 3428 (void) snprintf(clone1name, MAXNAMELEN, "%s/c1_%llu", osname, id); 3429 (void) snprintf(snap2name, MAXNAMELEN, "%s@s2_%llu", clone1name, id); 3430 (void) snprintf(clone2name, MAXNAMELEN, "%s/c2_%llu", osname, id); 3431 (void) snprintf(snap3name, MAXNAMELEN, "%s@s3_%llu", clone1name, id); 3432 3433 error = dmu_objset_snapshot_one(osname, strchr(snap1name, '@') + 1); 3434 if (error && error != EEXIST) { 3435 if (error == ENOSPC) { 3436 ztest_record_enospc(FTAG); 3437 goto out; 3438 } 3439 fatal(0, "dmu_take_snapshot(%s) = %d", snap1name, error); 3440 } 3441 3442 error = dmu_objset_clone(clone1name, snap1name); 3443 if (error) { 3444 if (error == ENOSPC) { 3445 ztest_record_enospc(FTAG); 3446 goto out; 3447 } 3448 fatal(0, "dmu_objset_create(%s) = %d", clone1name, error); 3449 } 3450 3451 error = dmu_objset_snapshot_one(clone1name, strchr(snap2name, '@') + 1); 3452 if (error && error != EEXIST) { 3453 if (error == ENOSPC) { 3454 ztest_record_enospc(FTAG); 3455 goto out; 3456 } 3457 fatal(0, "dmu_open_snapshot(%s) = %d", snap2name, error); 3458 } 3459 3460 error = dmu_objset_snapshot_one(clone1name, strchr(snap3name, '@') + 1); 3461 if (error && error != EEXIST) { 3462 if (error == ENOSPC) { 3463 ztest_record_enospc(FTAG); 3464 goto out; 3465 } 3466 fatal(0, "dmu_open_snapshot(%s) = %d", snap3name, error); 3467 } 3468 3469 error = dmu_objset_clone(clone2name, snap3name); 3470 if (error) { 3471 if (error == ENOSPC) { 3472 ztest_record_enospc(FTAG); 3473 goto out; 3474 } 3475 fatal(0, "dmu_objset_create(%s) = %d", clone2name, error); 3476 } 3477 3478 error = dmu_objset_own(snap2name, DMU_OST_ANY, B_TRUE, FTAG, &os); 3479 if (error) 3480 fatal(0, "dmu_objset_own(%s) = %d", snap2name, error); 3481 error = dsl_dataset_promote(clone2name, NULL); 3482 if (error == ENOSPC) { 3483 dmu_objset_disown(os, FTAG); 3484 ztest_record_enospc(FTAG); 3485 goto out; 3486 } 3487 if (error != EBUSY) 3488 fatal(0, "dsl_dataset_promote(%s), %d, not EBUSY", clone2name, 3489 error); 3490 dmu_objset_disown(os, FTAG); 3491 3492 out: 3493 ztest_dsl_dataset_cleanup(osname, id); 3494 3495 (void) rw_unlock(&ztest_name_lock); 3496 } 3497 3498 /* 3499 * Verify that dmu_object_{alloc,free} work as expected. 3500 */ 3501 void 3502 ztest_dmu_object_alloc_free(ztest_ds_t *zd, uint64_t id) 3503 { 3504 ztest_od_t od[4]; 3505 int batchsize = sizeof (od) / sizeof (od[0]); 3506 3507 for (int b = 0; b < batchsize; b++) 3508 ztest_od_init(&od[b], id, FTAG, b, DMU_OT_UINT64_OTHER, 0, 0); 3509 3510 /* 3511 * Destroy the previous batch of objects, create a new batch, 3512 * and do some I/O on the new objects. 3513 */ 3514 if (ztest_object_init(zd, od, sizeof (od), B_TRUE) != 0) 3515 return; 3516 3517 while (ztest_random(4 * batchsize) != 0) 3518 ztest_io(zd, od[ztest_random(batchsize)].od_object, 3519 ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT); 3520 } 3521 3522 /* 3523 * Verify that dmu_{read,write} work as expected. 3524 */ 3525 void 3526 ztest_dmu_read_write(ztest_ds_t *zd, uint64_t id) 3527 { 3528 objset_t *os = zd->zd_os; 3529 ztest_od_t od[2]; 3530 dmu_tx_t *tx; 3531 int i, freeit, error; 3532 uint64_t n, s, txg; 3533 bufwad_t *packbuf, *bigbuf, *pack, *bigH, *bigT; 3534 uint64_t packobj, packoff, packsize, bigobj, bigoff, bigsize; 3535 uint64_t chunksize = (1000 + ztest_random(1000)) * sizeof (uint64_t); 3536 uint64_t regions = 997; 3537 uint64_t stride = 123456789ULL; 3538 uint64_t width = 40; 3539 int free_percent = 5; 3540 3541 /* 3542 * This test uses two objects, packobj and bigobj, that are always 3543 * updated together (i.e. in the same tx) so that their contents are 3544 * in sync and can be compared. Their contents relate to each other 3545 * in a simple way: packobj is a dense array of 'bufwad' structures, 3546 * while bigobj is a sparse array of the same bufwads. Specifically, 3547 * for any index n, there are three bufwads that should be identical: 3548 * 3549 * packobj, at offset n * sizeof (bufwad_t) 3550 * bigobj, at the head of the nth chunk 3551 * bigobj, at the tail of the nth chunk 3552 * 3553 * The chunk size is arbitrary. It doesn't have to be a power of two, 3554 * and it doesn't have any relation to the object blocksize. 3555 * The only requirement is that it can hold at least two bufwads. 3556 * 3557 * Normally, we write the bufwad to each of these locations. 3558 * However, free_percent of the time we instead write zeroes to 3559 * packobj and perform a dmu_free_range() on bigobj. By comparing 3560 * bigobj to packobj, we can verify that the DMU is correctly 3561 * tracking which parts of an object are allocated and free, 3562 * and that the contents of the allocated blocks are correct. 3563 */ 3564 3565 /* 3566 * Read the directory info. If it's the first time, set things up. 3567 */ 3568 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, 0, chunksize); 3569 ztest_od_init(&od[1], id, FTAG, 1, DMU_OT_UINT64_OTHER, 0, chunksize); 3570 3571 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0) 3572 return; 3573 3574 bigobj = od[0].od_object; 3575 packobj = od[1].od_object; 3576 chunksize = od[0].od_gen; 3577 ASSERT(chunksize == od[1].od_gen); 3578 3579 /* 3580 * Prefetch a random chunk of the big object. 3581 * Our aim here is to get some async reads in flight 3582 * for blocks that we may free below; the DMU should 3583 * handle this race correctly. 3584 */ 3585 n = ztest_random(regions) * stride + ztest_random(width); 3586 s = 1 + ztest_random(2 * width - 1); 3587 dmu_prefetch(os, bigobj, 0, n * chunksize, s * chunksize, 3588 ZIO_PRIORITY_SYNC_READ); 3589 3590 /* 3591 * Pick a random index and compute the offsets into packobj and bigobj. 3592 */ 3593 n = ztest_random(regions) * stride + ztest_random(width); 3594 s = 1 + ztest_random(width - 1); 3595 3596 packoff = n * sizeof (bufwad_t); 3597 packsize = s * sizeof (bufwad_t); 3598 3599 bigoff = n * chunksize; 3600 bigsize = s * chunksize; 3601 3602 packbuf = umem_alloc(packsize, UMEM_NOFAIL); 3603 bigbuf = umem_alloc(bigsize, UMEM_NOFAIL); 3604 3605 /* 3606 * free_percent of the time, free a range of bigobj rather than 3607 * overwriting it. 3608 */ 3609 freeit = (ztest_random(100) < free_percent); 3610 3611 /* 3612 * Read the current contents of our objects. 3613 */ 3614 error = dmu_read(os, packobj, packoff, packsize, packbuf, 3615 DMU_READ_PREFETCH); 3616 ASSERT0(error); 3617 error = dmu_read(os, bigobj, bigoff, bigsize, bigbuf, 3618 DMU_READ_PREFETCH); 3619 ASSERT0(error); 3620 3621 /* 3622 * Get a tx for the mods to both packobj and bigobj. 3623 */ 3624 tx = dmu_tx_create(os); 3625 3626 dmu_tx_hold_write(tx, packobj, packoff, packsize); 3627 3628 if (freeit) 3629 dmu_tx_hold_free(tx, bigobj, bigoff, bigsize); 3630 else 3631 dmu_tx_hold_write(tx, bigobj, bigoff, bigsize); 3632 3633 /* This accounts for setting the checksum/compression. */ 3634 dmu_tx_hold_bonus(tx, bigobj); 3635 3636 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); 3637 if (txg == 0) { 3638 umem_free(packbuf, packsize); 3639 umem_free(bigbuf, bigsize); 3640 return; 3641 } 3642 3643 enum zio_checksum cksum; 3644 do { 3645 cksum = (enum zio_checksum) 3646 ztest_random_dsl_prop(ZFS_PROP_CHECKSUM); 3647 } while (cksum >= ZIO_CHECKSUM_LEGACY_FUNCTIONS); 3648 dmu_object_set_checksum(os, bigobj, cksum, tx); 3649 3650 enum zio_compress comp; 3651 do { 3652 comp = (enum zio_compress) 3653 ztest_random_dsl_prop(ZFS_PROP_COMPRESSION); 3654 } while (comp >= ZIO_COMPRESS_LEGACY_FUNCTIONS); 3655 dmu_object_set_compress(os, bigobj, comp, tx); 3656 3657 /* 3658 * For each index from n to n + s, verify that the existing bufwad 3659 * in packobj matches the bufwads at the head and tail of the 3660 * corresponding chunk in bigobj. Then update all three bufwads 3661 * with the new values we want to write out. 3662 */ 3663 for (i = 0; i < s; i++) { 3664 /* LINTED */ 3665 pack = (bufwad_t *)((char *)packbuf + i * sizeof (bufwad_t)); 3666 /* LINTED */ 3667 bigH = (bufwad_t *)((char *)bigbuf + i * chunksize); 3668 /* LINTED */ 3669 bigT = (bufwad_t *)((char *)bigH + chunksize) - 1; 3670 3671 ASSERT((uintptr_t)bigH - (uintptr_t)bigbuf < bigsize); 3672 ASSERT((uintptr_t)bigT - (uintptr_t)bigbuf < bigsize); 3673 3674 if (pack->bw_txg > txg) 3675 fatal(0, "future leak: got %llx, open txg is %llx", 3676 pack->bw_txg, txg); 3677 3678 if (pack->bw_data != 0 && pack->bw_index != n + i) 3679 fatal(0, "wrong index: got %llx, wanted %llx+%llx", 3680 pack->bw_index, n, i); 3681 3682 if (bcmp(pack, bigH, sizeof (bufwad_t)) != 0) 3683 fatal(0, "pack/bigH mismatch in %p/%p", pack, bigH); 3684 3685 if (bcmp(pack, bigT, sizeof (bufwad_t)) != 0) 3686 fatal(0, "pack/bigT mismatch in %p/%p", pack, bigT); 3687 3688 if (freeit) { 3689 bzero(pack, sizeof (bufwad_t)); 3690 } else { 3691 pack->bw_index = n + i; 3692 pack->bw_txg = txg; 3693 pack->bw_data = 1 + ztest_random(-2ULL); 3694 } 3695 *bigH = *pack; 3696 *bigT = *pack; 3697 } 3698 3699 /* 3700 * We've verified all the old bufwads, and made new ones. 3701 * Now write them out. 3702 */ 3703 dmu_write(os, packobj, packoff, packsize, packbuf, tx); 3704 3705 if (freeit) { 3706 if (ztest_opts.zo_verbose >= 7) { 3707 (void) printf("freeing offset %llx size %llx" 3708 " txg %llx\n", 3709 (u_longlong_t)bigoff, 3710 (u_longlong_t)bigsize, 3711 (u_longlong_t)txg); 3712 } 3713 VERIFY(0 == dmu_free_range(os, bigobj, bigoff, bigsize, tx)); 3714 } else { 3715 if (ztest_opts.zo_verbose >= 7) { 3716 (void) printf("writing offset %llx size %llx" 3717 " txg %llx\n", 3718 (u_longlong_t)bigoff, 3719 (u_longlong_t)bigsize, 3720 (u_longlong_t)txg); 3721 } 3722 dmu_write(os, bigobj, bigoff, bigsize, bigbuf, tx); 3723 } 3724 3725 dmu_tx_commit(tx); 3726 3727 /* 3728 * Sanity check the stuff we just wrote. 3729 */ 3730 { 3731 void *packcheck = umem_alloc(packsize, UMEM_NOFAIL); 3732 void *bigcheck = umem_alloc(bigsize, UMEM_NOFAIL); 3733 3734 VERIFY(0 == dmu_read(os, packobj, packoff, 3735 packsize, packcheck, DMU_READ_PREFETCH)); 3736 VERIFY(0 == dmu_read(os, bigobj, bigoff, 3737 bigsize, bigcheck, DMU_READ_PREFETCH)); 3738 3739 ASSERT(bcmp(packbuf, packcheck, packsize) == 0); 3740 ASSERT(bcmp(bigbuf, bigcheck, bigsize) == 0); 3741 3742 umem_free(packcheck, packsize); 3743 umem_free(bigcheck, bigsize); 3744 } 3745 3746 umem_free(packbuf, packsize); 3747 umem_free(bigbuf, bigsize); 3748 } 3749 3750 void 3751 compare_and_update_pbbufs(uint64_t s, bufwad_t *packbuf, bufwad_t *bigbuf, 3752 uint64_t bigsize, uint64_t n, uint64_t chunksize, uint64_t txg) 3753 { 3754 uint64_t i; 3755 bufwad_t *pack; 3756 bufwad_t *bigH; 3757 bufwad_t *bigT; 3758 3759 /* 3760 * For each index from n to n + s, verify that the existing bufwad 3761 * in packobj matches the bufwads at the head and tail of the 3762 * corresponding chunk in bigobj. Then update all three bufwads 3763 * with the new values we want to write out. 3764 */ 3765 for (i = 0; i < s; i++) { 3766 /* LINTED */ 3767 pack = (bufwad_t *)((char *)packbuf + i * sizeof (bufwad_t)); 3768 /* LINTED */ 3769 bigH = (bufwad_t *)((char *)bigbuf + i * chunksize); 3770 /* LINTED */ 3771 bigT = (bufwad_t *)((char *)bigH + chunksize) - 1; 3772 3773 ASSERT((uintptr_t)bigH - (uintptr_t)bigbuf < bigsize); 3774 ASSERT((uintptr_t)bigT - (uintptr_t)bigbuf < bigsize); 3775 3776 if (pack->bw_txg > txg) 3777 fatal(0, "future leak: got %llx, open txg is %llx", 3778 pack->bw_txg, txg); 3779 3780 if (pack->bw_data != 0 && pack->bw_index != n + i) 3781 fatal(0, "wrong index: got %llx, wanted %llx+%llx", 3782 pack->bw_index, n, i); 3783 3784 if (bcmp(pack, bigH, sizeof (bufwad_t)) != 0) 3785 fatal(0, "pack/bigH mismatch in %p/%p", pack, bigH); 3786 3787 if (bcmp(pack, bigT, sizeof (bufwad_t)) != 0) 3788 fatal(0, "pack/bigT mismatch in %p/%p", pack, bigT); 3789 3790 pack->bw_index = n + i; 3791 pack->bw_txg = txg; 3792 pack->bw_data = 1 + ztest_random(-2ULL); 3793 3794 *bigH = *pack; 3795 *bigT = *pack; 3796 } 3797 } 3798 3799 void 3800 ztest_dmu_read_write_zcopy(ztest_ds_t *zd, uint64_t id) 3801 { 3802 objset_t *os = zd->zd_os; 3803 ztest_od_t od[2]; 3804 dmu_tx_t *tx; 3805 uint64_t i; 3806 int error; 3807 uint64_t n, s, txg; 3808 bufwad_t *packbuf, *bigbuf; 3809 uint64_t packobj, packoff, packsize, bigobj, bigoff, bigsize; 3810 uint64_t blocksize = ztest_random_blocksize(); 3811 uint64_t chunksize = blocksize; 3812 uint64_t regions = 997; 3813 uint64_t stride = 123456789ULL; 3814 uint64_t width = 9; 3815 dmu_buf_t *bonus_db; 3816 arc_buf_t **bigbuf_arcbufs; 3817 dmu_object_info_t doi; 3818 3819 /* 3820 * This test uses two objects, packobj and bigobj, that are always 3821 * updated together (i.e. in the same tx) so that their contents are 3822 * in sync and can be compared. Their contents relate to each other 3823 * in a simple way: packobj is a dense array of 'bufwad' structures, 3824 * while bigobj is a sparse array of the same bufwads. Specifically, 3825 * for any index n, there are three bufwads that should be identical: 3826 * 3827 * packobj, at offset n * sizeof (bufwad_t) 3828 * bigobj, at the head of the nth chunk 3829 * bigobj, at the tail of the nth chunk 3830 * 3831 * The chunk size is set equal to bigobj block size so that 3832 * dmu_assign_arcbuf() can be tested for object updates. 3833 */ 3834 3835 /* 3836 * Read the directory info. If it's the first time, set things up. 3837 */ 3838 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0); 3839 ztest_od_init(&od[1], id, FTAG, 1, DMU_OT_UINT64_OTHER, 0, chunksize); 3840 3841 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0) 3842 return; 3843 3844 bigobj = od[0].od_object; 3845 packobj = od[1].od_object; 3846 blocksize = od[0].od_blocksize; 3847 chunksize = blocksize; 3848 ASSERT(chunksize == od[1].od_gen); 3849 3850 VERIFY(dmu_object_info(os, bigobj, &doi) == 0); 3851 VERIFY(ISP2(doi.doi_data_block_size)); 3852 VERIFY(chunksize == doi.doi_data_block_size); 3853 VERIFY(chunksize >= 2 * sizeof (bufwad_t)); 3854 3855 /* 3856 * Pick a random index and compute the offsets into packobj and bigobj. 3857 */ 3858 n = ztest_random(regions) * stride + ztest_random(width); 3859 s = 1 + ztest_random(width - 1); 3860 3861 packoff = n * sizeof (bufwad_t); 3862 packsize = s * sizeof (bufwad_t); 3863 3864 bigoff = n * chunksize; 3865 bigsize = s * chunksize; 3866 3867 packbuf = umem_zalloc(packsize, UMEM_NOFAIL); 3868 bigbuf = umem_zalloc(bigsize, UMEM_NOFAIL); 3869 3870 VERIFY3U(0, ==, dmu_bonus_hold(os, bigobj, FTAG, &bonus_db)); 3871 3872 bigbuf_arcbufs = umem_zalloc(2 * s * sizeof (arc_buf_t *), UMEM_NOFAIL); 3873 3874 /* 3875 * Iteration 0 test zcopy for DB_UNCACHED dbufs. 3876 * Iteration 1 test zcopy to already referenced dbufs. 3877 * Iteration 2 test zcopy to dirty dbuf in the same txg. 3878 * Iteration 3 test zcopy to dbuf dirty in previous txg. 3879 * Iteration 4 test zcopy when dbuf is no longer dirty. 3880 * Iteration 5 test zcopy when it can't be done. 3881 * Iteration 6 one more zcopy write. 3882 */ 3883 for (i = 0; i < 7; i++) { 3884 uint64_t j; 3885 uint64_t off; 3886 3887 /* 3888 * In iteration 5 (i == 5) use arcbufs 3889 * that don't match bigobj blksz to test 3890 * dmu_assign_arcbuf() when it can't directly 3891 * assign an arcbuf to a dbuf. 3892 */ 3893 for (j = 0; j < s; j++) { 3894 if (i != 5 || chunksize < (SPA_MINBLOCKSIZE * 2)) { 3895 bigbuf_arcbufs[j] = 3896 dmu_request_arcbuf(bonus_db, chunksize); 3897 } else { 3898 bigbuf_arcbufs[2 * j] = 3899 dmu_request_arcbuf(bonus_db, chunksize / 2); 3900 bigbuf_arcbufs[2 * j + 1] = 3901 dmu_request_arcbuf(bonus_db, chunksize / 2); 3902 } 3903 } 3904 3905 /* 3906 * Get a tx for the mods to both packobj and bigobj. 3907 */ 3908 tx = dmu_tx_create(os); 3909 3910 dmu_tx_hold_write(tx, packobj, packoff, packsize); 3911 dmu_tx_hold_write(tx, bigobj, bigoff, bigsize); 3912 3913 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); 3914 if (txg == 0) { 3915 umem_free(packbuf, packsize); 3916 umem_free(bigbuf, bigsize); 3917 for (j = 0; j < s; j++) { 3918 if (i != 5 || 3919 chunksize < (SPA_MINBLOCKSIZE * 2)) { 3920 dmu_return_arcbuf(bigbuf_arcbufs[j]); 3921 } else { 3922 dmu_return_arcbuf( 3923 bigbuf_arcbufs[2 * j]); 3924 dmu_return_arcbuf( 3925 bigbuf_arcbufs[2 * j + 1]); 3926 } 3927 } 3928 umem_free(bigbuf_arcbufs, 2 * s * sizeof (arc_buf_t *)); 3929 dmu_buf_rele(bonus_db, FTAG); 3930 return; 3931 } 3932 3933 /* 3934 * 50% of the time don't read objects in the 1st iteration to 3935 * test dmu_assign_arcbuf() for the case when there're no 3936 * existing dbufs for the specified offsets. 3937 */ 3938 if (i != 0 || ztest_random(2) != 0) { 3939 error = dmu_read(os, packobj, packoff, 3940 packsize, packbuf, DMU_READ_PREFETCH); 3941 ASSERT0(error); 3942 error = dmu_read(os, bigobj, bigoff, bigsize, 3943 bigbuf, DMU_READ_PREFETCH); 3944 ASSERT0(error); 3945 } 3946 compare_and_update_pbbufs(s, packbuf, bigbuf, bigsize, 3947 n, chunksize, txg); 3948 3949 /* 3950 * We've verified all the old bufwads, and made new ones. 3951 * Now write them out. 3952 */ 3953 dmu_write(os, packobj, packoff, packsize, packbuf, tx); 3954 if (ztest_opts.zo_verbose >= 7) { 3955 (void) printf("writing offset %llx size %llx" 3956 " txg %llx\n", 3957 (u_longlong_t)bigoff, 3958 (u_longlong_t)bigsize, 3959 (u_longlong_t)txg); 3960 } 3961 for (off = bigoff, j = 0; j < s; j++, off += chunksize) { 3962 dmu_buf_t *dbt; 3963 if (i != 5 || chunksize < (SPA_MINBLOCKSIZE * 2)) { 3964 bcopy((caddr_t)bigbuf + (off - bigoff), 3965 bigbuf_arcbufs[j]->b_data, chunksize); 3966 } else { 3967 bcopy((caddr_t)bigbuf + (off - bigoff), 3968 bigbuf_arcbufs[2 * j]->b_data, 3969 chunksize / 2); 3970 bcopy((caddr_t)bigbuf + (off - bigoff) + 3971 chunksize / 2, 3972 bigbuf_arcbufs[2 * j + 1]->b_data, 3973 chunksize / 2); 3974 } 3975 3976 if (i == 1) { 3977 VERIFY(dmu_buf_hold(os, bigobj, off, 3978 FTAG, &dbt, DMU_READ_NO_PREFETCH) == 0); 3979 } 3980 if (i != 5 || chunksize < (SPA_MINBLOCKSIZE * 2)) { 3981 dmu_assign_arcbuf(bonus_db, off, 3982 bigbuf_arcbufs[j], tx); 3983 } else { 3984 dmu_assign_arcbuf(bonus_db, off, 3985 bigbuf_arcbufs[2 * j], tx); 3986 dmu_assign_arcbuf(bonus_db, 3987 off + chunksize / 2, 3988 bigbuf_arcbufs[2 * j + 1], tx); 3989 } 3990 if (i == 1) { 3991 dmu_buf_rele(dbt, FTAG); 3992 } 3993 } 3994 dmu_tx_commit(tx); 3995 3996 /* 3997 * Sanity check the stuff we just wrote. 3998 */ 3999 { 4000 void *packcheck = umem_alloc(packsize, UMEM_NOFAIL); 4001 void *bigcheck = umem_alloc(bigsize, UMEM_NOFAIL); 4002 4003 VERIFY(0 == dmu_read(os, packobj, packoff, 4004 packsize, packcheck, DMU_READ_PREFETCH)); 4005 VERIFY(0 == dmu_read(os, bigobj, bigoff, 4006 bigsize, bigcheck, DMU_READ_PREFETCH)); 4007 4008 ASSERT(bcmp(packbuf, packcheck, packsize) == 0); 4009 ASSERT(bcmp(bigbuf, bigcheck, bigsize) == 0); 4010 4011 umem_free(packcheck, packsize); 4012 umem_free(bigcheck, bigsize); 4013 } 4014 if (i == 2) { 4015 txg_wait_open(dmu_objset_pool(os), 0); 4016 } else if (i == 3) { 4017 txg_wait_synced(dmu_objset_pool(os), 0); 4018 } 4019 } 4020 4021 dmu_buf_rele(bonus_db, FTAG); 4022 umem_free(packbuf, packsize); 4023 umem_free(bigbuf, bigsize); 4024 umem_free(bigbuf_arcbufs, 2 * s * sizeof (arc_buf_t *)); 4025 } 4026 4027 /* ARGSUSED */ 4028 void 4029 ztest_dmu_write_parallel(ztest_ds_t *zd, uint64_t id) 4030 { 4031 ztest_od_t od[1]; 4032 uint64_t offset = (1ULL << (ztest_random(20) + 43)) + 4033 (ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT); 4034 4035 /* 4036 * Have multiple threads write to large offsets in an object 4037 * to verify that parallel writes to an object -- even to the 4038 * same blocks within the object -- doesn't cause any trouble. 4039 */ 4040 ztest_od_init(&od[0], ID_PARALLEL, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0); 4041 4042 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0) 4043 return; 4044 4045 while (ztest_random(10) != 0) 4046 ztest_io(zd, od[0].od_object, offset); 4047 } 4048 4049 void 4050 ztest_dmu_prealloc(ztest_ds_t *zd, uint64_t id) 4051 { 4052 ztest_od_t od[1]; 4053 uint64_t offset = (1ULL << (ztest_random(4) + SPA_MAXBLOCKSHIFT)) + 4054 (ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT); 4055 uint64_t count = ztest_random(20) + 1; 4056 uint64_t blocksize = ztest_random_blocksize(); 4057 void *data; 4058 4059 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0); 4060 4061 if (ztest_object_init(zd, od, sizeof (od), !ztest_random(2)) != 0) 4062 return; 4063 4064 if (ztest_truncate(zd, od[0].od_object, offset, count * blocksize) != 0) 4065 return; 4066 4067 ztest_prealloc(zd, od[0].od_object, offset, count * blocksize); 4068 4069 data = umem_zalloc(blocksize, UMEM_NOFAIL); 4070 4071 while (ztest_random(count) != 0) { 4072 uint64_t randoff = offset + (ztest_random(count) * blocksize); 4073 if (ztest_write(zd, od[0].od_object, randoff, blocksize, 4074 data) != 0) 4075 break; 4076 while (ztest_random(4) != 0) 4077 ztest_io(zd, od[0].od_object, randoff); 4078 } 4079 4080 umem_free(data, blocksize); 4081 } 4082 4083 /* 4084 * Verify that zap_{create,destroy,add,remove,update} work as expected. 4085 */ 4086 #define ZTEST_ZAP_MIN_INTS 1 4087 #define ZTEST_ZAP_MAX_INTS 4 4088 #define ZTEST_ZAP_MAX_PROPS 1000 4089 4090 void 4091 ztest_zap(ztest_ds_t *zd, uint64_t id) 4092 { 4093 objset_t *os = zd->zd_os; 4094 ztest_od_t od[1]; 4095 uint64_t object; 4096 uint64_t txg, last_txg; 4097 uint64_t value[ZTEST_ZAP_MAX_INTS]; 4098 uint64_t zl_ints, zl_intsize, prop; 4099 int i, ints; 4100 dmu_tx_t *tx; 4101 char propname[100], txgname[100]; 4102 int error; 4103 char *hc[2] = { "s.acl.h", ".s.open.h.hyLZlg" }; 4104 4105 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_ZAP_OTHER, 0, 0); 4106 4107 if (ztest_object_init(zd, od, sizeof (od), !ztest_random(2)) != 0) 4108 return; 4109 4110 object = od[0].od_object; 4111 4112 /* 4113 * Generate a known hash collision, and verify that 4114 * we can lookup and remove both entries. 4115 */ 4116 tx = dmu_tx_create(os); 4117 dmu_tx_hold_zap(tx, object, B_TRUE, NULL); 4118 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); 4119 if (txg == 0) 4120 return; 4121 for (i = 0; i < 2; i++) { 4122 value[i] = i; 4123 VERIFY3U(0, ==, zap_add(os, object, hc[i], sizeof (uint64_t), 4124 1, &value[i], tx)); 4125 } 4126 for (i = 0; i < 2; i++) { 4127 VERIFY3U(EEXIST, ==, zap_add(os, object, hc[i], 4128 sizeof (uint64_t), 1, &value[i], tx)); 4129 VERIFY3U(0, ==, 4130 zap_length(os, object, hc[i], &zl_intsize, &zl_ints)); 4131 ASSERT3U(zl_intsize, ==, sizeof (uint64_t)); 4132 ASSERT3U(zl_ints, ==, 1); 4133 } 4134 for (i = 0; i < 2; i++) { 4135 VERIFY3U(0, ==, zap_remove(os, object, hc[i], tx)); 4136 } 4137 dmu_tx_commit(tx); 4138 4139 /* 4140 * Generate a buch of random entries. 4141 */ 4142 ints = MAX(ZTEST_ZAP_MIN_INTS, object % ZTEST_ZAP_MAX_INTS); 4143 4144 prop = ztest_random(ZTEST_ZAP_MAX_PROPS); 4145 (void) sprintf(propname, "prop_%llu", (u_longlong_t)prop); 4146 (void) sprintf(txgname, "txg_%llu", (u_longlong_t)prop); 4147 bzero(value, sizeof (value)); 4148 last_txg = 0; 4149 4150 /* 4151 * If these zap entries already exist, validate their contents. 4152 */ 4153 error = zap_length(os, object, txgname, &zl_intsize, &zl_ints); 4154 if (error == 0) { 4155 ASSERT3U(zl_intsize, ==, sizeof (uint64_t)); 4156 ASSERT3U(zl_ints, ==, 1); 4157 4158 VERIFY(zap_lookup(os, object, txgname, zl_intsize, 4159 zl_ints, &last_txg) == 0); 4160 4161 VERIFY(zap_length(os, object, propname, &zl_intsize, 4162 &zl_ints) == 0); 4163 4164 ASSERT3U(zl_intsize, ==, sizeof (uint64_t)); 4165 ASSERT3U(zl_ints, ==, ints); 4166 4167 VERIFY(zap_lookup(os, object, propname, zl_intsize, 4168 zl_ints, value) == 0); 4169 4170 for (i = 0; i < ints; i++) { 4171 ASSERT3U(value[i], ==, last_txg + object + i); 4172 } 4173 } else { 4174 ASSERT3U(error, ==, ENOENT); 4175 } 4176 4177 /* 4178 * Atomically update two entries in our zap object. 4179 * The first is named txg_%llu, and contains the txg 4180 * in which the property was last updated. The second 4181 * is named prop_%llu, and the nth element of its value 4182 * should be txg + object + n. 4183 */ 4184 tx = dmu_tx_create(os); 4185 dmu_tx_hold_zap(tx, object, B_TRUE, NULL); 4186 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); 4187 if (txg == 0) 4188 return; 4189 4190 if (last_txg > txg) 4191 fatal(0, "zap future leak: old %llu new %llu", last_txg, txg); 4192 4193 for (i = 0; i < ints; i++) 4194 value[i] = txg + object + i; 4195 4196 VERIFY3U(0, ==, zap_update(os, object, txgname, sizeof (uint64_t), 4197 1, &txg, tx)); 4198 VERIFY3U(0, ==, zap_update(os, object, propname, sizeof (uint64_t), 4199 ints, value, tx)); 4200 4201 dmu_tx_commit(tx); 4202 4203 /* 4204 * Remove a random pair of entries. 4205 */ 4206 prop = ztest_random(ZTEST_ZAP_MAX_PROPS); 4207 (void) sprintf(propname, "prop_%llu", (u_longlong_t)prop); 4208 (void) sprintf(txgname, "txg_%llu", (u_longlong_t)prop); 4209 4210 error = zap_length(os, object, txgname, &zl_intsize, &zl_ints); 4211 4212 if (error == ENOENT) 4213 return; 4214 4215 ASSERT0(error); 4216 4217 tx = dmu_tx_create(os); 4218 dmu_tx_hold_zap(tx, object, B_TRUE, NULL); 4219 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); 4220 if (txg == 0) 4221 return; 4222 VERIFY3U(0, ==, zap_remove(os, object, txgname, tx)); 4223 VERIFY3U(0, ==, zap_remove(os, object, propname, tx)); 4224 dmu_tx_commit(tx); 4225 } 4226 4227 /* 4228 * Testcase to test the upgrading of a microzap to fatzap. 4229 */ 4230 void 4231 ztest_fzap(ztest_ds_t *zd, uint64_t id) 4232 { 4233 objset_t *os = zd->zd_os; 4234 ztest_od_t od[1]; 4235 uint64_t object, txg; 4236 4237 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_ZAP_OTHER, 0, 0); 4238 4239 if (ztest_object_init(zd, od, sizeof (od), !ztest_random(2)) != 0) 4240 return; 4241 4242 object = od[0].od_object; 4243 4244 /* 4245 * Add entries to this ZAP and make sure it spills over 4246 * and gets upgraded to a fatzap. Also, since we are adding 4247 * 2050 entries we should see ptrtbl growth and leaf-block split. 4248 */ 4249 for (int i = 0; i < 2050; i++) { 4250 char name[MAXNAMELEN]; 4251 uint64_t value = i; 4252 dmu_tx_t *tx; 4253 int error; 4254 4255 (void) snprintf(name, sizeof (name), "fzap-%llu-%llu", 4256 id, value); 4257 4258 tx = dmu_tx_create(os); 4259 dmu_tx_hold_zap(tx, object, B_TRUE, name); 4260 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); 4261 if (txg == 0) 4262 return; 4263 error = zap_add(os, object, name, sizeof (uint64_t), 1, 4264 &value, tx); 4265 ASSERT(error == 0 || error == EEXIST); 4266 dmu_tx_commit(tx); 4267 } 4268 } 4269 4270 /* ARGSUSED */ 4271 void 4272 ztest_zap_parallel(ztest_ds_t *zd, uint64_t id) 4273 { 4274 objset_t *os = zd->zd_os; 4275 ztest_od_t od[1]; 4276 uint64_t txg, object, count, wsize, wc, zl_wsize, zl_wc; 4277 dmu_tx_t *tx; 4278 int i, namelen, error; 4279 int micro = ztest_random(2); 4280 char name[20], string_value[20]; 4281 void *data; 4282 4283 ztest_od_init(&od[0], ID_PARALLEL, FTAG, micro, DMU_OT_ZAP_OTHER, 0, 0); 4284 4285 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0) 4286 return; 4287 4288 object = od[0].od_object; 4289 4290 /* 4291 * Generate a random name of the form 'xxx.....' where each 4292 * x is a random printable character and the dots are dots. 4293 * There are 94 such characters, and the name length goes from 4294 * 6 to 20, so there are 94^3 * 15 = 12,458,760 possible names. 4295 */ 4296 namelen = ztest_random(sizeof (name) - 5) + 5 + 1; 4297 4298 for (i = 0; i < 3; i++) 4299 name[i] = '!' + ztest_random('~' - '!' + 1); 4300 for (; i < namelen - 1; i++) 4301 name[i] = '.'; 4302 name[i] = '\0'; 4303 4304 if ((namelen & 1) || micro) { 4305 wsize = sizeof (txg); 4306 wc = 1; 4307 data = &txg; 4308 } else { 4309 wsize = 1; 4310 wc = namelen; 4311 data = string_value; 4312 } 4313 4314 count = -1ULL; 4315 VERIFY0(zap_count(os, object, &count)); 4316 ASSERT(count != -1ULL); 4317 4318 /* 4319 * Select an operation: length, lookup, add, update, remove. 4320 */ 4321 i = ztest_random(5); 4322 4323 if (i >= 2) { 4324 tx = dmu_tx_create(os); 4325 dmu_tx_hold_zap(tx, object, B_TRUE, NULL); 4326 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); 4327 if (txg == 0) 4328 return; 4329 bcopy(name, string_value, namelen); 4330 } else { 4331 tx = NULL; 4332 txg = 0; 4333 bzero(string_value, namelen); 4334 } 4335 4336 switch (i) { 4337 4338 case 0: 4339 error = zap_length(os, object, name, &zl_wsize, &zl_wc); 4340 if (error == 0) { 4341 ASSERT3U(wsize, ==, zl_wsize); 4342 ASSERT3U(wc, ==, zl_wc); 4343 } else { 4344 ASSERT3U(error, ==, ENOENT); 4345 } 4346 break; 4347 4348 case 1: 4349 error = zap_lookup(os, object, name, wsize, wc, data); 4350 if (error == 0) { 4351 if (data == string_value && 4352 bcmp(name, data, namelen) != 0) 4353 fatal(0, "name '%s' != val '%s' len %d", 4354 name, data, namelen); 4355 } else { 4356 ASSERT3U(error, ==, ENOENT); 4357 } 4358 break; 4359 4360 case 2: 4361 error = zap_add(os, object, name, wsize, wc, data, tx); 4362 ASSERT(error == 0 || error == EEXIST); 4363 break; 4364 4365 case 3: 4366 VERIFY(zap_update(os, object, name, wsize, wc, data, tx) == 0); 4367 break; 4368 4369 case 4: 4370 error = zap_remove(os, object, name, tx); 4371 ASSERT(error == 0 || error == ENOENT); 4372 break; 4373 } 4374 4375 if (tx != NULL) 4376 dmu_tx_commit(tx); 4377 } 4378 4379 /* 4380 * Commit callback data. 4381 */ 4382 typedef struct ztest_cb_data { 4383 list_node_t zcd_node; 4384 uint64_t zcd_txg; 4385 int zcd_expected_err; 4386 boolean_t zcd_added; 4387 boolean_t zcd_called; 4388 spa_t *zcd_spa; 4389 } ztest_cb_data_t; 4390 4391 /* This is the actual commit callback function */ 4392 static void 4393 ztest_commit_callback(void *arg, int error) 4394 { 4395 ztest_cb_data_t *data = arg; 4396 uint64_t synced_txg; 4397 4398 VERIFY(data != NULL); 4399 VERIFY3S(data->zcd_expected_err, ==, error); 4400 VERIFY(!data->zcd_called); 4401 4402 synced_txg = spa_last_synced_txg(data->zcd_spa); 4403 if (data->zcd_txg > synced_txg) 4404 fatal(0, "commit callback of txg %" PRIu64 " called prematurely" 4405 ", last synced txg = %" PRIu64 "\n", data->zcd_txg, 4406 synced_txg); 4407 4408 data->zcd_called = B_TRUE; 4409 4410 if (error == ECANCELED) { 4411 ASSERT0(data->zcd_txg); 4412 ASSERT(!data->zcd_added); 4413 4414 /* 4415 * The private callback data should be destroyed here, but 4416 * since we are going to check the zcd_called field after 4417 * dmu_tx_abort(), we will destroy it there. 4418 */ 4419 return; 4420 } 4421 4422 /* Was this callback added to the global callback list? */ 4423 if (!data->zcd_added) 4424 goto out; 4425 4426 ASSERT3U(data->zcd_txg, !=, 0); 4427 4428 /* Remove our callback from the list */ 4429 (void) mutex_lock(&zcl.zcl_callbacks_lock); 4430 list_remove(&zcl.zcl_callbacks, data); 4431 (void) mutex_unlock(&zcl.zcl_callbacks_lock); 4432 4433 out: 4434 umem_free(data, sizeof (ztest_cb_data_t)); 4435 } 4436 4437 /* Allocate and initialize callback data structure */ 4438 static ztest_cb_data_t * 4439 ztest_create_cb_data(objset_t *os, uint64_t txg) 4440 { 4441 ztest_cb_data_t *cb_data; 4442 4443 cb_data = umem_zalloc(sizeof (ztest_cb_data_t), UMEM_NOFAIL); 4444 4445 cb_data->zcd_txg = txg; 4446 cb_data->zcd_spa = dmu_objset_spa(os); 4447 4448 return (cb_data); 4449 } 4450 4451 /* 4452 * If a number of txgs equal to this threshold have been created after a commit 4453 * callback has been registered but not called, then we assume there is an 4454 * implementation bug. 4455 */ 4456 #define ZTEST_COMMIT_CALLBACK_THRESH (TXG_CONCURRENT_STATES + 2) 4457 4458 /* 4459 * Commit callback test. 4460 */ 4461 void 4462 ztest_dmu_commit_callbacks(ztest_ds_t *zd, uint64_t id) 4463 { 4464 objset_t *os = zd->zd_os; 4465 ztest_od_t od[1]; 4466 dmu_tx_t *tx; 4467 ztest_cb_data_t *cb_data[3], *tmp_cb; 4468 uint64_t old_txg, txg; 4469 int i, error; 4470 4471 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0); 4472 4473 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0) 4474 return; 4475 4476 tx = dmu_tx_create(os); 4477 4478 cb_data[0] = ztest_create_cb_data(os, 0); 4479 dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[0]); 4480 4481 dmu_tx_hold_write(tx, od[0].od_object, 0, sizeof (uint64_t)); 4482 4483 /* Every once in a while, abort the transaction on purpose */ 4484 if (ztest_random(100) == 0) 4485 error = -1; 4486 4487 if (!error) 4488 error = dmu_tx_assign(tx, TXG_NOWAIT); 4489 4490 txg = error ? 0 : dmu_tx_get_txg(tx); 4491 4492 cb_data[0]->zcd_txg = txg; 4493 cb_data[1] = ztest_create_cb_data(os, txg); 4494 dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[1]); 4495 4496 if (error) { 4497 /* 4498 * It's not a strict requirement to call the registered 4499 * callbacks from inside dmu_tx_abort(), but that's what 4500 * it's supposed to happen in the current implementation 4501 * so we will check for that. 4502 */ 4503 for (i = 0; i < 2; i++) { 4504 cb_data[i]->zcd_expected_err = ECANCELED; 4505 VERIFY(!cb_data[i]->zcd_called); 4506 } 4507 4508 dmu_tx_abort(tx); 4509 4510 for (i = 0; i < 2; i++) { 4511 VERIFY(cb_data[i]->zcd_called); 4512 umem_free(cb_data[i], sizeof (ztest_cb_data_t)); 4513 } 4514 4515 return; 4516 } 4517 4518 cb_data[2] = ztest_create_cb_data(os, txg); 4519 dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[2]); 4520 4521 /* 4522 * Read existing data to make sure there isn't a future leak. 4523 */ 4524 VERIFY(0 == dmu_read(os, od[0].od_object, 0, sizeof (uint64_t), 4525 &old_txg, DMU_READ_PREFETCH)); 4526 4527 if (old_txg > txg) 4528 fatal(0, "future leak: got %" PRIu64 ", open txg is %" PRIu64, 4529 old_txg, txg); 4530 4531 dmu_write(os, od[0].od_object, 0, sizeof (uint64_t), &txg, tx); 4532 4533 (void) mutex_lock(&zcl.zcl_callbacks_lock); 4534 4535 /* 4536 * Since commit callbacks don't have any ordering requirement and since 4537 * it is theoretically possible for a commit callback to be called 4538 * after an arbitrary amount of time has elapsed since its txg has been 4539 * synced, it is difficult to reliably determine whether a commit 4540 * callback hasn't been called due to high load or due to a flawed 4541 * implementation. 4542 * 4543 * In practice, we will assume that if after a certain number of txgs a 4544 * commit callback hasn't been called, then most likely there's an 4545 * implementation bug.. 4546 */ 4547 tmp_cb = list_head(&zcl.zcl_callbacks); 4548 if (tmp_cb != NULL && 4549 (txg - ZTEST_COMMIT_CALLBACK_THRESH) > tmp_cb->zcd_txg) { 4550 fatal(0, "Commit callback threshold exceeded, oldest txg: %" 4551 PRIu64 ", open txg: %" PRIu64 "\n", tmp_cb->zcd_txg, txg); 4552 } 4553 4554 /* 4555 * Let's find the place to insert our callbacks. 4556 * 4557 * Even though the list is ordered by txg, it is possible for the 4558 * insertion point to not be the end because our txg may already be 4559 * quiescing at this point and other callbacks in the open txg 4560 * (from other objsets) may have sneaked in. 4561 */ 4562 tmp_cb = list_tail(&zcl.zcl_callbacks); 4563 while (tmp_cb != NULL && tmp_cb->zcd_txg > txg) 4564 tmp_cb = list_prev(&zcl.zcl_callbacks, tmp_cb); 4565 4566 /* Add the 3 callbacks to the list */ 4567 for (i = 0; i < 3; i++) { 4568 if (tmp_cb == NULL) 4569 list_insert_head(&zcl.zcl_callbacks, cb_data[i]); 4570 else 4571 list_insert_after(&zcl.zcl_callbacks, tmp_cb, 4572 cb_data[i]); 4573 4574 cb_data[i]->zcd_added = B_TRUE; 4575 VERIFY(!cb_data[i]->zcd_called); 4576 4577 tmp_cb = cb_data[i]; 4578 } 4579 4580 (void) mutex_unlock(&zcl.zcl_callbacks_lock); 4581 4582 dmu_tx_commit(tx); 4583 } 4584 4585 /* ARGSUSED */ 4586 void 4587 ztest_dsl_prop_get_set(ztest_ds_t *zd, uint64_t id) 4588 { 4589 zfs_prop_t proplist[] = { 4590 ZFS_PROP_CHECKSUM, 4591 ZFS_PROP_COMPRESSION, 4592 ZFS_PROP_COPIES, 4593 ZFS_PROP_DEDUP 4594 }; 4595 4596 (void) rw_rdlock(&ztest_name_lock); 4597 4598 for (int p = 0; p < sizeof (proplist) / sizeof (proplist[0]); p++) 4599 (void) ztest_dsl_prop_set_uint64(zd->zd_name, proplist[p], 4600 ztest_random_dsl_prop(proplist[p]), (int)ztest_random(2)); 4601 4602 (void) rw_unlock(&ztest_name_lock); 4603 } 4604 4605 /* ARGSUSED */ 4606 void 4607 ztest_spa_prop_get_set(ztest_ds_t *zd, uint64_t id) 4608 { 4609 nvlist_t *props = NULL; 4610 4611 (void) rw_rdlock(&ztest_name_lock); 4612 4613 (void) ztest_spa_prop_set_uint64(ZPOOL_PROP_DEDUPDITTO, 4614 ZIO_DEDUPDITTO_MIN + ztest_random(ZIO_DEDUPDITTO_MIN)); 4615 4616 VERIFY0(spa_prop_get(ztest_spa, &props)); 4617 4618 if (ztest_opts.zo_verbose >= 6) 4619 dump_nvlist(props, 4); 4620 4621 nvlist_free(props); 4622 4623 (void) rw_unlock(&ztest_name_lock); 4624 } 4625 4626 static int 4627 user_release_one(const char *snapname, const char *holdname) 4628 { 4629 nvlist_t *snaps, *holds; 4630 int error; 4631 4632 snaps = fnvlist_alloc(); 4633 holds = fnvlist_alloc(); 4634 fnvlist_add_boolean(holds, holdname); 4635 fnvlist_add_nvlist(snaps, snapname, holds); 4636 fnvlist_free(holds); 4637 error = dsl_dataset_user_release(snaps, NULL); 4638 fnvlist_free(snaps); 4639 return (error); 4640 } 4641 4642 /* 4643 * Test snapshot hold/release and deferred destroy. 4644 */ 4645 void 4646 ztest_dmu_snapshot_hold(ztest_ds_t *zd, uint64_t id) 4647 { 4648 int error; 4649 objset_t *os = zd->zd_os; 4650 objset_t *origin; 4651 char snapname[100]; 4652 char fullname[100]; 4653 char clonename[100]; 4654 char tag[100]; 4655 char osname[MAXNAMELEN]; 4656 nvlist_t *holds; 4657 4658 (void) rw_rdlock(&ztest_name_lock); 4659 4660 dmu_objset_name(os, osname); 4661 4662 (void) snprintf(snapname, sizeof (snapname), "sh1_%llu", id); 4663 (void) snprintf(fullname, sizeof (fullname), "%s@%s", osname, snapname); 4664 (void) snprintf(clonename, sizeof (clonename), 4665 "%s/ch1_%llu", osname, id); 4666 (void) snprintf(tag, sizeof (tag), "tag_%llu", id); 4667 4668 /* 4669 * Clean up from any previous run. 4670 */ 4671 error = dsl_destroy_head(clonename); 4672 if (error != ENOENT) 4673 ASSERT0(error); 4674 error = user_release_one(fullname, tag); 4675 if (error != ESRCH && error != ENOENT) 4676 ASSERT0(error); 4677 error = dsl_destroy_snapshot(fullname, B_FALSE); 4678 if (error != ENOENT) 4679 ASSERT0(error); 4680 4681 /* 4682 * Create snapshot, clone it, mark snap for deferred destroy, 4683 * destroy clone, verify snap was also destroyed. 4684 */ 4685 error = dmu_objset_snapshot_one(osname, snapname); 4686 if (error) { 4687 if (error == ENOSPC) { 4688 ztest_record_enospc("dmu_objset_snapshot"); 4689 goto out; 4690 } 4691 fatal(0, "dmu_objset_snapshot(%s) = %d", fullname, error); 4692 } 4693 4694 error = dmu_objset_clone(clonename, fullname); 4695 if (error) { 4696 if (error == ENOSPC) { 4697 ztest_record_enospc("dmu_objset_clone"); 4698 goto out; 4699 } 4700 fatal(0, "dmu_objset_clone(%s) = %d", clonename, error); 4701 } 4702 4703 error = dsl_destroy_snapshot(fullname, B_TRUE); 4704 if (error) { 4705 fatal(0, "dsl_destroy_snapshot(%s, B_TRUE) = %d", 4706 fullname, error); 4707 } 4708 4709 error = dsl_destroy_head(clonename); 4710 if (error) 4711 fatal(0, "dsl_destroy_head(%s) = %d", clonename, error); 4712 4713 error = dmu_objset_hold(fullname, FTAG, &origin); 4714 if (error != ENOENT) 4715 fatal(0, "dmu_objset_hold(%s) = %d", fullname, error); 4716 4717 /* 4718 * Create snapshot, add temporary hold, verify that we can't 4719 * destroy a held snapshot, mark for deferred destroy, 4720 * release hold, verify snapshot was destroyed. 4721 */ 4722 error = dmu_objset_snapshot_one(osname, snapname); 4723 if (error) { 4724 if (error == ENOSPC) { 4725 ztest_record_enospc("dmu_objset_snapshot"); 4726 goto out; 4727 } 4728 fatal(0, "dmu_objset_snapshot(%s) = %d", fullname, error); 4729 } 4730 4731 holds = fnvlist_alloc(); 4732 fnvlist_add_string(holds, fullname, tag); 4733 error = dsl_dataset_user_hold(holds, 0, NULL); 4734 fnvlist_free(holds); 4735 4736 if (error == ENOSPC) { 4737 ztest_record_enospc("dsl_dataset_user_hold"); 4738 goto out; 4739 } else if (error) { 4740 fatal(0, "dsl_dataset_user_hold(%s, %s) = %u", 4741 fullname, tag, error); 4742 } 4743 4744 error = dsl_destroy_snapshot(fullname, B_FALSE); 4745 if (error != EBUSY) { 4746 fatal(0, "dsl_destroy_snapshot(%s, B_FALSE) = %d", 4747 fullname, error); 4748 } 4749 4750 error = dsl_destroy_snapshot(fullname, B_TRUE); 4751 if (error) { 4752 fatal(0, "dsl_destroy_snapshot(%s, B_TRUE) = %d", 4753 fullname, error); 4754 } 4755 4756 error = user_release_one(fullname, tag); 4757 if (error) 4758 fatal(0, "user_release_one(%s, %s) = %d", fullname, tag, error); 4759 4760 VERIFY3U(dmu_objset_hold(fullname, FTAG, &origin), ==, ENOENT); 4761 4762 out: 4763 (void) rw_unlock(&ztest_name_lock); 4764 } 4765 4766 /* 4767 * Inject random faults into the on-disk data. 4768 */ 4769 /* ARGSUSED */ 4770 void 4771 ztest_fault_inject(ztest_ds_t *zd, uint64_t id) 4772 { 4773 ztest_shared_t *zs = ztest_shared; 4774 spa_t *spa = ztest_spa; 4775 int fd; 4776 uint64_t offset; 4777 uint64_t leaves; 4778 uint64_t bad = 0x1990c0ffeedecade; 4779 uint64_t top, leaf; 4780 char path0[MAXPATHLEN]; 4781 char pathrand[MAXPATHLEN]; 4782 size_t fsize; 4783 int bshift = SPA_OLD_MAXBLOCKSHIFT + 2; /* don't scrog all labels */ 4784 int iters = 1000; 4785 int maxfaults; 4786 int mirror_save; 4787 vdev_t *vd0 = NULL; 4788 uint64_t guid0 = 0; 4789 boolean_t islog = B_FALSE; 4790 4791 VERIFY(mutex_lock(&ztest_vdev_lock) == 0); 4792 maxfaults = MAXFAULTS(); 4793 leaves = MAX(zs->zs_mirrors, 1) * ztest_opts.zo_raidz; 4794 mirror_save = zs->zs_mirrors; 4795 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 4796 4797 ASSERT(leaves >= 1); 4798 4799 /* 4800 * Grab the name lock as reader. There are some operations 4801 * which don't like to have their vdevs changed while 4802 * they are in progress (i.e. spa_change_guid). Those 4803 * operations will have grabbed the name lock as writer. 4804 */ 4805 (void) rw_rdlock(&ztest_name_lock); 4806 4807 /* 4808 * We need SCL_STATE here because we're going to look at vd0->vdev_tsd. 4809 */ 4810 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 4811 4812 if (ztest_random(2) == 0) { 4813 /* 4814 * Inject errors on a normal data device or slog device. 4815 */ 4816 top = ztest_random_vdev_top(spa, B_TRUE); 4817 leaf = ztest_random(leaves) + zs->zs_splits; 4818 4819 /* 4820 * Generate paths to the first leaf in this top-level vdev, 4821 * and to the random leaf we selected. We'll induce transient 4822 * write failures and random online/offline activity on leaf 0, 4823 * and we'll write random garbage to the randomly chosen leaf. 4824 */ 4825 (void) snprintf(path0, sizeof (path0), ztest_dev_template, 4826 ztest_opts.zo_dir, ztest_opts.zo_pool, 4827 top * leaves + zs->zs_splits); 4828 (void) snprintf(pathrand, sizeof (pathrand), ztest_dev_template, 4829 ztest_opts.zo_dir, ztest_opts.zo_pool, 4830 top * leaves + leaf); 4831 4832 vd0 = vdev_lookup_by_path(spa->spa_root_vdev, path0); 4833 if (vd0 != NULL && vd0->vdev_top->vdev_islog) 4834 islog = B_TRUE; 4835 4836 /* 4837 * If the top-level vdev needs to be resilvered 4838 * then we only allow faults on the device that is 4839 * resilvering. 4840 */ 4841 if (vd0 != NULL && maxfaults != 1 && 4842 (!vdev_resilver_needed(vd0->vdev_top, NULL, NULL) || 4843 vd0->vdev_resilver_txg != 0)) { 4844 /* 4845 * Make vd0 explicitly claim to be unreadable, 4846 * or unwriteable, or reach behind its back 4847 * and close the underlying fd. We can do this if 4848 * maxfaults == 0 because we'll fail and reexecute, 4849 * and we can do it if maxfaults >= 2 because we'll 4850 * have enough redundancy. If maxfaults == 1, the 4851 * combination of this with injection of random data 4852 * corruption below exceeds the pool's fault tolerance. 4853 */ 4854 vdev_file_t *vf = vd0->vdev_tsd; 4855 4856 if (vf != NULL && ztest_random(3) == 0) { 4857 (void) close(vf->vf_vnode->v_fd); 4858 vf->vf_vnode->v_fd = -1; 4859 } else if (ztest_random(2) == 0) { 4860 vd0->vdev_cant_read = B_TRUE; 4861 } else { 4862 vd0->vdev_cant_write = B_TRUE; 4863 } 4864 guid0 = vd0->vdev_guid; 4865 } 4866 } else { 4867 /* 4868 * Inject errors on an l2cache device. 4869 */ 4870 spa_aux_vdev_t *sav = &spa->spa_l2cache; 4871 4872 if (sav->sav_count == 0) { 4873 spa_config_exit(spa, SCL_STATE, FTAG); 4874 (void) rw_unlock(&ztest_name_lock); 4875 return; 4876 } 4877 vd0 = sav->sav_vdevs[ztest_random(sav->sav_count)]; 4878 guid0 = vd0->vdev_guid; 4879 (void) strcpy(path0, vd0->vdev_path); 4880 (void) strcpy(pathrand, vd0->vdev_path); 4881 4882 leaf = 0; 4883 leaves = 1; 4884 maxfaults = INT_MAX; /* no limit on cache devices */ 4885 } 4886 4887 spa_config_exit(spa, SCL_STATE, FTAG); 4888 (void) rw_unlock(&ztest_name_lock); 4889 4890 /* 4891 * If we can tolerate two or more faults, or we're dealing 4892 * with a slog, randomly online/offline vd0. 4893 */ 4894 if ((maxfaults >= 2 || islog) && guid0 != 0) { 4895 if (ztest_random(10) < 6) { 4896 int flags = (ztest_random(2) == 0 ? 4897 ZFS_OFFLINE_TEMPORARY : 0); 4898 4899 /* 4900 * We have to grab the zs_name_lock as writer to 4901 * prevent a race between offlining a slog and 4902 * destroying a dataset. Offlining the slog will 4903 * grab a reference on the dataset which may cause 4904 * dmu_objset_destroy() to fail with EBUSY thus 4905 * leaving the dataset in an inconsistent state. 4906 */ 4907 if (islog) 4908 (void) rw_wrlock(&ztest_name_lock); 4909 4910 VERIFY(vdev_offline(spa, guid0, flags) != EBUSY); 4911 4912 if (islog) 4913 (void) rw_unlock(&ztest_name_lock); 4914 } else { 4915 /* 4916 * Ideally we would like to be able to randomly 4917 * call vdev_[on|off]line without holding locks 4918 * to force unpredictable failures but the side 4919 * effects of vdev_[on|off]line prevent us from 4920 * doing so. We grab the ztest_vdev_lock here to 4921 * prevent a race between injection testing and 4922 * aux_vdev removal. 4923 */ 4924 VERIFY(mutex_lock(&ztest_vdev_lock) == 0); 4925 (void) vdev_online(spa, guid0, 0, NULL); 4926 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 4927 } 4928 } 4929 4930 if (maxfaults == 0) 4931 return; 4932 4933 /* 4934 * We have at least single-fault tolerance, so inject data corruption. 4935 */ 4936 fd = open(pathrand, O_RDWR); 4937 4938 if (fd == -1) /* we hit a gap in the device namespace */ 4939 return; 4940 4941 fsize = lseek(fd, 0, SEEK_END); 4942 4943 while (--iters != 0) { 4944 offset = ztest_random(fsize / (leaves << bshift)) * 4945 (leaves << bshift) + (leaf << bshift) + 4946 (ztest_random(1ULL << (bshift - 1)) & -8ULL); 4947 4948 if (offset >= fsize) 4949 continue; 4950 4951 VERIFY(mutex_lock(&ztest_vdev_lock) == 0); 4952 if (mirror_save != zs->zs_mirrors) { 4953 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 4954 (void) close(fd); 4955 return; 4956 } 4957 4958 if (pwrite(fd, &bad, sizeof (bad), offset) != sizeof (bad)) 4959 fatal(1, "can't inject bad word at 0x%llx in %s", 4960 offset, pathrand); 4961 4962 VERIFY(mutex_unlock(&ztest_vdev_lock) == 0); 4963 4964 if (ztest_opts.zo_verbose >= 7) 4965 (void) printf("injected bad word into %s," 4966 " offset 0x%llx\n", pathrand, (u_longlong_t)offset); 4967 } 4968 4969 (void) close(fd); 4970 } 4971 4972 /* 4973 * Verify that DDT repair works as expected. 4974 */ 4975 void 4976 ztest_ddt_repair(ztest_ds_t *zd, uint64_t id) 4977 { 4978 ztest_shared_t *zs = ztest_shared; 4979 spa_t *spa = ztest_spa; 4980 objset_t *os = zd->zd_os; 4981 ztest_od_t od[1]; 4982 uint64_t object, blocksize, txg, pattern, psize; 4983 enum zio_checksum checksum = spa_dedup_checksum(spa); 4984 dmu_buf_t *db; 4985 dmu_tx_t *tx; 4986 void *buf; 4987 blkptr_t blk; 4988 int copies = 2 * ZIO_DEDUPDITTO_MIN; 4989 4990 blocksize = ztest_random_blocksize(); 4991 blocksize = MIN(blocksize, 2048); /* because we write so many */ 4992 4993 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0); 4994 4995 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0) 4996 return; 4997 4998 /* 4999 * Take the name lock as writer to prevent anyone else from changing 5000 * the pool and dataset properies we need to maintain during this test. 5001 */ 5002 (void) rw_wrlock(&ztest_name_lock); 5003 5004 if (ztest_dsl_prop_set_uint64(zd->zd_name, ZFS_PROP_DEDUP, checksum, 5005 B_FALSE) != 0 || 5006 ztest_dsl_prop_set_uint64(zd->zd_name, ZFS_PROP_COPIES, 1, 5007 B_FALSE) != 0) { 5008 (void) rw_unlock(&ztest_name_lock); 5009 return; 5010 } 5011 5012 object = od[0].od_object; 5013 blocksize = od[0].od_blocksize; 5014 pattern = zs->zs_guid ^ dmu_objset_fsid_guid(os); 5015 5016 ASSERT(object != 0); 5017 5018 tx = dmu_tx_create(os); 5019 dmu_tx_hold_write(tx, object, 0, copies * blocksize); 5020 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); 5021 if (txg == 0) { 5022 (void) rw_unlock(&ztest_name_lock); 5023 return; 5024 } 5025 5026 /* 5027 * Write all the copies of our block. 5028 */ 5029 for (int i = 0; i < copies; i++) { 5030 uint64_t offset = i * blocksize; 5031 int error = dmu_buf_hold(os, object, offset, FTAG, &db, 5032 DMU_READ_NO_PREFETCH); 5033 if (error != 0) { 5034 fatal(B_FALSE, "dmu_buf_hold(%p, %llu, %llu) = %u", 5035 os, (long long)object, (long long) offset, error); 5036 } 5037 ASSERT(db->db_offset == offset); 5038 ASSERT(db->db_size == blocksize); 5039 ASSERT(ztest_pattern_match(db->db_data, db->db_size, pattern) || 5040 ztest_pattern_match(db->db_data, db->db_size, 0ULL)); 5041 dmu_buf_will_fill(db, tx); 5042 ztest_pattern_set(db->db_data, db->db_size, pattern); 5043 dmu_buf_rele(db, FTAG); 5044 } 5045 5046 dmu_tx_commit(tx); 5047 txg_wait_synced(spa_get_dsl(spa), txg); 5048 5049 /* 5050 * Find out what block we got. 5051 */ 5052 VERIFY0(dmu_buf_hold(os, object, 0, FTAG, &db, 5053 DMU_READ_NO_PREFETCH)); 5054 blk = *((dmu_buf_impl_t *)db)->db_blkptr; 5055 dmu_buf_rele(db, FTAG); 5056 5057 /* 5058 * Damage the block. Dedup-ditto will save us when we read it later. 5059 */ 5060 psize = BP_GET_PSIZE(&blk); 5061 buf = zio_buf_alloc(psize); 5062 ztest_pattern_set(buf, psize, ~pattern); 5063 5064 (void) zio_wait(zio_rewrite(NULL, spa, 0, &blk, 5065 buf, psize, NULL, NULL, ZIO_PRIORITY_SYNC_WRITE, 5066 ZIO_FLAG_CANFAIL | ZIO_FLAG_INDUCE_DAMAGE, NULL)); 5067 5068 zio_buf_free(buf, psize); 5069 5070 (void) rw_unlock(&ztest_name_lock); 5071 } 5072 5073 /* 5074 * Scrub the pool. 5075 */ 5076 /* ARGSUSED */ 5077 void 5078 ztest_scrub(ztest_ds_t *zd, uint64_t id) 5079 { 5080 spa_t *spa = ztest_spa; 5081 5082 (void) spa_scan(spa, POOL_SCAN_SCRUB); 5083 (void) poll(NULL, 0, 100); /* wait a moment, then force a restart */ 5084 (void) spa_scan(spa, POOL_SCAN_SCRUB); 5085 } 5086 5087 /* 5088 * Change the guid for the pool. 5089 */ 5090 /* ARGSUSED */ 5091 void 5092 ztest_reguid(ztest_ds_t *zd, uint64_t id) 5093 { 5094 spa_t *spa = ztest_spa; 5095 uint64_t orig, load; 5096 int error; 5097 5098 orig = spa_guid(spa); 5099 load = spa_load_guid(spa); 5100 5101 (void) rw_wrlock(&ztest_name_lock); 5102 error = spa_change_guid(spa); 5103 (void) rw_unlock(&ztest_name_lock); 5104 5105 if (error != 0) 5106 return; 5107 5108 if (ztest_opts.zo_verbose >= 4) { 5109 (void) printf("Changed guid old %llu -> %llu\n", 5110 (u_longlong_t)orig, (u_longlong_t)spa_guid(spa)); 5111 } 5112 5113 VERIFY3U(orig, !=, spa_guid(spa)); 5114 VERIFY3U(load, ==, spa_load_guid(spa)); 5115 } 5116 5117 /* 5118 * Rename the pool to a different name and then rename it back. 5119 */ 5120 /* ARGSUSED */ 5121 void 5122 ztest_spa_rename(ztest_ds_t *zd, uint64_t id) 5123 { 5124 char *oldname, *newname; 5125 spa_t *spa; 5126 5127 (void) rw_wrlock(&ztest_name_lock); 5128 5129 oldname = ztest_opts.zo_pool; 5130 newname = umem_alloc(strlen(oldname) + 5, UMEM_NOFAIL); 5131 (void) strcpy(newname, oldname); 5132 (void) strcat(newname, "_tmp"); 5133 5134 /* 5135 * Do the rename 5136 */ 5137 VERIFY3U(0, ==, spa_rename(oldname, newname)); 5138 5139 /* 5140 * Try to open it under the old name, which shouldn't exist 5141 */ 5142 VERIFY3U(ENOENT, ==, spa_open(oldname, &spa, FTAG)); 5143 5144 /* 5145 * Open it under the new name and make sure it's still the same spa_t. 5146 */ 5147 VERIFY3U(0, ==, spa_open(newname, &spa, FTAG)); 5148 5149 ASSERT(spa == ztest_spa); 5150 spa_close(spa, FTAG); 5151 5152 /* 5153 * Rename it back to the original 5154 */ 5155 VERIFY3U(0, ==, spa_rename(newname, oldname)); 5156 5157 /* 5158 * Make sure it can still be opened 5159 */ 5160 VERIFY3U(0, ==, spa_open(oldname, &spa, FTAG)); 5161 5162 ASSERT(spa == ztest_spa); 5163 spa_close(spa, FTAG); 5164 5165 umem_free(newname, strlen(newname) + 1); 5166 5167 (void) rw_unlock(&ztest_name_lock); 5168 } 5169 5170 /* 5171 * Verify pool integrity by running zdb. 5172 */ 5173 static void 5174 ztest_run_zdb(char *pool) 5175 { 5176 int status; 5177 char zdb[MAXPATHLEN + MAXNAMELEN + 20]; 5178 char zbuf[1024]; 5179 char *bin; 5180 char *ztest; 5181 char *isa; 5182 int isalen; 5183 FILE *fp; 5184 5185 (void) realpath(getexecname(), zdb); 5186 5187 /* zdb lives in /usr/sbin, while ztest lives in /usr/bin */ 5188 bin = strstr(zdb, "/usr/bin/"); 5189 ztest = strstr(bin, "/ztest"); 5190 isa = bin + 8; 5191 isalen = ztest - isa; 5192 isa = strdup(isa); 5193 /* LINTED */ 5194 (void) sprintf(bin, 5195 "/usr/sbin%.*s/zdb -bcc%s%s -d -U %s %s", 5196 isalen, 5197 isa, 5198 ztest_opts.zo_verbose >= 3 ? "s" : "", 5199 ztest_opts.zo_verbose >= 4 ? "v" : "", 5200 spa_config_path, 5201 pool); 5202 free(isa); 5203 5204 if (ztest_opts.zo_verbose >= 5) 5205 (void) printf("Executing %s\n", strstr(zdb, "zdb ")); 5206 5207 fp = popen(zdb, "r"); 5208 5209 while (fgets(zbuf, sizeof (zbuf), fp) != NULL) 5210 if (ztest_opts.zo_verbose >= 3) 5211 (void) printf("%s", zbuf); 5212 5213 status = pclose(fp); 5214 5215 if (status == 0) 5216 return; 5217 5218 ztest_dump_core = 0; 5219 if (WIFEXITED(status)) 5220 fatal(0, "'%s' exit code %d", zdb, WEXITSTATUS(status)); 5221 else 5222 fatal(0, "'%s' died with signal %d", zdb, WTERMSIG(status)); 5223 } 5224 5225 static void 5226 ztest_walk_pool_directory(char *header) 5227 { 5228 spa_t *spa = NULL; 5229 5230 if (ztest_opts.zo_verbose >= 6) 5231 (void) printf("%s\n", header); 5232 5233 mutex_enter(&spa_namespace_lock); 5234 while ((spa = spa_next(spa)) != NULL) 5235 if (ztest_opts.zo_verbose >= 6) 5236 (void) printf("\t%s\n", spa_name(spa)); 5237 mutex_exit(&spa_namespace_lock); 5238 } 5239 5240 static void 5241 ztest_spa_import_export(char *oldname, char *newname) 5242 { 5243 nvlist_t *config, *newconfig; 5244 uint64_t pool_guid; 5245 spa_t *spa; 5246 int error; 5247 5248 if (ztest_opts.zo_verbose >= 4) { 5249 (void) printf("import/export: old = %s, new = %s\n", 5250 oldname, newname); 5251 } 5252 5253 /* 5254 * Clean up from previous runs. 5255 */ 5256 (void) spa_destroy(newname); 5257 5258 /* 5259 * Get the pool's configuration and guid. 5260 */ 5261 VERIFY3U(0, ==, spa_open(oldname, &spa, FTAG)); 5262 5263 /* 5264 * Kick off a scrub to tickle scrub/export races. 5265 */ 5266 if (ztest_random(2) == 0) 5267 (void) spa_scan(spa, POOL_SCAN_SCRUB); 5268 5269 pool_guid = spa_guid(spa); 5270 spa_close(spa, FTAG); 5271 5272 ztest_walk_pool_directory("pools before export"); 5273 5274 /* 5275 * Export it. 5276 */ 5277 VERIFY3U(0, ==, spa_export(oldname, &config, B_FALSE, B_FALSE)); 5278 5279 ztest_walk_pool_directory("pools after export"); 5280 5281 /* 5282 * Try to import it. 5283 */ 5284 newconfig = spa_tryimport(config); 5285 ASSERT(newconfig != NULL); 5286 nvlist_free(newconfig); 5287 5288 /* 5289 * Import it under the new name. 5290 */ 5291 error = spa_import(newname, config, NULL, 0); 5292 if (error != 0) { 5293 dump_nvlist(config, 0); 5294 fatal(B_FALSE, "couldn't import pool %s as %s: error %u", 5295 oldname, newname, error); 5296 } 5297 5298 ztest_walk_pool_directory("pools after import"); 5299 5300 /* 5301 * Try to import it again -- should fail with EEXIST. 5302 */ 5303 VERIFY3U(EEXIST, ==, spa_import(newname, config, NULL, 0)); 5304 5305 /* 5306 * Try to import it under a different name -- should fail with EEXIST. 5307 */ 5308 VERIFY3U(EEXIST, ==, spa_import(oldname, config, NULL, 0)); 5309 5310 /* 5311 * Verify that the pool is no longer visible under the old name. 5312 */ 5313 VERIFY3U(ENOENT, ==, spa_open(oldname, &spa, FTAG)); 5314 5315 /* 5316 * Verify that we can open and close the pool using the new name. 5317 */ 5318 VERIFY3U(0, ==, spa_open(newname, &spa, FTAG)); 5319 ASSERT(pool_guid == spa_guid(spa)); 5320 spa_close(spa, FTAG); 5321 5322 nvlist_free(config); 5323 } 5324 5325 static void 5326 ztest_resume(spa_t *spa) 5327 { 5328 if (spa_suspended(spa) && ztest_opts.zo_verbose >= 6) 5329 (void) printf("resuming from suspended state\n"); 5330 spa_vdev_state_enter(spa, SCL_NONE); 5331 vdev_clear(spa, NULL); 5332 (void) spa_vdev_state_exit(spa, NULL, 0); 5333 (void) zio_resume(spa); 5334 } 5335 5336 static void * 5337 ztest_resume_thread(void *arg) 5338 { 5339 spa_t *spa = arg; 5340 5341 while (!ztest_exiting) { 5342 if (spa_suspended(spa)) 5343 ztest_resume(spa); 5344 (void) poll(NULL, 0, 100); 5345 } 5346 return (NULL); 5347 } 5348 5349 static void * 5350 ztest_deadman_thread(void *arg) 5351 { 5352 ztest_shared_t *zs = arg; 5353 spa_t *spa = ztest_spa; 5354 hrtime_t delta, total = 0; 5355 5356 for (;;) { 5357 delta = zs->zs_thread_stop - zs->zs_thread_start + 5358 MSEC2NSEC(zfs_deadman_synctime_ms); 5359 5360 (void) poll(NULL, 0, (int)NSEC2MSEC(delta)); 5361 5362 /* 5363 * If the pool is suspended then fail immediately. Otherwise, 5364 * check to see if the pool is making any progress. If 5365 * vdev_deadman() discovers that there hasn't been any recent 5366 * I/Os then it will end up aborting the tests. 5367 */ 5368 if (spa_suspended(spa) || spa->spa_root_vdev == NULL) { 5369 fatal(0, "aborting test after %llu seconds because " 5370 "pool has transitioned to a suspended state.", 5371 zfs_deadman_synctime_ms / 1000); 5372 return (NULL); 5373 } 5374 vdev_deadman(spa->spa_root_vdev); 5375 5376 total += zfs_deadman_synctime_ms/1000; 5377 (void) printf("ztest has been running for %lld seconds\n", 5378 total); 5379 } 5380 } 5381 5382 static void 5383 ztest_execute(int test, ztest_info_t *zi, uint64_t id) 5384 { 5385 ztest_ds_t *zd = &ztest_ds[id % ztest_opts.zo_datasets]; 5386 ztest_shared_callstate_t *zc = ZTEST_GET_SHARED_CALLSTATE(test); 5387 hrtime_t functime = gethrtime(); 5388 5389 for (int i = 0; i < zi->zi_iters; i++) 5390 zi->zi_func(zd, id); 5391 5392 functime = gethrtime() - functime; 5393 5394 atomic_add_64(&zc->zc_count, 1); 5395 atomic_add_64(&zc->zc_time, functime); 5396 5397 if (ztest_opts.zo_verbose >= 4) { 5398 Dl_info dli; 5399 (void) dladdr((void *)zi->zi_func, &dli); 5400 (void) printf("%6.2f sec in %s\n", 5401 (double)functime / NANOSEC, dli.dli_sname); 5402 } 5403 } 5404 5405 static void * 5406 ztest_thread(void *arg) 5407 { 5408 int rand; 5409 uint64_t id = (uintptr_t)arg; 5410 ztest_shared_t *zs = ztest_shared; 5411 uint64_t call_next; 5412 hrtime_t now; 5413 ztest_info_t *zi; 5414 ztest_shared_callstate_t *zc; 5415 5416 while ((now = gethrtime()) < zs->zs_thread_stop) { 5417 /* 5418 * See if it's time to force a crash. 5419 */ 5420 if (now > zs->zs_thread_kill) 5421 ztest_kill(zs); 5422 5423 /* 5424 * If we're getting ENOSPC with some regularity, stop. 5425 */ 5426 if (zs->zs_enospc_count > 10) 5427 break; 5428 5429 /* 5430 * Pick a random function to execute. 5431 */ 5432 rand = ztest_random(ZTEST_FUNCS); 5433 zi = &ztest_info[rand]; 5434 zc = ZTEST_GET_SHARED_CALLSTATE(rand); 5435 call_next = zc->zc_next; 5436 5437 if (now >= call_next && 5438 atomic_cas_64(&zc->zc_next, call_next, call_next + 5439 ztest_random(2 * zi->zi_interval[0] + 1)) == call_next) { 5440 ztest_execute(rand, zi, id); 5441 } 5442 } 5443 5444 return (NULL); 5445 } 5446 5447 static void 5448 ztest_dataset_name(char *dsname, char *pool, int d) 5449 { 5450 (void) snprintf(dsname, MAXNAMELEN, "%s/ds_%d", pool, d); 5451 } 5452 5453 static void 5454 ztest_dataset_destroy(int d) 5455 { 5456 char name[MAXNAMELEN]; 5457 5458 ztest_dataset_name(name, ztest_opts.zo_pool, d); 5459 5460 if (ztest_opts.zo_verbose >= 3) 5461 (void) printf("Destroying %s to free up space\n", name); 5462 5463 /* 5464 * Cleanup any non-standard clones and snapshots. In general, 5465 * ztest thread t operates on dataset (t % zopt_datasets), 5466 * so there may be more than one thing to clean up. 5467 */ 5468 for (int t = d; t < ztest_opts.zo_threads; 5469 t += ztest_opts.zo_datasets) { 5470 ztest_dsl_dataset_cleanup(name, t); 5471 } 5472 5473 (void) dmu_objset_find(name, ztest_objset_destroy_cb, NULL, 5474 DS_FIND_SNAPSHOTS | DS_FIND_CHILDREN); 5475 } 5476 5477 static void 5478 ztest_dataset_dirobj_verify(ztest_ds_t *zd) 5479 { 5480 uint64_t usedobjs, dirobjs, scratch; 5481 5482 /* 5483 * ZTEST_DIROBJ is the object directory for the entire dataset. 5484 * Therefore, the number of objects in use should equal the 5485 * number of ZTEST_DIROBJ entries, +1 for ZTEST_DIROBJ itself. 5486 * If not, we have an object leak. 5487 * 5488 * Note that we can only check this in ztest_dataset_open(), 5489 * when the open-context and syncing-context values agree. 5490 * That's because zap_count() returns the open-context value, 5491 * while dmu_objset_space() returns the rootbp fill count. 5492 */ 5493 VERIFY3U(0, ==, zap_count(zd->zd_os, ZTEST_DIROBJ, &dirobjs)); 5494 dmu_objset_space(zd->zd_os, &scratch, &scratch, &usedobjs, &scratch); 5495 ASSERT3U(dirobjs + 1, ==, usedobjs); 5496 } 5497 5498 static int 5499 ztest_dataset_open(int d) 5500 { 5501 ztest_ds_t *zd = &ztest_ds[d]; 5502 uint64_t committed_seq = ZTEST_GET_SHARED_DS(d)->zd_seq; 5503 objset_t *os; 5504 zilog_t *zilog; 5505 char name[MAXNAMELEN]; 5506 int error; 5507 5508 ztest_dataset_name(name, ztest_opts.zo_pool, d); 5509 5510 (void) rw_rdlock(&ztest_name_lock); 5511 5512 error = ztest_dataset_create(name); 5513 if (error == ENOSPC) { 5514 (void) rw_unlock(&ztest_name_lock); 5515 ztest_record_enospc(FTAG); 5516 return (error); 5517 } 5518 ASSERT(error == 0 || error == EEXIST); 5519 5520 VERIFY0(dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, zd, &os)); 5521 (void) rw_unlock(&ztest_name_lock); 5522 5523 ztest_zd_init(zd, ZTEST_GET_SHARED_DS(d), os); 5524 5525 zilog = zd->zd_zilog; 5526 5527 if (zilog->zl_header->zh_claim_lr_seq != 0 && 5528 zilog->zl_header->zh_claim_lr_seq < committed_seq) 5529 fatal(0, "missing log records: claimed %llu < committed %llu", 5530 zilog->zl_header->zh_claim_lr_seq, committed_seq); 5531 5532 ztest_dataset_dirobj_verify(zd); 5533 5534 zil_replay(os, zd, ztest_replay_vector); 5535 5536 ztest_dataset_dirobj_verify(zd); 5537 5538 if (ztest_opts.zo_verbose >= 6) 5539 (void) printf("%s replay %llu blocks, %llu records, seq %llu\n", 5540 zd->zd_name, 5541 (u_longlong_t)zilog->zl_parse_blk_count, 5542 (u_longlong_t)zilog->zl_parse_lr_count, 5543 (u_longlong_t)zilog->zl_replaying_seq); 5544 5545 zilog = zil_open(os, ztest_get_data); 5546 5547 if (zilog->zl_replaying_seq != 0 && 5548 zilog->zl_replaying_seq < committed_seq) 5549 fatal(0, "missing log records: replayed %llu < committed %llu", 5550 zilog->zl_replaying_seq, committed_seq); 5551 5552 return (0); 5553 } 5554 5555 static void 5556 ztest_dataset_close(int d) 5557 { 5558 ztest_ds_t *zd = &ztest_ds[d]; 5559 5560 zil_close(zd->zd_zilog); 5561 dmu_objset_disown(zd->zd_os, zd); 5562 5563 ztest_zd_fini(zd); 5564 } 5565 5566 /* 5567 * Kick off threads to run tests on all datasets in parallel. 5568 */ 5569 static void 5570 ztest_run(ztest_shared_t *zs) 5571 { 5572 thread_t *tid; 5573 spa_t *spa; 5574 objset_t *os; 5575 thread_t resume_tid; 5576 int error; 5577 5578 ztest_exiting = B_FALSE; 5579 5580 /* 5581 * Initialize parent/child shared state. 5582 */ 5583 VERIFY(_mutex_init(&ztest_vdev_lock, USYNC_THREAD, NULL) == 0); 5584 VERIFY(rwlock_init(&ztest_name_lock, USYNC_THREAD, NULL) == 0); 5585 5586 zs->zs_thread_start = gethrtime(); 5587 zs->zs_thread_stop = 5588 zs->zs_thread_start + ztest_opts.zo_passtime * NANOSEC; 5589 zs->zs_thread_stop = MIN(zs->zs_thread_stop, zs->zs_proc_stop); 5590 zs->zs_thread_kill = zs->zs_thread_stop; 5591 if (ztest_random(100) < ztest_opts.zo_killrate) { 5592 zs->zs_thread_kill -= 5593 ztest_random(ztest_opts.zo_passtime * NANOSEC); 5594 } 5595 5596 (void) _mutex_init(&zcl.zcl_callbacks_lock, USYNC_THREAD, NULL); 5597 5598 list_create(&zcl.zcl_callbacks, sizeof (ztest_cb_data_t), 5599 offsetof(ztest_cb_data_t, zcd_node)); 5600 5601 /* 5602 * Open our pool. 5603 */ 5604 kernel_init(FREAD | FWRITE); 5605 VERIFY0(spa_open(ztest_opts.zo_pool, &spa, FTAG)); 5606 spa->spa_debug = B_TRUE; 5607 metaslab_preload_limit = ztest_random(20) + 1; 5608 ztest_spa = spa; 5609 5610 VERIFY0(dmu_objset_own(ztest_opts.zo_pool, 5611 DMU_OST_ANY, B_TRUE, FTAG, &os)); 5612 zs->zs_guid = dmu_objset_fsid_guid(os); 5613 dmu_objset_disown(os, FTAG); 5614 5615 spa->spa_dedup_ditto = 2 * ZIO_DEDUPDITTO_MIN; 5616 5617 /* 5618 * We don't expect the pool to suspend unless maxfaults == 0, 5619 * in which case ztest_fault_inject() temporarily takes away 5620 * the only valid replica. 5621 */ 5622 if (MAXFAULTS() == 0) 5623 spa->spa_failmode = ZIO_FAILURE_MODE_WAIT; 5624 else 5625 spa->spa_failmode = ZIO_FAILURE_MODE_PANIC; 5626 5627 /* 5628 * Create a thread to periodically resume suspended I/O. 5629 */ 5630 VERIFY(thr_create(0, 0, ztest_resume_thread, spa, THR_BOUND, 5631 &resume_tid) == 0); 5632 5633 /* 5634 * Create a deadman thread to abort() if we hang. 5635 */ 5636 VERIFY(thr_create(0, 0, ztest_deadman_thread, zs, THR_BOUND, 5637 NULL) == 0); 5638 5639 /* 5640 * Verify that we can safely inquire about about any object, 5641 * whether it's allocated or not. To make it interesting, 5642 * we probe a 5-wide window around each power of two. 5643 * This hits all edge cases, including zero and the max. 5644 */ 5645 for (int t = 0; t < 64; t++) { 5646 for (int d = -5; d <= 5; d++) { 5647 error = dmu_object_info(spa->spa_meta_objset, 5648 (1ULL << t) + d, NULL); 5649 ASSERT(error == 0 || error == ENOENT || 5650 error == EINVAL); 5651 } 5652 } 5653 5654 /* 5655 * If we got any ENOSPC errors on the previous run, destroy something. 5656 */ 5657 if (zs->zs_enospc_count != 0) { 5658 int d = ztest_random(ztest_opts.zo_datasets); 5659 ztest_dataset_destroy(d); 5660 } 5661 zs->zs_enospc_count = 0; 5662 5663 tid = umem_zalloc(ztest_opts.zo_threads * sizeof (thread_t), 5664 UMEM_NOFAIL); 5665 5666 if (ztest_opts.zo_verbose >= 4) 5667 (void) printf("starting main threads...\n"); 5668 5669 /* 5670 * Kick off all the tests that run in parallel. 5671 */ 5672 for (int t = 0; t < ztest_opts.zo_threads; t++) { 5673 if (t < ztest_opts.zo_datasets && 5674 ztest_dataset_open(t) != 0) 5675 return; 5676 VERIFY(thr_create(0, 0, ztest_thread, (void *)(uintptr_t)t, 5677 THR_BOUND, &tid[t]) == 0); 5678 } 5679 5680 /* 5681 * Wait for all of the tests to complete. We go in reverse order 5682 * so we don't close datasets while threads are still using them. 5683 */ 5684 for (int t = ztest_opts.zo_threads - 1; t >= 0; t--) { 5685 VERIFY(thr_join(tid[t], NULL, NULL) == 0); 5686 if (t < ztest_opts.zo_datasets) 5687 ztest_dataset_close(t); 5688 } 5689 5690 txg_wait_synced(spa_get_dsl(spa), 0); 5691 5692 zs->zs_alloc = metaslab_class_get_alloc(spa_normal_class(spa)); 5693 zs->zs_space = metaslab_class_get_space(spa_normal_class(spa)); 5694 zfs_dbgmsg_print(FTAG); 5695 5696 umem_free(tid, ztest_opts.zo_threads * sizeof (thread_t)); 5697 5698 /* Kill the resume thread */ 5699 ztest_exiting = B_TRUE; 5700 VERIFY(thr_join(resume_tid, NULL, NULL) == 0); 5701 ztest_resume(spa); 5702 5703 /* 5704 * Right before closing the pool, kick off a bunch of async I/O; 5705 * spa_close() should wait for it to complete. 5706 */ 5707 for (uint64_t object = 1; object < 50; object++) { 5708 dmu_prefetch(spa->spa_meta_objset, object, 0, 0, 1ULL << 20, 5709 ZIO_PRIORITY_SYNC_READ); 5710 } 5711 5712 spa_close(spa, FTAG); 5713 5714 /* 5715 * Verify that we can loop over all pools. 5716 */ 5717 mutex_enter(&spa_namespace_lock); 5718 for (spa = spa_next(NULL); spa != NULL; spa = spa_next(spa)) 5719 if (ztest_opts.zo_verbose > 3) 5720 (void) printf("spa_next: found %s\n", spa_name(spa)); 5721 mutex_exit(&spa_namespace_lock); 5722 5723 /* 5724 * Verify that we can export the pool and reimport it under a 5725 * different name. 5726 */ 5727 if (ztest_random(2) == 0) { 5728 char name[MAXNAMELEN]; 5729 (void) snprintf(name, MAXNAMELEN, "%s_import", 5730 ztest_opts.zo_pool); 5731 ztest_spa_import_export(ztest_opts.zo_pool, name); 5732 ztest_spa_import_export(name, ztest_opts.zo_pool); 5733 } 5734 5735 kernel_fini(); 5736 5737 list_destroy(&zcl.zcl_callbacks); 5738 5739 (void) _mutex_destroy(&zcl.zcl_callbacks_lock); 5740 5741 (void) rwlock_destroy(&ztest_name_lock); 5742 (void) _mutex_destroy(&ztest_vdev_lock); 5743 } 5744 5745 static void 5746 ztest_freeze(void) 5747 { 5748 ztest_ds_t *zd = &ztest_ds[0]; 5749 spa_t *spa; 5750 int numloops = 0; 5751 5752 if (ztest_opts.zo_verbose >= 3) 5753 (void) printf("testing spa_freeze()...\n"); 5754 5755 kernel_init(FREAD | FWRITE); 5756 VERIFY3U(0, ==, spa_open(ztest_opts.zo_pool, &spa, FTAG)); 5757 VERIFY3U(0, ==, ztest_dataset_open(0)); 5758 spa->spa_debug = B_TRUE; 5759 ztest_spa = spa; 5760 5761 /* 5762 * Force the first log block to be transactionally allocated. 5763 * We have to do this before we freeze the pool -- otherwise 5764 * the log chain won't be anchored. 5765 */ 5766 while (BP_IS_HOLE(&zd->zd_zilog->zl_header->zh_log)) { 5767 ztest_dmu_object_alloc_free(zd, 0); 5768 zil_commit(zd->zd_zilog, 0); 5769 } 5770 5771 txg_wait_synced(spa_get_dsl(spa), 0); 5772 5773 /* 5774 * Freeze the pool. This stops spa_sync() from doing anything, 5775 * so that the only way to record changes from now on is the ZIL. 5776 */ 5777 spa_freeze(spa); 5778 5779 /* 5780 * Because it is hard to predict how much space a write will actually 5781 * require beforehand, we leave ourselves some fudge space to write over 5782 * capacity. 5783 */ 5784 uint64_t capacity = metaslab_class_get_space(spa_normal_class(spa)) / 2; 5785 5786 /* 5787 * Run tests that generate log records but don't alter the pool config 5788 * or depend on DSL sync tasks (snapshots, objset create/destroy, etc). 5789 * We do a txg_wait_synced() after each iteration to force the txg 5790 * to increase well beyond the last synced value in the uberblock. 5791 * The ZIL should be OK with that. 5792 * 5793 * Run a random number of times less than zo_maxloops and ensure we do 5794 * not run out of space on the pool. 5795 */ 5796 while (ztest_random(10) != 0 && 5797 numloops++ < ztest_opts.zo_maxloops && 5798 metaslab_class_get_alloc(spa_normal_class(spa)) < capacity) { 5799 ztest_od_t od; 5800 ztest_od_init(&od, 0, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0); 5801 VERIFY0(ztest_object_init(zd, &od, sizeof (od), B_FALSE)); 5802 ztest_io(zd, od.od_object, 5803 ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT); 5804 txg_wait_synced(spa_get_dsl(spa), 0); 5805 } 5806 5807 /* 5808 * Commit all of the changes we just generated. 5809 */ 5810 zil_commit(zd->zd_zilog, 0); 5811 txg_wait_synced(spa_get_dsl(spa), 0); 5812 5813 /* 5814 * Close our dataset and close the pool. 5815 */ 5816 ztest_dataset_close(0); 5817 spa_close(spa, FTAG); 5818 kernel_fini(); 5819 5820 /* 5821 * Open and close the pool and dataset to induce log replay. 5822 */ 5823 kernel_init(FREAD | FWRITE); 5824 VERIFY3U(0, ==, spa_open(ztest_opts.zo_pool, &spa, FTAG)); 5825 ASSERT(spa_freeze_txg(spa) == UINT64_MAX); 5826 VERIFY3U(0, ==, ztest_dataset_open(0)); 5827 ztest_dataset_close(0); 5828 5829 spa->spa_debug = B_TRUE; 5830 ztest_spa = spa; 5831 txg_wait_synced(spa_get_dsl(spa), 0); 5832 ztest_reguid(NULL, 0); 5833 5834 spa_close(spa, FTAG); 5835 kernel_fini(); 5836 } 5837 5838 void 5839 print_time(hrtime_t t, char *timebuf) 5840 { 5841 hrtime_t s = t / NANOSEC; 5842 hrtime_t m = s / 60; 5843 hrtime_t h = m / 60; 5844 hrtime_t d = h / 24; 5845 5846 s -= m * 60; 5847 m -= h * 60; 5848 h -= d * 24; 5849 5850 timebuf[0] = '\0'; 5851 5852 if (d) 5853 (void) sprintf(timebuf, 5854 "%llud%02lluh%02llum%02llus", d, h, m, s); 5855 else if (h) 5856 (void) sprintf(timebuf, "%lluh%02llum%02llus", h, m, s); 5857 else if (m) 5858 (void) sprintf(timebuf, "%llum%02llus", m, s); 5859 else 5860 (void) sprintf(timebuf, "%llus", s); 5861 } 5862 5863 static nvlist_t * 5864 make_random_props() 5865 { 5866 nvlist_t *props; 5867 5868 VERIFY(nvlist_alloc(&props, NV_UNIQUE_NAME, 0) == 0); 5869 if (ztest_random(2) == 0) 5870 return (props); 5871 VERIFY(nvlist_add_uint64(props, "autoreplace", 1) == 0); 5872 5873 return (props); 5874 } 5875 5876 /* 5877 * Create a storage pool with the given name and initial vdev size. 5878 * Then test spa_freeze() functionality. 5879 */ 5880 static void 5881 ztest_init(ztest_shared_t *zs) 5882 { 5883 spa_t *spa; 5884 nvlist_t *nvroot, *props; 5885 5886 VERIFY(_mutex_init(&ztest_vdev_lock, USYNC_THREAD, NULL) == 0); 5887 VERIFY(rwlock_init(&ztest_name_lock, USYNC_THREAD, NULL) == 0); 5888 5889 kernel_init(FREAD | FWRITE); 5890 5891 /* 5892 * Create the storage pool. 5893 */ 5894 (void) spa_destroy(ztest_opts.zo_pool); 5895 ztest_shared->zs_vdev_next_leaf = 0; 5896 zs->zs_splits = 0; 5897 zs->zs_mirrors = ztest_opts.zo_mirrors; 5898 nvroot = make_vdev_root(NULL, NULL, NULL, ztest_opts.zo_vdev_size, 0, 5899 0, ztest_opts.zo_raidz, zs->zs_mirrors, 1); 5900 props = make_random_props(); 5901 for (int i = 0; i < SPA_FEATURES; i++) { 5902 char buf[1024]; 5903 (void) snprintf(buf, sizeof (buf), "feature@%s", 5904 spa_feature_table[i].fi_uname); 5905 VERIFY3U(0, ==, nvlist_add_uint64(props, buf, 0)); 5906 } 5907 VERIFY3U(0, ==, spa_create(ztest_opts.zo_pool, nvroot, props, NULL)); 5908 nvlist_free(nvroot); 5909 5910 VERIFY3U(0, ==, spa_open(ztest_opts.zo_pool, &spa, FTAG)); 5911 zs->zs_metaslab_sz = 5912 1ULL << spa->spa_root_vdev->vdev_child[0]->vdev_ms_shift; 5913 5914 spa_close(spa, FTAG); 5915 5916 kernel_fini(); 5917 5918 ztest_run_zdb(ztest_opts.zo_pool); 5919 5920 ztest_freeze(); 5921 5922 ztest_run_zdb(ztest_opts.zo_pool); 5923 5924 (void) rwlock_destroy(&ztest_name_lock); 5925 (void) _mutex_destroy(&ztest_vdev_lock); 5926 } 5927 5928 static void 5929 setup_data_fd(void) 5930 { 5931 static char ztest_name_data[] = "/tmp/ztest.data.XXXXXX"; 5932 5933 ztest_fd_data = mkstemp(ztest_name_data); 5934 ASSERT3S(ztest_fd_data, >=, 0); 5935 (void) unlink(ztest_name_data); 5936 } 5937 5938 5939 static int 5940 shared_data_size(ztest_shared_hdr_t *hdr) 5941 { 5942 int size; 5943 5944 size = hdr->zh_hdr_size; 5945 size += hdr->zh_opts_size; 5946 size += hdr->zh_size; 5947 size += hdr->zh_stats_size * hdr->zh_stats_count; 5948 size += hdr->zh_ds_size * hdr->zh_ds_count; 5949 5950 return (size); 5951 } 5952 5953 static void 5954 setup_hdr(void) 5955 { 5956 int size; 5957 ztest_shared_hdr_t *hdr; 5958 5959 hdr = (void *)mmap(0, P2ROUNDUP(sizeof (*hdr), getpagesize()), 5960 PROT_READ | PROT_WRITE, MAP_SHARED, ztest_fd_data, 0); 5961 ASSERT(hdr != MAP_FAILED); 5962 5963 VERIFY3U(0, ==, ftruncate(ztest_fd_data, sizeof (ztest_shared_hdr_t))); 5964 5965 hdr->zh_hdr_size = sizeof (ztest_shared_hdr_t); 5966 hdr->zh_opts_size = sizeof (ztest_shared_opts_t); 5967 hdr->zh_size = sizeof (ztest_shared_t); 5968 hdr->zh_stats_size = sizeof (ztest_shared_callstate_t); 5969 hdr->zh_stats_count = ZTEST_FUNCS; 5970 hdr->zh_ds_size = sizeof (ztest_shared_ds_t); 5971 hdr->zh_ds_count = ztest_opts.zo_datasets; 5972 5973 size = shared_data_size(hdr); 5974 VERIFY3U(0, ==, ftruncate(ztest_fd_data, size)); 5975 5976 (void) munmap((caddr_t)hdr, P2ROUNDUP(sizeof (*hdr), getpagesize())); 5977 } 5978 5979 static void 5980 setup_data(void) 5981 { 5982 int size, offset; 5983 ztest_shared_hdr_t *hdr; 5984 uint8_t *buf; 5985 5986 hdr = (void *)mmap(0, P2ROUNDUP(sizeof (*hdr), getpagesize()), 5987 PROT_READ, MAP_SHARED, ztest_fd_data, 0); 5988 ASSERT(hdr != MAP_FAILED); 5989 5990 size = shared_data_size(hdr); 5991 5992 (void) munmap((caddr_t)hdr, P2ROUNDUP(sizeof (*hdr), getpagesize())); 5993 hdr = ztest_shared_hdr = (void *)mmap(0, P2ROUNDUP(size, getpagesize()), 5994 PROT_READ | PROT_WRITE, MAP_SHARED, ztest_fd_data, 0); 5995 ASSERT(hdr != MAP_FAILED); 5996 buf = (uint8_t *)hdr; 5997 5998 offset = hdr->zh_hdr_size; 5999 ztest_shared_opts = (void *)&buf[offset]; 6000 offset += hdr->zh_opts_size; 6001 ztest_shared = (void *)&buf[offset]; 6002 offset += hdr->zh_size; 6003 ztest_shared_callstate = (void *)&buf[offset]; 6004 offset += hdr->zh_stats_size * hdr->zh_stats_count; 6005 ztest_shared_ds = (void *)&buf[offset]; 6006 } 6007 6008 static boolean_t 6009 exec_child(char *cmd, char *libpath, boolean_t ignorekill, int *statusp) 6010 { 6011 pid_t pid; 6012 int status; 6013 char *cmdbuf = NULL; 6014 6015 pid = fork(); 6016 6017 if (cmd == NULL) { 6018 cmdbuf = umem_alloc(MAXPATHLEN, UMEM_NOFAIL); 6019 (void) strlcpy(cmdbuf, getexecname(), MAXPATHLEN); 6020 cmd = cmdbuf; 6021 } 6022 6023 if (pid == -1) 6024 fatal(1, "fork failed"); 6025 6026 if (pid == 0) { /* child */ 6027 char *emptyargv[2] = { cmd, NULL }; 6028 char fd_data_str[12]; 6029 6030 struct rlimit rl = { 1024, 1024 }; 6031 (void) setrlimit(RLIMIT_NOFILE, &rl); 6032 6033 (void) close(ztest_fd_rand); 6034 VERIFY3U(11, >=, 6035 snprintf(fd_data_str, 12, "%d", ztest_fd_data)); 6036 VERIFY0(setenv("ZTEST_FD_DATA", fd_data_str, 1)); 6037 6038 (void) enable_extended_FILE_stdio(-1, -1); 6039 if (libpath != NULL) 6040 VERIFY(0 == setenv("LD_LIBRARY_PATH", libpath, 1)); 6041 (void) execv(cmd, emptyargv); 6042 ztest_dump_core = B_FALSE; 6043 fatal(B_TRUE, "exec failed: %s", cmd); 6044 } 6045 6046 if (cmdbuf != NULL) { 6047 umem_free(cmdbuf, MAXPATHLEN); 6048 cmd = NULL; 6049 } 6050 6051 while (waitpid(pid, &status, 0) != pid) 6052 continue; 6053 if (statusp != NULL) 6054 *statusp = status; 6055 6056 if (WIFEXITED(status)) { 6057 if (WEXITSTATUS(status) != 0) { 6058 (void) fprintf(stderr, "child exited with code %d\n", 6059 WEXITSTATUS(status)); 6060 exit(2); 6061 } 6062 return (B_FALSE); 6063 } else if (WIFSIGNALED(status)) { 6064 if (!ignorekill || WTERMSIG(status) != SIGKILL) { 6065 (void) fprintf(stderr, "child died with signal %d\n", 6066 WTERMSIG(status)); 6067 exit(3); 6068 } 6069 return (B_TRUE); 6070 } else { 6071 (void) fprintf(stderr, "something strange happened to child\n"); 6072 exit(4); 6073 /* NOTREACHED */ 6074 } 6075 } 6076 6077 static void 6078 ztest_run_init(void) 6079 { 6080 ztest_shared_t *zs = ztest_shared; 6081 6082 ASSERT(ztest_opts.zo_init != 0); 6083 6084 /* 6085 * Blow away any existing copy of zpool.cache 6086 */ 6087 (void) remove(spa_config_path); 6088 6089 /* 6090 * Create and initialize our storage pool. 6091 */ 6092 for (int i = 1; i <= ztest_opts.zo_init; i++) { 6093 bzero(zs, sizeof (ztest_shared_t)); 6094 if (ztest_opts.zo_verbose >= 3 && 6095 ztest_opts.zo_init != 1) { 6096 (void) printf("ztest_init(), pass %d\n", i); 6097 } 6098 ztest_init(zs); 6099 } 6100 } 6101 6102 int 6103 main(int argc, char **argv) 6104 { 6105 int kills = 0; 6106 int iters = 0; 6107 int older = 0; 6108 int newer = 0; 6109 ztest_shared_t *zs; 6110 ztest_info_t *zi; 6111 ztest_shared_callstate_t *zc; 6112 char timebuf[100]; 6113 char numbuf[6]; 6114 spa_t *spa; 6115 char *cmd; 6116 boolean_t hasalt; 6117 char *fd_data_str = getenv("ZTEST_FD_DATA"); 6118 6119 (void) setvbuf(stdout, NULL, _IOLBF, 0); 6120 6121 dprintf_setup(&argc, argv); 6122 zfs_deadman_synctime_ms = 300000; 6123 6124 ztest_fd_rand = open("/dev/urandom", O_RDONLY); 6125 ASSERT3S(ztest_fd_rand, >=, 0); 6126 6127 if (!fd_data_str) { 6128 process_options(argc, argv); 6129 6130 setup_data_fd(); 6131 setup_hdr(); 6132 setup_data(); 6133 bcopy(&ztest_opts, ztest_shared_opts, 6134 sizeof (*ztest_shared_opts)); 6135 } else { 6136 ztest_fd_data = atoi(fd_data_str); 6137 setup_data(); 6138 bcopy(ztest_shared_opts, &ztest_opts, sizeof (ztest_opts)); 6139 } 6140 ASSERT3U(ztest_opts.zo_datasets, ==, ztest_shared_hdr->zh_ds_count); 6141 6142 /* Override location of zpool.cache */ 6143 VERIFY3U(asprintf((char **)&spa_config_path, "%s/zpool.cache", 6144 ztest_opts.zo_dir), !=, -1); 6145 6146 ztest_ds = umem_alloc(ztest_opts.zo_datasets * sizeof (ztest_ds_t), 6147 UMEM_NOFAIL); 6148 zs = ztest_shared; 6149 6150 if (fd_data_str) { 6151 metaslab_gang_bang = ztest_opts.zo_metaslab_gang_bang; 6152 metaslab_df_alloc_threshold = 6153 zs->zs_metaslab_df_alloc_threshold; 6154 6155 if (zs->zs_do_init) 6156 ztest_run_init(); 6157 else 6158 ztest_run(zs); 6159 exit(0); 6160 } 6161 6162 hasalt = (strlen(ztest_opts.zo_alt_ztest) != 0); 6163 6164 if (ztest_opts.zo_verbose >= 1) { 6165 (void) printf("%llu vdevs, %d datasets, %d threads," 6166 " %llu seconds...\n", 6167 (u_longlong_t)ztest_opts.zo_vdevs, 6168 ztest_opts.zo_datasets, 6169 ztest_opts.zo_threads, 6170 (u_longlong_t)ztest_opts.zo_time); 6171 } 6172 6173 cmd = umem_alloc(MAXNAMELEN, UMEM_NOFAIL); 6174 (void) strlcpy(cmd, getexecname(), MAXNAMELEN); 6175 6176 zs->zs_do_init = B_TRUE; 6177 if (strlen(ztest_opts.zo_alt_ztest) != 0) { 6178 if (ztest_opts.zo_verbose >= 1) { 6179 (void) printf("Executing older ztest for " 6180 "initialization: %s\n", ztest_opts.zo_alt_ztest); 6181 } 6182 VERIFY(!exec_child(ztest_opts.zo_alt_ztest, 6183 ztest_opts.zo_alt_libpath, B_FALSE, NULL)); 6184 } else { 6185 VERIFY(!exec_child(NULL, NULL, B_FALSE, NULL)); 6186 } 6187 zs->zs_do_init = B_FALSE; 6188 6189 zs->zs_proc_start = gethrtime(); 6190 zs->zs_proc_stop = zs->zs_proc_start + ztest_opts.zo_time * NANOSEC; 6191 6192 for (int f = 0; f < ZTEST_FUNCS; f++) { 6193 zi = &ztest_info[f]; 6194 zc = ZTEST_GET_SHARED_CALLSTATE(f); 6195 if (zs->zs_proc_start + zi->zi_interval[0] > zs->zs_proc_stop) 6196 zc->zc_next = UINT64_MAX; 6197 else 6198 zc->zc_next = zs->zs_proc_start + 6199 ztest_random(2 * zi->zi_interval[0] + 1); 6200 } 6201 6202 /* 6203 * Run the tests in a loop. These tests include fault injection 6204 * to verify that self-healing data works, and forced crashes 6205 * to verify that we never lose on-disk consistency. 6206 */ 6207 while (gethrtime() < zs->zs_proc_stop) { 6208 int status; 6209 boolean_t killed; 6210 6211 /* 6212 * Initialize the workload counters for each function. 6213 */ 6214 for (int f = 0; f < ZTEST_FUNCS; f++) { 6215 zc = ZTEST_GET_SHARED_CALLSTATE(f); 6216 zc->zc_count = 0; 6217 zc->zc_time = 0; 6218 } 6219 6220 /* Set the allocation switch size */ 6221 zs->zs_metaslab_df_alloc_threshold = 6222 ztest_random(zs->zs_metaslab_sz / 4) + 1; 6223 6224 if (!hasalt || ztest_random(2) == 0) { 6225 if (hasalt && ztest_opts.zo_verbose >= 1) { 6226 (void) printf("Executing newer ztest: %s\n", 6227 cmd); 6228 } 6229 newer++; 6230 killed = exec_child(cmd, NULL, B_TRUE, &status); 6231 } else { 6232 if (hasalt && ztest_opts.zo_verbose >= 1) { 6233 (void) printf("Executing older ztest: %s\n", 6234 ztest_opts.zo_alt_ztest); 6235 } 6236 older++; 6237 killed = exec_child(ztest_opts.zo_alt_ztest, 6238 ztest_opts.zo_alt_libpath, B_TRUE, &status); 6239 } 6240 6241 if (killed) 6242 kills++; 6243 iters++; 6244 6245 if (ztest_opts.zo_verbose >= 1) { 6246 hrtime_t now = gethrtime(); 6247 6248 now = MIN(now, zs->zs_proc_stop); 6249 print_time(zs->zs_proc_stop - now, timebuf); 6250 nicenum(zs->zs_space, numbuf); 6251 6252 (void) printf("Pass %3d, %8s, %3llu ENOSPC, " 6253 "%4.1f%% of %5s used, %3.0f%% done, %8s to go\n", 6254 iters, 6255 WIFEXITED(status) ? "Complete" : "SIGKILL", 6256 (u_longlong_t)zs->zs_enospc_count, 6257 100.0 * zs->zs_alloc / zs->zs_space, 6258 numbuf, 6259 100.0 * (now - zs->zs_proc_start) / 6260 (ztest_opts.zo_time * NANOSEC), timebuf); 6261 } 6262 6263 if (ztest_opts.zo_verbose >= 2) { 6264 (void) printf("\nWorkload summary:\n\n"); 6265 (void) printf("%7s %9s %s\n", 6266 "Calls", "Time", "Function"); 6267 (void) printf("%7s %9s %s\n", 6268 "-----", "----", "--------"); 6269 for (int f = 0; f < ZTEST_FUNCS; f++) { 6270 Dl_info dli; 6271 6272 zi = &ztest_info[f]; 6273 zc = ZTEST_GET_SHARED_CALLSTATE(f); 6274 print_time(zc->zc_time, timebuf); 6275 (void) dladdr((void *)zi->zi_func, &dli); 6276 (void) printf("%7llu %9s %s\n", 6277 (u_longlong_t)zc->zc_count, timebuf, 6278 dli.dli_sname); 6279 } 6280 (void) printf("\n"); 6281 } 6282 6283 /* 6284 * It's possible that we killed a child during a rename test, 6285 * in which case we'll have a 'ztest_tmp' pool lying around 6286 * instead of 'ztest'. Do a blind rename in case this happened. 6287 */ 6288 kernel_init(FREAD); 6289 if (spa_open(ztest_opts.zo_pool, &spa, FTAG) == 0) { 6290 spa_close(spa, FTAG); 6291 } else { 6292 char tmpname[MAXNAMELEN]; 6293 kernel_fini(); 6294 kernel_init(FREAD | FWRITE); 6295 (void) snprintf(tmpname, sizeof (tmpname), "%s_tmp", 6296 ztest_opts.zo_pool); 6297 (void) spa_rename(tmpname, ztest_opts.zo_pool); 6298 } 6299 kernel_fini(); 6300 6301 ztest_run_zdb(ztest_opts.zo_pool); 6302 } 6303 6304 if (ztest_opts.zo_verbose >= 1) { 6305 if (hasalt) { 6306 (void) printf("%d runs of older ztest: %s\n", older, 6307 ztest_opts.zo_alt_ztest); 6308 (void) printf("%d runs of newer ztest: %s\n", newer, 6309 cmd); 6310 } 6311 (void) printf("%d killed, %d completed, %.0f%% kill rate\n", 6312 kills, iters - kills, (100.0 * kills) / MAX(1, iters)); 6313 } 6314 6315 umem_free(cmd, MAXNAMELEN); 6316 6317 return (0); 6318 } 6319