xref: /titanic_41/usr/src/cmd/zpool/zpool_vdev.c (revision 99653d4ee642c6528e88224f12409a5f23060994)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 /*
30  * Functions to convert between a list of vdevs and an nvlist representing the
31  * configuration.  Each entry in the list can be one of:
32  *
33  * 	Device vdevs
34  * 		disk=(path=..., devid=...)
35  * 		file=(path=...)
36  *
37  * 	Group vdevs
38  * 		raidz[1|2]=(...)
39  * 		mirror=(...)
40  *
41  * 	Hot spares
42  *
43  * While the underlying implementation supports it, group vdevs cannot contain
44  * other group vdevs.  All userland verification of devices is contained within
45  * this file.  If successful, the nvlist returned can be passed directly to the
46  * kernel; we've done as much verification as possible in userland.
47  *
48  * Hot spares are a special case, and passed down as an array of disk vdevs, at
49  * the same level as the root of the vdev tree.
50  *
51  * The only function exported by this file is 'get_vdev_spec'.  The function
52  * performs several passes:
53  *
54  * 	1. Construct the vdev specification.  Performs syntax validation and
55  *         makes sure each device is valid.
56  * 	2. Check for devices in use.  Using libdiskmgt, makes sure that no
57  *         devices are also in use.  Some can be overridden using the 'force'
58  *         flag, others cannot.
59  * 	3. Check for replication errors if the 'force' flag is not specified.
60  *         validates that the replication level is consistent across the
61  *         entire pool.
62  * 	4. Label any whole disks with an EFI label.
63  */
64 
65 #include <assert.h>
66 #include <devid.h>
67 #include <errno.h>
68 #include <fcntl.h>
69 #include <libdiskmgt.h>
70 #include <libintl.h>
71 #include <libnvpair.h>
72 #include <stdio.h>
73 #include <string.h>
74 #include <unistd.h>
75 #include <sys/efi_partition.h>
76 #include <sys/stat.h>
77 #include <sys/vtoc.h>
78 #include <sys/mntent.h>
79 
80 #include <libzfs.h>
81 
82 #include "zpool_util.h"
83 
84 #define	DISK_ROOT	"/dev/dsk"
85 #define	RDISK_ROOT	"/dev/rdsk"
86 #define	BACKUP_SLICE	"s2"
87 
88 /*
89  * For any given vdev specification, we can have multiple errors.  The
90  * vdev_error() function keeps track of whether we have seen an error yet, and
91  * prints out a header if its the first error we've seen.
92  */
93 boolean_t error_seen;
94 boolean_t is_force;
95 
96 /*PRINTFLIKE1*/
97 static void
98 vdev_error(const char *fmt, ...)
99 {
100 	va_list ap;
101 
102 	if (!error_seen) {
103 		(void) fprintf(stderr, gettext("invalid vdev specification\n"));
104 		if (!is_force)
105 			(void) fprintf(stderr, gettext("use '-f' to override "
106 			    "the following errors:\n"));
107 		else
108 			(void) fprintf(stderr, gettext("the following errors "
109 			    "must be manually repaired:\n"));
110 		error_seen = B_TRUE;
111 	}
112 
113 	va_start(ap, fmt);
114 	(void) vfprintf(stderr, fmt, ap);
115 	va_end(ap);
116 }
117 
118 static void
119 libdiskmgt_error(int error)
120 {
121 	/*
122 	 * ENXIO/ENODEV is a valid error message if the device doesn't live in
123 	 * /dev/dsk.  Don't bother printing an error message in this case.
124 	 */
125 	if (error == ENXIO || error == ENODEV)
126 		return;
127 
128 	(void) fprintf(stderr, gettext("warning: device in use checking "
129 	    "failed: %s\n"), strerror(error));
130 }
131 
132 /*
133  * Validate a device, passing the bulk of the work off to libdiskmgt.
134  */
135 int
136 check_slice(const char *path, int force, boolean_t wholedisk, boolean_t isspare)
137 {
138 	char *msg;
139 	int error = 0;
140 	int ret = 0;
141 
142 	if (dm_inuse((char *)path, &msg,
143 	    force ? DM_WHO_ZPOOL_FORCE : DM_WHO_ZPOOL, &error) || error) {
144 		if (error != 0) {
145 			libdiskmgt_error(error);
146 			return (0);
147 		} else if (!isspare ||
148 		    strstr(msg, gettext("hot spare")) == NULL) {
149 			/*
150 			 * The above check is a rather severe hack.  It would
151 			 * probably make more sense to have DM_WHO_ZPOOL_SPARE
152 			 * instead.
153 			 */
154 			vdev_error("%s", msg);
155 			free(msg);
156 			ret = -1;
157 		}
158 
159 	}
160 
161 	/*
162 	 * If we're given a whole disk, ignore overlapping slices since we're
163 	 * about to label it anyway.
164 	 */
165 	error = 0;
166 	if (!wholedisk && !force &&
167 	    (dm_isoverlapping((char *)path, &msg, &error) || error)) {
168 		if (error != 0) {
169 			libdiskmgt_error(error);
170 			return (0);
171 		} else {
172 			vdev_error("%s overlaps with %s\n", path, msg);
173 			free(msg);
174 		}
175 
176 		ret = -1;
177 	}
178 
179 	return (ret);
180 }
181 
182 /*
183  * Validate a whole disk.  Iterate over all slices on the disk and make sure
184  * that none is in use by calling check_slice().
185  */
186 /* ARGSUSED */
187 int
188 check_disk(const char *name, dm_descriptor_t disk, int force, int isspare)
189 {
190 	dm_descriptor_t *drive, *media, *slice;
191 	int err = 0;
192 	int i;
193 	int ret;
194 
195 	/*
196 	 * Get the drive associated with this disk.  This should never fail,
197 	 * because we already have an alias handle open for the device.
198 	 */
199 	if ((drive = dm_get_associated_descriptors(disk, DM_DRIVE,
200 	    &err)) == NULL || *drive == NULL) {
201 		if (err)
202 			libdiskmgt_error(err);
203 		return (0);
204 	}
205 
206 	if ((media = dm_get_associated_descriptors(*drive, DM_MEDIA,
207 	    &err)) == NULL) {
208 		dm_free_descriptors(drive);
209 		if (err)
210 			libdiskmgt_error(err);
211 		return (0);
212 	}
213 
214 	dm_free_descriptors(drive);
215 
216 	/*
217 	 * It is possible that the user has specified a removable media drive,
218 	 * and the media is not present.
219 	 */
220 	if (*media == NULL) {
221 		dm_free_descriptors(media);
222 		vdev_error(gettext("'%s' has no media in drive\n"), name);
223 		return (-1);
224 	}
225 
226 	if ((slice = dm_get_associated_descriptors(*media, DM_SLICE,
227 	    &err)) == NULL) {
228 		dm_free_descriptors(media);
229 		if (err)
230 			libdiskmgt_error(err);
231 		return (0);
232 	}
233 
234 	dm_free_descriptors(media);
235 
236 	ret = 0;
237 
238 	/*
239 	 * Iterate over all slices and report any errors.  We don't care about
240 	 * overlapping slices because we are using the whole disk.
241 	 */
242 	for (i = 0; slice[i] != NULL; i++) {
243 		char *name = dm_get_name(slice[i], &err);
244 
245 		if (check_slice(name, force, B_TRUE, isspare) != 0)
246 			ret = -1;
247 
248 		dm_free_name(name);
249 	}
250 
251 	dm_free_descriptors(slice);
252 	return (ret);
253 }
254 
255 /*
256  * Validate a device.
257  */
258 int
259 check_device(const char *path, boolean_t force, boolean_t isspare)
260 {
261 	dm_descriptor_t desc;
262 	int err;
263 	char *dev;
264 
265 	/*
266 	 * For whole disks, libdiskmgt does not include the leading dev path.
267 	 */
268 	dev = strrchr(path, '/');
269 	assert(dev != NULL);
270 	dev++;
271 	if ((desc = dm_get_descriptor_by_name(DM_ALIAS, dev, &err)) != NULL) {
272 		err = check_disk(path, desc, force, isspare);
273 		dm_free_descriptor(desc);
274 		return (err);
275 	}
276 
277 	return (check_slice(path, force, B_FALSE, isspare));
278 }
279 
280 /*
281  * Check that a file is valid.  All we can do in this case is check that it's
282  * not in use by another pool.
283  */
284 int
285 check_file(const char *file, boolean_t force, boolean_t isspare)
286 {
287 	char  *name;
288 	int fd;
289 	int ret = 0;
290 	pool_state_t state;
291 	boolean_t inuse;
292 
293 	if ((fd = open(file, O_RDONLY)) < 0)
294 		return (0);
295 
296 	if (zpool_in_use(g_zfs, fd, &state, &name, &inuse) == 0 && inuse) {
297 		const char *desc;
298 
299 		switch (state) {
300 		case POOL_STATE_ACTIVE:
301 			desc = gettext("active");
302 			break;
303 
304 		case POOL_STATE_EXPORTED:
305 			desc = gettext("exported");
306 			break;
307 
308 		case POOL_STATE_POTENTIALLY_ACTIVE:
309 			desc = gettext("potentially active");
310 			break;
311 
312 		default:
313 			desc = gettext("unknown");
314 			break;
315 		}
316 
317 		/*
318 		 * Allow hot spares to be shared between pools.
319 		 */
320 		if (state == POOL_STATE_SPARE && isspare)
321 			return (0);
322 
323 		if (state == POOL_STATE_ACTIVE ||
324 		    state == POOL_STATE_SPARE || !force) {
325 			switch (state) {
326 			case POOL_STATE_SPARE:
327 				vdev_error(gettext("%s is reserved as a hot "
328 				    "spare for pool %s\n"), file, name);
329 				break;
330 			default:
331 				vdev_error(gettext("%s is part of %s pool "
332 				    "'%s'\n"), file, desc, name);
333 				break;
334 			}
335 			ret = -1;
336 		}
337 
338 		free(name);
339 	}
340 
341 	(void) close(fd);
342 	return (ret);
343 }
344 
345 static boolean_t
346 is_whole_disk(const char *arg, struct stat64 *statbuf)
347 {
348 	char path[MAXPATHLEN];
349 
350 	(void) snprintf(path, sizeof (path), "%s%s", arg, BACKUP_SLICE);
351 	if (stat64(path, statbuf) == 0)
352 		return (B_TRUE);
353 
354 	return (B_FALSE);
355 }
356 
357 /*
358  * Create a leaf vdev.  Determine if this is a file or a device.  If it's a
359  * device, fill in the device id to make a complete nvlist.  Valid forms for a
360  * leaf vdev are:
361  *
362  * 	/dev/dsk/xxx	Complete disk path
363  * 	/xxx		Full path to file
364  * 	xxx		Shorthand for /dev/dsk/xxx
365  */
366 nvlist_t *
367 make_leaf_vdev(const char *arg)
368 {
369 	char path[MAXPATHLEN];
370 	struct stat64 statbuf;
371 	nvlist_t *vdev = NULL;
372 	char *type = NULL;
373 	boolean_t wholedisk = B_FALSE;
374 
375 	/*
376 	 * Determine what type of vdev this is, and put the full path into
377 	 * 'path'.  We detect whether this is a device of file afterwards by
378 	 * checking the st_mode of the file.
379 	 */
380 	if (arg[0] == '/') {
381 		/*
382 		 * Complete device or file path.  Exact type is determined by
383 		 * examining the file descriptor afterwards.
384 		 */
385 		if (is_whole_disk(arg, &statbuf)) {
386 			wholedisk = B_TRUE;
387 		} else if (stat64(arg, &statbuf) != 0) {
388 			(void) fprintf(stderr,
389 			    gettext("cannot open '%s': %s\n"),
390 			    arg, strerror(errno));
391 			return (NULL);
392 		}
393 
394 		(void) strlcpy(path, arg, sizeof (path));
395 	} else {
396 		/*
397 		 * This may be a short path for a device, or it could be total
398 		 * gibberish.  Check to see if it's a known device in
399 		 * /dev/dsk/.  As part of this check, see if we've been given a
400 		 * an entire disk (minus the slice number).
401 		 */
402 		(void) snprintf(path, sizeof (path), "%s/%s", DISK_ROOT,
403 		    arg);
404 		if (is_whole_disk(path, &statbuf)) {
405 			wholedisk = B_TRUE;
406 		} else if (stat64(path, &statbuf) != 0) {
407 			/*
408 			 * If we got ENOENT, then the user gave us
409 			 * gibberish, so try to direct them with a
410 			 * reasonable error message.  Otherwise,
411 			 * regurgitate strerror() since it's the best we
412 			 * can do.
413 			 */
414 			if (errno == ENOENT) {
415 				(void) fprintf(stderr,
416 				    gettext("cannot open '%s': no such "
417 				    "device in %s\n"), arg, DISK_ROOT);
418 				(void) fprintf(stderr,
419 				    gettext("must be a full path or "
420 				    "shorthand device name\n"));
421 				return (NULL);
422 			} else {
423 				(void) fprintf(stderr,
424 				    gettext("cannot open '%s': %s\n"),
425 				    path, strerror(errno));
426 				return (NULL);
427 			}
428 		}
429 	}
430 
431 	/*
432 	 * Determine whether this is a device or a file.
433 	 */
434 	if (S_ISBLK(statbuf.st_mode)) {
435 		type = VDEV_TYPE_DISK;
436 	} else if (S_ISREG(statbuf.st_mode)) {
437 		type = VDEV_TYPE_FILE;
438 	} else {
439 		(void) fprintf(stderr, gettext("cannot use '%s': must be a "
440 		    "block device or regular file\n"), path);
441 		return (NULL);
442 	}
443 
444 	/*
445 	 * Finally, we have the complete device or file, and we know that it is
446 	 * acceptable to use.  Construct the nvlist to describe this vdev.  All
447 	 * vdevs have a 'path' element, and devices also have a 'devid' element.
448 	 */
449 	verify(nvlist_alloc(&vdev, NV_UNIQUE_NAME, 0) == 0);
450 	verify(nvlist_add_string(vdev, ZPOOL_CONFIG_PATH, path) == 0);
451 	verify(nvlist_add_string(vdev, ZPOOL_CONFIG_TYPE, type) == 0);
452 	if (strcmp(type, VDEV_TYPE_DISK) == 0)
453 		verify(nvlist_add_uint64(vdev, ZPOOL_CONFIG_WHOLE_DISK,
454 		    (uint64_t)wholedisk) == 0);
455 
456 	/*
457 	 * For a whole disk, defer getting its devid until after labeling it.
458 	 */
459 	if (S_ISBLK(statbuf.st_mode) && !wholedisk) {
460 		/*
461 		 * Get the devid for the device.
462 		 */
463 		int fd;
464 		ddi_devid_t devid;
465 		char *minor = NULL, *devid_str = NULL;
466 
467 		if ((fd = open(path, O_RDONLY)) < 0) {
468 			(void) fprintf(stderr, gettext("cannot open '%s': "
469 			    "%s\n"), path, strerror(errno));
470 			nvlist_free(vdev);
471 			return (NULL);
472 		}
473 
474 		if (devid_get(fd, &devid) == 0) {
475 			if (devid_get_minor_name(fd, &minor) == 0 &&
476 			    (devid_str = devid_str_encode(devid, minor)) !=
477 			    NULL) {
478 				verify(nvlist_add_string(vdev,
479 				    ZPOOL_CONFIG_DEVID, devid_str) == 0);
480 			}
481 			if (devid_str != NULL)
482 				devid_str_free(devid_str);
483 			if (minor != NULL)
484 				devid_str_free(minor);
485 			devid_free(devid);
486 		}
487 
488 		(void) close(fd);
489 	}
490 
491 	return (vdev);
492 }
493 
494 /*
495  * Go through and verify the replication level of the pool is consistent.
496  * Performs the following checks:
497  *
498  * 	For the new spec, verifies that devices in mirrors and raidz are the
499  * 	same size.
500  *
501  * 	If the current configuration already has inconsistent replication
502  * 	levels, ignore any other potential problems in the new spec.
503  *
504  * 	Otherwise, make sure that the current spec (if there is one) and the new
505  * 	spec have consistent replication levels.
506  */
507 typedef struct replication_level {
508 	char *zprl_type;
509 	uint64_t zprl_children;
510 	uint64_t zprl_parity;
511 } replication_level_t;
512 
513 /*
514  * Given a list of toplevel vdevs, return the current replication level.  If
515  * the config is inconsistent, then NULL is returned.  If 'fatal' is set, then
516  * an error message will be displayed for each self-inconsistent vdev.
517  */
518 replication_level_t *
519 get_replication(nvlist_t *nvroot, boolean_t fatal)
520 {
521 	nvlist_t **top;
522 	uint_t t, toplevels;
523 	nvlist_t **child;
524 	uint_t c, children;
525 	nvlist_t *nv;
526 	char *type;
527 	replication_level_t lastrep, rep, *ret;
528 	boolean_t dontreport;
529 
530 	ret = safe_malloc(sizeof (replication_level_t));
531 
532 	verify(nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
533 	    &top, &toplevels) == 0);
534 
535 	lastrep.zprl_type = NULL;
536 	for (t = 0; t < toplevels; t++) {
537 		nv = top[t];
538 
539 		verify(nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) == 0);
540 
541 		if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
542 		    &child, &children) != 0) {
543 			/*
544 			 * This is a 'file' or 'disk' vdev.
545 			 */
546 			rep.zprl_type = type;
547 			rep.zprl_children = 1;
548 			rep.zprl_parity = 0;
549 		} else {
550 			uint64_t vdev_size;
551 
552 			/*
553 			 * This is a mirror or RAID-Z vdev.  Go through and make
554 			 * sure the contents are all the same (files vs. disks),
555 			 * keeping track of the number of elements in the
556 			 * process.
557 			 *
558 			 * We also check that the size of each vdev (if it can
559 			 * be determined) is the same.
560 			 */
561 			rep.zprl_type = type;
562 			rep.zprl_children = 0;
563 
564 			if (strcmp(type, VDEV_TYPE_RAIDZ) == 0) {
565 				verify(nvlist_lookup_uint64(nv,
566 				    ZPOOL_CONFIG_NPARITY,
567 				    &rep.zprl_parity) == 0);
568 				assert(rep.zprl_parity != 0);
569 			} else {
570 				rep.zprl_parity = 0;
571 			}
572 
573 			/*
574 			 * The 'dontreport' variable indicatest that we've
575 			 * already reported an error for this spec, so don't
576 			 * bother doing it again.
577 			 */
578 			type = NULL;
579 			dontreport = 0;
580 			vdev_size = -1ULL;
581 			for (c = 0; c < children; c++) {
582 				nvlist_t *cnv = child[c];
583 				char *path;
584 				struct stat64 statbuf;
585 				uint64_t size = -1ULL;
586 				char *childtype;
587 				int fd, err;
588 
589 				rep.zprl_children++;
590 
591 				verify(nvlist_lookup_string(cnv,
592 				    ZPOOL_CONFIG_TYPE, &childtype) == 0);
593 				verify(nvlist_lookup_string(cnv,
594 				    ZPOOL_CONFIG_PATH, &path) == 0);
595 
596 				/*
597 				 * If we have a raidz/mirror that combines disks
598 				 * with files, report it as an error.
599 				 */
600 				if (!dontreport && type != NULL &&
601 				    strcmp(type, childtype) != 0) {
602 					if (ret != NULL)
603 						free(ret);
604 					ret = NULL;
605 					if (fatal)
606 						vdev_error(gettext(
607 						    "mismatched replication "
608 						    "level: %s contains both "
609 						    "files and devices\n"),
610 						    rep.zprl_type);
611 					else
612 						return (NULL);
613 					dontreport = B_TRUE;
614 				}
615 
616 				/*
617 				 * According to stat(2), the value of 'st_size'
618 				 * is undefined for block devices and character
619 				 * devices.  But there is no effective way to
620 				 * determine the real size in userland.
621 				 *
622 				 * Instead, we'll take advantage of an
623 				 * implementation detail of spec_size().  If the
624 				 * device is currently open, then we (should)
625 				 * return a valid size.
626 				 *
627 				 * If we still don't get a valid size (indicated
628 				 * by a size of 0 or MAXOFFSET_T), then ignore
629 				 * this device altogether.
630 				 */
631 				if ((fd = open(path, O_RDONLY)) >= 0) {
632 					err = fstat64(fd, &statbuf);
633 					(void) close(fd);
634 				} else {
635 					err = stat64(path, &statbuf);
636 				}
637 
638 				if (err != 0 ||
639 				    statbuf.st_size == 0 ||
640 				    statbuf.st_size == MAXOFFSET_T)
641 					continue;
642 
643 				size = statbuf.st_size;
644 
645 				/*
646 				 * Also check the size of each device.  If they
647 				 * differ, then report an error.
648 				 */
649 				if (!dontreport && vdev_size != -1ULL &&
650 				    size != vdev_size) {
651 					if (ret != NULL)
652 						free(ret);
653 					ret = NULL;
654 					if (fatal)
655 						vdev_error(gettext(
656 						    "%s contains devices of "
657 						    "different sizes\n"),
658 						    rep.zprl_type);
659 					else
660 						return (NULL);
661 					dontreport = B_TRUE;
662 				}
663 
664 				type = childtype;
665 				vdev_size = size;
666 			}
667 		}
668 
669 		/*
670 		 * At this point, we have the replication of the last toplevel
671 		 * vdev in 'rep'.  Compare it to 'lastrep' to see if its
672 		 * different.
673 		 */
674 		if (lastrep.zprl_type != NULL) {
675 			if (strcmp(lastrep.zprl_type, rep.zprl_type) != 0) {
676 				if (ret != NULL)
677 					free(ret);
678 				ret = NULL;
679 				if (fatal)
680 					vdev_error(gettext(
681 					    "mismatched replication level: "
682 					    "both %s and %s vdevs are "
683 					    "present\n"),
684 					    lastrep.zprl_type, rep.zprl_type);
685 				else
686 					return (NULL);
687 			} else if (lastrep.zprl_parity != rep.zprl_parity) {
688 				if (ret)
689 					free(ret);
690 				ret = NULL;
691 				if (fatal)
692 					vdev_error(gettext(
693 					    "mismatched replication level: "
694 					    "both %llu and %llu device parity "
695 					    "%s vdevs are present\n"),
696 					    lastrep.zprl_parity,
697 					    rep.zprl_parity,
698 					    rep.zprl_type);
699 				else
700 					return (NULL);
701 			} else if (lastrep.zprl_children != rep.zprl_children) {
702 				if (ret)
703 					free(ret);
704 				ret = NULL;
705 				if (fatal)
706 					vdev_error(gettext(
707 					    "mismatched replication level: "
708 					    "both %llu-way and %llu-way %s "
709 					    "vdevs are present\n"),
710 					    lastrep.zprl_children,
711 					    rep.zprl_children,
712 					    rep.zprl_type);
713 				else
714 					return (NULL);
715 			}
716 		}
717 		lastrep = rep;
718 	}
719 
720 	if (ret != NULL)
721 		*ret = rep;
722 
723 	return (ret);
724 }
725 
726 /*
727  * Check the replication level of the vdev spec against the current pool.  Calls
728  * get_replication() to make sure the new spec is self-consistent.  If the pool
729  * has a consistent replication level, then we ignore any errors.  Otherwise,
730  * report any difference between the two.
731  */
732 int
733 check_replication(nvlist_t *config, nvlist_t *newroot)
734 {
735 	replication_level_t *current = NULL, *new;
736 	int ret;
737 
738 	/*
739 	 * If we have a current pool configuration, check to see if it's
740 	 * self-consistent.  If not, simply return success.
741 	 */
742 	if (config != NULL) {
743 		nvlist_t *nvroot;
744 
745 		verify(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
746 		    &nvroot) == 0);
747 		if ((current = get_replication(nvroot, B_FALSE)) == NULL)
748 			return (0);
749 	}
750 
751 	/*
752 	 * Get the replication level of the new vdev spec, reporting any
753 	 * inconsistencies found.
754 	 */
755 	if ((new = get_replication(newroot, B_TRUE)) == NULL) {
756 		free(current);
757 		return (-1);
758 	}
759 
760 	/*
761 	 * Check to see if the new vdev spec matches the replication level of
762 	 * the current pool.
763 	 */
764 	ret = 0;
765 	if (current != NULL) {
766 		if (strcmp(current->zprl_type, new->zprl_type) != 0) {
767 			vdev_error(gettext(
768 			    "mismatched replication level: pool uses %s "
769 			    "and new vdev is %s\n"),
770 			    current->zprl_type, new->zprl_type);
771 			ret = -1;
772 		} else if (current->zprl_parity != new->zprl_parity) {
773 			vdev_error(gettext(
774 			    "mismatched replication level: pool uses %llu "
775 			    "device parity and new vdev uses %llu\n"),
776 			    current->zprl_parity, new->zprl_parity);
777 			ret = -1;
778 		} else if (current->zprl_children != new->zprl_children) {
779 			vdev_error(gettext(
780 			    "mismatched replication level: pool uses %llu-way "
781 			    "%s and new vdev uses %llu-way %s\n"),
782 			    current->zprl_children, current->zprl_type,
783 			    new->zprl_children, new->zprl_type);
784 			ret = -1;
785 		}
786 	}
787 
788 	free(new);
789 	if (current != NULL)
790 		free(current);
791 
792 	return (ret);
793 }
794 
795 /*
796  * Label an individual disk.  The name provided is the short name, stripped of
797  * any leading /dev path.
798  */
799 int
800 label_disk(char *name)
801 {
802 	char path[MAXPATHLEN];
803 	struct dk_gpt *vtoc;
804 	int fd;
805 	size_t resv = 16384;
806 
807 	(void) snprintf(path, sizeof (path), "%s/%s%s", RDISK_ROOT, name,
808 	    BACKUP_SLICE);
809 
810 	if ((fd = open(path, O_RDWR | O_NDELAY)) < 0) {
811 		/*
812 		 * This shouldn't happen.  We've long since verified that this
813 		 * is a valid device.
814 		 */
815 		(void) fprintf(stderr, gettext("cannot open '%s': %s\n"),
816 		    path, strerror(errno));
817 		return (-1);
818 	}
819 
820 
821 	if (efi_alloc_and_init(fd, 9, &vtoc) != 0) {
822 		/*
823 		 * The only way this can fail is if we run out of memory, or we
824 		 * were unable to read the disk geometry.
825 		 */
826 		if (errno == ENOMEM)
827 			no_memory();
828 
829 		(void) fprintf(stderr, gettext("cannot label '%s': unable to "
830 		    "read disk geometry\n"), name);
831 		(void) close(fd);
832 		return (-1);
833 	}
834 
835 	vtoc->efi_parts[0].p_start = vtoc->efi_first_u_lba;
836 	vtoc->efi_parts[0].p_size = vtoc->efi_last_u_lba + 1 -
837 	    vtoc->efi_first_u_lba - resv;
838 
839 	/*
840 	 * Why we use V_USR: V_BACKUP confuses users, and is considered
841 	 * disposable by some EFI utilities (since EFI doesn't have a backup
842 	 * slice).  V_UNASSIGNED is supposed to be used only for zero size
843 	 * partitions, and efi_write() will fail if we use it.  V_ROOT, V_BOOT,
844 	 * etc. were all pretty specific.  V_USR is as close to reality as we
845 	 * can get, in the absence of V_OTHER.
846 	 */
847 	vtoc->efi_parts[0].p_tag = V_USR;
848 	(void) strcpy(vtoc->efi_parts[0].p_name, "zfs");
849 
850 	vtoc->efi_parts[8].p_start = vtoc->efi_last_u_lba + 1 - resv;
851 	vtoc->efi_parts[8].p_size = resv;
852 	vtoc->efi_parts[8].p_tag = V_RESERVED;
853 
854 	if (efi_write(fd, vtoc) != 0) {
855 		/*
856 		 * Currently, EFI labels are not supported for IDE disks, and it
857 		 * is likely that they will not be supported on other drives for
858 		 * some time.  Print out a helpful error message directing the
859 		 * user to manually label the disk and give a specific slice.
860 		 */
861 		(void) fprintf(stderr, gettext("cannot label '%s': failed to "
862 		    "write EFI label\n"), name);
863 		(void) fprintf(stderr, gettext("use fdisk(1M) to partition "
864 		    "the disk, and provide a specific slice\n"));
865 		(void) close(fd);
866 		efi_free(vtoc);
867 		return (-1);
868 	}
869 
870 	(void) close(fd);
871 	efi_free(vtoc);
872 	return (0);
873 }
874 
875 /*
876  * Go through and find any whole disks in the vdev specification, labelling them
877  * as appropriate.  When constructing the vdev spec, we were unable to open this
878  * device in order to provide a devid.  Now that we have labelled the disk and
879  * know that slice 0 is valid, we can construct the devid now.
880  *
881  * If the disk was already labelled with an EFI label, we will have gotten the
882  * devid already (because we were able to open the whole disk).  Otherwise, we
883  * need to get the devid after we label the disk.
884  */
885 int
886 make_disks(nvlist_t *nv)
887 {
888 	nvlist_t **child;
889 	uint_t c, children;
890 	char *type, *path, *diskname;
891 	char buf[MAXPATHLEN];
892 	uint64_t wholedisk;
893 	int fd;
894 	int ret;
895 	ddi_devid_t devid;
896 	char *minor = NULL, *devid_str = NULL;
897 
898 	verify(nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) == 0);
899 
900 	if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
901 	    &child, &children) != 0) {
902 
903 		if (strcmp(type, VDEV_TYPE_DISK) != 0)
904 			return (0);
905 
906 		/*
907 		 * We have a disk device.  Get the path to the device
908 		 * and see if its a whole disk by appending the backup
909 		 * slice and stat()ing the device.
910 		 */
911 		verify(nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &path) == 0);
912 
913 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
914 		    &wholedisk) != 0 || !wholedisk)
915 			return (0);
916 
917 		diskname = strrchr(path, '/');
918 		assert(diskname != NULL);
919 		diskname++;
920 		if (label_disk(diskname) != 0)
921 			return (-1);
922 
923 		/*
924 		 * Fill in the devid, now that we've labeled the disk.
925 		 */
926 		(void) snprintf(buf, sizeof (buf), "%ss0", path);
927 		if ((fd = open(buf, O_RDONLY)) < 0) {
928 			(void) fprintf(stderr,
929 			    gettext("cannot open '%s': %s\n"),
930 			    buf, strerror(errno));
931 			return (-1);
932 		}
933 
934 		if (devid_get(fd, &devid) == 0) {
935 			if (devid_get_minor_name(fd, &minor) == 0 &&
936 			    (devid_str = devid_str_encode(devid, minor)) !=
937 			    NULL) {
938 				verify(nvlist_add_string(nv,
939 				    ZPOOL_CONFIG_DEVID, devid_str) == 0);
940 			}
941 			if (devid_str != NULL)
942 				devid_str_free(devid_str);
943 			if (minor != NULL)
944 				devid_str_free(minor);
945 			devid_free(devid);
946 		}
947 
948 		/*
949 		 * Update the path to refer to the 's0' slice.  The presence of
950 		 * the 'whole_disk' field indicates to the CLI that we should
951 		 * chop off the slice number when displaying the device in
952 		 * future output.
953 		 */
954 		verify(nvlist_add_string(nv, ZPOOL_CONFIG_PATH, buf) == 0);
955 
956 		(void) close(fd);
957 
958 		return (0);
959 	}
960 
961 	for (c = 0; c < children; c++)
962 		if ((ret = make_disks(child[c])) != 0)
963 			return (ret);
964 
965 	if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_SPARES,
966 	    &child, &children) == 0)
967 		for (c = 0; c < children; c++)
968 			if ((ret = make_disks(child[c])) != 0)
969 				return (ret);
970 
971 	return (0);
972 }
973 
974 /*
975  * Determine if the given path is a hot spare within the given configuration.
976  */
977 static boolean_t
978 is_spare(nvlist_t *config, const char *path)
979 {
980 	int fd;
981 	pool_state_t state;
982 	char *name;
983 	nvlist_t *label;
984 	uint64_t guid, spareguid;
985 	nvlist_t *nvroot;
986 	nvlist_t **spares;
987 	uint_t i, nspares;
988 	boolean_t inuse;
989 
990 	if ((fd = open(path, O_RDONLY)) < 0)
991 		return (B_FALSE);
992 
993 	if (zpool_in_use(g_zfs, fd, &state, &name, &inuse) != 0 ||
994 	    !inuse ||
995 	    state != POOL_STATE_SPARE ||
996 	    zpool_read_label(fd, &label) != 0) {
997 		(void) close(fd);
998 		return (B_FALSE);
999 	}
1000 
1001 	(void) close(fd);
1002 	verify(nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) == 0);
1003 	nvlist_free(label);
1004 
1005 	verify(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
1006 	    &nvroot) == 0);
1007 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
1008 	    &spares, &nspares) == 0) {
1009 		for (i = 0; i < nspares; i++) {
1010 			verify(nvlist_lookup_uint64(spares[i],
1011 			    ZPOOL_CONFIG_GUID, &spareguid) == 0);
1012 			if (spareguid == guid)
1013 				return (B_TRUE);
1014 		}
1015 	}
1016 
1017 	return (B_FALSE);
1018 }
1019 
1020 /*
1021  * Go through and find any devices that are in use.  We rely on libdiskmgt for
1022  * the majority of this task.
1023  */
1024 int
1025 check_in_use(nvlist_t *config, nvlist_t *nv, int force, int isreplacing,
1026     int isspare)
1027 {
1028 	nvlist_t **child;
1029 	uint_t c, children;
1030 	char *type, *path;
1031 	int ret;
1032 	char buf[MAXPATHLEN];
1033 	uint64_t wholedisk;
1034 
1035 	verify(nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) == 0);
1036 
1037 	if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1038 	    &child, &children) != 0) {
1039 
1040 		verify(nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &path) == 0);
1041 
1042 		/*
1043 		 * As a generic check, we look to see if this is a replace of a
1044 		 * hot spare within the same pool.  If so, we allow it
1045 		 * regardless of what libdiskmgt or zpool_in_use() says.
1046 		 */
1047 		if (isreplacing) {
1048 			if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
1049 			    &wholedisk) == 0 && wholedisk)
1050 				(void) snprintf(buf, sizeof (buf), "%ss0",
1051 				    path);
1052 			else
1053 				(void) strlcpy(buf, path, sizeof (buf));
1054 			if (is_spare(config, buf))
1055 				return (0);
1056 		}
1057 
1058 		if (strcmp(type, VDEV_TYPE_DISK) == 0)
1059 			ret = check_device(path, force, isspare);
1060 
1061 		if (strcmp(type, VDEV_TYPE_FILE) == 0)
1062 			ret = check_file(path, force, isspare);
1063 
1064 		return (ret);
1065 	}
1066 
1067 	for (c = 0; c < children; c++)
1068 		if ((ret = check_in_use(config, child[c], force,
1069 		    isreplacing, B_FALSE)) != 0)
1070 			return (ret);
1071 
1072 	if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_SPARES,
1073 	    &child, &children) == 0)
1074 		for (c = 0; c < children; c++)
1075 			if ((ret = check_in_use(config, child[c], force,
1076 			    isreplacing, B_TRUE)) != 0)
1077 				return (ret);
1078 
1079 	return (0);
1080 }
1081 
1082 const char *
1083 is_grouping(const char *type, int *mindev)
1084 {
1085 	if (strcmp(type, "raidz") == 0 || strcmp(type, "raidz1") == 0) {
1086 		if (mindev != NULL)
1087 			*mindev = 2;
1088 		return (VDEV_TYPE_RAIDZ);
1089 	}
1090 
1091 	if (strcmp(type, "raidz2") == 0) {
1092 		if (mindev != NULL)
1093 			*mindev = 3;
1094 		return (VDEV_TYPE_RAIDZ);
1095 	}
1096 
1097 	if (strcmp(type, "mirror") == 0) {
1098 		if (mindev != NULL)
1099 			*mindev = 2;
1100 		return (VDEV_TYPE_MIRROR);
1101 	}
1102 
1103 	if (strcmp(type, "spare") == 0) {
1104 		if (mindev != NULL)
1105 			*mindev = 1;
1106 		return (VDEV_TYPE_SPARE);
1107 	}
1108 
1109 	return (NULL);
1110 }
1111 
1112 /*
1113  * Construct a syntactically valid vdev specification,
1114  * and ensure that all devices and files exist and can be opened.
1115  * Note: we don't bother freeing anything in the error paths
1116  * because the program is just going to exit anyway.
1117  */
1118 nvlist_t *
1119 construct_spec(int argc, char **argv)
1120 {
1121 	nvlist_t *nvroot, *nv, **top, **spares;
1122 	int t, toplevels, mindev, nspares;
1123 	const char *type;
1124 
1125 	top = NULL;
1126 	toplevels = 0;
1127 	spares = NULL;
1128 	nspares = 0;
1129 
1130 	while (argc > 0) {
1131 		nv = NULL;
1132 
1133 		/*
1134 		 * If it's a mirror or raidz, the subsequent arguments are
1135 		 * its leaves -- until we encounter the next mirror or raidz.
1136 		 */
1137 		if ((type = is_grouping(argv[0], &mindev)) != NULL) {
1138 			nvlist_t **child = NULL;
1139 			int c, children = 0;
1140 
1141 			if (strcmp(type, VDEV_TYPE_SPARE) == 0 &&
1142 			    spares != NULL) {
1143 				(void) fprintf(stderr, gettext("invalid vdev "
1144 				    "specification: 'spare' can be "
1145 				    "specified only once\n"));
1146 				return (NULL);
1147 			}
1148 
1149 			for (c = 1; c < argc; c++) {
1150 				if (is_grouping(argv[c], NULL) != NULL)
1151 					break;
1152 				children++;
1153 				child = realloc(child,
1154 				    children * sizeof (nvlist_t *));
1155 				if (child == NULL)
1156 					no_memory();
1157 				if ((nv = make_leaf_vdev(argv[c])) == NULL)
1158 					return (NULL);
1159 				child[children - 1] = nv;
1160 			}
1161 
1162 			if (children < mindev) {
1163 				(void) fprintf(stderr, gettext("invalid vdev "
1164 				    "specification: %s requires at least %d "
1165 				    "devices\n"), argv[0], mindev);
1166 				return (NULL);
1167 			}
1168 
1169 			argc -= c;
1170 			argv += c;
1171 
1172 			if (strcmp(type, VDEV_TYPE_SPARE) == 0) {
1173 				spares = child;
1174 				nspares = children;
1175 				continue;
1176 			} else {
1177 				verify(nvlist_alloc(&nv, NV_UNIQUE_NAME,
1178 				    0) == 0);
1179 				verify(nvlist_add_string(nv, ZPOOL_CONFIG_TYPE,
1180 				    type) == 0);
1181 				if (strcmp(type, VDEV_TYPE_RAIDZ) == 0) {
1182 					verify(nvlist_add_uint64(nv,
1183 					    ZPOOL_CONFIG_NPARITY,
1184 					    mindev - 1) == 0);
1185 				}
1186 				verify(nvlist_add_nvlist_array(nv,
1187 				    ZPOOL_CONFIG_CHILDREN, child,
1188 				    children) == 0);
1189 
1190 				for (c = 0; c < children; c++)
1191 					nvlist_free(child[c]);
1192 				free(child);
1193 			}
1194 		} else {
1195 			/*
1196 			 * We have a device.  Pass off to make_leaf_vdev() to
1197 			 * construct the appropriate nvlist describing the vdev.
1198 			 */
1199 			if ((nv = make_leaf_vdev(argv[0])) == NULL)
1200 				return (NULL);
1201 			argc--;
1202 			argv++;
1203 		}
1204 
1205 		toplevels++;
1206 		top = realloc(top, toplevels * sizeof (nvlist_t *));
1207 		if (top == NULL)
1208 			no_memory();
1209 		top[toplevels - 1] = nv;
1210 	}
1211 
1212 	if (toplevels == 0 && nspares == 0) {
1213 		(void) fprintf(stderr, gettext("invalid vdev "
1214 		    "specification: at least one toplevel vdev must be "
1215 		    "specified\n"));
1216 		return (NULL);
1217 	}
1218 
1219 	/*
1220 	 * Finally, create nvroot and add all top-level vdevs to it.
1221 	 */
1222 	verify(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, 0) == 0);
1223 	verify(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
1224 	    VDEV_TYPE_ROOT) == 0);
1225 	verify(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
1226 	    top, toplevels) == 0);
1227 	if (nspares != 0)
1228 		verify(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
1229 		    spares, nspares) == 0);
1230 
1231 	for (t = 0; t < toplevels; t++)
1232 		nvlist_free(top[t]);
1233 	for (t = 0; t < nspares; t++)
1234 		nvlist_free(spares[t]);
1235 	if (spares)
1236 		free(spares);
1237 	free(top);
1238 
1239 	return (nvroot);
1240 }
1241 
1242 /*
1243  * Get and validate the contents of the given vdev specification.  This ensures
1244  * that the nvlist returned is well-formed, that all the devices exist, and that
1245  * they are not currently in use by any other known consumer.  The 'poolconfig'
1246  * parameter is the current configuration of the pool when adding devices
1247  * existing pool, and is used to perform additional checks, such as changing the
1248  * replication level of the pool.  It can be 'NULL' to indicate that this is a
1249  * new pool.  The 'force' flag controls whether devices should be forcefully
1250  * added, even if they appear in use.
1251  */
1252 nvlist_t *
1253 make_root_vdev(nvlist_t *poolconfig, int force, int check_rep,
1254     boolean_t isreplacing, int argc, char **argv)
1255 {
1256 	nvlist_t *newroot;
1257 
1258 	is_force = force;
1259 
1260 	/*
1261 	 * Construct the vdev specification.  If this is successful, we know
1262 	 * that we have a valid specification, and that all devices can be
1263 	 * opened.
1264 	 */
1265 	if ((newroot = construct_spec(argc, argv)) == NULL)
1266 		return (NULL);
1267 
1268 	/*
1269 	 * Validate each device to make sure that its not shared with another
1270 	 * subsystem.  We do this even if 'force' is set, because there are some
1271 	 * uses (such as a dedicated dump device) that even '-f' cannot
1272 	 * override.
1273 	 */
1274 	if (check_in_use(poolconfig, newroot, force, isreplacing,
1275 	    B_FALSE) != 0) {
1276 		nvlist_free(newroot);
1277 		return (NULL);
1278 	}
1279 
1280 	/*
1281 	 * Check the replication level of the given vdevs and report any errors
1282 	 * found.  We include the existing pool spec, if any, as we need to
1283 	 * catch changes against the existing replication level.
1284 	 */
1285 	if (check_rep && check_replication(poolconfig, newroot) != 0) {
1286 		nvlist_free(newroot);
1287 		return (NULL);
1288 	}
1289 
1290 	/*
1291 	 * Run through the vdev specification and label any whole disks found.
1292 	 */
1293 	if (make_disks(newroot) != 0) {
1294 		nvlist_free(newroot);
1295 		return (NULL);
1296 	}
1297 
1298 	return (newroot);
1299 }
1300