1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 */ 24 25 /* 26 * The objective of this program is to provide a DMU/ZAP/SPA stress test 27 * that runs entirely in userland, is easy to use, and easy to extend. 28 * 29 * The overall design of the ztest program is as follows: 30 * 31 * (1) For each major functional area (e.g. adding vdevs to a pool, 32 * creating and destroying datasets, reading and writing objects, etc) 33 * we have a simple routine to test that functionality. These 34 * individual routines do not have to do anything "stressful". 35 * 36 * (2) We turn these simple functionality tests into a stress test by 37 * running them all in parallel, with as many threads as desired, 38 * and spread across as many datasets, objects, and vdevs as desired. 39 * 40 * (3) While all this is happening, we inject faults into the pool to 41 * verify that self-healing data really works. 42 * 43 * (4) Every time we open a dataset, we change its checksum and compression 44 * functions. Thus even individual objects vary from block to block 45 * in which checksum they use and whether they're compressed. 46 * 47 * (5) To verify that we never lose on-disk consistency after a crash, 48 * we run the entire test in a child of the main process. 49 * At random times, the child self-immolates with a SIGKILL. 50 * This is the software equivalent of pulling the power cord. 51 * The parent then runs the test again, using the existing 52 * storage pool, as many times as desired. 53 * 54 * (6) To verify that we don't have future leaks or temporal incursions, 55 * many of the functional tests record the transaction group number 56 * as part of their data. When reading old data, they verify that 57 * the transaction group number is less than the current, open txg. 58 * If you add a new test, please do this if applicable. 59 * 60 * When run with no arguments, ztest runs for about five minutes and 61 * produces no output if successful. To get a little bit of information, 62 * specify -V. To get more information, specify -VV, and so on. 63 * 64 * To turn this into an overnight stress test, use -T to specify run time. 65 * 66 * You can ask more more vdevs [-v], datasets [-d], or threads [-t] 67 * to increase the pool capacity, fanout, and overall stress level. 68 * 69 * The -N(okill) option will suppress kills, so each child runs to completion. 70 * This can be useful when you're trying to distinguish temporal incursions 71 * from plain old race conditions. 72 */ 73 74 #include <sys/zfs_context.h> 75 #include <sys/spa.h> 76 #include <sys/dmu.h> 77 #include <sys/txg.h> 78 #include <sys/dbuf.h> 79 #include <sys/zap.h> 80 #include <sys/dmu_objset.h> 81 #include <sys/poll.h> 82 #include <sys/stat.h> 83 #include <sys/time.h> 84 #include <sys/wait.h> 85 #include <sys/mman.h> 86 #include <sys/resource.h> 87 #include <sys/zio.h> 88 #include <sys/zil.h> 89 #include <sys/zil_impl.h> 90 #include <sys/vdev_impl.h> 91 #include <sys/vdev_file.h> 92 #include <sys/spa_impl.h> 93 #include <sys/metaslab_impl.h> 94 #include <sys/dsl_prop.h> 95 #include <sys/dsl_dataset.h> 96 #include <sys/dsl_scan.h> 97 #include <sys/refcount.h> 98 #include <stdio.h> 99 #include <stdio_ext.h> 100 #include <stdlib.h> 101 #include <unistd.h> 102 #include <signal.h> 103 #include <umem.h> 104 #include <dlfcn.h> 105 #include <ctype.h> 106 #include <math.h> 107 #include <sys/fs/zfs.h> 108 #include <libnvpair.h> 109 110 static char cmdname[] = "ztest"; 111 static char *zopt_pool = cmdname; 112 113 static uint64_t zopt_vdevs = 5; 114 static uint64_t zopt_vdevtime; 115 static int zopt_ashift = SPA_MINBLOCKSHIFT; 116 static int zopt_mirrors = 2; 117 static int zopt_raidz = 4; 118 static int zopt_raidz_parity = 1; 119 static size_t zopt_vdev_size = SPA_MINDEVSIZE; 120 static int zopt_datasets = 7; 121 static int zopt_threads = 23; 122 static uint64_t zopt_passtime = 60; /* 60 seconds */ 123 static uint64_t zopt_killrate = 70; /* 70% kill rate */ 124 static int zopt_verbose = 0; 125 static int zopt_init = 1; 126 static char *zopt_dir = "/tmp"; 127 static uint64_t zopt_time = 300; /* 5 minutes */ 128 static uint64_t zopt_maxloops = 50; /* max loops during spa_freeze() */ 129 130 #define BT_MAGIC 0x123456789abcdefULL 131 #define MAXFAULTS() (MAX(zs->zs_mirrors, 1) * (zopt_raidz_parity + 1) - 1) 132 133 enum ztest_io_type { 134 ZTEST_IO_WRITE_TAG, 135 ZTEST_IO_WRITE_PATTERN, 136 ZTEST_IO_WRITE_ZEROES, 137 ZTEST_IO_TRUNCATE, 138 ZTEST_IO_SETATTR, 139 ZTEST_IO_TYPES 140 }; 141 142 typedef struct ztest_block_tag { 143 uint64_t bt_magic; 144 uint64_t bt_objset; 145 uint64_t bt_object; 146 uint64_t bt_offset; 147 uint64_t bt_gen; 148 uint64_t bt_txg; 149 uint64_t bt_crtxg; 150 } ztest_block_tag_t; 151 152 typedef struct bufwad { 153 uint64_t bw_index; 154 uint64_t bw_txg; 155 uint64_t bw_data; 156 } bufwad_t; 157 158 /* 159 * XXX -- fix zfs range locks to be generic so we can use them here. 160 */ 161 typedef enum { 162 RL_READER, 163 RL_WRITER, 164 RL_APPEND 165 } rl_type_t; 166 167 typedef struct rll { 168 void *rll_writer; 169 int rll_readers; 170 mutex_t rll_lock; 171 cond_t rll_cv; 172 } rll_t; 173 174 typedef struct rl { 175 uint64_t rl_object; 176 uint64_t rl_offset; 177 uint64_t rl_size; 178 rll_t *rl_lock; 179 } rl_t; 180 181 #define ZTEST_RANGE_LOCKS 64 182 #define ZTEST_OBJECT_LOCKS 64 183 184 /* 185 * Object descriptor. Used as a template for object lookup/create/remove. 186 */ 187 typedef struct ztest_od { 188 uint64_t od_dir; 189 uint64_t od_object; 190 dmu_object_type_t od_type; 191 dmu_object_type_t od_crtype; 192 uint64_t od_blocksize; 193 uint64_t od_crblocksize; 194 uint64_t od_gen; 195 uint64_t od_crgen; 196 char od_name[MAXNAMELEN]; 197 } ztest_od_t; 198 199 /* 200 * Per-dataset state. 201 */ 202 typedef struct ztest_ds { 203 objset_t *zd_os; 204 zilog_t *zd_zilog; 205 uint64_t zd_seq; 206 ztest_od_t *zd_od; /* debugging aid */ 207 char zd_name[MAXNAMELEN]; 208 mutex_t zd_dirobj_lock; 209 rll_t zd_object_lock[ZTEST_OBJECT_LOCKS]; 210 rll_t zd_range_lock[ZTEST_RANGE_LOCKS]; 211 } ztest_ds_t; 212 213 /* 214 * Per-iteration state. 215 */ 216 typedef void ztest_func_t(ztest_ds_t *zd, uint64_t id); 217 218 typedef struct ztest_info { 219 ztest_func_t *zi_func; /* test function */ 220 uint64_t zi_iters; /* iterations per execution */ 221 uint64_t *zi_interval; /* execute every <interval> seconds */ 222 uint64_t zi_call_count; /* per-pass count */ 223 uint64_t zi_call_time; /* per-pass time */ 224 uint64_t zi_call_next; /* next time to call this function */ 225 } ztest_info_t; 226 227 /* 228 * Note: these aren't static because we want dladdr() to work. 229 */ 230 ztest_func_t ztest_dmu_read_write; 231 ztest_func_t ztest_dmu_write_parallel; 232 ztest_func_t ztest_dmu_object_alloc_free; 233 ztest_func_t ztest_dmu_commit_callbacks; 234 ztest_func_t ztest_zap; 235 ztest_func_t ztest_zap_parallel; 236 ztest_func_t ztest_zil_commit; 237 ztest_func_t ztest_dmu_read_write_zcopy; 238 ztest_func_t ztest_dmu_objset_create_destroy; 239 ztest_func_t ztest_dmu_prealloc; 240 ztest_func_t ztest_fzap; 241 ztest_func_t ztest_dmu_snapshot_create_destroy; 242 ztest_func_t ztest_dsl_prop_get_set; 243 ztest_func_t ztest_spa_prop_get_set; 244 ztest_func_t ztest_spa_create_destroy; 245 ztest_func_t ztest_fault_inject; 246 ztest_func_t ztest_ddt_repair; 247 ztest_func_t ztest_dmu_snapshot_hold; 248 ztest_func_t ztest_spa_rename; 249 ztest_func_t ztest_scrub; 250 ztest_func_t ztest_dsl_dataset_promote_busy; 251 ztest_func_t ztest_vdev_attach_detach; 252 ztest_func_t ztest_vdev_LUN_growth; 253 ztest_func_t ztest_vdev_add_remove; 254 ztest_func_t ztest_vdev_aux_add_remove; 255 ztest_func_t ztest_split_pool; 256 257 uint64_t zopt_always = 0ULL * NANOSEC; /* all the time */ 258 uint64_t zopt_incessant = 1ULL * NANOSEC / 10; /* every 1/10 second */ 259 uint64_t zopt_often = 1ULL * NANOSEC; /* every second */ 260 uint64_t zopt_sometimes = 10ULL * NANOSEC; /* every 10 seconds */ 261 uint64_t zopt_rarely = 60ULL * NANOSEC; /* every 60 seconds */ 262 263 ztest_info_t ztest_info[] = { 264 { ztest_dmu_read_write, 1, &zopt_always }, 265 { ztest_dmu_write_parallel, 10, &zopt_always }, 266 { ztest_dmu_object_alloc_free, 1, &zopt_always }, 267 { ztest_dmu_commit_callbacks, 1, &zopt_always }, 268 { ztest_zap, 30, &zopt_always }, 269 { ztest_zap_parallel, 100, &zopt_always }, 270 { ztest_split_pool, 1, &zopt_always }, 271 { ztest_zil_commit, 1, &zopt_incessant }, 272 { ztest_dmu_read_write_zcopy, 1, &zopt_often }, 273 { ztest_dmu_objset_create_destroy, 1, &zopt_often }, 274 { ztest_dsl_prop_get_set, 1, &zopt_often }, 275 { ztest_spa_prop_get_set, 1, &zopt_sometimes }, 276 #if 0 277 { ztest_dmu_prealloc, 1, &zopt_sometimes }, 278 #endif 279 { ztest_fzap, 1, &zopt_sometimes }, 280 { ztest_dmu_snapshot_create_destroy, 1, &zopt_sometimes }, 281 { ztest_spa_create_destroy, 1, &zopt_sometimes }, 282 { ztest_fault_inject, 1, &zopt_sometimes }, 283 { ztest_ddt_repair, 1, &zopt_sometimes }, 284 { ztest_dmu_snapshot_hold, 1, &zopt_sometimes }, 285 { ztest_spa_rename, 1, &zopt_rarely }, 286 { ztest_scrub, 1, &zopt_rarely }, 287 { ztest_dsl_dataset_promote_busy, 1, &zopt_rarely }, 288 { ztest_vdev_attach_detach, 1, &zopt_rarely }, 289 { ztest_vdev_LUN_growth, 1, &zopt_rarely }, 290 { ztest_vdev_add_remove, 1, &zopt_vdevtime }, 291 { ztest_vdev_aux_add_remove, 1, &zopt_vdevtime }, 292 }; 293 294 #define ZTEST_FUNCS (sizeof (ztest_info) / sizeof (ztest_info_t)) 295 296 /* 297 * The following struct is used to hold a list of uncalled commit callbacks. 298 * The callbacks are ordered by txg number. 299 */ 300 typedef struct ztest_cb_list { 301 mutex_t zcl_callbacks_lock; 302 list_t zcl_callbacks; 303 } ztest_cb_list_t; 304 305 /* 306 * Stuff we need to share writably between parent and child. 307 */ 308 typedef struct ztest_shared { 309 char *zs_pool; 310 spa_t *zs_spa; 311 hrtime_t zs_proc_start; 312 hrtime_t zs_proc_stop; 313 hrtime_t zs_thread_start; 314 hrtime_t zs_thread_stop; 315 hrtime_t zs_thread_kill; 316 uint64_t zs_enospc_count; 317 uint64_t zs_vdev_next_leaf; 318 uint64_t zs_vdev_aux; 319 uint64_t zs_alloc; 320 uint64_t zs_space; 321 mutex_t zs_vdev_lock; 322 rwlock_t zs_name_lock; 323 ztest_info_t zs_info[ZTEST_FUNCS]; 324 uint64_t zs_splits; 325 uint64_t zs_mirrors; 326 ztest_ds_t zs_zd[]; 327 } ztest_shared_t; 328 329 #define ID_PARALLEL -1ULL 330 331 static char ztest_dev_template[] = "%s/%s.%llua"; 332 static char ztest_aux_template[] = "%s/%s.%s.%llu"; 333 ztest_shared_t *ztest_shared; 334 uint64_t *ztest_seq; 335 336 static int ztest_random_fd; 337 static int ztest_dump_core = 1; 338 339 static boolean_t ztest_exiting; 340 341 /* Global commit callback list */ 342 static ztest_cb_list_t zcl; 343 344 extern uint64_t metaslab_gang_bang; 345 extern uint64_t metaslab_df_alloc_threshold; 346 static uint64_t metaslab_sz; 347 348 enum ztest_object { 349 ZTEST_META_DNODE = 0, 350 ZTEST_DIROBJ, 351 ZTEST_OBJECTS 352 }; 353 354 static void usage(boolean_t) __NORETURN; 355 356 /* 357 * These libumem hooks provide a reasonable set of defaults for the allocator's 358 * debugging facilities. 359 */ 360 const char * 361 _umem_debug_init() 362 { 363 return ("default,verbose"); /* $UMEM_DEBUG setting */ 364 } 365 366 const char * 367 _umem_logging_init(void) 368 { 369 return ("fail,contents"); /* $UMEM_LOGGING setting */ 370 } 371 372 #define FATAL_MSG_SZ 1024 373 374 char *fatal_msg; 375 376 static void 377 fatal(int do_perror, char *message, ...) 378 { 379 va_list args; 380 int save_errno = errno; 381 char buf[FATAL_MSG_SZ]; 382 383 (void) fflush(stdout); 384 385 va_start(args, message); 386 (void) sprintf(buf, "ztest: "); 387 /* LINTED */ 388 (void) vsprintf(buf + strlen(buf), message, args); 389 va_end(args); 390 if (do_perror) { 391 (void) snprintf(buf + strlen(buf), FATAL_MSG_SZ - strlen(buf), 392 ": %s", strerror(save_errno)); 393 } 394 (void) fprintf(stderr, "%s\n", buf); 395 fatal_msg = buf; /* to ease debugging */ 396 if (ztest_dump_core) 397 abort(); 398 exit(3); 399 } 400 401 static int 402 str2shift(const char *buf) 403 { 404 const char *ends = "BKMGTPEZ"; 405 int i; 406 407 if (buf[0] == '\0') 408 return (0); 409 for (i = 0; i < strlen(ends); i++) { 410 if (toupper(buf[0]) == ends[i]) 411 break; 412 } 413 if (i == strlen(ends)) { 414 (void) fprintf(stderr, "ztest: invalid bytes suffix: %s\n", 415 buf); 416 usage(B_FALSE); 417 } 418 if (buf[1] == '\0' || (toupper(buf[1]) == 'B' && buf[2] == '\0')) { 419 return (10*i); 420 } 421 (void) fprintf(stderr, "ztest: invalid bytes suffix: %s\n", buf); 422 usage(B_FALSE); 423 /* NOTREACHED */ 424 } 425 426 static uint64_t 427 nicenumtoull(const char *buf) 428 { 429 char *end; 430 uint64_t val; 431 432 val = strtoull(buf, &end, 0); 433 if (end == buf) { 434 (void) fprintf(stderr, "ztest: bad numeric value: %s\n", buf); 435 usage(B_FALSE); 436 } else if (end[0] == '.') { 437 double fval = strtod(buf, &end); 438 fval *= pow(2, str2shift(end)); 439 if (fval > UINT64_MAX) { 440 (void) fprintf(stderr, "ztest: value too large: %s\n", 441 buf); 442 usage(B_FALSE); 443 } 444 val = (uint64_t)fval; 445 } else { 446 int shift = str2shift(end); 447 if (shift >= 64 || (val << shift) >> shift != val) { 448 (void) fprintf(stderr, "ztest: value too large: %s\n", 449 buf); 450 usage(B_FALSE); 451 } 452 val <<= shift; 453 } 454 return (val); 455 } 456 457 static void 458 usage(boolean_t requested) 459 { 460 char nice_vdev_size[10]; 461 char nice_gang_bang[10]; 462 FILE *fp = requested ? stdout : stderr; 463 464 nicenum(zopt_vdev_size, nice_vdev_size); 465 nicenum(metaslab_gang_bang, nice_gang_bang); 466 467 (void) fprintf(fp, "Usage: %s\n" 468 "\t[-v vdevs (default: %llu)]\n" 469 "\t[-s size_of_each_vdev (default: %s)]\n" 470 "\t[-a alignment_shift (default: %d)] use 0 for random\n" 471 "\t[-m mirror_copies (default: %d)]\n" 472 "\t[-r raidz_disks (default: %d)]\n" 473 "\t[-R raidz_parity (default: %d)]\n" 474 "\t[-d datasets (default: %d)]\n" 475 "\t[-t threads (default: %d)]\n" 476 "\t[-g gang_block_threshold (default: %s)]\n" 477 "\t[-i init_count (default: %d)] initialize pool i times\n" 478 "\t[-k kill_percentage (default: %llu%%)]\n" 479 "\t[-p pool_name (default: %s)]\n" 480 "\t[-f dir (default: %s)] file directory for vdev files\n" 481 "\t[-V] verbose (use multiple times for ever more blather)\n" 482 "\t[-E] use existing pool instead of creating new one\n" 483 "\t[-T time (default: %llu sec)] total run time\n" 484 "\t[-F freezeloops (default: %llu)] max loops in spa_freeze()\n" 485 "\t[-P passtime (default: %llu sec)] time per pass\n" 486 "\t[-h] (print help)\n" 487 "", 488 cmdname, 489 (u_longlong_t)zopt_vdevs, /* -v */ 490 nice_vdev_size, /* -s */ 491 zopt_ashift, /* -a */ 492 zopt_mirrors, /* -m */ 493 zopt_raidz, /* -r */ 494 zopt_raidz_parity, /* -R */ 495 zopt_datasets, /* -d */ 496 zopt_threads, /* -t */ 497 nice_gang_bang, /* -g */ 498 zopt_init, /* -i */ 499 (u_longlong_t)zopt_killrate, /* -k */ 500 zopt_pool, /* -p */ 501 zopt_dir, /* -f */ 502 (u_longlong_t)zopt_time, /* -T */ 503 (u_longlong_t)zopt_maxloops, /* -F */ 504 (u_longlong_t)zopt_passtime); /* -P */ 505 exit(requested ? 0 : 1); 506 } 507 508 static void 509 process_options(int argc, char **argv) 510 { 511 int opt; 512 uint64_t value; 513 514 /* By default, test gang blocks for blocks 32K and greater */ 515 metaslab_gang_bang = 32 << 10; 516 517 while ((opt = getopt(argc, argv, 518 "v:s:a:m:r:R:d:t:g:i:k:p:f:VET:P:hF:")) != EOF) { 519 value = 0; 520 switch (opt) { 521 case 'v': 522 case 's': 523 case 'a': 524 case 'm': 525 case 'r': 526 case 'R': 527 case 'd': 528 case 't': 529 case 'g': 530 case 'i': 531 case 'k': 532 case 'T': 533 case 'P': 534 case 'F': 535 value = nicenumtoull(optarg); 536 } 537 switch (opt) { 538 case 'v': 539 zopt_vdevs = value; 540 break; 541 case 's': 542 zopt_vdev_size = MAX(SPA_MINDEVSIZE, value); 543 break; 544 case 'a': 545 zopt_ashift = value; 546 break; 547 case 'm': 548 zopt_mirrors = value; 549 break; 550 case 'r': 551 zopt_raidz = MAX(1, value); 552 break; 553 case 'R': 554 zopt_raidz_parity = MIN(MAX(value, 1), 3); 555 break; 556 case 'd': 557 zopt_datasets = MAX(1, value); 558 break; 559 case 't': 560 zopt_threads = MAX(1, value); 561 break; 562 case 'g': 563 metaslab_gang_bang = MAX(SPA_MINBLOCKSIZE << 1, value); 564 break; 565 case 'i': 566 zopt_init = value; 567 break; 568 case 'k': 569 zopt_killrate = value; 570 break; 571 case 'p': 572 zopt_pool = strdup(optarg); 573 break; 574 case 'f': 575 zopt_dir = strdup(optarg); 576 break; 577 case 'V': 578 zopt_verbose++; 579 break; 580 case 'E': 581 zopt_init = 0; 582 break; 583 case 'T': 584 zopt_time = value; 585 break; 586 case 'P': 587 zopt_passtime = MAX(1, value); 588 break; 589 case 'F': 590 zopt_maxloops = MAX(1, value); 591 break; 592 case 'h': 593 usage(B_TRUE); 594 break; 595 case '?': 596 default: 597 usage(B_FALSE); 598 break; 599 } 600 } 601 602 zopt_raidz_parity = MIN(zopt_raidz_parity, zopt_raidz - 1); 603 604 zopt_vdevtime = (zopt_vdevs > 0 ? zopt_time * NANOSEC / zopt_vdevs : 605 UINT64_MAX >> 2); 606 } 607 608 static void 609 ztest_kill(ztest_shared_t *zs) 610 { 611 zs->zs_alloc = metaslab_class_get_alloc(spa_normal_class(zs->zs_spa)); 612 zs->zs_space = metaslab_class_get_space(spa_normal_class(zs->zs_spa)); 613 (void) kill(getpid(), SIGKILL); 614 } 615 616 static uint64_t 617 ztest_random(uint64_t range) 618 { 619 uint64_t r; 620 621 if (range == 0) 622 return (0); 623 624 if (read(ztest_random_fd, &r, sizeof (r)) != sizeof (r)) 625 fatal(1, "short read from /dev/urandom"); 626 627 return (r % range); 628 } 629 630 /* ARGSUSED */ 631 static void 632 ztest_record_enospc(const char *s) 633 { 634 ztest_shared->zs_enospc_count++; 635 } 636 637 static uint64_t 638 ztest_get_ashift(void) 639 { 640 if (zopt_ashift == 0) 641 return (SPA_MINBLOCKSHIFT + ztest_random(3)); 642 return (zopt_ashift); 643 } 644 645 static nvlist_t * 646 make_vdev_file(char *path, char *aux, size_t size, uint64_t ashift) 647 { 648 char pathbuf[MAXPATHLEN]; 649 uint64_t vdev; 650 nvlist_t *file; 651 652 if (ashift == 0) 653 ashift = ztest_get_ashift(); 654 655 if (path == NULL) { 656 path = pathbuf; 657 658 if (aux != NULL) { 659 vdev = ztest_shared->zs_vdev_aux; 660 (void) sprintf(path, ztest_aux_template, 661 zopt_dir, zopt_pool, aux, vdev); 662 } else { 663 vdev = ztest_shared->zs_vdev_next_leaf++; 664 (void) sprintf(path, ztest_dev_template, 665 zopt_dir, zopt_pool, vdev); 666 } 667 } 668 669 if (size != 0) { 670 int fd = open(path, O_RDWR | O_CREAT | O_TRUNC, 0666); 671 if (fd == -1) 672 fatal(1, "can't open %s", path); 673 if (ftruncate(fd, size) != 0) 674 fatal(1, "can't ftruncate %s", path); 675 (void) close(fd); 676 } 677 678 VERIFY(nvlist_alloc(&file, NV_UNIQUE_NAME, 0) == 0); 679 VERIFY(nvlist_add_string(file, ZPOOL_CONFIG_TYPE, VDEV_TYPE_FILE) == 0); 680 VERIFY(nvlist_add_string(file, ZPOOL_CONFIG_PATH, path) == 0); 681 VERIFY(nvlist_add_uint64(file, ZPOOL_CONFIG_ASHIFT, ashift) == 0); 682 683 return (file); 684 } 685 686 static nvlist_t * 687 make_vdev_raidz(char *path, char *aux, size_t size, uint64_t ashift, int r) 688 { 689 nvlist_t *raidz, **child; 690 int c; 691 692 if (r < 2) 693 return (make_vdev_file(path, aux, size, ashift)); 694 child = umem_alloc(r * sizeof (nvlist_t *), UMEM_NOFAIL); 695 696 for (c = 0; c < r; c++) 697 child[c] = make_vdev_file(path, aux, size, ashift); 698 699 VERIFY(nvlist_alloc(&raidz, NV_UNIQUE_NAME, 0) == 0); 700 VERIFY(nvlist_add_string(raidz, ZPOOL_CONFIG_TYPE, 701 VDEV_TYPE_RAIDZ) == 0); 702 VERIFY(nvlist_add_uint64(raidz, ZPOOL_CONFIG_NPARITY, 703 zopt_raidz_parity) == 0); 704 VERIFY(nvlist_add_nvlist_array(raidz, ZPOOL_CONFIG_CHILDREN, 705 child, r) == 0); 706 707 for (c = 0; c < r; c++) 708 nvlist_free(child[c]); 709 710 umem_free(child, r * sizeof (nvlist_t *)); 711 712 return (raidz); 713 } 714 715 static nvlist_t * 716 make_vdev_mirror(char *path, char *aux, size_t size, uint64_t ashift, 717 int r, int m) 718 { 719 nvlist_t *mirror, **child; 720 int c; 721 722 if (m < 1) 723 return (make_vdev_raidz(path, aux, size, ashift, r)); 724 725 child = umem_alloc(m * sizeof (nvlist_t *), UMEM_NOFAIL); 726 727 for (c = 0; c < m; c++) 728 child[c] = make_vdev_raidz(path, aux, size, ashift, r); 729 730 VERIFY(nvlist_alloc(&mirror, NV_UNIQUE_NAME, 0) == 0); 731 VERIFY(nvlist_add_string(mirror, ZPOOL_CONFIG_TYPE, 732 VDEV_TYPE_MIRROR) == 0); 733 VERIFY(nvlist_add_nvlist_array(mirror, ZPOOL_CONFIG_CHILDREN, 734 child, m) == 0); 735 736 for (c = 0; c < m; c++) 737 nvlist_free(child[c]); 738 739 umem_free(child, m * sizeof (nvlist_t *)); 740 741 return (mirror); 742 } 743 744 static nvlist_t * 745 make_vdev_root(char *path, char *aux, size_t size, uint64_t ashift, 746 int log, int r, int m, int t) 747 { 748 nvlist_t *root, **child; 749 int c; 750 751 ASSERT(t > 0); 752 753 child = umem_alloc(t * sizeof (nvlist_t *), UMEM_NOFAIL); 754 755 for (c = 0; c < t; c++) { 756 child[c] = make_vdev_mirror(path, aux, size, ashift, r, m); 757 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_IS_LOG, 758 log) == 0); 759 } 760 761 VERIFY(nvlist_alloc(&root, NV_UNIQUE_NAME, 0) == 0); 762 VERIFY(nvlist_add_string(root, ZPOOL_CONFIG_TYPE, VDEV_TYPE_ROOT) == 0); 763 VERIFY(nvlist_add_nvlist_array(root, aux ? aux : ZPOOL_CONFIG_CHILDREN, 764 child, t) == 0); 765 766 for (c = 0; c < t; c++) 767 nvlist_free(child[c]); 768 769 umem_free(child, t * sizeof (nvlist_t *)); 770 771 return (root); 772 } 773 774 static int 775 ztest_random_blocksize(void) 776 { 777 return (1 << (SPA_MINBLOCKSHIFT + 778 ztest_random(SPA_MAXBLOCKSHIFT - SPA_MINBLOCKSHIFT + 1))); 779 } 780 781 static int 782 ztest_random_ibshift(void) 783 { 784 return (DN_MIN_INDBLKSHIFT + 785 ztest_random(DN_MAX_INDBLKSHIFT - DN_MIN_INDBLKSHIFT + 1)); 786 } 787 788 static uint64_t 789 ztest_random_vdev_top(spa_t *spa, boolean_t log_ok) 790 { 791 uint64_t top; 792 vdev_t *rvd = spa->spa_root_vdev; 793 vdev_t *tvd; 794 795 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); 796 797 do { 798 top = ztest_random(rvd->vdev_children); 799 tvd = rvd->vdev_child[top]; 800 } while (tvd->vdev_ishole || (tvd->vdev_islog && !log_ok) || 801 tvd->vdev_mg == NULL || tvd->vdev_mg->mg_class == NULL); 802 803 return (top); 804 } 805 806 static uint64_t 807 ztest_random_dsl_prop(zfs_prop_t prop) 808 { 809 uint64_t value; 810 811 do { 812 value = zfs_prop_random_value(prop, ztest_random(-1ULL)); 813 } while (prop == ZFS_PROP_CHECKSUM && value == ZIO_CHECKSUM_OFF); 814 815 return (value); 816 } 817 818 static int 819 ztest_dsl_prop_set_uint64(char *osname, zfs_prop_t prop, uint64_t value, 820 boolean_t inherit) 821 { 822 const char *propname = zfs_prop_to_name(prop); 823 const char *valname; 824 char setpoint[MAXPATHLEN]; 825 uint64_t curval; 826 int error; 827 828 error = dsl_prop_set(osname, propname, 829 (inherit ? ZPROP_SRC_NONE : ZPROP_SRC_LOCAL), 830 sizeof (value), 1, &value); 831 832 if (error == ENOSPC) { 833 ztest_record_enospc(FTAG); 834 return (error); 835 } 836 ASSERT3U(error, ==, 0); 837 838 VERIFY3U(dsl_prop_get(osname, propname, sizeof (curval), 839 1, &curval, setpoint), ==, 0); 840 841 if (zopt_verbose >= 6) { 842 VERIFY(zfs_prop_index_to_string(prop, curval, &valname) == 0); 843 (void) printf("%s %s = %s at '%s'\n", 844 osname, propname, valname, setpoint); 845 } 846 847 return (error); 848 } 849 850 static int 851 ztest_spa_prop_set_uint64(ztest_shared_t *zs, zpool_prop_t prop, uint64_t value) 852 { 853 spa_t *spa = zs->zs_spa; 854 nvlist_t *props = NULL; 855 int error; 856 857 VERIFY(nvlist_alloc(&props, NV_UNIQUE_NAME, 0) == 0); 858 VERIFY(nvlist_add_uint64(props, zpool_prop_to_name(prop), value) == 0); 859 860 error = spa_prop_set(spa, props); 861 862 nvlist_free(props); 863 864 if (error == ENOSPC) { 865 ztest_record_enospc(FTAG); 866 return (error); 867 } 868 ASSERT3U(error, ==, 0); 869 870 return (error); 871 } 872 873 static void 874 ztest_rll_init(rll_t *rll) 875 { 876 rll->rll_writer = NULL; 877 rll->rll_readers = 0; 878 VERIFY(_mutex_init(&rll->rll_lock, USYNC_THREAD, NULL) == 0); 879 VERIFY(cond_init(&rll->rll_cv, USYNC_THREAD, NULL) == 0); 880 } 881 882 static void 883 ztest_rll_destroy(rll_t *rll) 884 { 885 ASSERT(rll->rll_writer == NULL); 886 ASSERT(rll->rll_readers == 0); 887 VERIFY(_mutex_destroy(&rll->rll_lock) == 0); 888 VERIFY(cond_destroy(&rll->rll_cv) == 0); 889 } 890 891 static void 892 ztest_rll_lock(rll_t *rll, rl_type_t type) 893 { 894 VERIFY(mutex_lock(&rll->rll_lock) == 0); 895 896 if (type == RL_READER) { 897 while (rll->rll_writer != NULL) 898 (void) cond_wait(&rll->rll_cv, &rll->rll_lock); 899 rll->rll_readers++; 900 } else { 901 while (rll->rll_writer != NULL || rll->rll_readers) 902 (void) cond_wait(&rll->rll_cv, &rll->rll_lock); 903 rll->rll_writer = curthread; 904 } 905 906 VERIFY(mutex_unlock(&rll->rll_lock) == 0); 907 } 908 909 static void 910 ztest_rll_unlock(rll_t *rll) 911 { 912 VERIFY(mutex_lock(&rll->rll_lock) == 0); 913 914 if (rll->rll_writer) { 915 ASSERT(rll->rll_readers == 0); 916 rll->rll_writer = NULL; 917 } else { 918 ASSERT(rll->rll_readers != 0); 919 ASSERT(rll->rll_writer == NULL); 920 rll->rll_readers--; 921 } 922 923 if (rll->rll_writer == NULL && rll->rll_readers == 0) 924 VERIFY(cond_broadcast(&rll->rll_cv) == 0); 925 926 VERIFY(mutex_unlock(&rll->rll_lock) == 0); 927 } 928 929 static void 930 ztest_object_lock(ztest_ds_t *zd, uint64_t object, rl_type_t type) 931 { 932 rll_t *rll = &zd->zd_object_lock[object & (ZTEST_OBJECT_LOCKS - 1)]; 933 934 ztest_rll_lock(rll, type); 935 } 936 937 static void 938 ztest_object_unlock(ztest_ds_t *zd, uint64_t object) 939 { 940 rll_t *rll = &zd->zd_object_lock[object & (ZTEST_OBJECT_LOCKS - 1)]; 941 942 ztest_rll_unlock(rll); 943 } 944 945 static rl_t * 946 ztest_range_lock(ztest_ds_t *zd, uint64_t object, uint64_t offset, 947 uint64_t size, rl_type_t type) 948 { 949 uint64_t hash = object ^ (offset % (ZTEST_RANGE_LOCKS + 1)); 950 rll_t *rll = &zd->zd_range_lock[hash & (ZTEST_RANGE_LOCKS - 1)]; 951 rl_t *rl; 952 953 rl = umem_alloc(sizeof (*rl), UMEM_NOFAIL); 954 rl->rl_object = object; 955 rl->rl_offset = offset; 956 rl->rl_size = size; 957 rl->rl_lock = rll; 958 959 ztest_rll_lock(rll, type); 960 961 return (rl); 962 } 963 964 static void 965 ztest_range_unlock(rl_t *rl) 966 { 967 rll_t *rll = rl->rl_lock; 968 969 ztest_rll_unlock(rll); 970 971 umem_free(rl, sizeof (*rl)); 972 } 973 974 static void 975 ztest_zd_init(ztest_ds_t *zd, objset_t *os) 976 { 977 zd->zd_os = os; 978 zd->zd_zilog = dmu_objset_zil(os); 979 zd->zd_seq = 0; 980 dmu_objset_name(os, zd->zd_name); 981 982 VERIFY(_mutex_init(&zd->zd_dirobj_lock, USYNC_THREAD, NULL) == 0); 983 984 for (int l = 0; l < ZTEST_OBJECT_LOCKS; l++) 985 ztest_rll_init(&zd->zd_object_lock[l]); 986 987 for (int l = 0; l < ZTEST_RANGE_LOCKS; l++) 988 ztest_rll_init(&zd->zd_range_lock[l]); 989 } 990 991 static void 992 ztest_zd_fini(ztest_ds_t *zd) 993 { 994 VERIFY(_mutex_destroy(&zd->zd_dirobj_lock) == 0); 995 996 for (int l = 0; l < ZTEST_OBJECT_LOCKS; l++) 997 ztest_rll_destroy(&zd->zd_object_lock[l]); 998 999 for (int l = 0; l < ZTEST_RANGE_LOCKS; l++) 1000 ztest_rll_destroy(&zd->zd_range_lock[l]); 1001 } 1002 1003 #define TXG_MIGHTWAIT (ztest_random(10) == 0 ? TXG_NOWAIT : TXG_WAIT) 1004 1005 static uint64_t 1006 ztest_tx_assign(dmu_tx_t *tx, uint64_t txg_how, const char *tag) 1007 { 1008 uint64_t txg; 1009 int error; 1010 1011 /* 1012 * Attempt to assign tx to some transaction group. 1013 */ 1014 error = dmu_tx_assign(tx, txg_how); 1015 if (error) { 1016 if (error == ERESTART) { 1017 ASSERT(txg_how == TXG_NOWAIT); 1018 dmu_tx_wait(tx); 1019 } else { 1020 ASSERT3U(error, ==, ENOSPC); 1021 ztest_record_enospc(tag); 1022 } 1023 dmu_tx_abort(tx); 1024 return (0); 1025 } 1026 txg = dmu_tx_get_txg(tx); 1027 ASSERT(txg != 0); 1028 return (txg); 1029 } 1030 1031 static void 1032 ztest_pattern_set(void *buf, uint64_t size, uint64_t value) 1033 { 1034 uint64_t *ip = buf; 1035 uint64_t *ip_end = (uint64_t *)((uintptr_t)buf + (uintptr_t)size); 1036 1037 while (ip < ip_end) 1038 *ip++ = value; 1039 } 1040 1041 static boolean_t 1042 ztest_pattern_match(void *buf, uint64_t size, uint64_t value) 1043 { 1044 uint64_t *ip = buf; 1045 uint64_t *ip_end = (uint64_t *)((uintptr_t)buf + (uintptr_t)size); 1046 uint64_t diff = 0; 1047 1048 while (ip < ip_end) 1049 diff |= (value - *ip++); 1050 1051 return (diff == 0); 1052 } 1053 1054 static void 1055 ztest_bt_generate(ztest_block_tag_t *bt, objset_t *os, uint64_t object, 1056 uint64_t offset, uint64_t gen, uint64_t txg, uint64_t crtxg) 1057 { 1058 bt->bt_magic = BT_MAGIC; 1059 bt->bt_objset = dmu_objset_id(os); 1060 bt->bt_object = object; 1061 bt->bt_offset = offset; 1062 bt->bt_gen = gen; 1063 bt->bt_txg = txg; 1064 bt->bt_crtxg = crtxg; 1065 } 1066 1067 static void 1068 ztest_bt_verify(ztest_block_tag_t *bt, objset_t *os, uint64_t object, 1069 uint64_t offset, uint64_t gen, uint64_t txg, uint64_t crtxg) 1070 { 1071 ASSERT(bt->bt_magic == BT_MAGIC); 1072 ASSERT(bt->bt_objset == dmu_objset_id(os)); 1073 ASSERT(bt->bt_object == object); 1074 ASSERT(bt->bt_offset == offset); 1075 ASSERT(bt->bt_gen <= gen); 1076 ASSERT(bt->bt_txg <= txg); 1077 ASSERT(bt->bt_crtxg == crtxg); 1078 } 1079 1080 static ztest_block_tag_t * 1081 ztest_bt_bonus(dmu_buf_t *db) 1082 { 1083 dmu_object_info_t doi; 1084 ztest_block_tag_t *bt; 1085 1086 dmu_object_info_from_db(db, &doi); 1087 ASSERT3U(doi.doi_bonus_size, <=, db->db_size); 1088 ASSERT3U(doi.doi_bonus_size, >=, sizeof (*bt)); 1089 bt = (void *)((char *)db->db_data + doi.doi_bonus_size - sizeof (*bt)); 1090 1091 return (bt); 1092 } 1093 1094 /* 1095 * ZIL logging ops 1096 */ 1097 1098 #define lrz_type lr_mode 1099 #define lrz_blocksize lr_uid 1100 #define lrz_ibshift lr_gid 1101 #define lrz_bonustype lr_rdev 1102 #define lrz_bonuslen lr_crtime[1] 1103 1104 static uint64_t 1105 ztest_log_create(ztest_ds_t *zd, dmu_tx_t *tx, lr_create_t *lr) 1106 { 1107 char *name = (void *)(lr + 1); /* name follows lr */ 1108 size_t namesize = strlen(name) + 1; 1109 itx_t *itx; 1110 1111 if (zil_replaying(zd->zd_zilog, tx)) 1112 return (0); 1113 1114 itx = zil_itx_create(TX_CREATE, sizeof (*lr) + namesize); 1115 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1, 1116 sizeof (*lr) + namesize - sizeof (lr_t)); 1117 1118 return (zil_itx_assign(zd->zd_zilog, itx, tx)); 1119 } 1120 1121 static uint64_t 1122 ztest_log_remove(ztest_ds_t *zd, dmu_tx_t *tx, lr_remove_t *lr) 1123 { 1124 char *name = (void *)(lr + 1); /* name follows lr */ 1125 size_t namesize = strlen(name) + 1; 1126 itx_t *itx; 1127 1128 if (zil_replaying(zd->zd_zilog, tx)) 1129 return (0); 1130 1131 itx = zil_itx_create(TX_REMOVE, sizeof (*lr) + namesize); 1132 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1, 1133 sizeof (*lr) + namesize - sizeof (lr_t)); 1134 1135 return (zil_itx_assign(zd->zd_zilog, itx, tx)); 1136 } 1137 1138 static uint64_t 1139 ztest_log_write(ztest_ds_t *zd, dmu_tx_t *tx, lr_write_t *lr) 1140 { 1141 itx_t *itx; 1142 itx_wr_state_t write_state = ztest_random(WR_NUM_STATES); 1143 1144 if (zil_replaying(zd->zd_zilog, tx)) 1145 return (0); 1146 1147 if (lr->lr_length > ZIL_MAX_LOG_DATA) 1148 write_state = WR_INDIRECT; 1149 1150 itx = zil_itx_create(TX_WRITE, 1151 sizeof (*lr) + (write_state == WR_COPIED ? lr->lr_length : 0)); 1152 1153 if (write_state == WR_COPIED && 1154 dmu_read(zd->zd_os, lr->lr_foid, lr->lr_offset, lr->lr_length, 1155 ((lr_write_t *)&itx->itx_lr) + 1, DMU_READ_NO_PREFETCH) != 0) { 1156 zil_itx_destroy(itx); 1157 itx = zil_itx_create(TX_WRITE, sizeof (*lr)); 1158 write_state = WR_NEED_COPY; 1159 } 1160 itx->itx_private = zd; 1161 itx->itx_wr_state = write_state; 1162 itx->itx_sync = (ztest_random(8) == 0); 1163 itx->itx_sod += (write_state == WR_NEED_COPY ? lr->lr_length : 0); 1164 1165 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1, 1166 sizeof (*lr) - sizeof (lr_t)); 1167 1168 return (zil_itx_assign(zd->zd_zilog, itx, tx)); 1169 } 1170 1171 static uint64_t 1172 ztest_log_truncate(ztest_ds_t *zd, dmu_tx_t *tx, lr_truncate_t *lr) 1173 { 1174 itx_t *itx; 1175 1176 if (zil_replaying(zd->zd_zilog, tx)) 1177 return (0); 1178 1179 itx = zil_itx_create(TX_TRUNCATE, sizeof (*lr)); 1180 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1, 1181 sizeof (*lr) - sizeof (lr_t)); 1182 1183 return (zil_itx_assign(zd->zd_zilog, itx, tx)); 1184 } 1185 1186 static uint64_t 1187 ztest_log_setattr(ztest_ds_t *zd, dmu_tx_t *tx, lr_setattr_t *lr) 1188 { 1189 itx_t *itx; 1190 1191 if (zil_replaying(zd->zd_zilog, tx)) 1192 return (0); 1193 1194 itx = zil_itx_create(TX_SETATTR, sizeof (*lr)); 1195 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1, 1196 sizeof (*lr) - sizeof (lr_t)); 1197 1198 return (zil_itx_assign(zd->zd_zilog, itx, tx)); 1199 } 1200 1201 /* 1202 * ZIL replay ops 1203 */ 1204 static int 1205 ztest_replay_create(ztest_ds_t *zd, lr_create_t *lr, boolean_t byteswap) 1206 { 1207 char *name = (void *)(lr + 1); /* name follows lr */ 1208 objset_t *os = zd->zd_os; 1209 ztest_block_tag_t *bbt; 1210 dmu_buf_t *db; 1211 dmu_tx_t *tx; 1212 uint64_t txg; 1213 int error = 0; 1214 1215 if (byteswap) 1216 byteswap_uint64_array(lr, sizeof (*lr)); 1217 1218 ASSERT(lr->lr_doid == ZTEST_DIROBJ); 1219 ASSERT(name[0] != '\0'); 1220 1221 tx = dmu_tx_create(os); 1222 1223 dmu_tx_hold_zap(tx, lr->lr_doid, B_TRUE, name); 1224 1225 if (lr->lrz_type == DMU_OT_ZAP_OTHER) { 1226 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, B_TRUE, NULL); 1227 } else { 1228 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); 1229 } 1230 1231 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); 1232 if (txg == 0) 1233 return (ENOSPC); 1234 1235 ASSERT(dmu_objset_zil(os)->zl_replay == !!lr->lr_foid); 1236 1237 if (lr->lrz_type == DMU_OT_ZAP_OTHER) { 1238 if (lr->lr_foid == 0) { 1239 lr->lr_foid = zap_create(os, 1240 lr->lrz_type, lr->lrz_bonustype, 1241 lr->lrz_bonuslen, tx); 1242 } else { 1243 error = zap_create_claim(os, lr->lr_foid, 1244 lr->lrz_type, lr->lrz_bonustype, 1245 lr->lrz_bonuslen, tx); 1246 } 1247 } else { 1248 if (lr->lr_foid == 0) { 1249 lr->lr_foid = dmu_object_alloc(os, 1250 lr->lrz_type, 0, lr->lrz_bonustype, 1251 lr->lrz_bonuslen, tx); 1252 } else { 1253 error = dmu_object_claim(os, lr->lr_foid, 1254 lr->lrz_type, 0, lr->lrz_bonustype, 1255 lr->lrz_bonuslen, tx); 1256 } 1257 } 1258 1259 if (error) { 1260 ASSERT3U(error, ==, EEXIST); 1261 ASSERT(zd->zd_zilog->zl_replay); 1262 dmu_tx_commit(tx); 1263 return (error); 1264 } 1265 1266 ASSERT(lr->lr_foid != 0); 1267 1268 if (lr->lrz_type != DMU_OT_ZAP_OTHER) 1269 VERIFY3U(0, ==, dmu_object_set_blocksize(os, lr->lr_foid, 1270 lr->lrz_blocksize, lr->lrz_ibshift, tx)); 1271 1272 VERIFY3U(0, ==, dmu_bonus_hold(os, lr->lr_foid, FTAG, &db)); 1273 bbt = ztest_bt_bonus(db); 1274 dmu_buf_will_dirty(db, tx); 1275 ztest_bt_generate(bbt, os, lr->lr_foid, -1ULL, lr->lr_gen, txg, txg); 1276 dmu_buf_rele(db, FTAG); 1277 1278 VERIFY3U(0, ==, zap_add(os, lr->lr_doid, name, sizeof (uint64_t), 1, 1279 &lr->lr_foid, tx)); 1280 1281 (void) ztest_log_create(zd, tx, lr); 1282 1283 dmu_tx_commit(tx); 1284 1285 return (0); 1286 } 1287 1288 static int 1289 ztest_replay_remove(ztest_ds_t *zd, lr_remove_t *lr, boolean_t byteswap) 1290 { 1291 char *name = (void *)(lr + 1); /* name follows lr */ 1292 objset_t *os = zd->zd_os; 1293 dmu_object_info_t doi; 1294 dmu_tx_t *tx; 1295 uint64_t object, txg; 1296 1297 if (byteswap) 1298 byteswap_uint64_array(lr, sizeof (*lr)); 1299 1300 ASSERT(lr->lr_doid == ZTEST_DIROBJ); 1301 ASSERT(name[0] != '\0'); 1302 1303 VERIFY3U(0, ==, 1304 zap_lookup(os, lr->lr_doid, name, sizeof (object), 1, &object)); 1305 ASSERT(object != 0); 1306 1307 ztest_object_lock(zd, object, RL_WRITER); 1308 1309 VERIFY3U(0, ==, dmu_object_info(os, object, &doi)); 1310 1311 tx = dmu_tx_create(os); 1312 1313 dmu_tx_hold_zap(tx, lr->lr_doid, B_FALSE, name); 1314 dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END); 1315 1316 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); 1317 if (txg == 0) { 1318 ztest_object_unlock(zd, object); 1319 return (ENOSPC); 1320 } 1321 1322 if (doi.doi_type == DMU_OT_ZAP_OTHER) { 1323 VERIFY3U(0, ==, zap_destroy(os, object, tx)); 1324 } else { 1325 VERIFY3U(0, ==, dmu_object_free(os, object, tx)); 1326 } 1327 1328 VERIFY3U(0, ==, zap_remove(os, lr->lr_doid, name, tx)); 1329 1330 (void) ztest_log_remove(zd, tx, lr); 1331 1332 dmu_tx_commit(tx); 1333 1334 ztest_object_unlock(zd, object); 1335 1336 return (0); 1337 } 1338 1339 static int 1340 ztest_replay_write(ztest_ds_t *zd, lr_write_t *lr, boolean_t byteswap) 1341 { 1342 objset_t *os = zd->zd_os; 1343 void *data = lr + 1; /* data follows lr */ 1344 uint64_t offset, length; 1345 ztest_block_tag_t *bt = data; 1346 ztest_block_tag_t *bbt; 1347 uint64_t gen, txg, lrtxg, crtxg; 1348 dmu_object_info_t doi; 1349 dmu_tx_t *tx; 1350 dmu_buf_t *db; 1351 arc_buf_t *abuf = NULL; 1352 rl_t *rl; 1353 1354 if (byteswap) 1355 byteswap_uint64_array(lr, sizeof (*lr)); 1356 1357 offset = lr->lr_offset; 1358 length = lr->lr_length; 1359 1360 /* If it's a dmu_sync() block, write the whole block */ 1361 if (lr->lr_common.lrc_reclen == sizeof (lr_write_t)) { 1362 uint64_t blocksize = BP_GET_LSIZE(&lr->lr_blkptr); 1363 if (length < blocksize) { 1364 offset -= offset % blocksize; 1365 length = blocksize; 1366 } 1367 } 1368 1369 if (bt->bt_magic == BSWAP_64(BT_MAGIC)) 1370 byteswap_uint64_array(bt, sizeof (*bt)); 1371 1372 if (bt->bt_magic != BT_MAGIC) 1373 bt = NULL; 1374 1375 ztest_object_lock(zd, lr->lr_foid, RL_READER); 1376 rl = ztest_range_lock(zd, lr->lr_foid, offset, length, RL_WRITER); 1377 1378 VERIFY3U(0, ==, dmu_bonus_hold(os, lr->lr_foid, FTAG, &db)); 1379 1380 dmu_object_info_from_db(db, &doi); 1381 1382 bbt = ztest_bt_bonus(db); 1383 ASSERT3U(bbt->bt_magic, ==, BT_MAGIC); 1384 gen = bbt->bt_gen; 1385 crtxg = bbt->bt_crtxg; 1386 lrtxg = lr->lr_common.lrc_txg; 1387 1388 tx = dmu_tx_create(os); 1389 1390 dmu_tx_hold_write(tx, lr->lr_foid, offset, length); 1391 1392 if (ztest_random(8) == 0 && length == doi.doi_data_block_size && 1393 P2PHASE(offset, length) == 0) 1394 abuf = dmu_request_arcbuf(db, length); 1395 1396 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); 1397 if (txg == 0) { 1398 if (abuf != NULL) 1399 dmu_return_arcbuf(abuf); 1400 dmu_buf_rele(db, FTAG); 1401 ztest_range_unlock(rl); 1402 ztest_object_unlock(zd, lr->lr_foid); 1403 return (ENOSPC); 1404 } 1405 1406 if (bt != NULL) { 1407 /* 1408 * Usually, verify the old data before writing new data -- 1409 * but not always, because we also want to verify correct 1410 * behavior when the data was not recently read into cache. 1411 */ 1412 ASSERT(offset % doi.doi_data_block_size == 0); 1413 if (ztest_random(4) != 0) { 1414 int prefetch = ztest_random(2) ? 1415 DMU_READ_PREFETCH : DMU_READ_NO_PREFETCH; 1416 ztest_block_tag_t rbt; 1417 1418 VERIFY(dmu_read(os, lr->lr_foid, offset, 1419 sizeof (rbt), &rbt, prefetch) == 0); 1420 if (rbt.bt_magic == BT_MAGIC) { 1421 ztest_bt_verify(&rbt, os, lr->lr_foid, 1422 offset, gen, txg, crtxg); 1423 } 1424 } 1425 1426 /* 1427 * Writes can appear to be newer than the bonus buffer because 1428 * the ztest_get_data() callback does a dmu_read() of the 1429 * open-context data, which may be different than the data 1430 * as it was when the write was generated. 1431 */ 1432 if (zd->zd_zilog->zl_replay) { 1433 ztest_bt_verify(bt, os, lr->lr_foid, offset, 1434 MAX(gen, bt->bt_gen), MAX(txg, lrtxg), 1435 bt->bt_crtxg); 1436 } 1437 1438 /* 1439 * Set the bt's gen/txg to the bonus buffer's gen/txg 1440 * so that all of the usual ASSERTs will work. 1441 */ 1442 ztest_bt_generate(bt, os, lr->lr_foid, offset, gen, txg, crtxg); 1443 } 1444 1445 if (abuf == NULL) { 1446 dmu_write(os, lr->lr_foid, offset, length, data, tx); 1447 } else { 1448 bcopy(data, abuf->b_data, length); 1449 dmu_assign_arcbuf(db, offset, abuf, tx); 1450 } 1451 1452 (void) ztest_log_write(zd, tx, lr); 1453 1454 dmu_buf_rele(db, FTAG); 1455 1456 dmu_tx_commit(tx); 1457 1458 ztest_range_unlock(rl); 1459 ztest_object_unlock(zd, lr->lr_foid); 1460 1461 return (0); 1462 } 1463 1464 static int 1465 ztest_replay_truncate(ztest_ds_t *zd, lr_truncate_t *lr, boolean_t byteswap) 1466 { 1467 objset_t *os = zd->zd_os; 1468 dmu_tx_t *tx; 1469 uint64_t txg; 1470 rl_t *rl; 1471 1472 if (byteswap) 1473 byteswap_uint64_array(lr, sizeof (*lr)); 1474 1475 ztest_object_lock(zd, lr->lr_foid, RL_READER); 1476 rl = ztest_range_lock(zd, lr->lr_foid, lr->lr_offset, lr->lr_length, 1477 RL_WRITER); 1478 1479 tx = dmu_tx_create(os); 1480 1481 dmu_tx_hold_free(tx, lr->lr_foid, lr->lr_offset, lr->lr_length); 1482 1483 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); 1484 if (txg == 0) { 1485 ztest_range_unlock(rl); 1486 ztest_object_unlock(zd, lr->lr_foid); 1487 return (ENOSPC); 1488 } 1489 1490 VERIFY(dmu_free_range(os, lr->lr_foid, lr->lr_offset, 1491 lr->lr_length, tx) == 0); 1492 1493 (void) ztest_log_truncate(zd, tx, lr); 1494 1495 dmu_tx_commit(tx); 1496 1497 ztest_range_unlock(rl); 1498 ztest_object_unlock(zd, lr->lr_foid); 1499 1500 return (0); 1501 } 1502 1503 static int 1504 ztest_replay_setattr(ztest_ds_t *zd, lr_setattr_t *lr, boolean_t byteswap) 1505 { 1506 objset_t *os = zd->zd_os; 1507 dmu_tx_t *tx; 1508 dmu_buf_t *db; 1509 ztest_block_tag_t *bbt; 1510 uint64_t txg, lrtxg, crtxg; 1511 1512 if (byteswap) 1513 byteswap_uint64_array(lr, sizeof (*lr)); 1514 1515 ztest_object_lock(zd, lr->lr_foid, RL_WRITER); 1516 1517 VERIFY3U(0, ==, dmu_bonus_hold(os, lr->lr_foid, FTAG, &db)); 1518 1519 tx = dmu_tx_create(os); 1520 dmu_tx_hold_bonus(tx, lr->lr_foid); 1521 1522 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); 1523 if (txg == 0) { 1524 dmu_buf_rele(db, FTAG); 1525 ztest_object_unlock(zd, lr->lr_foid); 1526 return (ENOSPC); 1527 } 1528 1529 bbt = ztest_bt_bonus(db); 1530 ASSERT3U(bbt->bt_magic, ==, BT_MAGIC); 1531 crtxg = bbt->bt_crtxg; 1532 lrtxg = lr->lr_common.lrc_txg; 1533 1534 if (zd->zd_zilog->zl_replay) { 1535 ASSERT(lr->lr_size != 0); 1536 ASSERT(lr->lr_mode != 0); 1537 ASSERT(lrtxg != 0); 1538 } else { 1539 /* 1540 * Randomly change the size and increment the generation. 1541 */ 1542 lr->lr_size = (ztest_random(db->db_size / sizeof (*bbt)) + 1) * 1543 sizeof (*bbt); 1544 lr->lr_mode = bbt->bt_gen + 1; 1545 ASSERT(lrtxg == 0); 1546 } 1547 1548 /* 1549 * Verify that the current bonus buffer is not newer than our txg. 1550 */ 1551 ztest_bt_verify(bbt, os, lr->lr_foid, -1ULL, lr->lr_mode, 1552 MAX(txg, lrtxg), crtxg); 1553 1554 dmu_buf_will_dirty(db, tx); 1555 1556 ASSERT3U(lr->lr_size, >=, sizeof (*bbt)); 1557 ASSERT3U(lr->lr_size, <=, db->db_size); 1558 VERIFY3U(dmu_set_bonus(db, lr->lr_size, tx), ==, 0); 1559 bbt = ztest_bt_bonus(db); 1560 1561 ztest_bt_generate(bbt, os, lr->lr_foid, -1ULL, lr->lr_mode, txg, crtxg); 1562 1563 dmu_buf_rele(db, FTAG); 1564 1565 (void) ztest_log_setattr(zd, tx, lr); 1566 1567 dmu_tx_commit(tx); 1568 1569 ztest_object_unlock(zd, lr->lr_foid); 1570 1571 return (0); 1572 } 1573 1574 zil_replay_func_t *ztest_replay_vector[TX_MAX_TYPE] = { 1575 NULL, /* 0 no such transaction type */ 1576 ztest_replay_create, /* TX_CREATE */ 1577 NULL, /* TX_MKDIR */ 1578 NULL, /* TX_MKXATTR */ 1579 NULL, /* TX_SYMLINK */ 1580 ztest_replay_remove, /* TX_REMOVE */ 1581 NULL, /* TX_RMDIR */ 1582 NULL, /* TX_LINK */ 1583 NULL, /* TX_RENAME */ 1584 ztest_replay_write, /* TX_WRITE */ 1585 ztest_replay_truncate, /* TX_TRUNCATE */ 1586 ztest_replay_setattr, /* TX_SETATTR */ 1587 NULL, /* TX_ACL */ 1588 NULL, /* TX_CREATE_ACL */ 1589 NULL, /* TX_CREATE_ATTR */ 1590 NULL, /* TX_CREATE_ACL_ATTR */ 1591 NULL, /* TX_MKDIR_ACL */ 1592 NULL, /* TX_MKDIR_ATTR */ 1593 NULL, /* TX_MKDIR_ACL_ATTR */ 1594 NULL, /* TX_WRITE2 */ 1595 }; 1596 1597 /* 1598 * ZIL get_data callbacks 1599 */ 1600 1601 static void 1602 ztest_get_done(zgd_t *zgd, int error) 1603 { 1604 ztest_ds_t *zd = zgd->zgd_private; 1605 uint64_t object = zgd->zgd_rl->rl_object; 1606 1607 if (zgd->zgd_db) 1608 dmu_buf_rele(zgd->zgd_db, zgd); 1609 1610 ztest_range_unlock(zgd->zgd_rl); 1611 ztest_object_unlock(zd, object); 1612 1613 if (error == 0 && zgd->zgd_bp) 1614 zil_add_block(zgd->zgd_zilog, zgd->zgd_bp); 1615 1616 umem_free(zgd, sizeof (*zgd)); 1617 } 1618 1619 static int 1620 ztest_get_data(void *arg, lr_write_t *lr, char *buf, zio_t *zio) 1621 { 1622 ztest_ds_t *zd = arg; 1623 objset_t *os = zd->zd_os; 1624 uint64_t object = lr->lr_foid; 1625 uint64_t offset = lr->lr_offset; 1626 uint64_t size = lr->lr_length; 1627 blkptr_t *bp = &lr->lr_blkptr; 1628 uint64_t txg = lr->lr_common.lrc_txg; 1629 uint64_t crtxg; 1630 dmu_object_info_t doi; 1631 dmu_buf_t *db; 1632 zgd_t *zgd; 1633 int error; 1634 1635 ztest_object_lock(zd, object, RL_READER); 1636 error = dmu_bonus_hold(os, object, FTAG, &db); 1637 if (error) { 1638 ztest_object_unlock(zd, object); 1639 return (error); 1640 } 1641 1642 crtxg = ztest_bt_bonus(db)->bt_crtxg; 1643 1644 if (crtxg == 0 || crtxg > txg) { 1645 dmu_buf_rele(db, FTAG); 1646 ztest_object_unlock(zd, object); 1647 return (ENOENT); 1648 } 1649 1650 dmu_object_info_from_db(db, &doi); 1651 dmu_buf_rele(db, FTAG); 1652 db = NULL; 1653 1654 zgd = umem_zalloc(sizeof (*zgd), UMEM_NOFAIL); 1655 zgd->zgd_zilog = zd->zd_zilog; 1656 zgd->zgd_private = zd; 1657 1658 if (buf != NULL) { /* immediate write */ 1659 zgd->zgd_rl = ztest_range_lock(zd, object, offset, size, 1660 RL_READER); 1661 1662 error = dmu_read(os, object, offset, size, buf, 1663 DMU_READ_NO_PREFETCH); 1664 ASSERT(error == 0); 1665 } else { 1666 size = doi.doi_data_block_size; 1667 if (ISP2(size)) { 1668 offset = P2ALIGN(offset, size); 1669 } else { 1670 ASSERT(offset < size); 1671 offset = 0; 1672 } 1673 1674 zgd->zgd_rl = ztest_range_lock(zd, object, offset, size, 1675 RL_READER); 1676 1677 error = dmu_buf_hold(os, object, offset, zgd, &db, 1678 DMU_READ_NO_PREFETCH); 1679 1680 if (error == 0) { 1681 zgd->zgd_db = db; 1682 zgd->zgd_bp = bp; 1683 1684 ASSERT(db->db_offset == offset); 1685 ASSERT(db->db_size == size); 1686 1687 error = dmu_sync(zio, lr->lr_common.lrc_txg, 1688 ztest_get_done, zgd); 1689 1690 if (error == 0) 1691 return (0); 1692 } 1693 } 1694 1695 ztest_get_done(zgd, error); 1696 1697 return (error); 1698 } 1699 1700 static void * 1701 ztest_lr_alloc(size_t lrsize, char *name) 1702 { 1703 char *lr; 1704 size_t namesize = name ? strlen(name) + 1 : 0; 1705 1706 lr = umem_zalloc(lrsize + namesize, UMEM_NOFAIL); 1707 1708 if (name) 1709 bcopy(name, lr + lrsize, namesize); 1710 1711 return (lr); 1712 } 1713 1714 void 1715 ztest_lr_free(void *lr, size_t lrsize, char *name) 1716 { 1717 size_t namesize = name ? strlen(name) + 1 : 0; 1718 1719 umem_free(lr, lrsize + namesize); 1720 } 1721 1722 /* 1723 * Lookup a bunch of objects. Returns the number of objects not found. 1724 */ 1725 static int 1726 ztest_lookup(ztest_ds_t *zd, ztest_od_t *od, int count) 1727 { 1728 int missing = 0; 1729 int error; 1730 1731 ASSERT(_mutex_held(&zd->zd_dirobj_lock)); 1732 1733 for (int i = 0; i < count; i++, od++) { 1734 od->od_object = 0; 1735 error = zap_lookup(zd->zd_os, od->od_dir, od->od_name, 1736 sizeof (uint64_t), 1, &od->od_object); 1737 if (error) { 1738 ASSERT(error == ENOENT); 1739 ASSERT(od->od_object == 0); 1740 missing++; 1741 } else { 1742 dmu_buf_t *db; 1743 ztest_block_tag_t *bbt; 1744 dmu_object_info_t doi; 1745 1746 ASSERT(od->od_object != 0); 1747 ASSERT(missing == 0); /* there should be no gaps */ 1748 1749 ztest_object_lock(zd, od->od_object, RL_READER); 1750 VERIFY3U(0, ==, dmu_bonus_hold(zd->zd_os, 1751 od->od_object, FTAG, &db)); 1752 dmu_object_info_from_db(db, &doi); 1753 bbt = ztest_bt_bonus(db); 1754 ASSERT3U(bbt->bt_magic, ==, BT_MAGIC); 1755 od->od_type = doi.doi_type; 1756 od->od_blocksize = doi.doi_data_block_size; 1757 od->od_gen = bbt->bt_gen; 1758 dmu_buf_rele(db, FTAG); 1759 ztest_object_unlock(zd, od->od_object); 1760 } 1761 } 1762 1763 return (missing); 1764 } 1765 1766 static int 1767 ztest_create(ztest_ds_t *zd, ztest_od_t *od, int count) 1768 { 1769 int missing = 0; 1770 1771 ASSERT(_mutex_held(&zd->zd_dirobj_lock)); 1772 1773 for (int i = 0; i < count; i++, od++) { 1774 if (missing) { 1775 od->od_object = 0; 1776 missing++; 1777 continue; 1778 } 1779 1780 lr_create_t *lr = ztest_lr_alloc(sizeof (*lr), od->od_name); 1781 1782 lr->lr_doid = od->od_dir; 1783 lr->lr_foid = 0; /* 0 to allocate, > 0 to claim */ 1784 lr->lrz_type = od->od_crtype; 1785 lr->lrz_blocksize = od->od_crblocksize; 1786 lr->lrz_ibshift = ztest_random_ibshift(); 1787 lr->lrz_bonustype = DMU_OT_UINT64_OTHER; 1788 lr->lrz_bonuslen = dmu_bonus_max(); 1789 lr->lr_gen = od->od_crgen; 1790 lr->lr_crtime[0] = time(NULL); 1791 1792 if (ztest_replay_create(zd, lr, B_FALSE) != 0) { 1793 ASSERT(missing == 0); 1794 od->od_object = 0; 1795 missing++; 1796 } else { 1797 od->od_object = lr->lr_foid; 1798 od->od_type = od->od_crtype; 1799 od->od_blocksize = od->od_crblocksize; 1800 od->od_gen = od->od_crgen; 1801 ASSERT(od->od_object != 0); 1802 } 1803 1804 ztest_lr_free(lr, sizeof (*lr), od->od_name); 1805 } 1806 1807 return (missing); 1808 } 1809 1810 static int 1811 ztest_remove(ztest_ds_t *zd, ztest_od_t *od, int count) 1812 { 1813 int missing = 0; 1814 int error; 1815 1816 ASSERT(_mutex_held(&zd->zd_dirobj_lock)); 1817 1818 od += count - 1; 1819 1820 for (int i = count - 1; i >= 0; i--, od--) { 1821 if (missing) { 1822 missing++; 1823 continue; 1824 } 1825 1826 if (od->od_object == 0) 1827 continue; 1828 1829 lr_remove_t *lr = ztest_lr_alloc(sizeof (*lr), od->od_name); 1830 1831 lr->lr_doid = od->od_dir; 1832 1833 if ((error = ztest_replay_remove(zd, lr, B_FALSE)) != 0) { 1834 ASSERT3U(error, ==, ENOSPC); 1835 missing++; 1836 } else { 1837 od->od_object = 0; 1838 } 1839 ztest_lr_free(lr, sizeof (*lr), od->od_name); 1840 } 1841 1842 return (missing); 1843 } 1844 1845 static int 1846 ztest_write(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size, 1847 void *data) 1848 { 1849 lr_write_t *lr; 1850 int error; 1851 1852 lr = ztest_lr_alloc(sizeof (*lr) + size, NULL); 1853 1854 lr->lr_foid = object; 1855 lr->lr_offset = offset; 1856 lr->lr_length = size; 1857 lr->lr_blkoff = 0; 1858 BP_ZERO(&lr->lr_blkptr); 1859 1860 bcopy(data, lr + 1, size); 1861 1862 error = ztest_replay_write(zd, lr, B_FALSE); 1863 1864 ztest_lr_free(lr, sizeof (*lr) + size, NULL); 1865 1866 return (error); 1867 } 1868 1869 static int 1870 ztest_truncate(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size) 1871 { 1872 lr_truncate_t *lr; 1873 int error; 1874 1875 lr = ztest_lr_alloc(sizeof (*lr), NULL); 1876 1877 lr->lr_foid = object; 1878 lr->lr_offset = offset; 1879 lr->lr_length = size; 1880 1881 error = ztest_replay_truncate(zd, lr, B_FALSE); 1882 1883 ztest_lr_free(lr, sizeof (*lr), NULL); 1884 1885 return (error); 1886 } 1887 1888 static int 1889 ztest_setattr(ztest_ds_t *zd, uint64_t object) 1890 { 1891 lr_setattr_t *lr; 1892 int error; 1893 1894 lr = ztest_lr_alloc(sizeof (*lr), NULL); 1895 1896 lr->lr_foid = object; 1897 lr->lr_size = 0; 1898 lr->lr_mode = 0; 1899 1900 error = ztest_replay_setattr(zd, lr, B_FALSE); 1901 1902 ztest_lr_free(lr, sizeof (*lr), NULL); 1903 1904 return (error); 1905 } 1906 1907 static void 1908 ztest_prealloc(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size) 1909 { 1910 objset_t *os = zd->zd_os; 1911 dmu_tx_t *tx; 1912 uint64_t txg; 1913 rl_t *rl; 1914 1915 txg_wait_synced(dmu_objset_pool(os), 0); 1916 1917 ztest_object_lock(zd, object, RL_READER); 1918 rl = ztest_range_lock(zd, object, offset, size, RL_WRITER); 1919 1920 tx = dmu_tx_create(os); 1921 1922 dmu_tx_hold_write(tx, object, offset, size); 1923 1924 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); 1925 1926 if (txg != 0) { 1927 dmu_prealloc(os, object, offset, size, tx); 1928 dmu_tx_commit(tx); 1929 txg_wait_synced(dmu_objset_pool(os), txg); 1930 } else { 1931 (void) dmu_free_long_range(os, object, offset, size); 1932 } 1933 1934 ztest_range_unlock(rl); 1935 ztest_object_unlock(zd, object); 1936 } 1937 1938 static void 1939 ztest_io(ztest_ds_t *zd, uint64_t object, uint64_t offset) 1940 { 1941 ztest_block_tag_t wbt; 1942 dmu_object_info_t doi; 1943 enum ztest_io_type io_type; 1944 uint64_t blocksize; 1945 void *data; 1946 1947 VERIFY(dmu_object_info(zd->zd_os, object, &doi) == 0); 1948 blocksize = doi.doi_data_block_size; 1949 data = umem_alloc(blocksize, UMEM_NOFAIL); 1950 1951 /* 1952 * Pick an i/o type at random, biased toward writing block tags. 1953 */ 1954 io_type = ztest_random(ZTEST_IO_TYPES); 1955 if (ztest_random(2) == 0) 1956 io_type = ZTEST_IO_WRITE_TAG; 1957 1958 switch (io_type) { 1959 1960 case ZTEST_IO_WRITE_TAG: 1961 ztest_bt_generate(&wbt, zd->zd_os, object, offset, 0, 0, 0); 1962 (void) ztest_write(zd, object, offset, sizeof (wbt), &wbt); 1963 break; 1964 1965 case ZTEST_IO_WRITE_PATTERN: 1966 (void) memset(data, 'a' + (object + offset) % 5, blocksize); 1967 if (ztest_random(2) == 0) { 1968 /* 1969 * Induce fletcher2 collisions to ensure that 1970 * zio_ddt_collision() detects and resolves them 1971 * when using fletcher2-verify for deduplication. 1972 */ 1973 ((uint64_t *)data)[0] ^= 1ULL << 63; 1974 ((uint64_t *)data)[4] ^= 1ULL << 63; 1975 } 1976 (void) ztest_write(zd, object, offset, blocksize, data); 1977 break; 1978 1979 case ZTEST_IO_WRITE_ZEROES: 1980 bzero(data, blocksize); 1981 (void) ztest_write(zd, object, offset, blocksize, data); 1982 break; 1983 1984 case ZTEST_IO_TRUNCATE: 1985 (void) ztest_truncate(zd, object, offset, blocksize); 1986 break; 1987 1988 case ZTEST_IO_SETATTR: 1989 (void) ztest_setattr(zd, object); 1990 break; 1991 } 1992 1993 umem_free(data, blocksize); 1994 } 1995 1996 /* 1997 * Initialize an object description template. 1998 */ 1999 static void 2000 ztest_od_init(ztest_od_t *od, uint64_t id, char *tag, uint64_t index, 2001 dmu_object_type_t type, uint64_t blocksize, uint64_t gen) 2002 { 2003 od->od_dir = ZTEST_DIROBJ; 2004 od->od_object = 0; 2005 2006 od->od_crtype = type; 2007 od->od_crblocksize = blocksize ? blocksize : ztest_random_blocksize(); 2008 od->od_crgen = gen; 2009 2010 od->od_type = DMU_OT_NONE; 2011 od->od_blocksize = 0; 2012 od->od_gen = 0; 2013 2014 (void) snprintf(od->od_name, sizeof (od->od_name), "%s(%lld)[%llu]", 2015 tag, (int64_t)id, index); 2016 } 2017 2018 /* 2019 * Lookup or create the objects for a test using the od template. 2020 * If the objects do not all exist, or if 'remove' is specified, 2021 * remove any existing objects and create new ones. Otherwise, 2022 * use the existing objects. 2023 */ 2024 static int 2025 ztest_object_init(ztest_ds_t *zd, ztest_od_t *od, size_t size, boolean_t remove) 2026 { 2027 int count = size / sizeof (*od); 2028 int rv = 0; 2029 2030 VERIFY(mutex_lock(&zd->zd_dirobj_lock) == 0); 2031 if ((ztest_lookup(zd, od, count) != 0 || remove) && 2032 (ztest_remove(zd, od, count) != 0 || 2033 ztest_create(zd, od, count) != 0)) 2034 rv = -1; 2035 zd->zd_od = od; 2036 VERIFY(mutex_unlock(&zd->zd_dirobj_lock) == 0); 2037 2038 return (rv); 2039 } 2040 2041 /* ARGSUSED */ 2042 void 2043 ztest_zil_commit(ztest_ds_t *zd, uint64_t id) 2044 { 2045 zilog_t *zilog = zd->zd_zilog; 2046 2047 zil_commit(zilog, UINT64_MAX, ztest_random(ZTEST_OBJECTS)); 2048 2049 /* 2050 * Remember the committed values in zd, which is in parent/child 2051 * shared memory. If we die, the next iteration of ztest_run() 2052 * will verify that the log really does contain this record. 2053 */ 2054 mutex_enter(&zilog->zl_lock); 2055 ASSERT(zd->zd_seq <= zilog->zl_commit_lr_seq); 2056 zd->zd_seq = zilog->zl_commit_lr_seq; 2057 mutex_exit(&zilog->zl_lock); 2058 } 2059 2060 /* 2061 * Verify that we can't destroy an active pool, create an existing pool, 2062 * or create a pool with a bad vdev spec. 2063 */ 2064 /* ARGSUSED */ 2065 void 2066 ztest_spa_create_destroy(ztest_ds_t *zd, uint64_t id) 2067 { 2068 ztest_shared_t *zs = ztest_shared; 2069 spa_t *spa; 2070 nvlist_t *nvroot; 2071 2072 /* 2073 * Attempt to create using a bad file. 2074 */ 2075 nvroot = make_vdev_root("/dev/bogus", NULL, 0, 0, 0, 0, 0, 1); 2076 VERIFY3U(ENOENT, ==, 2077 spa_create("ztest_bad_file", nvroot, NULL, NULL, NULL)); 2078 nvlist_free(nvroot); 2079 2080 /* 2081 * Attempt to create using a bad mirror. 2082 */ 2083 nvroot = make_vdev_root("/dev/bogus", NULL, 0, 0, 0, 0, 2, 1); 2084 VERIFY3U(ENOENT, ==, 2085 spa_create("ztest_bad_mirror", nvroot, NULL, NULL, NULL)); 2086 nvlist_free(nvroot); 2087 2088 /* 2089 * Attempt to create an existing pool. It shouldn't matter 2090 * what's in the nvroot; we should fail with EEXIST. 2091 */ 2092 (void) rw_rdlock(&zs->zs_name_lock); 2093 nvroot = make_vdev_root("/dev/bogus", NULL, 0, 0, 0, 0, 0, 1); 2094 VERIFY3U(EEXIST, ==, spa_create(zs->zs_pool, nvroot, NULL, NULL, NULL)); 2095 nvlist_free(nvroot); 2096 VERIFY3U(0, ==, spa_open(zs->zs_pool, &spa, FTAG)); 2097 VERIFY3U(EBUSY, ==, spa_destroy(zs->zs_pool)); 2098 spa_close(spa, FTAG); 2099 2100 (void) rw_unlock(&zs->zs_name_lock); 2101 } 2102 2103 static vdev_t * 2104 vdev_lookup_by_path(vdev_t *vd, const char *path) 2105 { 2106 vdev_t *mvd; 2107 2108 if (vd->vdev_path != NULL && strcmp(path, vd->vdev_path) == 0) 2109 return (vd); 2110 2111 for (int c = 0; c < vd->vdev_children; c++) 2112 if ((mvd = vdev_lookup_by_path(vd->vdev_child[c], path)) != 2113 NULL) 2114 return (mvd); 2115 2116 return (NULL); 2117 } 2118 2119 /* 2120 * Find the first available hole which can be used as a top-level. 2121 */ 2122 int 2123 find_vdev_hole(spa_t *spa) 2124 { 2125 vdev_t *rvd = spa->spa_root_vdev; 2126 int c; 2127 2128 ASSERT(spa_config_held(spa, SCL_VDEV, RW_READER) == SCL_VDEV); 2129 2130 for (c = 0; c < rvd->vdev_children; c++) { 2131 vdev_t *cvd = rvd->vdev_child[c]; 2132 2133 if (cvd->vdev_ishole) 2134 break; 2135 } 2136 return (c); 2137 } 2138 2139 /* 2140 * Verify that vdev_add() works as expected. 2141 */ 2142 /* ARGSUSED */ 2143 void 2144 ztest_vdev_add_remove(ztest_ds_t *zd, uint64_t id) 2145 { 2146 ztest_shared_t *zs = ztest_shared; 2147 spa_t *spa = zs->zs_spa; 2148 uint64_t leaves; 2149 uint64_t guid; 2150 nvlist_t *nvroot; 2151 int error; 2152 2153 VERIFY(mutex_lock(&zs->zs_vdev_lock) == 0); 2154 leaves = MAX(zs->zs_mirrors + zs->zs_splits, 1) * zopt_raidz; 2155 2156 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 2157 2158 ztest_shared->zs_vdev_next_leaf = find_vdev_hole(spa) * leaves; 2159 2160 /* 2161 * If we have slogs then remove them 1/4 of the time. 2162 */ 2163 if (spa_has_slogs(spa) && ztest_random(4) == 0) { 2164 /* 2165 * Grab the guid from the head of the log class rotor. 2166 */ 2167 guid = spa_log_class(spa)->mc_rotor->mg_vd->vdev_guid; 2168 2169 spa_config_exit(spa, SCL_VDEV, FTAG); 2170 2171 /* 2172 * We have to grab the zs_name_lock as writer to 2173 * prevent a race between removing a slog (dmu_objset_find) 2174 * and destroying a dataset. Removing the slog will 2175 * grab a reference on the dataset which may cause 2176 * dmu_objset_destroy() to fail with EBUSY thus 2177 * leaving the dataset in an inconsistent state. 2178 */ 2179 VERIFY(rw_wrlock(&ztest_shared->zs_name_lock) == 0); 2180 error = spa_vdev_remove(spa, guid, B_FALSE); 2181 VERIFY(rw_unlock(&ztest_shared->zs_name_lock) == 0); 2182 2183 if (error && error != EEXIST) 2184 fatal(0, "spa_vdev_remove() = %d", error); 2185 } else { 2186 spa_config_exit(spa, SCL_VDEV, FTAG); 2187 2188 /* 2189 * Make 1/4 of the devices be log devices. 2190 */ 2191 nvroot = make_vdev_root(NULL, NULL, zopt_vdev_size, 0, 2192 ztest_random(4) == 0, zopt_raidz, zs->zs_mirrors, 1); 2193 2194 error = spa_vdev_add(spa, nvroot); 2195 nvlist_free(nvroot); 2196 2197 if (error == ENOSPC) 2198 ztest_record_enospc("spa_vdev_add"); 2199 else if (error != 0) 2200 fatal(0, "spa_vdev_add() = %d", error); 2201 } 2202 2203 VERIFY(mutex_unlock(&ztest_shared->zs_vdev_lock) == 0); 2204 } 2205 2206 /* 2207 * Verify that adding/removing aux devices (l2arc, hot spare) works as expected. 2208 */ 2209 /* ARGSUSED */ 2210 void 2211 ztest_vdev_aux_add_remove(ztest_ds_t *zd, uint64_t id) 2212 { 2213 ztest_shared_t *zs = ztest_shared; 2214 spa_t *spa = zs->zs_spa; 2215 vdev_t *rvd = spa->spa_root_vdev; 2216 spa_aux_vdev_t *sav; 2217 char *aux; 2218 uint64_t guid = 0; 2219 int error; 2220 2221 if (ztest_random(2) == 0) { 2222 sav = &spa->spa_spares; 2223 aux = ZPOOL_CONFIG_SPARES; 2224 } else { 2225 sav = &spa->spa_l2cache; 2226 aux = ZPOOL_CONFIG_L2CACHE; 2227 } 2228 2229 VERIFY(mutex_lock(&zs->zs_vdev_lock) == 0); 2230 2231 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 2232 2233 if (sav->sav_count != 0 && ztest_random(4) == 0) { 2234 /* 2235 * Pick a random device to remove. 2236 */ 2237 guid = sav->sav_vdevs[ztest_random(sav->sav_count)]->vdev_guid; 2238 } else { 2239 /* 2240 * Find an unused device we can add. 2241 */ 2242 zs->zs_vdev_aux = 0; 2243 for (;;) { 2244 char path[MAXPATHLEN]; 2245 int c; 2246 (void) sprintf(path, ztest_aux_template, zopt_dir, 2247 zopt_pool, aux, zs->zs_vdev_aux); 2248 for (c = 0; c < sav->sav_count; c++) 2249 if (strcmp(sav->sav_vdevs[c]->vdev_path, 2250 path) == 0) 2251 break; 2252 if (c == sav->sav_count && 2253 vdev_lookup_by_path(rvd, path) == NULL) 2254 break; 2255 zs->zs_vdev_aux++; 2256 } 2257 } 2258 2259 spa_config_exit(spa, SCL_VDEV, FTAG); 2260 2261 if (guid == 0) { 2262 /* 2263 * Add a new device. 2264 */ 2265 nvlist_t *nvroot = make_vdev_root(NULL, aux, 2266 (zopt_vdev_size * 5) / 4, 0, 0, 0, 0, 1); 2267 error = spa_vdev_add(spa, nvroot); 2268 if (error != 0) 2269 fatal(0, "spa_vdev_add(%p) = %d", nvroot, error); 2270 nvlist_free(nvroot); 2271 } else { 2272 /* 2273 * Remove an existing device. Sometimes, dirty its 2274 * vdev state first to make sure we handle removal 2275 * of devices that have pending state changes. 2276 */ 2277 if (ztest_random(2) == 0) 2278 (void) vdev_online(spa, guid, 0, NULL); 2279 2280 error = spa_vdev_remove(spa, guid, B_FALSE); 2281 if (error != 0 && error != EBUSY) 2282 fatal(0, "spa_vdev_remove(%llu) = %d", guid, error); 2283 } 2284 2285 VERIFY(mutex_unlock(&zs->zs_vdev_lock) == 0); 2286 } 2287 2288 /* 2289 * split a pool if it has mirror tlvdevs 2290 */ 2291 /* ARGSUSED */ 2292 void 2293 ztest_split_pool(ztest_ds_t *zd, uint64_t id) 2294 { 2295 ztest_shared_t *zs = ztest_shared; 2296 spa_t *spa = zs->zs_spa; 2297 vdev_t *rvd = spa->spa_root_vdev; 2298 nvlist_t *tree, **child, *config, *split, **schild; 2299 uint_t c, children, schildren = 0, lastlogid = 0; 2300 int error = 0; 2301 2302 VERIFY(mutex_lock(&zs->zs_vdev_lock) == 0); 2303 2304 /* ensure we have a useable config; mirrors of raidz aren't supported */ 2305 if (zs->zs_mirrors < 3 || zopt_raidz > 1) { 2306 VERIFY(mutex_unlock(&zs->zs_vdev_lock) == 0); 2307 return; 2308 } 2309 2310 /* clean up the old pool, if any */ 2311 (void) spa_destroy("splitp"); 2312 2313 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 2314 2315 /* generate a config from the existing config */ 2316 mutex_enter(&spa->spa_props_lock); 2317 VERIFY(nvlist_lookup_nvlist(spa->spa_config, ZPOOL_CONFIG_VDEV_TREE, 2318 &tree) == 0); 2319 mutex_exit(&spa->spa_props_lock); 2320 2321 VERIFY(nvlist_lookup_nvlist_array(tree, ZPOOL_CONFIG_CHILDREN, &child, 2322 &children) == 0); 2323 2324 schild = malloc(rvd->vdev_children * sizeof (nvlist_t *)); 2325 for (c = 0; c < children; c++) { 2326 vdev_t *tvd = rvd->vdev_child[c]; 2327 nvlist_t **mchild; 2328 uint_t mchildren; 2329 2330 if (tvd->vdev_islog || tvd->vdev_ops == &vdev_hole_ops) { 2331 VERIFY(nvlist_alloc(&schild[schildren], NV_UNIQUE_NAME, 2332 0) == 0); 2333 VERIFY(nvlist_add_string(schild[schildren], 2334 ZPOOL_CONFIG_TYPE, VDEV_TYPE_HOLE) == 0); 2335 VERIFY(nvlist_add_uint64(schild[schildren], 2336 ZPOOL_CONFIG_IS_HOLE, 1) == 0); 2337 if (lastlogid == 0) 2338 lastlogid = schildren; 2339 ++schildren; 2340 continue; 2341 } 2342 lastlogid = 0; 2343 VERIFY(nvlist_lookup_nvlist_array(child[c], 2344 ZPOOL_CONFIG_CHILDREN, &mchild, &mchildren) == 0); 2345 VERIFY(nvlist_dup(mchild[0], &schild[schildren++], 0) == 0); 2346 } 2347 2348 /* OK, create a config that can be used to split */ 2349 VERIFY(nvlist_alloc(&split, NV_UNIQUE_NAME, 0) == 0); 2350 VERIFY(nvlist_add_string(split, ZPOOL_CONFIG_TYPE, 2351 VDEV_TYPE_ROOT) == 0); 2352 VERIFY(nvlist_add_nvlist_array(split, ZPOOL_CONFIG_CHILDREN, schild, 2353 lastlogid != 0 ? lastlogid : schildren) == 0); 2354 2355 VERIFY(nvlist_alloc(&config, NV_UNIQUE_NAME, 0) == 0); 2356 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, split) == 0); 2357 2358 for (c = 0; c < schildren; c++) 2359 nvlist_free(schild[c]); 2360 free(schild); 2361 nvlist_free(split); 2362 2363 spa_config_exit(spa, SCL_VDEV, FTAG); 2364 2365 (void) rw_wrlock(&zs->zs_name_lock); 2366 error = spa_vdev_split_mirror(spa, "splitp", config, NULL, B_FALSE); 2367 (void) rw_unlock(&zs->zs_name_lock); 2368 2369 nvlist_free(config); 2370 2371 if (error == 0) { 2372 (void) printf("successful split - results:\n"); 2373 mutex_enter(&spa_namespace_lock); 2374 show_pool_stats(spa); 2375 show_pool_stats(spa_lookup("splitp")); 2376 mutex_exit(&spa_namespace_lock); 2377 ++zs->zs_splits; 2378 --zs->zs_mirrors; 2379 } 2380 VERIFY(mutex_unlock(&zs->zs_vdev_lock) == 0); 2381 2382 } 2383 2384 /* 2385 * Verify that we can attach and detach devices. 2386 */ 2387 /* ARGSUSED */ 2388 void 2389 ztest_vdev_attach_detach(ztest_ds_t *zd, uint64_t id) 2390 { 2391 ztest_shared_t *zs = ztest_shared; 2392 spa_t *spa = zs->zs_spa; 2393 spa_aux_vdev_t *sav = &spa->spa_spares; 2394 vdev_t *rvd = spa->spa_root_vdev; 2395 vdev_t *oldvd, *newvd, *pvd; 2396 nvlist_t *root; 2397 uint64_t leaves; 2398 uint64_t leaf, top; 2399 uint64_t ashift = ztest_get_ashift(); 2400 uint64_t oldguid, pguid; 2401 size_t oldsize, newsize; 2402 char oldpath[MAXPATHLEN], newpath[MAXPATHLEN]; 2403 int replacing; 2404 int oldvd_has_siblings = B_FALSE; 2405 int newvd_is_spare = B_FALSE; 2406 int oldvd_is_log; 2407 int error, expected_error; 2408 2409 VERIFY(mutex_lock(&zs->zs_vdev_lock) == 0); 2410 leaves = MAX(zs->zs_mirrors, 1) * zopt_raidz; 2411 2412 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 2413 2414 /* 2415 * Decide whether to do an attach or a replace. 2416 */ 2417 replacing = ztest_random(2); 2418 2419 /* 2420 * Pick a random top-level vdev. 2421 */ 2422 top = ztest_random_vdev_top(spa, B_TRUE); 2423 2424 /* 2425 * Pick a random leaf within it. 2426 */ 2427 leaf = ztest_random(leaves); 2428 2429 /* 2430 * Locate this vdev. 2431 */ 2432 oldvd = rvd->vdev_child[top]; 2433 if (zs->zs_mirrors >= 1) { 2434 ASSERT(oldvd->vdev_ops == &vdev_mirror_ops); 2435 ASSERT(oldvd->vdev_children >= zs->zs_mirrors); 2436 oldvd = oldvd->vdev_child[leaf / zopt_raidz]; 2437 } 2438 if (zopt_raidz > 1) { 2439 ASSERT(oldvd->vdev_ops == &vdev_raidz_ops); 2440 ASSERT(oldvd->vdev_children == zopt_raidz); 2441 oldvd = oldvd->vdev_child[leaf % zopt_raidz]; 2442 } 2443 2444 /* 2445 * If we're already doing an attach or replace, oldvd may be a 2446 * mirror vdev -- in which case, pick a random child. 2447 */ 2448 while (oldvd->vdev_children != 0) { 2449 oldvd_has_siblings = B_TRUE; 2450 ASSERT(oldvd->vdev_children >= 2); 2451 oldvd = oldvd->vdev_child[ztest_random(oldvd->vdev_children)]; 2452 } 2453 2454 oldguid = oldvd->vdev_guid; 2455 oldsize = vdev_get_min_asize(oldvd); 2456 oldvd_is_log = oldvd->vdev_top->vdev_islog; 2457 (void) strcpy(oldpath, oldvd->vdev_path); 2458 pvd = oldvd->vdev_parent; 2459 pguid = pvd->vdev_guid; 2460 2461 /* 2462 * If oldvd has siblings, then half of the time, detach it. 2463 */ 2464 if (oldvd_has_siblings && ztest_random(2) == 0) { 2465 spa_config_exit(spa, SCL_VDEV, FTAG); 2466 error = spa_vdev_detach(spa, oldguid, pguid, B_FALSE); 2467 if (error != 0 && error != ENODEV && error != EBUSY && 2468 error != ENOTSUP) 2469 fatal(0, "detach (%s) returned %d", oldpath, error); 2470 VERIFY(mutex_unlock(&zs->zs_vdev_lock) == 0); 2471 return; 2472 } 2473 2474 /* 2475 * For the new vdev, choose with equal probability between the two 2476 * standard paths (ending in either 'a' or 'b') or a random hot spare. 2477 */ 2478 if (sav->sav_count != 0 && ztest_random(3) == 0) { 2479 newvd = sav->sav_vdevs[ztest_random(sav->sav_count)]; 2480 newvd_is_spare = B_TRUE; 2481 (void) strcpy(newpath, newvd->vdev_path); 2482 } else { 2483 (void) snprintf(newpath, sizeof (newpath), ztest_dev_template, 2484 zopt_dir, zopt_pool, top * leaves + leaf); 2485 if (ztest_random(2) == 0) 2486 newpath[strlen(newpath) - 1] = 'b'; 2487 newvd = vdev_lookup_by_path(rvd, newpath); 2488 } 2489 2490 if (newvd) { 2491 newsize = vdev_get_min_asize(newvd); 2492 } else { 2493 /* 2494 * Make newsize a little bigger or smaller than oldsize. 2495 * If it's smaller, the attach should fail. 2496 * If it's larger, and we're doing a replace, 2497 * we should get dynamic LUN growth when we're done. 2498 */ 2499 newsize = 10 * oldsize / (9 + ztest_random(3)); 2500 } 2501 2502 /* 2503 * If pvd is not a mirror or root, the attach should fail with ENOTSUP, 2504 * unless it's a replace; in that case any non-replacing parent is OK. 2505 * 2506 * If newvd is already part of the pool, it should fail with EBUSY. 2507 * 2508 * If newvd is too small, it should fail with EOVERFLOW. 2509 */ 2510 if (pvd->vdev_ops != &vdev_mirror_ops && 2511 pvd->vdev_ops != &vdev_root_ops && (!replacing || 2512 pvd->vdev_ops == &vdev_replacing_ops || 2513 pvd->vdev_ops == &vdev_spare_ops)) 2514 expected_error = ENOTSUP; 2515 else if (newvd_is_spare && (!replacing || oldvd_is_log)) 2516 expected_error = ENOTSUP; 2517 else if (newvd == oldvd) 2518 expected_error = replacing ? 0 : EBUSY; 2519 else if (vdev_lookup_by_path(rvd, newpath) != NULL) 2520 expected_error = EBUSY; 2521 else if (newsize < oldsize) 2522 expected_error = EOVERFLOW; 2523 else if (ashift > oldvd->vdev_top->vdev_ashift) 2524 expected_error = EDOM; 2525 else 2526 expected_error = 0; 2527 2528 spa_config_exit(spa, SCL_VDEV, FTAG); 2529 2530 /* 2531 * Build the nvlist describing newpath. 2532 */ 2533 root = make_vdev_root(newpath, NULL, newvd == NULL ? newsize : 0, 2534 ashift, 0, 0, 0, 1); 2535 2536 error = spa_vdev_attach(spa, oldguid, root, replacing); 2537 2538 nvlist_free(root); 2539 2540 /* 2541 * If our parent was the replacing vdev, but the replace completed, 2542 * then instead of failing with ENOTSUP we may either succeed, 2543 * fail with ENODEV, or fail with EOVERFLOW. 2544 */ 2545 if (expected_error == ENOTSUP && 2546 (error == 0 || error == ENODEV || error == EOVERFLOW)) 2547 expected_error = error; 2548 2549 /* 2550 * If someone grew the LUN, the replacement may be too small. 2551 */ 2552 if (error == EOVERFLOW || error == EBUSY) 2553 expected_error = error; 2554 2555 /* XXX workaround 6690467 */ 2556 if (error != expected_error && expected_error != EBUSY) { 2557 fatal(0, "attach (%s %llu, %s %llu, %d) " 2558 "returned %d, expected %d", 2559 oldpath, (longlong_t)oldsize, newpath, 2560 (longlong_t)newsize, replacing, error, expected_error); 2561 } 2562 2563 VERIFY(mutex_unlock(&zs->zs_vdev_lock) == 0); 2564 } 2565 2566 /* 2567 * Callback function which expands the physical size of the vdev. 2568 */ 2569 vdev_t * 2570 grow_vdev(vdev_t *vd, void *arg) 2571 { 2572 spa_t *spa = vd->vdev_spa; 2573 size_t *newsize = arg; 2574 size_t fsize; 2575 int fd; 2576 2577 ASSERT(spa_config_held(spa, SCL_STATE, RW_READER) == SCL_STATE); 2578 ASSERT(vd->vdev_ops->vdev_op_leaf); 2579 2580 if ((fd = open(vd->vdev_path, O_RDWR)) == -1) 2581 return (vd); 2582 2583 fsize = lseek(fd, 0, SEEK_END); 2584 (void) ftruncate(fd, *newsize); 2585 2586 if (zopt_verbose >= 6) { 2587 (void) printf("%s grew from %lu to %lu bytes\n", 2588 vd->vdev_path, (ulong_t)fsize, (ulong_t)*newsize); 2589 } 2590 (void) close(fd); 2591 return (NULL); 2592 } 2593 2594 /* 2595 * Callback function which expands a given vdev by calling vdev_online(). 2596 */ 2597 /* ARGSUSED */ 2598 vdev_t * 2599 online_vdev(vdev_t *vd, void *arg) 2600 { 2601 spa_t *spa = vd->vdev_spa; 2602 vdev_t *tvd = vd->vdev_top; 2603 uint64_t guid = vd->vdev_guid; 2604 uint64_t generation = spa->spa_config_generation + 1; 2605 vdev_state_t newstate = VDEV_STATE_UNKNOWN; 2606 int error; 2607 2608 ASSERT(spa_config_held(spa, SCL_STATE, RW_READER) == SCL_STATE); 2609 ASSERT(vd->vdev_ops->vdev_op_leaf); 2610 2611 /* Calling vdev_online will initialize the new metaslabs */ 2612 spa_config_exit(spa, SCL_STATE, spa); 2613 error = vdev_online(spa, guid, ZFS_ONLINE_EXPAND, &newstate); 2614 spa_config_enter(spa, SCL_STATE, spa, RW_READER); 2615 2616 /* 2617 * If vdev_online returned an error or the underlying vdev_open 2618 * failed then we abort the expand. The only way to know that 2619 * vdev_open fails is by checking the returned newstate. 2620 */ 2621 if (error || newstate != VDEV_STATE_HEALTHY) { 2622 if (zopt_verbose >= 5) { 2623 (void) printf("Unable to expand vdev, state %llu, " 2624 "error %d\n", (u_longlong_t)newstate, error); 2625 } 2626 return (vd); 2627 } 2628 ASSERT3U(newstate, ==, VDEV_STATE_HEALTHY); 2629 2630 /* 2631 * Since we dropped the lock we need to ensure that we're 2632 * still talking to the original vdev. It's possible this 2633 * vdev may have been detached/replaced while we were 2634 * trying to online it. 2635 */ 2636 if (generation != spa->spa_config_generation) { 2637 if (zopt_verbose >= 5) { 2638 (void) printf("vdev configuration has changed, " 2639 "guid %llu, state %llu, expected gen %llu, " 2640 "got gen %llu\n", 2641 (u_longlong_t)guid, 2642 (u_longlong_t)tvd->vdev_state, 2643 (u_longlong_t)generation, 2644 (u_longlong_t)spa->spa_config_generation); 2645 } 2646 return (vd); 2647 } 2648 return (NULL); 2649 } 2650 2651 /* 2652 * Traverse the vdev tree calling the supplied function. 2653 * We continue to walk the tree until we either have walked all 2654 * children or we receive a non-NULL return from the callback. 2655 * If a NULL callback is passed, then we just return back the first 2656 * leaf vdev we encounter. 2657 */ 2658 vdev_t * 2659 vdev_walk_tree(vdev_t *vd, vdev_t *(*func)(vdev_t *, void *), void *arg) 2660 { 2661 if (vd->vdev_ops->vdev_op_leaf) { 2662 if (func == NULL) 2663 return (vd); 2664 else 2665 return (func(vd, arg)); 2666 } 2667 2668 for (uint_t c = 0; c < vd->vdev_children; c++) { 2669 vdev_t *cvd = vd->vdev_child[c]; 2670 if ((cvd = vdev_walk_tree(cvd, func, arg)) != NULL) 2671 return (cvd); 2672 } 2673 return (NULL); 2674 } 2675 2676 /* 2677 * Verify that dynamic LUN growth works as expected. 2678 */ 2679 /* ARGSUSED */ 2680 void 2681 ztest_vdev_LUN_growth(ztest_ds_t *zd, uint64_t id) 2682 { 2683 ztest_shared_t *zs = ztest_shared; 2684 spa_t *spa = zs->zs_spa; 2685 vdev_t *vd, *tvd; 2686 metaslab_class_t *mc; 2687 metaslab_group_t *mg; 2688 size_t psize, newsize; 2689 uint64_t top; 2690 uint64_t old_class_space, new_class_space, old_ms_count, new_ms_count; 2691 2692 VERIFY(mutex_lock(&zs->zs_vdev_lock) == 0); 2693 spa_config_enter(spa, SCL_STATE, spa, RW_READER); 2694 2695 top = ztest_random_vdev_top(spa, B_TRUE); 2696 2697 tvd = spa->spa_root_vdev->vdev_child[top]; 2698 mg = tvd->vdev_mg; 2699 mc = mg->mg_class; 2700 old_ms_count = tvd->vdev_ms_count; 2701 old_class_space = metaslab_class_get_space(mc); 2702 2703 /* 2704 * Determine the size of the first leaf vdev associated with 2705 * our top-level device. 2706 */ 2707 vd = vdev_walk_tree(tvd, NULL, NULL); 2708 ASSERT3P(vd, !=, NULL); 2709 ASSERT(vd->vdev_ops->vdev_op_leaf); 2710 2711 psize = vd->vdev_psize; 2712 2713 /* 2714 * We only try to expand the vdev if it's healthy, less than 4x its 2715 * original size, and it has a valid psize. 2716 */ 2717 if (tvd->vdev_state != VDEV_STATE_HEALTHY || 2718 psize == 0 || psize >= 4 * zopt_vdev_size) { 2719 spa_config_exit(spa, SCL_STATE, spa); 2720 VERIFY(mutex_unlock(&zs->zs_vdev_lock) == 0); 2721 return; 2722 } 2723 ASSERT(psize > 0); 2724 newsize = psize + psize / 8; 2725 ASSERT3U(newsize, >, psize); 2726 2727 if (zopt_verbose >= 6) { 2728 (void) printf("Expanding LUN %s from %lu to %lu\n", 2729 vd->vdev_path, (ulong_t)psize, (ulong_t)newsize); 2730 } 2731 2732 /* 2733 * Growing the vdev is a two step process: 2734 * 1). expand the physical size (i.e. relabel) 2735 * 2). online the vdev to create the new metaslabs 2736 */ 2737 if (vdev_walk_tree(tvd, grow_vdev, &newsize) != NULL || 2738 vdev_walk_tree(tvd, online_vdev, NULL) != NULL || 2739 tvd->vdev_state != VDEV_STATE_HEALTHY) { 2740 if (zopt_verbose >= 5) { 2741 (void) printf("Could not expand LUN because " 2742 "the vdev configuration changed.\n"); 2743 } 2744 spa_config_exit(spa, SCL_STATE, spa); 2745 VERIFY(mutex_unlock(&zs->zs_vdev_lock) == 0); 2746 return; 2747 } 2748 2749 spa_config_exit(spa, SCL_STATE, spa); 2750 2751 /* 2752 * Expanding the LUN will update the config asynchronously, 2753 * thus we must wait for the async thread to complete any 2754 * pending tasks before proceeding. 2755 */ 2756 for (;;) { 2757 boolean_t done; 2758 mutex_enter(&spa->spa_async_lock); 2759 done = (spa->spa_async_thread == NULL && !spa->spa_async_tasks); 2760 mutex_exit(&spa->spa_async_lock); 2761 if (done) 2762 break; 2763 txg_wait_synced(spa_get_dsl(spa), 0); 2764 (void) poll(NULL, 0, 100); 2765 } 2766 2767 spa_config_enter(spa, SCL_STATE, spa, RW_READER); 2768 2769 tvd = spa->spa_root_vdev->vdev_child[top]; 2770 new_ms_count = tvd->vdev_ms_count; 2771 new_class_space = metaslab_class_get_space(mc); 2772 2773 if (tvd->vdev_mg != mg || mg->mg_class != mc) { 2774 if (zopt_verbose >= 5) { 2775 (void) printf("Could not verify LUN expansion due to " 2776 "intervening vdev offline or remove.\n"); 2777 } 2778 spa_config_exit(spa, SCL_STATE, spa); 2779 VERIFY(mutex_unlock(&zs->zs_vdev_lock) == 0); 2780 return; 2781 } 2782 2783 /* 2784 * Make sure we were able to grow the vdev. 2785 */ 2786 if (new_ms_count <= old_ms_count) 2787 fatal(0, "LUN expansion failed: ms_count %llu <= %llu\n", 2788 old_ms_count, new_ms_count); 2789 2790 /* 2791 * Make sure we were able to grow the pool. 2792 */ 2793 if (new_class_space <= old_class_space) 2794 fatal(0, "LUN expansion failed: class_space %llu <= %llu\n", 2795 old_class_space, new_class_space); 2796 2797 if (zopt_verbose >= 5) { 2798 char oldnumbuf[6], newnumbuf[6]; 2799 2800 nicenum(old_class_space, oldnumbuf); 2801 nicenum(new_class_space, newnumbuf); 2802 (void) printf("%s grew from %s to %s\n", 2803 spa->spa_name, oldnumbuf, newnumbuf); 2804 } 2805 2806 spa_config_exit(spa, SCL_STATE, spa); 2807 VERIFY(mutex_unlock(&zs->zs_vdev_lock) == 0); 2808 } 2809 2810 /* 2811 * Verify that dmu_objset_{create,destroy,open,close} work as expected. 2812 */ 2813 /* ARGSUSED */ 2814 static void 2815 ztest_objset_create_cb(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx) 2816 { 2817 /* 2818 * Create the objects common to all ztest datasets. 2819 */ 2820 VERIFY(zap_create_claim(os, ZTEST_DIROBJ, 2821 DMU_OT_ZAP_OTHER, DMU_OT_NONE, 0, tx) == 0); 2822 } 2823 2824 static int 2825 ztest_dataset_create(char *dsname) 2826 { 2827 uint64_t zilset = ztest_random(100); 2828 int err = dmu_objset_create(dsname, DMU_OST_OTHER, 0, 2829 ztest_objset_create_cb, NULL); 2830 2831 if (err || zilset < 80) 2832 return (err); 2833 2834 (void) printf("Setting dataset %s to sync always\n", dsname); 2835 return (ztest_dsl_prop_set_uint64(dsname, ZFS_PROP_SYNC, 2836 ZFS_SYNC_ALWAYS, B_FALSE)); 2837 } 2838 2839 /* ARGSUSED */ 2840 static int 2841 ztest_objset_destroy_cb(const char *name, void *arg) 2842 { 2843 objset_t *os; 2844 dmu_object_info_t doi; 2845 int error; 2846 2847 /* 2848 * Verify that the dataset contains a directory object. 2849 */ 2850 VERIFY3U(0, ==, dmu_objset_hold(name, FTAG, &os)); 2851 error = dmu_object_info(os, ZTEST_DIROBJ, &doi); 2852 if (error != ENOENT) { 2853 /* We could have crashed in the middle of destroying it */ 2854 ASSERT3U(error, ==, 0); 2855 ASSERT3U(doi.doi_type, ==, DMU_OT_ZAP_OTHER); 2856 ASSERT3S(doi.doi_physical_blocks_512, >=, 0); 2857 } 2858 dmu_objset_rele(os, FTAG); 2859 2860 /* 2861 * Destroy the dataset. 2862 */ 2863 VERIFY3U(0, ==, dmu_objset_destroy(name, B_FALSE)); 2864 return (0); 2865 } 2866 2867 static boolean_t 2868 ztest_snapshot_create(char *osname, uint64_t id) 2869 { 2870 char snapname[MAXNAMELEN]; 2871 int error; 2872 2873 (void) snprintf(snapname, MAXNAMELEN, "%s@%llu", osname, 2874 (u_longlong_t)id); 2875 2876 error = dmu_objset_snapshot(osname, strchr(snapname, '@') + 1, 2877 NULL, B_FALSE); 2878 if (error == ENOSPC) { 2879 ztest_record_enospc(FTAG); 2880 return (B_FALSE); 2881 } 2882 if (error != 0 && error != EEXIST) 2883 fatal(0, "ztest_snapshot_create(%s) = %d", snapname, error); 2884 return (B_TRUE); 2885 } 2886 2887 static boolean_t 2888 ztest_snapshot_destroy(char *osname, uint64_t id) 2889 { 2890 char snapname[MAXNAMELEN]; 2891 int error; 2892 2893 (void) snprintf(snapname, MAXNAMELEN, "%s@%llu", osname, 2894 (u_longlong_t)id); 2895 2896 error = dmu_objset_destroy(snapname, B_FALSE); 2897 if (error != 0 && error != ENOENT) 2898 fatal(0, "ztest_snapshot_destroy(%s) = %d", snapname, error); 2899 return (B_TRUE); 2900 } 2901 2902 /* ARGSUSED */ 2903 void 2904 ztest_dmu_objset_create_destroy(ztest_ds_t *zd, uint64_t id) 2905 { 2906 ztest_shared_t *zs = ztest_shared; 2907 ztest_ds_t zdtmp; 2908 int iters; 2909 int error; 2910 objset_t *os, *os2; 2911 char name[MAXNAMELEN]; 2912 zilog_t *zilog; 2913 2914 (void) rw_rdlock(&zs->zs_name_lock); 2915 2916 (void) snprintf(name, MAXNAMELEN, "%s/temp_%llu", 2917 zs->zs_pool, (u_longlong_t)id); 2918 2919 /* 2920 * If this dataset exists from a previous run, process its replay log 2921 * half of the time. If we don't replay it, then dmu_objset_destroy() 2922 * (invoked from ztest_objset_destroy_cb()) should just throw it away. 2923 */ 2924 if (ztest_random(2) == 0 && 2925 dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, FTAG, &os) == 0) { 2926 ztest_zd_init(&zdtmp, os); 2927 zil_replay(os, &zdtmp, ztest_replay_vector); 2928 ztest_zd_fini(&zdtmp); 2929 dmu_objset_disown(os, FTAG); 2930 } 2931 2932 /* 2933 * There may be an old instance of the dataset we're about to 2934 * create lying around from a previous run. If so, destroy it 2935 * and all of its snapshots. 2936 */ 2937 (void) dmu_objset_find(name, ztest_objset_destroy_cb, NULL, 2938 DS_FIND_CHILDREN | DS_FIND_SNAPSHOTS); 2939 2940 /* 2941 * Verify that the destroyed dataset is no longer in the namespace. 2942 */ 2943 VERIFY3U(ENOENT, ==, dmu_objset_hold(name, FTAG, &os)); 2944 2945 /* 2946 * Verify that we can create a new dataset. 2947 */ 2948 error = ztest_dataset_create(name); 2949 if (error) { 2950 if (error == ENOSPC) { 2951 ztest_record_enospc(FTAG); 2952 (void) rw_unlock(&zs->zs_name_lock); 2953 return; 2954 } 2955 fatal(0, "dmu_objset_create(%s) = %d", name, error); 2956 } 2957 2958 VERIFY3U(0, ==, 2959 dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, FTAG, &os)); 2960 2961 ztest_zd_init(&zdtmp, os); 2962 2963 /* 2964 * Open the intent log for it. 2965 */ 2966 zilog = zil_open(os, ztest_get_data); 2967 2968 /* 2969 * Put some objects in there, do a little I/O to them, 2970 * and randomly take a couple of snapshots along the way. 2971 */ 2972 iters = ztest_random(5); 2973 for (int i = 0; i < iters; i++) { 2974 ztest_dmu_object_alloc_free(&zdtmp, id); 2975 if (ztest_random(iters) == 0) 2976 (void) ztest_snapshot_create(name, i); 2977 } 2978 2979 /* 2980 * Verify that we cannot create an existing dataset. 2981 */ 2982 VERIFY3U(EEXIST, ==, 2983 dmu_objset_create(name, DMU_OST_OTHER, 0, NULL, NULL)); 2984 2985 /* 2986 * Verify that we can hold an objset that is also owned. 2987 */ 2988 VERIFY3U(0, ==, dmu_objset_hold(name, FTAG, &os2)); 2989 dmu_objset_rele(os2, FTAG); 2990 2991 /* 2992 * Verify that we cannot own an objset that is already owned. 2993 */ 2994 VERIFY3U(EBUSY, ==, 2995 dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, FTAG, &os2)); 2996 2997 zil_close(zilog); 2998 dmu_objset_disown(os, FTAG); 2999 ztest_zd_fini(&zdtmp); 3000 3001 (void) rw_unlock(&zs->zs_name_lock); 3002 } 3003 3004 /* 3005 * Verify that dmu_snapshot_{create,destroy,open,close} work as expected. 3006 */ 3007 void 3008 ztest_dmu_snapshot_create_destroy(ztest_ds_t *zd, uint64_t id) 3009 { 3010 ztest_shared_t *zs = ztest_shared; 3011 3012 (void) rw_rdlock(&zs->zs_name_lock); 3013 (void) ztest_snapshot_destroy(zd->zd_name, id); 3014 (void) ztest_snapshot_create(zd->zd_name, id); 3015 (void) rw_unlock(&zs->zs_name_lock); 3016 } 3017 3018 /* 3019 * Cleanup non-standard snapshots and clones. 3020 */ 3021 void 3022 ztest_dsl_dataset_cleanup(char *osname, uint64_t id) 3023 { 3024 char snap1name[MAXNAMELEN]; 3025 char clone1name[MAXNAMELEN]; 3026 char snap2name[MAXNAMELEN]; 3027 char clone2name[MAXNAMELEN]; 3028 char snap3name[MAXNAMELEN]; 3029 int error; 3030 3031 (void) snprintf(snap1name, MAXNAMELEN, "%s@s1_%llu", osname, id); 3032 (void) snprintf(clone1name, MAXNAMELEN, "%s/c1_%llu", osname, id); 3033 (void) snprintf(snap2name, MAXNAMELEN, "%s@s2_%llu", clone1name, id); 3034 (void) snprintf(clone2name, MAXNAMELEN, "%s/c2_%llu", osname, id); 3035 (void) snprintf(snap3name, MAXNAMELEN, "%s@s3_%llu", clone1name, id); 3036 3037 error = dmu_objset_destroy(clone2name, B_FALSE); 3038 if (error && error != ENOENT) 3039 fatal(0, "dmu_objset_destroy(%s) = %d", clone2name, error); 3040 error = dmu_objset_destroy(snap3name, B_FALSE); 3041 if (error && error != ENOENT) 3042 fatal(0, "dmu_objset_destroy(%s) = %d", snap3name, error); 3043 error = dmu_objset_destroy(snap2name, B_FALSE); 3044 if (error && error != ENOENT) 3045 fatal(0, "dmu_objset_destroy(%s) = %d", snap2name, error); 3046 error = dmu_objset_destroy(clone1name, B_FALSE); 3047 if (error && error != ENOENT) 3048 fatal(0, "dmu_objset_destroy(%s) = %d", clone1name, error); 3049 error = dmu_objset_destroy(snap1name, B_FALSE); 3050 if (error && error != ENOENT) 3051 fatal(0, "dmu_objset_destroy(%s) = %d", snap1name, error); 3052 } 3053 3054 /* 3055 * Verify dsl_dataset_promote handles EBUSY 3056 */ 3057 void 3058 ztest_dsl_dataset_promote_busy(ztest_ds_t *zd, uint64_t id) 3059 { 3060 ztest_shared_t *zs = ztest_shared; 3061 objset_t *clone; 3062 dsl_dataset_t *ds; 3063 char snap1name[MAXNAMELEN]; 3064 char clone1name[MAXNAMELEN]; 3065 char snap2name[MAXNAMELEN]; 3066 char clone2name[MAXNAMELEN]; 3067 char snap3name[MAXNAMELEN]; 3068 char *osname = zd->zd_name; 3069 int error; 3070 3071 (void) rw_rdlock(&zs->zs_name_lock); 3072 3073 ztest_dsl_dataset_cleanup(osname, id); 3074 3075 (void) snprintf(snap1name, MAXNAMELEN, "%s@s1_%llu", osname, id); 3076 (void) snprintf(clone1name, MAXNAMELEN, "%s/c1_%llu", osname, id); 3077 (void) snprintf(snap2name, MAXNAMELEN, "%s@s2_%llu", clone1name, id); 3078 (void) snprintf(clone2name, MAXNAMELEN, "%s/c2_%llu", osname, id); 3079 (void) snprintf(snap3name, MAXNAMELEN, "%s@s3_%llu", clone1name, id); 3080 3081 error = dmu_objset_snapshot(osname, strchr(snap1name, '@')+1, 3082 NULL, B_FALSE); 3083 if (error && error != EEXIST) { 3084 if (error == ENOSPC) { 3085 ztest_record_enospc(FTAG); 3086 goto out; 3087 } 3088 fatal(0, "dmu_take_snapshot(%s) = %d", snap1name, error); 3089 } 3090 3091 error = dmu_objset_hold(snap1name, FTAG, &clone); 3092 if (error) 3093 fatal(0, "dmu_open_snapshot(%s) = %d", snap1name, error); 3094 3095 error = dmu_objset_clone(clone1name, dmu_objset_ds(clone), 0); 3096 dmu_objset_rele(clone, FTAG); 3097 if (error) { 3098 if (error == ENOSPC) { 3099 ztest_record_enospc(FTAG); 3100 goto out; 3101 } 3102 fatal(0, "dmu_objset_create(%s) = %d", clone1name, error); 3103 } 3104 3105 error = dmu_objset_snapshot(clone1name, strchr(snap2name, '@')+1, 3106 NULL, B_FALSE); 3107 if (error && error != EEXIST) { 3108 if (error == ENOSPC) { 3109 ztest_record_enospc(FTAG); 3110 goto out; 3111 } 3112 fatal(0, "dmu_open_snapshot(%s) = %d", snap2name, error); 3113 } 3114 3115 error = dmu_objset_snapshot(clone1name, strchr(snap3name, '@')+1, 3116 NULL, B_FALSE); 3117 if (error && error != EEXIST) { 3118 if (error == ENOSPC) { 3119 ztest_record_enospc(FTAG); 3120 goto out; 3121 } 3122 fatal(0, "dmu_open_snapshot(%s) = %d", snap3name, error); 3123 } 3124 3125 error = dmu_objset_hold(snap3name, FTAG, &clone); 3126 if (error) 3127 fatal(0, "dmu_open_snapshot(%s) = %d", snap3name, error); 3128 3129 error = dmu_objset_clone(clone2name, dmu_objset_ds(clone), 0); 3130 dmu_objset_rele(clone, FTAG); 3131 if (error) { 3132 if (error == ENOSPC) { 3133 ztest_record_enospc(FTAG); 3134 goto out; 3135 } 3136 fatal(0, "dmu_objset_create(%s) = %d", clone2name, error); 3137 } 3138 3139 error = dsl_dataset_own(snap1name, B_FALSE, FTAG, &ds); 3140 if (error) 3141 fatal(0, "dsl_dataset_own(%s) = %d", snap1name, error); 3142 error = dsl_dataset_promote(clone2name, NULL); 3143 if (error != EBUSY) 3144 fatal(0, "dsl_dataset_promote(%s), %d, not EBUSY", clone2name, 3145 error); 3146 dsl_dataset_disown(ds, FTAG); 3147 3148 out: 3149 ztest_dsl_dataset_cleanup(osname, id); 3150 3151 (void) rw_unlock(&zs->zs_name_lock); 3152 } 3153 3154 /* 3155 * Verify that dmu_object_{alloc,free} work as expected. 3156 */ 3157 void 3158 ztest_dmu_object_alloc_free(ztest_ds_t *zd, uint64_t id) 3159 { 3160 ztest_od_t od[4]; 3161 int batchsize = sizeof (od) / sizeof (od[0]); 3162 3163 for (int b = 0; b < batchsize; b++) 3164 ztest_od_init(&od[b], id, FTAG, b, DMU_OT_UINT64_OTHER, 0, 0); 3165 3166 /* 3167 * Destroy the previous batch of objects, create a new batch, 3168 * and do some I/O on the new objects. 3169 */ 3170 if (ztest_object_init(zd, od, sizeof (od), B_TRUE) != 0) 3171 return; 3172 3173 while (ztest_random(4 * batchsize) != 0) 3174 ztest_io(zd, od[ztest_random(batchsize)].od_object, 3175 ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT); 3176 } 3177 3178 /* 3179 * Verify that dmu_{read,write} work as expected. 3180 */ 3181 void 3182 ztest_dmu_read_write(ztest_ds_t *zd, uint64_t id) 3183 { 3184 objset_t *os = zd->zd_os; 3185 ztest_od_t od[2]; 3186 dmu_tx_t *tx; 3187 int i, freeit, error; 3188 uint64_t n, s, txg; 3189 bufwad_t *packbuf, *bigbuf, *pack, *bigH, *bigT; 3190 uint64_t packobj, packoff, packsize, bigobj, bigoff, bigsize; 3191 uint64_t chunksize = (1000 + ztest_random(1000)) * sizeof (uint64_t); 3192 uint64_t regions = 997; 3193 uint64_t stride = 123456789ULL; 3194 uint64_t width = 40; 3195 int free_percent = 5; 3196 3197 /* 3198 * This test uses two objects, packobj and bigobj, that are always 3199 * updated together (i.e. in the same tx) so that their contents are 3200 * in sync and can be compared. Their contents relate to each other 3201 * in a simple way: packobj is a dense array of 'bufwad' structures, 3202 * while bigobj is a sparse array of the same bufwads. Specifically, 3203 * for any index n, there are three bufwads that should be identical: 3204 * 3205 * packobj, at offset n * sizeof (bufwad_t) 3206 * bigobj, at the head of the nth chunk 3207 * bigobj, at the tail of the nth chunk 3208 * 3209 * The chunk size is arbitrary. It doesn't have to be a power of two, 3210 * and it doesn't have any relation to the object blocksize. 3211 * The only requirement is that it can hold at least two bufwads. 3212 * 3213 * Normally, we write the bufwad to each of these locations. 3214 * However, free_percent of the time we instead write zeroes to 3215 * packobj and perform a dmu_free_range() on bigobj. By comparing 3216 * bigobj to packobj, we can verify that the DMU is correctly 3217 * tracking which parts of an object are allocated and free, 3218 * and that the contents of the allocated blocks are correct. 3219 */ 3220 3221 /* 3222 * Read the directory info. If it's the first time, set things up. 3223 */ 3224 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, 0, chunksize); 3225 ztest_od_init(&od[1], id, FTAG, 1, DMU_OT_UINT64_OTHER, 0, chunksize); 3226 3227 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0) 3228 return; 3229 3230 bigobj = od[0].od_object; 3231 packobj = od[1].od_object; 3232 chunksize = od[0].od_gen; 3233 ASSERT(chunksize == od[1].od_gen); 3234 3235 /* 3236 * Prefetch a random chunk of the big object. 3237 * Our aim here is to get some async reads in flight 3238 * for blocks that we may free below; the DMU should 3239 * handle this race correctly. 3240 */ 3241 n = ztest_random(regions) * stride + ztest_random(width); 3242 s = 1 + ztest_random(2 * width - 1); 3243 dmu_prefetch(os, bigobj, n * chunksize, s * chunksize); 3244 3245 /* 3246 * Pick a random index and compute the offsets into packobj and bigobj. 3247 */ 3248 n = ztest_random(regions) * stride + ztest_random(width); 3249 s = 1 + ztest_random(width - 1); 3250 3251 packoff = n * sizeof (bufwad_t); 3252 packsize = s * sizeof (bufwad_t); 3253 3254 bigoff = n * chunksize; 3255 bigsize = s * chunksize; 3256 3257 packbuf = umem_alloc(packsize, UMEM_NOFAIL); 3258 bigbuf = umem_alloc(bigsize, UMEM_NOFAIL); 3259 3260 /* 3261 * free_percent of the time, free a range of bigobj rather than 3262 * overwriting it. 3263 */ 3264 freeit = (ztest_random(100) < free_percent); 3265 3266 /* 3267 * Read the current contents of our objects. 3268 */ 3269 error = dmu_read(os, packobj, packoff, packsize, packbuf, 3270 DMU_READ_PREFETCH); 3271 ASSERT3U(error, ==, 0); 3272 error = dmu_read(os, bigobj, bigoff, bigsize, bigbuf, 3273 DMU_READ_PREFETCH); 3274 ASSERT3U(error, ==, 0); 3275 3276 /* 3277 * Get a tx for the mods to both packobj and bigobj. 3278 */ 3279 tx = dmu_tx_create(os); 3280 3281 dmu_tx_hold_write(tx, packobj, packoff, packsize); 3282 3283 if (freeit) 3284 dmu_tx_hold_free(tx, bigobj, bigoff, bigsize); 3285 else 3286 dmu_tx_hold_write(tx, bigobj, bigoff, bigsize); 3287 3288 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); 3289 if (txg == 0) { 3290 umem_free(packbuf, packsize); 3291 umem_free(bigbuf, bigsize); 3292 return; 3293 } 3294 3295 dmu_object_set_checksum(os, bigobj, 3296 (enum zio_checksum)ztest_random_dsl_prop(ZFS_PROP_CHECKSUM), tx); 3297 3298 dmu_object_set_compress(os, bigobj, 3299 (enum zio_compress)ztest_random_dsl_prop(ZFS_PROP_COMPRESSION), tx); 3300 3301 /* 3302 * For each index from n to n + s, verify that the existing bufwad 3303 * in packobj matches the bufwads at the head and tail of the 3304 * corresponding chunk in bigobj. Then update all three bufwads 3305 * with the new values we want to write out. 3306 */ 3307 for (i = 0; i < s; i++) { 3308 /* LINTED */ 3309 pack = (bufwad_t *)((char *)packbuf + i * sizeof (bufwad_t)); 3310 /* LINTED */ 3311 bigH = (bufwad_t *)((char *)bigbuf + i * chunksize); 3312 /* LINTED */ 3313 bigT = (bufwad_t *)((char *)bigH + chunksize) - 1; 3314 3315 ASSERT((uintptr_t)bigH - (uintptr_t)bigbuf < bigsize); 3316 ASSERT((uintptr_t)bigT - (uintptr_t)bigbuf < bigsize); 3317 3318 if (pack->bw_txg > txg) 3319 fatal(0, "future leak: got %llx, open txg is %llx", 3320 pack->bw_txg, txg); 3321 3322 if (pack->bw_data != 0 && pack->bw_index != n + i) 3323 fatal(0, "wrong index: got %llx, wanted %llx+%llx", 3324 pack->bw_index, n, i); 3325 3326 if (bcmp(pack, bigH, sizeof (bufwad_t)) != 0) 3327 fatal(0, "pack/bigH mismatch in %p/%p", pack, bigH); 3328 3329 if (bcmp(pack, bigT, sizeof (bufwad_t)) != 0) 3330 fatal(0, "pack/bigT mismatch in %p/%p", pack, bigT); 3331 3332 if (freeit) { 3333 bzero(pack, sizeof (bufwad_t)); 3334 } else { 3335 pack->bw_index = n + i; 3336 pack->bw_txg = txg; 3337 pack->bw_data = 1 + ztest_random(-2ULL); 3338 } 3339 *bigH = *pack; 3340 *bigT = *pack; 3341 } 3342 3343 /* 3344 * We've verified all the old bufwads, and made new ones. 3345 * Now write them out. 3346 */ 3347 dmu_write(os, packobj, packoff, packsize, packbuf, tx); 3348 3349 if (freeit) { 3350 if (zopt_verbose >= 7) { 3351 (void) printf("freeing offset %llx size %llx" 3352 " txg %llx\n", 3353 (u_longlong_t)bigoff, 3354 (u_longlong_t)bigsize, 3355 (u_longlong_t)txg); 3356 } 3357 VERIFY(0 == dmu_free_range(os, bigobj, bigoff, bigsize, tx)); 3358 } else { 3359 if (zopt_verbose >= 7) { 3360 (void) printf("writing offset %llx size %llx" 3361 " txg %llx\n", 3362 (u_longlong_t)bigoff, 3363 (u_longlong_t)bigsize, 3364 (u_longlong_t)txg); 3365 } 3366 dmu_write(os, bigobj, bigoff, bigsize, bigbuf, tx); 3367 } 3368 3369 dmu_tx_commit(tx); 3370 3371 /* 3372 * Sanity check the stuff we just wrote. 3373 */ 3374 { 3375 void *packcheck = umem_alloc(packsize, UMEM_NOFAIL); 3376 void *bigcheck = umem_alloc(bigsize, UMEM_NOFAIL); 3377 3378 VERIFY(0 == dmu_read(os, packobj, packoff, 3379 packsize, packcheck, DMU_READ_PREFETCH)); 3380 VERIFY(0 == dmu_read(os, bigobj, bigoff, 3381 bigsize, bigcheck, DMU_READ_PREFETCH)); 3382 3383 ASSERT(bcmp(packbuf, packcheck, packsize) == 0); 3384 ASSERT(bcmp(bigbuf, bigcheck, bigsize) == 0); 3385 3386 umem_free(packcheck, packsize); 3387 umem_free(bigcheck, bigsize); 3388 } 3389 3390 umem_free(packbuf, packsize); 3391 umem_free(bigbuf, bigsize); 3392 } 3393 3394 void 3395 compare_and_update_pbbufs(uint64_t s, bufwad_t *packbuf, bufwad_t *bigbuf, 3396 uint64_t bigsize, uint64_t n, uint64_t chunksize, uint64_t txg) 3397 { 3398 uint64_t i; 3399 bufwad_t *pack; 3400 bufwad_t *bigH; 3401 bufwad_t *bigT; 3402 3403 /* 3404 * For each index from n to n + s, verify that the existing bufwad 3405 * in packobj matches the bufwads at the head and tail of the 3406 * corresponding chunk in bigobj. Then update all three bufwads 3407 * with the new values we want to write out. 3408 */ 3409 for (i = 0; i < s; i++) { 3410 /* LINTED */ 3411 pack = (bufwad_t *)((char *)packbuf + i * sizeof (bufwad_t)); 3412 /* LINTED */ 3413 bigH = (bufwad_t *)((char *)bigbuf + i * chunksize); 3414 /* LINTED */ 3415 bigT = (bufwad_t *)((char *)bigH + chunksize) - 1; 3416 3417 ASSERT((uintptr_t)bigH - (uintptr_t)bigbuf < bigsize); 3418 ASSERT((uintptr_t)bigT - (uintptr_t)bigbuf < bigsize); 3419 3420 if (pack->bw_txg > txg) 3421 fatal(0, "future leak: got %llx, open txg is %llx", 3422 pack->bw_txg, txg); 3423 3424 if (pack->bw_data != 0 && pack->bw_index != n + i) 3425 fatal(0, "wrong index: got %llx, wanted %llx+%llx", 3426 pack->bw_index, n, i); 3427 3428 if (bcmp(pack, bigH, sizeof (bufwad_t)) != 0) 3429 fatal(0, "pack/bigH mismatch in %p/%p", pack, bigH); 3430 3431 if (bcmp(pack, bigT, sizeof (bufwad_t)) != 0) 3432 fatal(0, "pack/bigT mismatch in %p/%p", pack, bigT); 3433 3434 pack->bw_index = n + i; 3435 pack->bw_txg = txg; 3436 pack->bw_data = 1 + ztest_random(-2ULL); 3437 3438 *bigH = *pack; 3439 *bigT = *pack; 3440 } 3441 } 3442 3443 void 3444 ztest_dmu_read_write_zcopy(ztest_ds_t *zd, uint64_t id) 3445 { 3446 objset_t *os = zd->zd_os; 3447 ztest_od_t od[2]; 3448 dmu_tx_t *tx; 3449 uint64_t i; 3450 int error; 3451 uint64_t n, s, txg; 3452 bufwad_t *packbuf, *bigbuf; 3453 uint64_t packobj, packoff, packsize, bigobj, bigoff, bigsize; 3454 uint64_t blocksize = ztest_random_blocksize(); 3455 uint64_t chunksize = blocksize; 3456 uint64_t regions = 997; 3457 uint64_t stride = 123456789ULL; 3458 uint64_t width = 9; 3459 dmu_buf_t *bonus_db; 3460 arc_buf_t **bigbuf_arcbufs; 3461 dmu_object_info_t doi; 3462 3463 /* 3464 * This test uses two objects, packobj and bigobj, that are always 3465 * updated together (i.e. in the same tx) so that their contents are 3466 * in sync and can be compared. Their contents relate to each other 3467 * in a simple way: packobj is a dense array of 'bufwad' structures, 3468 * while bigobj is a sparse array of the same bufwads. Specifically, 3469 * for any index n, there are three bufwads that should be identical: 3470 * 3471 * packobj, at offset n * sizeof (bufwad_t) 3472 * bigobj, at the head of the nth chunk 3473 * bigobj, at the tail of the nth chunk 3474 * 3475 * The chunk size is set equal to bigobj block size so that 3476 * dmu_assign_arcbuf() can be tested for object updates. 3477 */ 3478 3479 /* 3480 * Read the directory info. If it's the first time, set things up. 3481 */ 3482 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0); 3483 ztest_od_init(&od[1], id, FTAG, 1, DMU_OT_UINT64_OTHER, 0, chunksize); 3484 3485 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0) 3486 return; 3487 3488 bigobj = od[0].od_object; 3489 packobj = od[1].od_object; 3490 blocksize = od[0].od_blocksize; 3491 chunksize = blocksize; 3492 ASSERT(chunksize == od[1].od_gen); 3493 3494 VERIFY(dmu_object_info(os, bigobj, &doi) == 0); 3495 VERIFY(ISP2(doi.doi_data_block_size)); 3496 VERIFY(chunksize == doi.doi_data_block_size); 3497 VERIFY(chunksize >= 2 * sizeof (bufwad_t)); 3498 3499 /* 3500 * Pick a random index and compute the offsets into packobj and bigobj. 3501 */ 3502 n = ztest_random(regions) * stride + ztest_random(width); 3503 s = 1 + ztest_random(width - 1); 3504 3505 packoff = n * sizeof (bufwad_t); 3506 packsize = s * sizeof (bufwad_t); 3507 3508 bigoff = n * chunksize; 3509 bigsize = s * chunksize; 3510 3511 packbuf = umem_zalloc(packsize, UMEM_NOFAIL); 3512 bigbuf = umem_zalloc(bigsize, UMEM_NOFAIL); 3513 3514 VERIFY3U(0, ==, dmu_bonus_hold(os, bigobj, FTAG, &bonus_db)); 3515 3516 bigbuf_arcbufs = umem_zalloc(2 * s * sizeof (arc_buf_t *), UMEM_NOFAIL); 3517 3518 /* 3519 * Iteration 0 test zcopy for DB_UNCACHED dbufs. 3520 * Iteration 1 test zcopy to already referenced dbufs. 3521 * Iteration 2 test zcopy to dirty dbuf in the same txg. 3522 * Iteration 3 test zcopy to dbuf dirty in previous txg. 3523 * Iteration 4 test zcopy when dbuf is no longer dirty. 3524 * Iteration 5 test zcopy when it can't be done. 3525 * Iteration 6 one more zcopy write. 3526 */ 3527 for (i = 0; i < 7; i++) { 3528 uint64_t j; 3529 uint64_t off; 3530 3531 /* 3532 * In iteration 5 (i == 5) use arcbufs 3533 * that don't match bigobj blksz to test 3534 * dmu_assign_arcbuf() when it can't directly 3535 * assign an arcbuf to a dbuf. 3536 */ 3537 for (j = 0; j < s; j++) { 3538 if (i != 5) { 3539 bigbuf_arcbufs[j] = 3540 dmu_request_arcbuf(bonus_db, chunksize); 3541 } else { 3542 bigbuf_arcbufs[2 * j] = 3543 dmu_request_arcbuf(bonus_db, chunksize / 2); 3544 bigbuf_arcbufs[2 * j + 1] = 3545 dmu_request_arcbuf(bonus_db, chunksize / 2); 3546 } 3547 } 3548 3549 /* 3550 * Get a tx for the mods to both packobj and bigobj. 3551 */ 3552 tx = dmu_tx_create(os); 3553 3554 dmu_tx_hold_write(tx, packobj, packoff, packsize); 3555 dmu_tx_hold_write(tx, bigobj, bigoff, bigsize); 3556 3557 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); 3558 if (txg == 0) { 3559 umem_free(packbuf, packsize); 3560 umem_free(bigbuf, bigsize); 3561 for (j = 0; j < s; j++) { 3562 if (i != 5) { 3563 dmu_return_arcbuf(bigbuf_arcbufs[j]); 3564 } else { 3565 dmu_return_arcbuf( 3566 bigbuf_arcbufs[2 * j]); 3567 dmu_return_arcbuf( 3568 bigbuf_arcbufs[2 * j + 1]); 3569 } 3570 } 3571 umem_free(bigbuf_arcbufs, 2 * s * sizeof (arc_buf_t *)); 3572 dmu_buf_rele(bonus_db, FTAG); 3573 return; 3574 } 3575 3576 /* 3577 * 50% of the time don't read objects in the 1st iteration to 3578 * test dmu_assign_arcbuf() for the case when there're no 3579 * existing dbufs for the specified offsets. 3580 */ 3581 if (i != 0 || ztest_random(2) != 0) { 3582 error = dmu_read(os, packobj, packoff, 3583 packsize, packbuf, DMU_READ_PREFETCH); 3584 ASSERT3U(error, ==, 0); 3585 error = dmu_read(os, bigobj, bigoff, bigsize, 3586 bigbuf, DMU_READ_PREFETCH); 3587 ASSERT3U(error, ==, 0); 3588 } 3589 compare_and_update_pbbufs(s, packbuf, bigbuf, bigsize, 3590 n, chunksize, txg); 3591 3592 /* 3593 * We've verified all the old bufwads, and made new ones. 3594 * Now write them out. 3595 */ 3596 dmu_write(os, packobj, packoff, packsize, packbuf, tx); 3597 if (zopt_verbose >= 7) { 3598 (void) printf("writing offset %llx size %llx" 3599 " txg %llx\n", 3600 (u_longlong_t)bigoff, 3601 (u_longlong_t)bigsize, 3602 (u_longlong_t)txg); 3603 } 3604 for (off = bigoff, j = 0; j < s; j++, off += chunksize) { 3605 dmu_buf_t *dbt; 3606 if (i != 5) { 3607 bcopy((caddr_t)bigbuf + (off - bigoff), 3608 bigbuf_arcbufs[j]->b_data, chunksize); 3609 } else { 3610 bcopy((caddr_t)bigbuf + (off - bigoff), 3611 bigbuf_arcbufs[2 * j]->b_data, 3612 chunksize / 2); 3613 bcopy((caddr_t)bigbuf + (off - bigoff) + 3614 chunksize / 2, 3615 bigbuf_arcbufs[2 * j + 1]->b_data, 3616 chunksize / 2); 3617 } 3618 3619 if (i == 1) { 3620 VERIFY(dmu_buf_hold(os, bigobj, off, 3621 FTAG, &dbt, DMU_READ_NO_PREFETCH) == 0); 3622 } 3623 if (i != 5) { 3624 dmu_assign_arcbuf(bonus_db, off, 3625 bigbuf_arcbufs[j], tx); 3626 } else { 3627 dmu_assign_arcbuf(bonus_db, off, 3628 bigbuf_arcbufs[2 * j], tx); 3629 dmu_assign_arcbuf(bonus_db, 3630 off + chunksize / 2, 3631 bigbuf_arcbufs[2 * j + 1], tx); 3632 } 3633 if (i == 1) { 3634 dmu_buf_rele(dbt, FTAG); 3635 } 3636 } 3637 dmu_tx_commit(tx); 3638 3639 /* 3640 * Sanity check the stuff we just wrote. 3641 */ 3642 { 3643 void *packcheck = umem_alloc(packsize, UMEM_NOFAIL); 3644 void *bigcheck = umem_alloc(bigsize, UMEM_NOFAIL); 3645 3646 VERIFY(0 == dmu_read(os, packobj, packoff, 3647 packsize, packcheck, DMU_READ_PREFETCH)); 3648 VERIFY(0 == dmu_read(os, bigobj, bigoff, 3649 bigsize, bigcheck, DMU_READ_PREFETCH)); 3650 3651 ASSERT(bcmp(packbuf, packcheck, packsize) == 0); 3652 ASSERT(bcmp(bigbuf, bigcheck, bigsize) == 0); 3653 3654 umem_free(packcheck, packsize); 3655 umem_free(bigcheck, bigsize); 3656 } 3657 if (i == 2) { 3658 txg_wait_open(dmu_objset_pool(os), 0); 3659 } else if (i == 3) { 3660 txg_wait_synced(dmu_objset_pool(os), 0); 3661 } 3662 } 3663 3664 dmu_buf_rele(bonus_db, FTAG); 3665 umem_free(packbuf, packsize); 3666 umem_free(bigbuf, bigsize); 3667 umem_free(bigbuf_arcbufs, 2 * s * sizeof (arc_buf_t *)); 3668 } 3669 3670 /* ARGSUSED */ 3671 void 3672 ztest_dmu_write_parallel(ztest_ds_t *zd, uint64_t id) 3673 { 3674 ztest_od_t od[1]; 3675 uint64_t offset = (1ULL << (ztest_random(20) + 43)) + 3676 (ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT); 3677 3678 /* 3679 * Have multiple threads write to large offsets in an object 3680 * to verify that parallel writes to an object -- even to the 3681 * same blocks within the object -- doesn't cause any trouble. 3682 */ 3683 ztest_od_init(&od[0], ID_PARALLEL, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0); 3684 3685 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0) 3686 return; 3687 3688 while (ztest_random(10) != 0) 3689 ztest_io(zd, od[0].od_object, offset); 3690 } 3691 3692 void 3693 ztest_dmu_prealloc(ztest_ds_t *zd, uint64_t id) 3694 { 3695 ztest_od_t od[1]; 3696 uint64_t offset = (1ULL << (ztest_random(4) + SPA_MAXBLOCKSHIFT)) + 3697 (ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT); 3698 uint64_t count = ztest_random(20) + 1; 3699 uint64_t blocksize = ztest_random_blocksize(); 3700 void *data; 3701 3702 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0); 3703 3704 if (ztest_object_init(zd, od, sizeof (od), !ztest_random(2)) != 0) 3705 return; 3706 3707 if (ztest_truncate(zd, od[0].od_object, offset, count * blocksize) != 0) 3708 return; 3709 3710 ztest_prealloc(zd, od[0].od_object, offset, count * blocksize); 3711 3712 data = umem_zalloc(blocksize, UMEM_NOFAIL); 3713 3714 while (ztest_random(count) != 0) { 3715 uint64_t randoff = offset + (ztest_random(count) * blocksize); 3716 if (ztest_write(zd, od[0].od_object, randoff, blocksize, 3717 data) != 0) 3718 break; 3719 while (ztest_random(4) != 0) 3720 ztest_io(zd, od[0].od_object, randoff); 3721 } 3722 3723 umem_free(data, blocksize); 3724 } 3725 3726 /* 3727 * Verify that zap_{create,destroy,add,remove,update} work as expected. 3728 */ 3729 #define ZTEST_ZAP_MIN_INTS 1 3730 #define ZTEST_ZAP_MAX_INTS 4 3731 #define ZTEST_ZAP_MAX_PROPS 1000 3732 3733 void 3734 ztest_zap(ztest_ds_t *zd, uint64_t id) 3735 { 3736 objset_t *os = zd->zd_os; 3737 ztest_od_t od[1]; 3738 uint64_t object; 3739 uint64_t txg, last_txg; 3740 uint64_t value[ZTEST_ZAP_MAX_INTS]; 3741 uint64_t zl_ints, zl_intsize, prop; 3742 int i, ints; 3743 dmu_tx_t *tx; 3744 char propname[100], txgname[100]; 3745 int error; 3746 char *hc[2] = { "s.acl.h", ".s.open.h.hyLZlg" }; 3747 3748 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_ZAP_OTHER, 0, 0); 3749 3750 if (ztest_object_init(zd, od, sizeof (od), !ztest_random(2)) != 0) 3751 return; 3752 3753 object = od[0].od_object; 3754 3755 /* 3756 * Generate a known hash collision, and verify that 3757 * we can lookup and remove both entries. 3758 */ 3759 tx = dmu_tx_create(os); 3760 dmu_tx_hold_zap(tx, object, B_TRUE, NULL); 3761 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); 3762 if (txg == 0) 3763 return; 3764 for (i = 0; i < 2; i++) { 3765 value[i] = i; 3766 VERIFY3U(0, ==, zap_add(os, object, hc[i], sizeof (uint64_t), 3767 1, &value[i], tx)); 3768 } 3769 for (i = 0; i < 2; i++) { 3770 VERIFY3U(EEXIST, ==, zap_add(os, object, hc[i], 3771 sizeof (uint64_t), 1, &value[i], tx)); 3772 VERIFY3U(0, ==, 3773 zap_length(os, object, hc[i], &zl_intsize, &zl_ints)); 3774 ASSERT3U(zl_intsize, ==, sizeof (uint64_t)); 3775 ASSERT3U(zl_ints, ==, 1); 3776 } 3777 for (i = 0; i < 2; i++) { 3778 VERIFY3U(0, ==, zap_remove(os, object, hc[i], tx)); 3779 } 3780 dmu_tx_commit(tx); 3781 3782 /* 3783 * Generate a buch of random entries. 3784 */ 3785 ints = MAX(ZTEST_ZAP_MIN_INTS, object % ZTEST_ZAP_MAX_INTS); 3786 3787 prop = ztest_random(ZTEST_ZAP_MAX_PROPS); 3788 (void) sprintf(propname, "prop_%llu", (u_longlong_t)prop); 3789 (void) sprintf(txgname, "txg_%llu", (u_longlong_t)prop); 3790 bzero(value, sizeof (value)); 3791 last_txg = 0; 3792 3793 /* 3794 * If these zap entries already exist, validate their contents. 3795 */ 3796 error = zap_length(os, object, txgname, &zl_intsize, &zl_ints); 3797 if (error == 0) { 3798 ASSERT3U(zl_intsize, ==, sizeof (uint64_t)); 3799 ASSERT3U(zl_ints, ==, 1); 3800 3801 VERIFY(zap_lookup(os, object, txgname, zl_intsize, 3802 zl_ints, &last_txg) == 0); 3803 3804 VERIFY(zap_length(os, object, propname, &zl_intsize, 3805 &zl_ints) == 0); 3806 3807 ASSERT3U(zl_intsize, ==, sizeof (uint64_t)); 3808 ASSERT3U(zl_ints, ==, ints); 3809 3810 VERIFY(zap_lookup(os, object, propname, zl_intsize, 3811 zl_ints, value) == 0); 3812 3813 for (i = 0; i < ints; i++) { 3814 ASSERT3U(value[i], ==, last_txg + object + i); 3815 } 3816 } else { 3817 ASSERT3U(error, ==, ENOENT); 3818 } 3819 3820 /* 3821 * Atomically update two entries in our zap object. 3822 * The first is named txg_%llu, and contains the txg 3823 * in which the property was last updated. The second 3824 * is named prop_%llu, and the nth element of its value 3825 * should be txg + object + n. 3826 */ 3827 tx = dmu_tx_create(os); 3828 dmu_tx_hold_zap(tx, object, B_TRUE, NULL); 3829 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); 3830 if (txg == 0) 3831 return; 3832 3833 if (last_txg > txg) 3834 fatal(0, "zap future leak: old %llu new %llu", last_txg, txg); 3835 3836 for (i = 0; i < ints; i++) 3837 value[i] = txg + object + i; 3838 3839 VERIFY3U(0, ==, zap_update(os, object, txgname, sizeof (uint64_t), 3840 1, &txg, tx)); 3841 VERIFY3U(0, ==, zap_update(os, object, propname, sizeof (uint64_t), 3842 ints, value, tx)); 3843 3844 dmu_tx_commit(tx); 3845 3846 /* 3847 * Remove a random pair of entries. 3848 */ 3849 prop = ztest_random(ZTEST_ZAP_MAX_PROPS); 3850 (void) sprintf(propname, "prop_%llu", (u_longlong_t)prop); 3851 (void) sprintf(txgname, "txg_%llu", (u_longlong_t)prop); 3852 3853 error = zap_length(os, object, txgname, &zl_intsize, &zl_ints); 3854 3855 if (error == ENOENT) 3856 return; 3857 3858 ASSERT3U(error, ==, 0); 3859 3860 tx = dmu_tx_create(os); 3861 dmu_tx_hold_zap(tx, object, B_TRUE, NULL); 3862 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); 3863 if (txg == 0) 3864 return; 3865 VERIFY3U(0, ==, zap_remove(os, object, txgname, tx)); 3866 VERIFY3U(0, ==, zap_remove(os, object, propname, tx)); 3867 dmu_tx_commit(tx); 3868 } 3869 3870 /* 3871 * Testcase to test the upgrading of a microzap to fatzap. 3872 */ 3873 void 3874 ztest_fzap(ztest_ds_t *zd, uint64_t id) 3875 { 3876 objset_t *os = zd->zd_os; 3877 ztest_od_t od[1]; 3878 uint64_t object, txg; 3879 3880 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_ZAP_OTHER, 0, 0); 3881 3882 if (ztest_object_init(zd, od, sizeof (od), !ztest_random(2)) != 0) 3883 return; 3884 3885 object = od[0].od_object; 3886 3887 /* 3888 * Add entries to this ZAP and make sure it spills over 3889 * and gets upgraded to a fatzap. Also, since we are adding 3890 * 2050 entries we should see ptrtbl growth and leaf-block split. 3891 */ 3892 for (int i = 0; i < 2050; i++) { 3893 char name[MAXNAMELEN]; 3894 uint64_t value = i; 3895 dmu_tx_t *tx; 3896 int error; 3897 3898 (void) snprintf(name, sizeof (name), "fzap-%llu-%llu", 3899 id, value); 3900 3901 tx = dmu_tx_create(os); 3902 dmu_tx_hold_zap(tx, object, B_TRUE, name); 3903 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); 3904 if (txg == 0) 3905 return; 3906 error = zap_add(os, object, name, sizeof (uint64_t), 1, 3907 &value, tx); 3908 ASSERT(error == 0 || error == EEXIST); 3909 dmu_tx_commit(tx); 3910 } 3911 } 3912 3913 /* ARGSUSED */ 3914 void 3915 ztest_zap_parallel(ztest_ds_t *zd, uint64_t id) 3916 { 3917 objset_t *os = zd->zd_os; 3918 ztest_od_t od[1]; 3919 uint64_t txg, object, count, wsize, wc, zl_wsize, zl_wc; 3920 dmu_tx_t *tx; 3921 int i, namelen, error; 3922 int micro = ztest_random(2); 3923 char name[20], string_value[20]; 3924 void *data; 3925 3926 ztest_od_init(&od[0], ID_PARALLEL, FTAG, micro, DMU_OT_ZAP_OTHER, 0, 0); 3927 3928 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0) 3929 return; 3930 3931 object = od[0].od_object; 3932 3933 /* 3934 * Generate a random name of the form 'xxx.....' where each 3935 * x is a random printable character and the dots are dots. 3936 * There are 94 such characters, and the name length goes from 3937 * 6 to 20, so there are 94^3 * 15 = 12,458,760 possible names. 3938 */ 3939 namelen = ztest_random(sizeof (name) - 5) + 5 + 1; 3940 3941 for (i = 0; i < 3; i++) 3942 name[i] = '!' + ztest_random('~' - '!' + 1); 3943 for (; i < namelen - 1; i++) 3944 name[i] = '.'; 3945 name[i] = '\0'; 3946 3947 if ((namelen & 1) || micro) { 3948 wsize = sizeof (txg); 3949 wc = 1; 3950 data = &txg; 3951 } else { 3952 wsize = 1; 3953 wc = namelen; 3954 data = string_value; 3955 } 3956 3957 count = -1ULL; 3958 VERIFY(zap_count(os, object, &count) == 0); 3959 ASSERT(count != -1ULL); 3960 3961 /* 3962 * Select an operation: length, lookup, add, update, remove. 3963 */ 3964 i = ztest_random(5); 3965 3966 if (i >= 2) { 3967 tx = dmu_tx_create(os); 3968 dmu_tx_hold_zap(tx, object, B_TRUE, NULL); 3969 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); 3970 if (txg == 0) 3971 return; 3972 bcopy(name, string_value, namelen); 3973 } else { 3974 tx = NULL; 3975 txg = 0; 3976 bzero(string_value, namelen); 3977 } 3978 3979 switch (i) { 3980 3981 case 0: 3982 error = zap_length(os, object, name, &zl_wsize, &zl_wc); 3983 if (error == 0) { 3984 ASSERT3U(wsize, ==, zl_wsize); 3985 ASSERT3U(wc, ==, zl_wc); 3986 } else { 3987 ASSERT3U(error, ==, ENOENT); 3988 } 3989 break; 3990 3991 case 1: 3992 error = zap_lookup(os, object, name, wsize, wc, data); 3993 if (error == 0) { 3994 if (data == string_value && 3995 bcmp(name, data, namelen) != 0) 3996 fatal(0, "name '%s' != val '%s' len %d", 3997 name, data, namelen); 3998 } else { 3999 ASSERT3U(error, ==, ENOENT); 4000 } 4001 break; 4002 4003 case 2: 4004 error = zap_add(os, object, name, wsize, wc, data, tx); 4005 ASSERT(error == 0 || error == EEXIST); 4006 break; 4007 4008 case 3: 4009 VERIFY(zap_update(os, object, name, wsize, wc, data, tx) == 0); 4010 break; 4011 4012 case 4: 4013 error = zap_remove(os, object, name, tx); 4014 ASSERT(error == 0 || error == ENOENT); 4015 break; 4016 } 4017 4018 if (tx != NULL) 4019 dmu_tx_commit(tx); 4020 } 4021 4022 /* 4023 * Commit callback data. 4024 */ 4025 typedef struct ztest_cb_data { 4026 list_node_t zcd_node; 4027 uint64_t zcd_txg; 4028 int zcd_expected_err; 4029 boolean_t zcd_added; 4030 boolean_t zcd_called; 4031 spa_t *zcd_spa; 4032 } ztest_cb_data_t; 4033 4034 /* This is the actual commit callback function */ 4035 static void 4036 ztest_commit_callback(void *arg, int error) 4037 { 4038 ztest_cb_data_t *data = arg; 4039 uint64_t synced_txg; 4040 4041 VERIFY(data != NULL); 4042 VERIFY3S(data->zcd_expected_err, ==, error); 4043 VERIFY(!data->zcd_called); 4044 4045 synced_txg = spa_last_synced_txg(data->zcd_spa); 4046 if (data->zcd_txg > synced_txg) 4047 fatal(0, "commit callback of txg %" PRIu64 " called prematurely" 4048 ", last synced txg = %" PRIu64 "\n", data->zcd_txg, 4049 synced_txg); 4050 4051 data->zcd_called = B_TRUE; 4052 4053 if (error == ECANCELED) { 4054 ASSERT3U(data->zcd_txg, ==, 0); 4055 ASSERT(!data->zcd_added); 4056 4057 /* 4058 * The private callback data should be destroyed here, but 4059 * since we are going to check the zcd_called field after 4060 * dmu_tx_abort(), we will destroy it there. 4061 */ 4062 return; 4063 } 4064 4065 /* Was this callback added to the global callback list? */ 4066 if (!data->zcd_added) 4067 goto out; 4068 4069 ASSERT3U(data->zcd_txg, !=, 0); 4070 4071 /* Remove our callback from the list */ 4072 (void) mutex_lock(&zcl.zcl_callbacks_lock); 4073 list_remove(&zcl.zcl_callbacks, data); 4074 (void) mutex_unlock(&zcl.zcl_callbacks_lock); 4075 4076 out: 4077 umem_free(data, sizeof (ztest_cb_data_t)); 4078 } 4079 4080 /* Allocate and initialize callback data structure */ 4081 static ztest_cb_data_t * 4082 ztest_create_cb_data(objset_t *os, uint64_t txg) 4083 { 4084 ztest_cb_data_t *cb_data; 4085 4086 cb_data = umem_zalloc(sizeof (ztest_cb_data_t), UMEM_NOFAIL); 4087 4088 cb_data->zcd_txg = txg; 4089 cb_data->zcd_spa = dmu_objset_spa(os); 4090 4091 return (cb_data); 4092 } 4093 4094 /* 4095 * If a number of txgs equal to this threshold have been created after a commit 4096 * callback has been registered but not called, then we assume there is an 4097 * implementation bug. 4098 */ 4099 #define ZTEST_COMMIT_CALLBACK_THRESH (TXG_CONCURRENT_STATES + 2) 4100 4101 /* 4102 * Commit callback test. 4103 */ 4104 void 4105 ztest_dmu_commit_callbacks(ztest_ds_t *zd, uint64_t id) 4106 { 4107 objset_t *os = zd->zd_os; 4108 ztest_od_t od[1]; 4109 dmu_tx_t *tx; 4110 ztest_cb_data_t *cb_data[3], *tmp_cb; 4111 uint64_t old_txg, txg; 4112 int i, error; 4113 4114 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0); 4115 4116 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0) 4117 return; 4118 4119 tx = dmu_tx_create(os); 4120 4121 cb_data[0] = ztest_create_cb_data(os, 0); 4122 dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[0]); 4123 4124 dmu_tx_hold_write(tx, od[0].od_object, 0, sizeof (uint64_t)); 4125 4126 /* Every once in a while, abort the transaction on purpose */ 4127 if (ztest_random(100) == 0) 4128 error = -1; 4129 4130 if (!error) 4131 error = dmu_tx_assign(tx, TXG_NOWAIT); 4132 4133 txg = error ? 0 : dmu_tx_get_txg(tx); 4134 4135 cb_data[0]->zcd_txg = txg; 4136 cb_data[1] = ztest_create_cb_data(os, txg); 4137 dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[1]); 4138 4139 if (error) { 4140 /* 4141 * It's not a strict requirement to call the registered 4142 * callbacks from inside dmu_tx_abort(), but that's what 4143 * it's supposed to happen in the current implementation 4144 * so we will check for that. 4145 */ 4146 for (i = 0; i < 2; i++) { 4147 cb_data[i]->zcd_expected_err = ECANCELED; 4148 VERIFY(!cb_data[i]->zcd_called); 4149 } 4150 4151 dmu_tx_abort(tx); 4152 4153 for (i = 0; i < 2; i++) { 4154 VERIFY(cb_data[i]->zcd_called); 4155 umem_free(cb_data[i], sizeof (ztest_cb_data_t)); 4156 } 4157 4158 return; 4159 } 4160 4161 cb_data[2] = ztest_create_cb_data(os, txg); 4162 dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[2]); 4163 4164 /* 4165 * Read existing data to make sure there isn't a future leak. 4166 */ 4167 VERIFY(0 == dmu_read(os, od[0].od_object, 0, sizeof (uint64_t), 4168 &old_txg, DMU_READ_PREFETCH)); 4169 4170 if (old_txg > txg) 4171 fatal(0, "future leak: got %" PRIu64 ", open txg is %" PRIu64, 4172 old_txg, txg); 4173 4174 dmu_write(os, od[0].od_object, 0, sizeof (uint64_t), &txg, tx); 4175 4176 (void) mutex_lock(&zcl.zcl_callbacks_lock); 4177 4178 /* 4179 * Since commit callbacks don't have any ordering requirement and since 4180 * it is theoretically possible for a commit callback to be called 4181 * after an arbitrary amount of time has elapsed since its txg has been 4182 * synced, it is difficult to reliably determine whether a commit 4183 * callback hasn't been called due to high load or due to a flawed 4184 * implementation. 4185 * 4186 * In practice, we will assume that if after a certain number of txgs a 4187 * commit callback hasn't been called, then most likely there's an 4188 * implementation bug.. 4189 */ 4190 tmp_cb = list_head(&zcl.zcl_callbacks); 4191 if (tmp_cb != NULL && 4192 tmp_cb->zcd_txg > txg - ZTEST_COMMIT_CALLBACK_THRESH) { 4193 fatal(0, "Commit callback threshold exceeded, oldest txg: %" 4194 PRIu64 ", open txg: %" PRIu64 "\n", tmp_cb->zcd_txg, txg); 4195 } 4196 4197 /* 4198 * Let's find the place to insert our callbacks. 4199 * 4200 * Even though the list is ordered by txg, it is possible for the 4201 * insertion point to not be the end because our txg may already be 4202 * quiescing at this point and other callbacks in the open txg 4203 * (from other objsets) may have sneaked in. 4204 */ 4205 tmp_cb = list_tail(&zcl.zcl_callbacks); 4206 while (tmp_cb != NULL && tmp_cb->zcd_txg > txg) 4207 tmp_cb = list_prev(&zcl.zcl_callbacks, tmp_cb); 4208 4209 /* Add the 3 callbacks to the list */ 4210 for (i = 0; i < 3; i++) { 4211 if (tmp_cb == NULL) 4212 list_insert_head(&zcl.zcl_callbacks, cb_data[i]); 4213 else 4214 list_insert_after(&zcl.zcl_callbacks, tmp_cb, 4215 cb_data[i]); 4216 4217 cb_data[i]->zcd_added = B_TRUE; 4218 VERIFY(!cb_data[i]->zcd_called); 4219 4220 tmp_cb = cb_data[i]; 4221 } 4222 4223 (void) mutex_unlock(&zcl.zcl_callbacks_lock); 4224 4225 dmu_tx_commit(tx); 4226 } 4227 4228 /* ARGSUSED */ 4229 void 4230 ztest_dsl_prop_get_set(ztest_ds_t *zd, uint64_t id) 4231 { 4232 zfs_prop_t proplist[] = { 4233 ZFS_PROP_CHECKSUM, 4234 ZFS_PROP_COMPRESSION, 4235 ZFS_PROP_COPIES, 4236 ZFS_PROP_DEDUP 4237 }; 4238 ztest_shared_t *zs = ztest_shared; 4239 4240 (void) rw_rdlock(&zs->zs_name_lock); 4241 4242 for (int p = 0; p < sizeof (proplist) / sizeof (proplist[0]); p++) 4243 (void) ztest_dsl_prop_set_uint64(zd->zd_name, proplist[p], 4244 ztest_random_dsl_prop(proplist[p]), (int)ztest_random(2)); 4245 4246 (void) rw_unlock(&zs->zs_name_lock); 4247 } 4248 4249 /* ARGSUSED */ 4250 void 4251 ztest_spa_prop_get_set(ztest_ds_t *zd, uint64_t id) 4252 { 4253 ztest_shared_t *zs = ztest_shared; 4254 nvlist_t *props = NULL; 4255 4256 (void) rw_rdlock(&zs->zs_name_lock); 4257 4258 (void) ztest_spa_prop_set_uint64(zs, ZPOOL_PROP_DEDUPDITTO, 4259 ZIO_DEDUPDITTO_MIN + ztest_random(ZIO_DEDUPDITTO_MIN)); 4260 4261 VERIFY3U(spa_prop_get(zs->zs_spa, &props), ==, 0); 4262 4263 if (zopt_verbose >= 6) 4264 dump_nvlist(props, 4); 4265 4266 nvlist_free(props); 4267 4268 (void) rw_unlock(&zs->zs_name_lock); 4269 } 4270 4271 /* 4272 * Test snapshot hold/release and deferred destroy. 4273 */ 4274 void 4275 ztest_dmu_snapshot_hold(ztest_ds_t *zd, uint64_t id) 4276 { 4277 int error; 4278 objset_t *os = zd->zd_os; 4279 objset_t *origin; 4280 char snapname[100]; 4281 char fullname[100]; 4282 char clonename[100]; 4283 char tag[100]; 4284 char osname[MAXNAMELEN]; 4285 4286 (void) rw_rdlock(&ztest_shared->zs_name_lock); 4287 4288 dmu_objset_name(os, osname); 4289 4290 (void) snprintf(snapname, 100, "sh1_%llu", id); 4291 (void) snprintf(fullname, 100, "%s@%s", osname, snapname); 4292 (void) snprintf(clonename, 100, "%s/ch1_%llu", osname, id); 4293 (void) snprintf(tag, 100, "%tag_%llu", id); 4294 4295 /* 4296 * Clean up from any previous run. 4297 */ 4298 (void) dmu_objset_destroy(clonename, B_FALSE); 4299 (void) dsl_dataset_user_release(osname, snapname, tag, B_FALSE); 4300 (void) dmu_objset_destroy(fullname, B_FALSE); 4301 4302 /* 4303 * Create snapshot, clone it, mark snap for deferred destroy, 4304 * destroy clone, verify snap was also destroyed. 4305 */ 4306 error = dmu_objset_snapshot(osname, snapname, NULL, FALSE); 4307 if (error) { 4308 if (error == ENOSPC) { 4309 ztest_record_enospc("dmu_objset_snapshot"); 4310 goto out; 4311 } 4312 fatal(0, "dmu_objset_snapshot(%s) = %d", fullname, error); 4313 } 4314 4315 error = dmu_objset_hold(fullname, FTAG, &origin); 4316 if (error) 4317 fatal(0, "dmu_objset_hold(%s) = %d", fullname, error); 4318 4319 error = dmu_objset_clone(clonename, dmu_objset_ds(origin), 0); 4320 dmu_objset_rele(origin, FTAG); 4321 if (error) { 4322 if (error == ENOSPC) { 4323 ztest_record_enospc("dmu_objset_clone"); 4324 goto out; 4325 } 4326 fatal(0, "dmu_objset_clone(%s) = %d", clonename, error); 4327 } 4328 4329 error = dmu_objset_destroy(fullname, B_TRUE); 4330 if (error) { 4331 fatal(0, "dmu_objset_destroy(%s, B_TRUE) = %d", 4332 fullname, error); 4333 } 4334 4335 error = dmu_objset_destroy(clonename, B_FALSE); 4336 if (error) 4337 fatal(0, "dmu_objset_destroy(%s) = %d", clonename, error); 4338 4339 error = dmu_objset_hold(fullname, FTAG, &origin); 4340 if (error != ENOENT) 4341 fatal(0, "dmu_objset_hold(%s) = %d", fullname, error); 4342 4343 /* 4344 * Create snapshot, add temporary hold, verify that we can't 4345 * destroy a held snapshot, mark for deferred destroy, 4346 * release hold, verify snapshot was destroyed. 4347 */ 4348 error = dmu_objset_snapshot(osname, snapname, NULL, FALSE); 4349 if (error) { 4350 if (error == ENOSPC) { 4351 ztest_record_enospc("dmu_objset_snapshot"); 4352 goto out; 4353 } 4354 fatal(0, "dmu_objset_snapshot(%s) = %d", fullname, error); 4355 } 4356 4357 error = dsl_dataset_user_hold(osname, snapname, tag, B_FALSE, B_TRUE); 4358 if (error) 4359 fatal(0, "dsl_dataset_user_hold(%s)", fullname, tag); 4360 4361 error = dmu_objset_destroy(fullname, B_FALSE); 4362 if (error != EBUSY) { 4363 fatal(0, "dmu_objset_destroy(%s, B_FALSE) = %d", 4364 fullname, error); 4365 } 4366 4367 error = dmu_objset_destroy(fullname, B_TRUE); 4368 if (error) { 4369 fatal(0, "dmu_objset_destroy(%s, B_TRUE) = %d", 4370 fullname, error); 4371 } 4372 4373 error = dsl_dataset_user_release(osname, snapname, tag, B_FALSE); 4374 if (error) 4375 fatal(0, "dsl_dataset_user_release(%s)", fullname, tag); 4376 4377 VERIFY(dmu_objset_hold(fullname, FTAG, &origin) == ENOENT); 4378 4379 out: 4380 (void) rw_unlock(&ztest_shared->zs_name_lock); 4381 } 4382 4383 /* 4384 * Inject random faults into the on-disk data. 4385 */ 4386 /* ARGSUSED */ 4387 void 4388 ztest_fault_inject(ztest_ds_t *zd, uint64_t id) 4389 { 4390 ztest_shared_t *zs = ztest_shared; 4391 spa_t *spa = zs->zs_spa; 4392 int fd; 4393 uint64_t offset; 4394 uint64_t leaves; 4395 uint64_t bad = 0x1990c0ffeedecade; 4396 uint64_t top, leaf; 4397 char path0[MAXPATHLEN]; 4398 char pathrand[MAXPATHLEN]; 4399 size_t fsize; 4400 int bshift = SPA_MAXBLOCKSHIFT + 2; /* don't scrog all labels */ 4401 int iters = 1000; 4402 int maxfaults; 4403 int mirror_save; 4404 vdev_t *vd0 = NULL; 4405 uint64_t guid0 = 0; 4406 boolean_t islog = B_FALSE; 4407 4408 VERIFY(mutex_lock(&zs->zs_vdev_lock) == 0); 4409 maxfaults = MAXFAULTS(); 4410 leaves = MAX(zs->zs_mirrors, 1) * zopt_raidz; 4411 mirror_save = zs->zs_mirrors; 4412 VERIFY(mutex_unlock(&zs->zs_vdev_lock) == 0); 4413 4414 ASSERT(leaves >= 1); 4415 4416 /* 4417 * We need SCL_STATE here because we're going to look at vd0->vdev_tsd. 4418 */ 4419 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 4420 4421 if (ztest_random(2) == 0) { 4422 /* 4423 * Inject errors on a normal data device or slog device. 4424 */ 4425 top = ztest_random_vdev_top(spa, B_TRUE); 4426 leaf = ztest_random(leaves) + zs->zs_splits; 4427 4428 /* 4429 * Generate paths to the first leaf in this top-level vdev, 4430 * and to the random leaf we selected. We'll induce transient 4431 * write failures and random online/offline activity on leaf 0, 4432 * and we'll write random garbage to the randomly chosen leaf. 4433 */ 4434 (void) snprintf(path0, sizeof (path0), ztest_dev_template, 4435 zopt_dir, zopt_pool, top * leaves + zs->zs_splits); 4436 (void) snprintf(pathrand, sizeof (pathrand), ztest_dev_template, 4437 zopt_dir, zopt_pool, top * leaves + leaf); 4438 4439 vd0 = vdev_lookup_by_path(spa->spa_root_vdev, path0); 4440 if (vd0 != NULL && vd0->vdev_top->vdev_islog) 4441 islog = B_TRUE; 4442 4443 if (vd0 != NULL && maxfaults != 1) { 4444 /* 4445 * Make vd0 explicitly claim to be unreadable, 4446 * or unwriteable, or reach behind its back 4447 * and close the underlying fd. We can do this if 4448 * maxfaults == 0 because we'll fail and reexecute, 4449 * and we can do it if maxfaults >= 2 because we'll 4450 * have enough redundancy. If maxfaults == 1, the 4451 * combination of this with injection of random data 4452 * corruption below exceeds the pool's fault tolerance. 4453 */ 4454 vdev_file_t *vf = vd0->vdev_tsd; 4455 4456 if (vf != NULL && ztest_random(3) == 0) { 4457 (void) close(vf->vf_vnode->v_fd); 4458 vf->vf_vnode->v_fd = -1; 4459 } else if (ztest_random(2) == 0) { 4460 vd0->vdev_cant_read = B_TRUE; 4461 } else { 4462 vd0->vdev_cant_write = B_TRUE; 4463 } 4464 guid0 = vd0->vdev_guid; 4465 } 4466 } else { 4467 /* 4468 * Inject errors on an l2cache device. 4469 */ 4470 spa_aux_vdev_t *sav = &spa->spa_l2cache; 4471 4472 if (sav->sav_count == 0) { 4473 spa_config_exit(spa, SCL_STATE, FTAG); 4474 return; 4475 } 4476 vd0 = sav->sav_vdevs[ztest_random(sav->sav_count)]; 4477 guid0 = vd0->vdev_guid; 4478 (void) strcpy(path0, vd0->vdev_path); 4479 (void) strcpy(pathrand, vd0->vdev_path); 4480 4481 leaf = 0; 4482 leaves = 1; 4483 maxfaults = INT_MAX; /* no limit on cache devices */ 4484 } 4485 4486 spa_config_exit(spa, SCL_STATE, FTAG); 4487 4488 /* 4489 * If we can tolerate two or more faults, or we're dealing 4490 * with a slog, randomly online/offline vd0. 4491 */ 4492 if ((maxfaults >= 2 || islog) && guid0 != 0) { 4493 if (ztest_random(10) < 6) { 4494 int flags = (ztest_random(2) == 0 ? 4495 ZFS_OFFLINE_TEMPORARY : 0); 4496 4497 /* 4498 * We have to grab the zs_name_lock as writer to 4499 * prevent a race between offlining a slog and 4500 * destroying a dataset. Offlining the slog will 4501 * grab a reference on the dataset which may cause 4502 * dmu_objset_destroy() to fail with EBUSY thus 4503 * leaving the dataset in an inconsistent state. 4504 */ 4505 if (islog) 4506 (void) rw_wrlock(&ztest_shared->zs_name_lock); 4507 4508 VERIFY(vdev_offline(spa, guid0, flags) != EBUSY); 4509 4510 if (islog) 4511 (void) rw_unlock(&ztest_shared->zs_name_lock); 4512 } else { 4513 (void) vdev_online(spa, guid0, 0, NULL); 4514 } 4515 } 4516 4517 if (maxfaults == 0) 4518 return; 4519 4520 /* 4521 * We have at least single-fault tolerance, so inject data corruption. 4522 */ 4523 fd = open(pathrand, O_RDWR); 4524 4525 if (fd == -1) /* we hit a gap in the device namespace */ 4526 return; 4527 4528 fsize = lseek(fd, 0, SEEK_END); 4529 4530 while (--iters != 0) { 4531 offset = ztest_random(fsize / (leaves << bshift)) * 4532 (leaves << bshift) + (leaf << bshift) + 4533 (ztest_random(1ULL << (bshift - 1)) & -8ULL); 4534 4535 if (offset >= fsize) 4536 continue; 4537 4538 VERIFY(mutex_lock(&zs->zs_vdev_lock) == 0); 4539 if (mirror_save != zs->zs_mirrors) { 4540 VERIFY(mutex_unlock(&zs->zs_vdev_lock) == 0); 4541 (void) close(fd); 4542 return; 4543 } 4544 4545 if (pwrite(fd, &bad, sizeof (bad), offset) != sizeof (bad)) 4546 fatal(1, "can't inject bad word at 0x%llx in %s", 4547 offset, pathrand); 4548 4549 VERIFY(mutex_unlock(&zs->zs_vdev_lock) == 0); 4550 4551 if (zopt_verbose >= 7) 4552 (void) printf("injected bad word into %s," 4553 " offset 0x%llx\n", pathrand, (u_longlong_t)offset); 4554 } 4555 4556 (void) close(fd); 4557 } 4558 4559 /* 4560 * Verify that DDT repair works as expected. 4561 */ 4562 void 4563 ztest_ddt_repair(ztest_ds_t *zd, uint64_t id) 4564 { 4565 ztest_shared_t *zs = ztest_shared; 4566 spa_t *spa = zs->zs_spa; 4567 objset_t *os = zd->zd_os; 4568 ztest_od_t od[1]; 4569 uint64_t object, blocksize, txg, pattern, psize; 4570 enum zio_checksum checksum = spa_dedup_checksum(spa); 4571 dmu_buf_t *db; 4572 dmu_tx_t *tx; 4573 void *buf; 4574 blkptr_t blk; 4575 int copies = 2 * ZIO_DEDUPDITTO_MIN; 4576 4577 blocksize = ztest_random_blocksize(); 4578 blocksize = MIN(blocksize, 2048); /* because we write so many */ 4579 4580 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0); 4581 4582 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0) 4583 return; 4584 4585 /* 4586 * Take the name lock as writer to prevent anyone else from changing 4587 * the pool and dataset properies we need to maintain during this test. 4588 */ 4589 (void) rw_wrlock(&zs->zs_name_lock); 4590 4591 if (ztest_dsl_prop_set_uint64(zd->zd_name, ZFS_PROP_DEDUP, checksum, 4592 B_FALSE) != 0 || 4593 ztest_dsl_prop_set_uint64(zd->zd_name, ZFS_PROP_COPIES, 1, 4594 B_FALSE) != 0) { 4595 (void) rw_unlock(&zs->zs_name_lock); 4596 return; 4597 } 4598 4599 object = od[0].od_object; 4600 blocksize = od[0].od_blocksize; 4601 pattern = spa_guid(spa) ^ dmu_objset_fsid_guid(os); 4602 4603 ASSERT(object != 0); 4604 4605 tx = dmu_tx_create(os); 4606 dmu_tx_hold_write(tx, object, 0, copies * blocksize); 4607 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); 4608 if (txg == 0) { 4609 (void) rw_unlock(&zs->zs_name_lock); 4610 return; 4611 } 4612 4613 /* 4614 * Write all the copies of our block. 4615 */ 4616 for (int i = 0; i < copies; i++) { 4617 uint64_t offset = i * blocksize; 4618 VERIFY(dmu_buf_hold(os, object, offset, FTAG, &db, 4619 DMU_READ_NO_PREFETCH) == 0); 4620 ASSERT(db->db_offset == offset); 4621 ASSERT(db->db_size == blocksize); 4622 ASSERT(ztest_pattern_match(db->db_data, db->db_size, pattern) || 4623 ztest_pattern_match(db->db_data, db->db_size, 0ULL)); 4624 dmu_buf_will_fill(db, tx); 4625 ztest_pattern_set(db->db_data, db->db_size, pattern); 4626 dmu_buf_rele(db, FTAG); 4627 } 4628 4629 dmu_tx_commit(tx); 4630 txg_wait_synced(spa_get_dsl(spa), txg); 4631 4632 /* 4633 * Find out what block we got. 4634 */ 4635 VERIFY(dmu_buf_hold(os, object, 0, FTAG, &db, 4636 DMU_READ_NO_PREFETCH) == 0); 4637 blk = *((dmu_buf_impl_t *)db)->db_blkptr; 4638 dmu_buf_rele(db, FTAG); 4639 4640 /* 4641 * Damage the block. Dedup-ditto will save us when we read it later. 4642 */ 4643 psize = BP_GET_PSIZE(&blk); 4644 buf = zio_buf_alloc(psize); 4645 ztest_pattern_set(buf, psize, ~pattern); 4646 4647 (void) zio_wait(zio_rewrite(NULL, spa, 0, &blk, 4648 buf, psize, NULL, NULL, ZIO_PRIORITY_SYNC_WRITE, 4649 ZIO_FLAG_CANFAIL | ZIO_FLAG_INDUCE_DAMAGE, NULL)); 4650 4651 zio_buf_free(buf, psize); 4652 4653 (void) rw_unlock(&zs->zs_name_lock); 4654 } 4655 4656 /* 4657 * Scrub the pool. 4658 */ 4659 /* ARGSUSED */ 4660 void 4661 ztest_scrub(ztest_ds_t *zd, uint64_t id) 4662 { 4663 ztest_shared_t *zs = ztest_shared; 4664 spa_t *spa = zs->zs_spa; 4665 4666 (void) spa_scan(spa, POOL_SCAN_SCRUB); 4667 (void) poll(NULL, 0, 100); /* wait a moment, then force a restart */ 4668 (void) spa_scan(spa, POOL_SCAN_SCRUB); 4669 } 4670 4671 /* 4672 * Rename the pool to a different name and then rename it back. 4673 */ 4674 /* ARGSUSED */ 4675 void 4676 ztest_spa_rename(ztest_ds_t *zd, uint64_t id) 4677 { 4678 ztest_shared_t *zs = ztest_shared; 4679 char *oldname, *newname; 4680 spa_t *spa; 4681 4682 (void) rw_wrlock(&zs->zs_name_lock); 4683 4684 oldname = zs->zs_pool; 4685 newname = umem_alloc(strlen(oldname) + 5, UMEM_NOFAIL); 4686 (void) strcpy(newname, oldname); 4687 (void) strcat(newname, "_tmp"); 4688 4689 /* 4690 * Do the rename 4691 */ 4692 VERIFY3U(0, ==, spa_rename(oldname, newname)); 4693 4694 /* 4695 * Try to open it under the old name, which shouldn't exist 4696 */ 4697 VERIFY3U(ENOENT, ==, spa_open(oldname, &spa, FTAG)); 4698 4699 /* 4700 * Open it under the new name and make sure it's still the same spa_t. 4701 */ 4702 VERIFY3U(0, ==, spa_open(newname, &spa, FTAG)); 4703 4704 ASSERT(spa == zs->zs_spa); 4705 spa_close(spa, FTAG); 4706 4707 /* 4708 * Rename it back to the original 4709 */ 4710 VERIFY3U(0, ==, spa_rename(newname, oldname)); 4711 4712 /* 4713 * Make sure it can still be opened 4714 */ 4715 VERIFY3U(0, ==, spa_open(oldname, &spa, FTAG)); 4716 4717 ASSERT(spa == zs->zs_spa); 4718 spa_close(spa, FTAG); 4719 4720 umem_free(newname, strlen(newname) + 1); 4721 4722 (void) rw_unlock(&zs->zs_name_lock); 4723 } 4724 4725 /* 4726 * Verify pool integrity by running zdb. 4727 */ 4728 static void 4729 ztest_run_zdb(char *pool) 4730 { 4731 int status; 4732 char zdb[MAXPATHLEN + MAXNAMELEN + 20]; 4733 char zbuf[1024]; 4734 char *bin; 4735 char *ztest; 4736 char *isa; 4737 int isalen; 4738 FILE *fp; 4739 4740 (void) realpath(getexecname(), zdb); 4741 4742 /* zdb lives in /usr/sbin, while ztest lives in /usr/bin */ 4743 bin = strstr(zdb, "/usr/bin/"); 4744 ztest = strstr(bin, "/ztest"); 4745 isa = bin + 8; 4746 isalen = ztest - isa; 4747 isa = strdup(isa); 4748 /* LINTED */ 4749 (void) sprintf(bin, 4750 "/usr/sbin%.*s/zdb -bcc%s%s -U %s %s", 4751 isalen, 4752 isa, 4753 zopt_verbose >= 3 ? "s" : "", 4754 zopt_verbose >= 4 ? "v" : "", 4755 spa_config_path, 4756 pool); 4757 free(isa); 4758 4759 if (zopt_verbose >= 5) 4760 (void) printf("Executing %s\n", strstr(zdb, "zdb ")); 4761 4762 fp = popen(zdb, "r"); 4763 4764 while (fgets(zbuf, sizeof (zbuf), fp) != NULL) 4765 if (zopt_verbose >= 3) 4766 (void) printf("%s", zbuf); 4767 4768 status = pclose(fp); 4769 4770 if (status == 0) 4771 return; 4772 4773 ztest_dump_core = 0; 4774 if (WIFEXITED(status)) 4775 fatal(0, "'%s' exit code %d", zdb, WEXITSTATUS(status)); 4776 else 4777 fatal(0, "'%s' died with signal %d", zdb, WTERMSIG(status)); 4778 } 4779 4780 static void 4781 ztest_walk_pool_directory(char *header) 4782 { 4783 spa_t *spa = NULL; 4784 4785 if (zopt_verbose >= 6) 4786 (void) printf("%s\n", header); 4787 4788 mutex_enter(&spa_namespace_lock); 4789 while ((spa = spa_next(spa)) != NULL) 4790 if (zopt_verbose >= 6) 4791 (void) printf("\t%s\n", spa_name(spa)); 4792 mutex_exit(&spa_namespace_lock); 4793 } 4794 4795 static void 4796 ztest_spa_import_export(char *oldname, char *newname) 4797 { 4798 nvlist_t *config, *newconfig; 4799 uint64_t pool_guid; 4800 spa_t *spa; 4801 4802 if (zopt_verbose >= 4) { 4803 (void) printf("import/export: old = %s, new = %s\n", 4804 oldname, newname); 4805 } 4806 4807 /* 4808 * Clean up from previous runs. 4809 */ 4810 (void) spa_destroy(newname); 4811 4812 /* 4813 * Get the pool's configuration and guid. 4814 */ 4815 VERIFY3U(0, ==, spa_open(oldname, &spa, FTAG)); 4816 4817 /* 4818 * Kick off a scrub to tickle scrub/export races. 4819 */ 4820 if (ztest_random(2) == 0) 4821 (void) spa_scan(spa, POOL_SCAN_SCRUB); 4822 4823 pool_guid = spa_guid(spa); 4824 spa_close(spa, FTAG); 4825 4826 ztest_walk_pool_directory("pools before export"); 4827 4828 /* 4829 * Export it. 4830 */ 4831 VERIFY3U(0, ==, spa_export(oldname, &config, B_FALSE, B_FALSE)); 4832 4833 ztest_walk_pool_directory("pools after export"); 4834 4835 /* 4836 * Try to import it. 4837 */ 4838 newconfig = spa_tryimport(config); 4839 ASSERT(newconfig != NULL); 4840 nvlist_free(newconfig); 4841 4842 /* 4843 * Import it under the new name. 4844 */ 4845 VERIFY3U(0, ==, spa_import(newname, config, NULL)); 4846 4847 ztest_walk_pool_directory("pools after import"); 4848 4849 /* 4850 * Try to import it again -- should fail with EEXIST. 4851 */ 4852 VERIFY3U(EEXIST, ==, spa_import(newname, config, NULL)); 4853 4854 /* 4855 * Try to import it under a different name -- should fail with EEXIST. 4856 */ 4857 VERIFY3U(EEXIST, ==, spa_import(oldname, config, NULL)); 4858 4859 /* 4860 * Verify that the pool is no longer visible under the old name. 4861 */ 4862 VERIFY3U(ENOENT, ==, spa_open(oldname, &spa, FTAG)); 4863 4864 /* 4865 * Verify that we can open and close the pool using the new name. 4866 */ 4867 VERIFY3U(0, ==, spa_open(newname, &spa, FTAG)); 4868 ASSERT(pool_guid == spa_guid(spa)); 4869 spa_close(spa, FTAG); 4870 4871 nvlist_free(config); 4872 } 4873 4874 static void 4875 ztest_resume(spa_t *spa) 4876 { 4877 if (spa_suspended(spa) && zopt_verbose >= 6) 4878 (void) printf("resuming from suspended state\n"); 4879 spa_vdev_state_enter(spa, SCL_NONE); 4880 vdev_clear(spa, NULL); 4881 (void) spa_vdev_state_exit(spa, NULL, 0); 4882 (void) zio_resume(spa); 4883 } 4884 4885 static void * 4886 ztest_resume_thread(void *arg) 4887 { 4888 spa_t *spa = arg; 4889 4890 while (!ztest_exiting) { 4891 if (spa_suspended(spa)) 4892 ztest_resume(spa); 4893 (void) poll(NULL, 0, 100); 4894 } 4895 return (NULL); 4896 } 4897 4898 static void * 4899 ztest_deadman_thread(void *arg) 4900 { 4901 ztest_shared_t *zs = arg; 4902 int grace = 300; 4903 hrtime_t delta; 4904 4905 delta = (zs->zs_thread_stop - zs->zs_thread_start) / NANOSEC + grace; 4906 4907 (void) poll(NULL, 0, (int)(1000 * delta)); 4908 4909 fatal(0, "failed to complete within %d seconds of deadline", grace); 4910 4911 return (NULL); 4912 } 4913 4914 static void 4915 ztest_execute(ztest_info_t *zi, uint64_t id) 4916 { 4917 ztest_shared_t *zs = ztest_shared; 4918 ztest_ds_t *zd = &zs->zs_zd[id % zopt_datasets]; 4919 hrtime_t functime = gethrtime(); 4920 4921 for (int i = 0; i < zi->zi_iters; i++) 4922 zi->zi_func(zd, id); 4923 4924 functime = gethrtime() - functime; 4925 4926 atomic_add_64(&zi->zi_call_count, 1); 4927 atomic_add_64(&zi->zi_call_time, functime); 4928 4929 if (zopt_verbose >= 4) { 4930 Dl_info dli; 4931 (void) dladdr((void *)zi->zi_func, &dli); 4932 (void) printf("%6.2f sec in %s\n", 4933 (double)functime / NANOSEC, dli.dli_sname); 4934 } 4935 } 4936 4937 static void * 4938 ztest_thread(void *arg) 4939 { 4940 uint64_t id = (uintptr_t)arg; 4941 ztest_shared_t *zs = ztest_shared; 4942 uint64_t call_next; 4943 hrtime_t now; 4944 ztest_info_t *zi; 4945 4946 while ((now = gethrtime()) < zs->zs_thread_stop) { 4947 /* 4948 * See if it's time to force a crash. 4949 */ 4950 if (now > zs->zs_thread_kill) 4951 ztest_kill(zs); 4952 4953 /* 4954 * If we're getting ENOSPC with some regularity, stop. 4955 */ 4956 if (zs->zs_enospc_count > 10) 4957 break; 4958 4959 /* 4960 * Pick a random function to execute. 4961 */ 4962 zi = &zs->zs_info[ztest_random(ZTEST_FUNCS)]; 4963 call_next = zi->zi_call_next; 4964 4965 if (now >= call_next && 4966 atomic_cas_64(&zi->zi_call_next, call_next, call_next + 4967 ztest_random(2 * zi->zi_interval[0] + 1)) == call_next) 4968 ztest_execute(zi, id); 4969 } 4970 4971 return (NULL); 4972 } 4973 4974 static void 4975 ztest_dataset_name(char *dsname, char *pool, int d) 4976 { 4977 (void) snprintf(dsname, MAXNAMELEN, "%s/ds_%d", pool, d); 4978 } 4979 4980 static void 4981 ztest_dataset_destroy(ztest_shared_t *zs, int d) 4982 { 4983 char name[MAXNAMELEN]; 4984 4985 ztest_dataset_name(name, zs->zs_pool, d); 4986 4987 if (zopt_verbose >= 3) 4988 (void) printf("Destroying %s to free up space\n", name); 4989 4990 /* 4991 * Cleanup any non-standard clones and snapshots. In general, 4992 * ztest thread t operates on dataset (t % zopt_datasets), 4993 * so there may be more than one thing to clean up. 4994 */ 4995 for (int t = d; t < zopt_threads; t += zopt_datasets) 4996 ztest_dsl_dataset_cleanup(name, t); 4997 4998 (void) dmu_objset_find(name, ztest_objset_destroy_cb, NULL, 4999 DS_FIND_SNAPSHOTS | DS_FIND_CHILDREN); 5000 } 5001 5002 static void 5003 ztest_dataset_dirobj_verify(ztest_ds_t *zd) 5004 { 5005 uint64_t usedobjs, dirobjs, scratch; 5006 5007 /* 5008 * ZTEST_DIROBJ is the object directory for the entire dataset. 5009 * Therefore, the number of objects in use should equal the 5010 * number of ZTEST_DIROBJ entries, +1 for ZTEST_DIROBJ itself. 5011 * If not, we have an object leak. 5012 * 5013 * Note that we can only check this in ztest_dataset_open(), 5014 * when the open-context and syncing-context values agree. 5015 * That's because zap_count() returns the open-context value, 5016 * while dmu_objset_space() returns the rootbp fill count. 5017 */ 5018 VERIFY3U(0, ==, zap_count(zd->zd_os, ZTEST_DIROBJ, &dirobjs)); 5019 dmu_objset_space(zd->zd_os, &scratch, &scratch, &usedobjs, &scratch); 5020 ASSERT3U(dirobjs + 1, ==, usedobjs); 5021 } 5022 5023 static int 5024 ztest_dataset_open(ztest_shared_t *zs, int d) 5025 { 5026 ztest_ds_t *zd = &zs->zs_zd[d]; 5027 uint64_t committed_seq = zd->zd_seq; 5028 objset_t *os; 5029 zilog_t *zilog; 5030 char name[MAXNAMELEN]; 5031 int error; 5032 5033 ztest_dataset_name(name, zs->zs_pool, d); 5034 5035 (void) rw_rdlock(&zs->zs_name_lock); 5036 5037 error = ztest_dataset_create(name); 5038 if (error == ENOSPC) { 5039 (void) rw_unlock(&zs->zs_name_lock); 5040 ztest_record_enospc(FTAG); 5041 return (error); 5042 } 5043 ASSERT(error == 0 || error == EEXIST); 5044 5045 VERIFY3U(dmu_objset_hold(name, zd, &os), ==, 0); 5046 (void) rw_unlock(&zs->zs_name_lock); 5047 5048 ztest_zd_init(zd, os); 5049 5050 zilog = zd->zd_zilog; 5051 5052 if (zilog->zl_header->zh_claim_lr_seq != 0 && 5053 zilog->zl_header->zh_claim_lr_seq < committed_seq) 5054 fatal(0, "missing log records: claimed %llu < committed %llu", 5055 zilog->zl_header->zh_claim_lr_seq, committed_seq); 5056 5057 ztest_dataset_dirobj_verify(zd); 5058 5059 zil_replay(os, zd, ztest_replay_vector); 5060 5061 ztest_dataset_dirobj_verify(zd); 5062 5063 if (zopt_verbose >= 6) 5064 (void) printf("%s replay %llu blocks, %llu records, seq %llu\n", 5065 zd->zd_name, 5066 (u_longlong_t)zilog->zl_parse_blk_count, 5067 (u_longlong_t)zilog->zl_parse_lr_count, 5068 (u_longlong_t)zilog->zl_replaying_seq); 5069 5070 zilog = zil_open(os, ztest_get_data); 5071 5072 if (zilog->zl_replaying_seq != 0 && 5073 zilog->zl_replaying_seq < committed_seq) 5074 fatal(0, "missing log records: replayed %llu < committed %llu", 5075 zilog->zl_replaying_seq, committed_seq); 5076 5077 return (0); 5078 } 5079 5080 static void 5081 ztest_dataset_close(ztest_shared_t *zs, int d) 5082 { 5083 ztest_ds_t *zd = &zs->zs_zd[d]; 5084 5085 zil_close(zd->zd_zilog); 5086 dmu_objset_rele(zd->zd_os, zd); 5087 5088 ztest_zd_fini(zd); 5089 } 5090 5091 /* 5092 * Kick off threads to run tests on all datasets in parallel. 5093 */ 5094 static void 5095 ztest_run(ztest_shared_t *zs) 5096 { 5097 thread_t *tid; 5098 spa_t *spa; 5099 thread_t resume_tid; 5100 int error; 5101 5102 ztest_exiting = B_FALSE; 5103 5104 /* 5105 * Initialize parent/child shared state. 5106 */ 5107 VERIFY(_mutex_init(&zs->zs_vdev_lock, USYNC_THREAD, NULL) == 0); 5108 VERIFY(rwlock_init(&zs->zs_name_lock, USYNC_THREAD, NULL) == 0); 5109 5110 zs->zs_thread_start = gethrtime(); 5111 zs->zs_thread_stop = zs->zs_thread_start + zopt_passtime * NANOSEC; 5112 zs->zs_thread_stop = MIN(zs->zs_thread_stop, zs->zs_proc_stop); 5113 zs->zs_thread_kill = zs->zs_thread_stop; 5114 if (ztest_random(100) < zopt_killrate) 5115 zs->zs_thread_kill -= ztest_random(zopt_passtime * NANOSEC); 5116 5117 (void) _mutex_init(&zcl.zcl_callbacks_lock, USYNC_THREAD, NULL); 5118 5119 list_create(&zcl.zcl_callbacks, sizeof (ztest_cb_data_t), 5120 offsetof(ztest_cb_data_t, zcd_node)); 5121 5122 /* 5123 * Open our pool. 5124 */ 5125 kernel_init(FREAD | FWRITE); 5126 VERIFY(spa_open(zs->zs_pool, &spa, FTAG) == 0); 5127 zs->zs_spa = spa; 5128 5129 spa->spa_dedup_ditto = 2 * ZIO_DEDUPDITTO_MIN; 5130 5131 /* 5132 * We don't expect the pool to suspend unless maxfaults == 0, 5133 * in which case ztest_fault_inject() temporarily takes away 5134 * the only valid replica. 5135 */ 5136 if (MAXFAULTS() == 0) 5137 spa->spa_failmode = ZIO_FAILURE_MODE_WAIT; 5138 else 5139 spa->spa_failmode = ZIO_FAILURE_MODE_PANIC; 5140 5141 /* 5142 * Create a thread to periodically resume suspended I/O. 5143 */ 5144 VERIFY(thr_create(0, 0, ztest_resume_thread, spa, THR_BOUND, 5145 &resume_tid) == 0); 5146 5147 /* 5148 * Create a deadman thread to abort() if we hang. 5149 */ 5150 VERIFY(thr_create(0, 0, ztest_deadman_thread, zs, THR_BOUND, 5151 NULL) == 0); 5152 5153 /* 5154 * Verify that we can safely inquire about about any object, 5155 * whether it's allocated or not. To make it interesting, 5156 * we probe a 5-wide window around each power of two. 5157 * This hits all edge cases, including zero and the max. 5158 */ 5159 for (int t = 0; t < 64; t++) { 5160 for (int d = -5; d <= 5; d++) { 5161 error = dmu_object_info(spa->spa_meta_objset, 5162 (1ULL << t) + d, NULL); 5163 ASSERT(error == 0 || error == ENOENT || 5164 error == EINVAL); 5165 } 5166 } 5167 5168 /* 5169 * If we got any ENOSPC errors on the previous run, destroy something. 5170 */ 5171 if (zs->zs_enospc_count != 0) { 5172 int d = ztest_random(zopt_datasets); 5173 ztest_dataset_destroy(zs, d); 5174 } 5175 zs->zs_enospc_count = 0; 5176 5177 tid = umem_zalloc(zopt_threads * sizeof (thread_t), UMEM_NOFAIL); 5178 5179 if (zopt_verbose >= 4) 5180 (void) printf("starting main threads...\n"); 5181 5182 /* 5183 * Kick off all the tests that run in parallel. 5184 */ 5185 for (int t = 0; t < zopt_threads; t++) { 5186 if (t < zopt_datasets && ztest_dataset_open(zs, t) != 0) 5187 return; 5188 VERIFY(thr_create(0, 0, ztest_thread, (void *)(uintptr_t)t, 5189 THR_BOUND, &tid[t]) == 0); 5190 } 5191 5192 /* 5193 * Wait for all of the tests to complete. We go in reverse order 5194 * so we don't close datasets while threads are still using them. 5195 */ 5196 for (int t = zopt_threads - 1; t >= 0; t--) { 5197 VERIFY(thr_join(tid[t], NULL, NULL) == 0); 5198 if (t < zopt_datasets) 5199 ztest_dataset_close(zs, t); 5200 } 5201 5202 txg_wait_synced(spa_get_dsl(spa), 0); 5203 5204 zs->zs_alloc = metaslab_class_get_alloc(spa_normal_class(spa)); 5205 zs->zs_space = metaslab_class_get_space(spa_normal_class(spa)); 5206 5207 umem_free(tid, zopt_threads * sizeof (thread_t)); 5208 5209 /* Kill the resume thread */ 5210 ztest_exiting = B_TRUE; 5211 VERIFY(thr_join(resume_tid, NULL, NULL) == 0); 5212 ztest_resume(spa); 5213 5214 /* 5215 * Right before closing the pool, kick off a bunch of async I/O; 5216 * spa_close() should wait for it to complete. 5217 */ 5218 for (uint64_t object = 1; object < 50; object++) 5219 dmu_prefetch(spa->spa_meta_objset, object, 0, 1ULL << 20); 5220 5221 spa_close(spa, FTAG); 5222 5223 /* 5224 * Verify that we can loop over all pools. 5225 */ 5226 mutex_enter(&spa_namespace_lock); 5227 for (spa = spa_next(NULL); spa != NULL; spa = spa_next(spa)) 5228 if (zopt_verbose > 3) 5229 (void) printf("spa_next: found %s\n", spa_name(spa)); 5230 mutex_exit(&spa_namespace_lock); 5231 5232 /* 5233 * Verify that we can export the pool and reimport it under a 5234 * different name. 5235 */ 5236 if (ztest_random(2) == 0) { 5237 char name[MAXNAMELEN]; 5238 (void) snprintf(name, MAXNAMELEN, "%s_import", zs->zs_pool); 5239 ztest_spa_import_export(zs->zs_pool, name); 5240 ztest_spa_import_export(name, zs->zs_pool); 5241 } 5242 5243 kernel_fini(); 5244 } 5245 5246 static void 5247 ztest_freeze(ztest_shared_t *zs) 5248 { 5249 ztest_ds_t *zd = &zs->zs_zd[0]; 5250 spa_t *spa; 5251 int numloops = 0; 5252 5253 if (zopt_verbose >= 3) 5254 (void) printf("testing spa_freeze()...\n"); 5255 5256 kernel_init(FREAD | FWRITE); 5257 VERIFY3U(0, ==, spa_open(zs->zs_pool, &spa, FTAG)); 5258 VERIFY3U(0, ==, ztest_dataset_open(zs, 0)); 5259 5260 /* 5261 * Force the first log block to be transactionally allocated. 5262 * We have to do this before we freeze the pool -- otherwise 5263 * the log chain won't be anchored. 5264 */ 5265 while (BP_IS_HOLE(&zd->zd_zilog->zl_header->zh_log)) { 5266 ztest_dmu_object_alloc_free(zd, 0); 5267 zil_commit(zd->zd_zilog, UINT64_MAX, 0); 5268 } 5269 5270 txg_wait_synced(spa_get_dsl(spa), 0); 5271 5272 /* 5273 * Freeze the pool. This stops spa_sync() from doing anything, 5274 * so that the only way to record changes from now on is the ZIL. 5275 */ 5276 spa_freeze(spa); 5277 5278 /* 5279 * Run tests that generate log records but don't alter the pool config 5280 * or depend on DSL sync tasks (snapshots, objset create/destroy, etc). 5281 * We do a txg_wait_synced() after each iteration to force the txg 5282 * to increase well beyond the last synced value in the uberblock. 5283 * The ZIL should be OK with that. 5284 */ 5285 while (ztest_random(10) != 0 && numloops++ < zopt_maxloops) { 5286 ztest_dmu_write_parallel(zd, 0); 5287 ztest_dmu_object_alloc_free(zd, 0); 5288 txg_wait_synced(spa_get_dsl(spa), 0); 5289 } 5290 5291 /* 5292 * Commit all of the changes we just generated. 5293 */ 5294 zil_commit(zd->zd_zilog, UINT64_MAX, 0); 5295 txg_wait_synced(spa_get_dsl(spa), 0); 5296 5297 /* 5298 * Close our dataset and close the pool. 5299 */ 5300 ztest_dataset_close(zs, 0); 5301 spa_close(spa, FTAG); 5302 kernel_fini(); 5303 5304 /* 5305 * Open and close the pool and dataset to induce log replay. 5306 */ 5307 kernel_init(FREAD | FWRITE); 5308 VERIFY3U(0, ==, spa_open(zs->zs_pool, &spa, FTAG)); 5309 VERIFY3U(0, ==, ztest_dataset_open(zs, 0)); 5310 ztest_dataset_close(zs, 0); 5311 spa_close(spa, FTAG); 5312 kernel_fini(); 5313 5314 list_destroy(&zcl.zcl_callbacks); 5315 5316 (void) _mutex_destroy(&zcl.zcl_callbacks_lock); 5317 5318 (void) rwlock_destroy(&zs->zs_name_lock); 5319 (void) _mutex_destroy(&zs->zs_vdev_lock); 5320 } 5321 5322 void 5323 print_time(hrtime_t t, char *timebuf) 5324 { 5325 hrtime_t s = t / NANOSEC; 5326 hrtime_t m = s / 60; 5327 hrtime_t h = m / 60; 5328 hrtime_t d = h / 24; 5329 5330 s -= m * 60; 5331 m -= h * 60; 5332 h -= d * 24; 5333 5334 timebuf[0] = '\0'; 5335 5336 if (d) 5337 (void) sprintf(timebuf, 5338 "%llud%02lluh%02llum%02llus", d, h, m, s); 5339 else if (h) 5340 (void) sprintf(timebuf, "%lluh%02llum%02llus", h, m, s); 5341 else if (m) 5342 (void) sprintf(timebuf, "%llum%02llus", m, s); 5343 else 5344 (void) sprintf(timebuf, "%llus", s); 5345 } 5346 5347 static nvlist_t * 5348 make_random_props() 5349 { 5350 nvlist_t *props; 5351 5352 if (ztest_random(2) == 0) 5353 return (NULL); 5354 5355 VERIFY(nvlist_alloc(&props, NV_UNIQUE_NAME, 0) == 0); 5356 VERIFY(nvlist_add_uint64(props, "autoreplace", 1) == 0); 5357 5358 (void) printf("props:\n"); 5359 dump_nvlist(props, 4); 5360 5361 return (props); 5362 } 5363 5364 /* 5365 * Create a storage pool with the given name and initial vdev size. 5366 * Then test spa_freeze() functionality. 5367 */ 5368 static void 5369 ztest_init(ztest_shared_t *zs) 5370 { 5371 spa_t *spa; 5372 nvlist_t *nvroot, *props; 5373 5374 VERIFY(_mutex_init(&zs->zs_vdev_lock, USYNC_THREAD, NULL) == 0); 5375 VERIFY(rwlock_init(&zs->zs_name_lock, USYNC_THREAD, NULL) == 0); 5376 5377 kernel_init(FREAD | FWRITE); 5378 5379 /* 5380 * Create the storage pool. 5381 */ 5382 (void) spa_destroy(zs->zs_pool); 5383 ztest_shared->zs_vdev_next_leaf = 0; 5384 zs->zs_splits = 0; 5385 zs->zs_mirrors = zopt_mirrors; 5386 nvroot = make_vdev_root(NULL, NULL, zopt_vdev_size, 0, 5387 0, zopt_raidz, zs->zs_mirrors, 1); 5388 props = make_random_props(); 5389 VERIFY3U(0, ==, spa_create(zs->zs_pool, nvroot, props, NULL, NULL)); 5390 nvlist_free(nvroot); 5391 5392 VERIFY3U(0, ==, spa_open(zs->zs_pool, &spa, FTAG)); 5393 metaslab_sz = 1ULL << spa->spa_root_vdev->vdev_child[0]->vdev_ms_shift; 5394 spa_close(spa, FTAG); 5395 5396 kernel_fini(); 5397 5398 ztest_run_zdb(zs->zs_pool); 5399 5400 ztest_freeze(zs); 5401 5402 ztest_run_zdb(zs->zs_pool); 5403 } 5404 5405 int 5406 main(int argc, char **argv) 5407 { 5408 int kills = 0; 5409 int iters = 0; 5410 ztest_shared_t *zs; 5411 size_t shared_size; 5412 ztest_info_t *zi; 5413 char timebuf[100]; 5414 char numbuf[6]; 5415 spa_t *spa; 5416 5417 (void) setvbuf(stdout, NULL, _IOLBF, 0); 5418 5419 ztest_random_fd = open("/dev/urandom", O_RDONLY); 5420 5421 process_options(argc, argv); 5422 5423 /* Override location of zpool.cache */ 5424 (void) asprintf((char **)&spa_config_path, "%s/zpool.cache", zopt_dir); 5425 5426 /* 5427 * Blow away any existing copy of zpool.cache 5428 */ 5429 if (zopt_init != 0) 5430 (void) remove(spa_config_path); 5431 5432 shared_size = sizeof (*zs) + zopt_datasets * sizeof (ztest_ds_t); 5433 5434 zs = ztest_shared = (void *)mmap(0, 5435 P2ROUNDUP(shared_size, getpagesize()), 5436 PROT_READ | PROT_WRITE, MAP_SHARED | MAP_ANON, -1, 0); 5437 5438 if (zopt_verbose >= 1) { 5439 (void) printf("%llu vdevs, %d datasets, %d threads," 5440 " %llu seconds...\n", 5441 (u_longlong_t)zopt_vdevs, zopt_datasets, zopt_threads, 5442 (u_longlong_t)zopt_time); 5443 } 5444 5445 /* 5446 * Create and initialize our storage pool. 5447 */ 5448 for (int i = 1; i <= zopt_init; i++) { 5449 bzero(zs, sizeof (ztest_shared_t)); 5450 if (zopt_verbose >= 3 && zopt_init != 1) 5451 (void) printf("ztest_init(), pass %d\n", i); 5452 zs->zs_pool = zopt_pool; 5453 ztest_init(zs); 5454 } 5455 5456 zs->zs_pool = zopt_pool; 5457 zs->zs_proc_start = gethrtime(); 5458 zs->zs_proc_stop = zs->zs_proc_start + zopt_time * NANOSEC; 5459 5460 for (int f = 0; f < ZTEST_FUNCS; f++) { 5461 zi = &zs->zs_info[f]; 5462 *zi = ztest_info[f]; 5463 if (zs->zs_proc_start + zi->zi_interval[0] > zs->zs_proc_stop) 5464 zi->zi_call_next = UINT64_MAX; 5465 else 5466 zi->zi_call_next = zs->zs_proc_start + 5467 ztest_random(2 * zi->zi_interval[0] + 1); 5468 } 5469 5470 /* 5471 * Run the tests in a loop. These tests include fault injection 5472 * to verify that self-healing data works, and forced crashes 5473 * to verify that we never lose on-disk consistency. 5474 */ 5475 while (gethrtime() < zs->zs_proc_stop) { 5476 int status; 5477 pid_t pid; 5478 5479 /* 5480 * Initialize the workload counters for each function. 5481 */ 5482 for (int f = 0; f < ZTEST_FUNCS; f++) { 5483 zi = &zs->zs_info[f]; 5484 zi->zi_call_count = 0; 5485 zi->zi_call_time = 0; 5486 } 5487 5488 /* Set the allocation switch size */ 5489 metaslab_df_alloc_threshold = ztest_random(metaslab_sz / 4) + 1; 5490 5491 pid = fork(); 5492 5493 if (pid == -1) 5494 fatal(1, "fork failed"); 5495 5496 if (pid == 0) { /* child */ 5497 struct rlimit rl = { 1024, 1024 }; 5498 (void) setrlimit(RLIMIT_NOFILE, &rl); 5499 (void) enable_extended_FILE_stdio(-1, -1); 5500 ztest_run(zs); 5501 exit(0); 5502 } 5503 5504 while (waitpid(pid, &status, 0) != pid) 5505 continue; 5506 5507 if (WIFEXITED(status)) { 5508 if (WEXITSTATUS(status) != 0) { 5509 (void) fprintf(stderr, 5510 "child exited with code %d\n", 5511 WEXITSTATUS(status)); 5512 exit(2); 5513 } 5514 } else if (WIFSIGNALED(status)) { 5515 if (WTERMSIG(status) != SIGKILL) { 5516 (void) fprintf(stderr, 5517 "child died with signal %d\n", 5518 WTERMSIG(status)); 5519 exit(3); 5520 } 5521 kills++; 5522 } else { 5523 (void) fprintf(stderr, "something strange happened " 5524 "to child\n"); 5525 exit(4); 5526 } 5527 5528 iters++; 5529 5530 if (zopt_verbose >= 1) { 5531 hrtime_t now = gethrtime(); 5532 5533 now = MIN(now, zs->zs_proc_stop); 5534 print_time(zs->zs_proc_stop - now, timebuf); 5535 nicenum(zs->zs_space, numbuf); 5536 5537 (void) printf("Pass %3d, %8s, %3llu ENOSPC, " 5538 "%4.1f%% of %5s used, %3.0f%% done, %8s to go\n", 5539 iters, 5540 WIFEXITED(status) ? "Complete" : "SIGKILL", 5541 (u_longlong_t)zs->zs_enospc_count, 5542 100.0 * zs->zs_alloc / zs->zs_space, 5543 numbuf, 5544 100.0 * (now - zs->zs_proc_start) / 5545 (zopt_time * NANOSEC), timebuf); 5546 } 5547 5548 if (zopt_verbose >= 2) { 5549 (void) printf("\nWorkload summary:\n\n"); 5550 (void) printf("%7s %9s %s\n", 5551 "Calls", "Time", "Function"); 5552 (void) printf("%7s %9s %s\n", 5553 "-----", "----", "--------"); 5554 for (int f = 0; f < ZTEST_FUNCS; f++) { 5555 Dl_info dli; 5556 5557 zi = &zs->zs_info[f]; 5558 print_time(zi->zi_call_time, timebuf); 5559 (void) dladdr((void *)zi->zi_func, &dli); 5560 (void) printf("%7llu %9s %s\n", 5561 (u_longlong_t)zi->zi_call_count, timebuf, 5562 dli.dli_sname); 5563 } 5564 (void) printf("\n"); 5565 } 5566 5567 /* 5568 * It's possible that we killed a child during a rename test, 5569 * in which case we'll have a 'ztest_tmp' pool lying around 5570 * instead of 'ztest'. Do a blind rename in case this happened. 5571 */ 5572 kernel_init(FREAD); 5573 if (spa_open(zopt_pool, &spa, FTAG) == 0) { 5574 spa_close(spa, FTAG); 5575 } else { 5576 char tmpname[MAXNAMELEN]; 5577 kernel_fini(); 5578 kernel_init(FREAD | FWRITE); 5579 (void) snprintf(tmpname, sizeof (tmpname), "%s_tmp", 5580 zopt_pool); 5581 (void) spa_rename(tmpname, zopt_pool); 5582 } 5583 kernel_fini(); 5584 5585 ztest_run_zdb(zopt_pool); 5586 } 5587 5588 if (zopt_verbose >= 1) { 5589 (void) printf("%d killed, %d completed, %.0f%% kill rate\n", 5590 kills, iters - kills, (100.0 * kills) / MAX(1, iters)); 5591 } 5592 5593 return (0); 5594 } 5595