xref: /titanic_41/usr/src/cmd/zpool/zpool_vdev.c (revision 5c46c6a053defc1bf25f2e08df2653bc7717ed0b)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 /*
30  * Functions to convert between a list of vdevs and an nvlist representing the
31  * configuration.  Each entry in the list can be one of:
32  *
33  * 	Device vdevs
34  * 		disk=(path=..., devid=...)
35  * 		file=(path=...)
36  *
37  * 	Group vdevs
38  * 		raidz[1|2]=(...)
39  * 		mirror=(...)
40  *
41  * 	Hot spares
42  *
43  * While the underlying implementation supports it, group vdevs cannot contain
44  * other group vdevs.  All userland verification of devices is contained within
45  * this file.  If successful, the nvlist returned can be passed directly to the
46  * kernel; we've done as much verification as possible in userland.
47  *
48  * Hot spares are a special case, and passed down as an array of disk vdevs, at
49  * the same level as the root of the vdev tree.
50  *
51  * The only function exported by this file is 'get_vdev_spec'.  The function
52  * performs several passes:
53  *
54  * 	1. Construct the vdev specification.  Performs syntax validation and
55  *         makes sure each device is valid.
56  * 	2. Check for devices in use.  Using libdiskmgt, makes sure that no
57  *         devices are also in use.  Some can be overridden using the 'force'
58  *         flag, others cannot.
59  * 	3. Check for replication errors if the 'force' flag is not specified.
60  *         validates that the replication level is consistent across the
61  *         entire pool.
62  * 	4. Label any whole disks with an EFI label.
63  */
64 
65 #include <assert.h>
66 #include <devid.h>
67 #include <errno.h>
68 #include <fcntl.h>
69 #include <libdiskmgt.h>
70 #include <libintl.h>
71 #include <libnvpair.h>
72 #include <stdio.h>
73 #include <string.h>
74 #include <unistd.h>
75 #include <sys/efi_partition.h>
76 #include <sys/stat.h>
77 #include <sys/vtoc.h>
78 #include <sys/mntent.h>
79 
80 #include <libzfs.h>
81 
82 #include "zpool_util.h"
83 
84 #define	DISK_ROOT	"/dev/dsk"
85 #define	RDISK_ROOT	"/dev/rdsk"
86 #define	BACKUP_SLICE	"s2"
87 
88 /*
89  * For any given vdev specification, we can have multiple errors.  The
90  * vdev_error() function keeps track of whether we have seen an error yet, and
91  * prints out a header if its the first error we've seen.
92  */
93 boolean_t error_seen;
94 boolean_t is_force;
95 
96 /*PRINTFLIKE1*/
97 static void
98 vdev_error(const char *fmt, ...)
99 {
100 	va_list ap;
101 
102 	if (!error_seen) {
103 		(void) fprintf(stderr, gettext("invalid vdev specification\n"));
104 		if (!is_force)
105 			(void) fprintf(stderr, gettext("use '-f' to override "
106 			    "the following errors:\n"));
107 		else
108 			(void) fprintf(stderr, gettext("the following errors "
109 			    "must be manually repaired:\n"));
110 		error_seen = B_TRUE;
111 	}
112 
113 	va_start(ap, fmt);
114 	(void) vfprintf(stderr, fmt, ap);
115 	va_end(ap);
116 }
117 
118 static void
119 libdiskmgt_error(int error)
120 {
121 	/*
122 	 * ENXIO/ENODEV is a valid error message if the device doesn't live in
123 	 * /dev/dsk.  Don't bother printing an error message in this case.
124 	 */
125 	if (error == ENXIO || error == ENODEV)
126 		return;
127 
128 	(void) fprintf(stderr, gettext("warning: device in use checking "
129 	    "failed: %s\n"), strerror(error));
130 }
131 
132 /*
133  * Validate a device, passing the bulk of the work off to libdiskmgt.
134  */
135 int
136 check_slice(const char *path, int force, boolean_t wholedisk, boolean_t isspare)
137 {
138 	char *msg;
139 	int error = 0;
140 	int ret = 0;
141 
142 	if (dm_inuse((char *)path, &msg,
143 	    force ? DM_WHO_ZPOOL_FORCE : DM_WHO_ZPOOL, &error) || error) {
144 		if (error != 0) {
145 			libdiskmgt_error(error);
146 			return (0);
147 		} else if (!isspare ||
148 		    strstr(msg, gettext("hot spare")) == NULL) {
149 			/*
150 			 * The above check is a rather severe hack.  It would
151 			 * probably make more sense to have DM_WHO_ZPOOL_SPARE
152 			 * instead.
153 			 */
154 			vdev_error("%s", msg);
155 			free(msg);
156 			ret = -1;
157 		}
158 
159 	}
160 
161 	/*
162 	 * If we're given a whole disk, ignore overlapping slices since we're
163 	 * about to label it anyway.
164 	 */
165 	error = 0;
166 	if (!wholedisk && !force &&
167 	    (dm_isoverlapping((char *)path, &msg, &error) || error)) {
168 		if (error != 0) {
169 			libdiskmgt_error(error);
170 			return (0);
171 		} else {
172 			vdev_error("%s overlaps with %s\n", path, msg);
173 			free(msg);
174 		}
175 
176 		ret = -1;
177 	}
178 
179 	return (ret);
180 }
181 
182 /*
183  * Validate a whole disk.  Iterate over all slices on the disk and make sure
184  * that none is in use by calling check_slice().
185  */
186 /* ARGSUSED */
187 int
188 check_disk(const char *name, dm_descriptor_t disk, int force, int isspare)
189 {
190 	dm_descriptor_t *drive, *media, *slice;
191 	int err = 0;
192 	int i;
193 	int ret;
194 
195 	/*
196 	 * Get the drive associated with this disk.  This should never fail,
197 	 * because we already have an alias handle open for the device.
198 	 */
199 	if ((drive = dm_get_associated_descriptors(disk, DM_DRIVE,
200 	    &err)) == NULL || *drive == NULL) {
201 		if (err)
202 			libdiskmgt_error(err);
203 		return (0);
204 	}
205 
206 	if ((media = dm_get_associated_descriptors(*drive, DM_MEDIA,
207 	    &err)) == NULL) {
208 		dm_free_descriptors(drive);
209 		if (err)
210 			libdiskmgt_error(err);
211 		return (0);
212 	}
213 
214 	dm_free_descriptors(drive);
215 
216 	/*
217 	 * It is possible that the user has specified a removable media drive,
218 	 * and the media is not present.
219 	 */
220 	if (*media == NULL) {
221 		dm_free_descriptors(media);
222 		vdev_error(gettext("'%s' has no media in drive\n"), name);
223 		return (-1);
224 	}
225 
226 	if ((slice = dm_get_associated_descriptors(*media, DM_SLICE,
227 	    &err)) == NULL) {
228 		dm_free_descriptors(media);
229 		if (err)
230 			libdiskmgt_error(err);
231 		return (0);
232 	}
233 
234 	dm_free_descriptors(media);
235 
236 	ret = 0;
237 
238 	/*
239 	 * Iterate over all slices and report any errors.  We don't care about
240 	 * overlapping slices because we are using the whole disk.
241 	 */
242 	for (i = 0; slice[i] != NULL; i++) {
243 		char *name = dm_get_name(slice[i], &err);
244 
245 		if (check_slice(name, force, B_TRUE, isspare) != 0)
246 			ret = -1;
247 
248 		dm_free_name(name);
249 	}
250 
251 	dm_free_descriptors(slice);
252 	return (ret);
253 }
254 
255 /*
256  * Validate a device.
257  */
258 int
259 check_device(const char *path, boolean_t force, boolean_t isspare)
260 {
261 	dm_descriptor_t desc;
262 	int err;
263 	char *dev;
264 
265 	/*
266 	 * For whole disks, libdiskmgt does not include the leading dev path.
267 	 */
268 	dev = strrchr(path, '/');
269 	assert(dev != NULL);
270 	dev++;
271 	if ((desc = dm_get_descriptor_by_name(DM_ALIAS, dev, &err)) != NULL) {
272 		err = check_disk(path, desc, force, isspare);
273 		dm_free_descriptor(desc);
274 		return (err);
275 	}
276 
277 	return (check_slice(path, force, B_FALSE, isspare));
278 }
279 
280 /*
281  * Check that a file is valid.  All we can do in this case is check that it's
282  * not in use by another pool.
283  */
284 int
285 check_file(const char *file, boolean_t force, boolean_t isspare)
286 {
287 	char  *name;
288 	int fd;
289 	int ret = 0;
290 	pool_state_t state;
291 	boolean_t inuse;
292 
293 	if ((fd = open(file, O_RDONLY)) < 0)
294 		return (0);
295 
296 	if (zpool_in_use(g_zfs, fd, &state, &name, &inuse) == 0 && inuse) {
297 		const char *desc;
298 
299 		switch (state) {
300 		case POOL_STATE_ACTIVE:
301 			desc = gettext("active");
302 			break;
303 
304 		case POOL_STATE_EXPORTED:
305 			desc = gettext("exported");
306 			break;
307 
308 		case POOL_STATE_POTENTIALLY_ACTIVE:
309 			desc = gettext("potentially active");
310 			break;
311 
312 		default:
313 			desc = gettext("unknown");
314 			break;
315 		}
316 
317 		/*
318 		 * Allow hot spares to be shared between pools.
319 		 */
320 		if (state == POOL_STATE_SPARE && isspare)
321 			return (0);
322 
323 		if (state == POOL_STATE_ACTIVE ||
324 		    state == POOL_STATE_SPARE || !force) {
325 			switch (state) {
326 			case POOL_STATE_SPARE:
327 				vdev_error(gettext("%s is reserved as a hot "
328 				    "spare for pool %s\n"), file, name);
329 				break;
330 			default:
331 				vdev_error(gettext("%s is part of %s pool "
332 				    "'%s'\n"), file, desc, name);
333 				break;
334 			}
335 			ret = -1;
336 		}
337 
338 		free(name);
339 	}
340 
341 	(void) close(fd);
342 	return (ret);
343 }
344 
345 static boolean_t
346 is_whole_disk(const char *arg, struct stat64 *statbuf)
347 {
348 	char path[MAXPATHLEN];
349 
350 	(void) snprintf(path, sizeof (path), "%s%s", arg, BACKUP_SLICE);
351 	if (stat64(path, statbuf) == 0)
352 		return (B_TRUE);
353 
354 	return (B_FALSE);
355 }
356 
357 /*
358  * Create a leaf vdev.  Determine if this is a file or a device.  If it's a
359  * device, fill in the device id to make a complete nvlist.  Valid forms for a
360  * leaf vdev are:
361  *
362  * 	/dev/dsk/xxx	Complete disk path
363  * 	/xxx		Full path to file
364  * 	xxx		Shorthand for /dev/dsk/xxx
365  */
366 nvlist_t *
367 make_leaf_vdev(const char *arg)
368 {
369 	char path[MAXPATHLEN];
370 	struct stat64 statbuf;
371 	nvlist_t *vdev = NULL;
372 	char *type = NULL;
373 	boolean_t wholedisk = B_FALSE;
374 
375 	/*
376 	 * Determine what type of vdev this is, and put the full path into
377 	 * 'path'.  We detect whether this is a device of file afterwards by
378 	 * checking the st_mode of the file.
379 	 */
380 	if (arg[0] == '/') {
381 		/*
382 		 * Complete device or file path.  Exact type is determined by
383 		 * examining the file descriptor afterwards.
384 		 */
385 		if (is_whole_disk(arg, &statbuf)) {
386 			wholedisk = B_TRUE;
387 		} else if (stat64(arg, &statbuf) != 0) {
388 			(void) fprintf(stderr,
389 			    gettext("cannot open '%s': %s\n"),
390 			    arg, strerror(errno));
391 			return (NULL);
392 		}
393 
394 		(void) strlcpy(path, arg, sizeof (path));
395 	} else {
396 		/*
397 		 * This may be a short path for a device, or it could be total
398 		 * gibberish.  Check to see if it's a known device in
399 		 * /dev/dsk/.  As part of this check, see if we've been given a
400 		 * an entire disk (minus the slice number).
401 		 */
402 		(void) snprintf(path, sizeof (path), "%s/%s", DISK_ROOT,
403 		    arg);
404 		if (is_whole_disk(path, &statbuf)) {
405 			wholedisk = B_TRUE;
406 		} else if (stat64(path, &statbuf) != 0) {
407 			/*
408 			 * If we got ENOENT, then the user gave us
409 			 * gibberish, so try to direct them with a
410 			 * reasonable error message.  Otherwise,
411 			 * regurgitate strerror() since it's the best we
412 			 * can do.
413 			 */
414 			if (errno == ENOENT) {
415 				(void) fprintf(stderr,
416 				    gettext("cannot open '%s': no such "
417 				    "device in %s\n"), arg, DISK_ROOT);
418 				(void) fprintf(stderr,
419 				    gettext("must be a full path or "
420 				    "shorthand device name\n"));
421 				return (NULL);
422 			} else {
423 				(void) fprintf(stderr,
424 				    gettext("cannot open '%s': %s\n"),
425 				    path, strerror(errno));
426 				return (NULL);
427 			}
428 		}
429 	}
430 
431 	/*
432 	 * Determine whether this is a device or a file.
433 	 */
434 	if (S_ISBLK(statbuf.st_mode)) {
435 		type = VDEV_TYPE_DISK;
436 	} else if (S_ISREG(statbuf.st_mode)) {
437 		type = VDEV_TYPE_FILE;
438 	} else {
439 		(void) fprintf(stderr, gettext("cannot use '%s': must be a "
440 		    "block device or regular file\n"), path);
441 		return (NULL);
442 	}
443 
444 	/*
445 	 * Finally, we have the complete device or file, and we know that it is
446 	 * acceptable to use.  Construct the nvlist to describe this vdev.  All
447 	 * vdevs have a 'path' element, and devices also have a 'devid' element.
448 	 */
449 	verify(nvlist_alloc(&vdev, NV_UNIQUE_NAME, 0) == 0);
450 	verify(nvlist_add_string(vdev, ZPOOL_CONFIG_PATH, path) == 0);
451 	verify(nvlist_add_string(vdev, ZPOOL_CONFIG_TYPE, type) == 0);
452 	if (strcmp(type, VDEV_TYPE_DISK) == 0)
453 		verify(nvlist_add_uint64(vdev, ZPOOL_CONFIG_WHOLE_DISK,
454 		    (uint64_t)wholedisk) == 0);
455 
456 	/*
457 	 * For a whole disk, defer getting its devid until after labeling it.
458 	 */
459 	if (S_ISBLK(statbuf.st_mode) && !wholedisk) {
460 		/*
461 		 * Get the devid for the device.
462 		 */
463 		int fd;
464 		ddi_devid_t devid;
465 		char *minor = NULL, *devid_str = NULL;
466 
467 		if ((fd = open(path, O_RDONLY)) < 0) {
468 			(void) fprintf(stderr, gettext("cannot open '%s': "
469 			    "%s\n"), path, strerror(errno));
470 			nvlist_free(vdev);
471 			return (NULL);
472 		}
473 
474 		if (devid_get(fd, &devid) == 0) {
475 			if (devid_get_minor_name(fd, &minor) == 0 &&
476 			    (devid_str = devid_str_encode(devid, minor)) !=
477 			    NULL) {
478 				verify(nvlist_add_string(vdev,
479 				    ZPOOL_CONFIG_DEVID, devid_str) == 0);
480 			}
481 			if (devid_str != NULL)
482 				devid_str_free(devid_str);
483 			if (minor != NULL)
484 				devid_str_free(minor);
485 			devid_free(devid);
486 		}
487 
488 		(void) close(fd);
489 	}
490 
491 	return (vdev);
492 }
493 
494 /*
495  * Go through and verify the replication level of the pool is consistent.
496  * Performs the following checks:
497  *
498  * 	For the new spec, verifies that devices in mirrors and raidz are the
499  * 	same size.
500  *
501  * 	If the current configuration already has inconsistent replication
502  * 	levels, ignore any other potential problems in the new spec.
503  *
504  * 	Otherwise, make sure that the current spec (if there is one) and the new
505  * 	spec have consistent replication levels.
506  */
507 typedef struct replication_level {
508 	char *zprl_type;
509 	uint64_t zprl_children;
510 	uint64_t zprl_parity;
511 } replication_level_t;
512 
513 /*
514  * Given a list of toplevel vdevs, return the current replication level.  If
515  * the config is inconsistent, then NULL is returned.  If 'fatal' is set, then
516  * an error message will be displayed for each self-inconsistent vdev.
517  */
518 replication_level_t *
519 get_replication(nvlist_t *nvroot, boolean_t fatal)
520 {
521 	nvlist_t **top;
522 	uint_t t, toplevels;
523 	nvlist_t **child;
524 	uint_t c, children;
525 	nvlist_t *nv;
526 	char *type;
527 	replication_level_t lastrep, rep, *ret;
528 	boolean_t dontreport;
529 
530 	ret = safe_malloc(sizeof (replication_level_t));
531 
532 	verify(nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
533 	    &top, &toplevels) == 0);
534 
535 	lastrep.zprl_type = NULL;
536 	for (t = 0; t < toplevels; t++) {
537 		nv = top[t];
538 
539 		verify(nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) == 0);
540 
541 		if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
542 		    &child, &children) != 0) {
543 			/*
544 			 * This is a 'file' or 'disk' vdev.
545 			 */
546 			rep.zprl_type = type;
547 			rep.zprl_children = 1;
548 			rep.zprl_parity = 0;
549 		} else {
550 			uint64_t vdev_size;
551 
552 			/*
553 			 * This is a mirror or RAID-Z vdev.  Go through and make
554 			 * sure the contents are all the same (files vs. disks),
555 			 * keeping track of the number of elements in the
556 			 * process.
557 			 *
558 			 * We also check that the size of each vdev (if it can
559 			 * be determined) is the same.
560 			 */
561 			rep.zprl_type = type;
562 			rep.zprl_children = 0;
563 
564 			if (strcmp(type, VDEV_TYPE_RAIDZ) == 0) {
565 				verify(nvlist_lookup_uint64(nv,
566 				    ZPOOL_CONFIG_NPARITY,
567 				    &rep.zprl_parity) == 0);
568 				assert(rep.zprl_parity != 0);
569 			} else {
570 				rep.zprl_parity = 0;
571 			}
572 
573 			/*
574 			 * The 'dontreport' variable indicatest that we've
575 			 * already reported an error for this spec, so don't
576 			 * bother doing it again.
577 			 */
578 			type = NULL;
579 			dontreport = 0;
580 			vdev_size = -1ULL;
581 			for (c = 0; c < children; c++) {
582 				nvlist_t *cnv = child[c];
583 				char *path;
584 				struct stat64 statbuf;
585 				uint64_t size = -1ULL;
586 				char *childtype;
587 				int fd, err;
588 
589 				rep.zprl_children++;
590 
591 				verify(nvlist_lookup_string(cnv,
592 				    ZPOOL_CONFIG_TYPE, &childtype) == 0);
593 
594 				/*
595 				 * If this is a a replacing or spare vdev, then
596 				 * get the real first child of the vdev.
597 				 */
598 				if (strcmp(childtype,
599 				    VDEV_TYPE_REPLACING) == 0 ||
600 				    strcmp(childtype, VDEV_TYPE_SPARE) == 0) {
601 					nvlist_t **rchild;
602 					uint_t rchildren;
603 
604 					verify(nvlist_lookup_nvlist_array(cnv,
605 					    ZPOOL_CONFIG_CHILDREN, &rchild,
606 					    &rchildren) == 0);
607 					assert(rchildren == 2);
608 					cnv = rchild[0];
609 
610 					verify(nvlist_lookup_string(cnv,
611 					    ZPOOL_CONFIG_TYPE,
612 					    &childtype) == 0);
613 				}
614 
615 				verify(nvlist_lookup_string(cnv,
616 				    ZPOOL_CONFIG_PATH, &path) == 0);
617 
618 				/*
619 				 * If we have a raidz/mirror that combines disks
620 				 * with files, report it as an error.
621 				 */
622 				if (!dontreport && type != NULL &&
623 				    strcmp(type, childtype) != 0) {
624 					if (ret != NULL)
625 						free(ret);
626 					ret = NULL;
627 					if (fatal)
628 						vdev_error(gettext(
629 						    "mismatched replication "
630 						    "level: %s contains both "
631 						    "files and devices\n"),
632 						    rep.zprl_type);
633 					else
634 						return (NULL);
635 					dontreport = B_TRUE;
636 				}
637 
638 				/*
639 				 * According to stat(2), the value of 'st_size'
640 				 * is undefined for block devices and character
641 				 * devices.  But there is no effective way to
642 				 * determine the real size in userland.
643 				 *
644 				 * Instead, we'll take advantage of an
645 				 * implementation detail of spec_size().  If the
646 				 * device is currently open, then we (should)
647 				 * return a valid size.
648 				 *
649 				 * If we still don't get a valid size (indicated
650 				 * by a size of 0 or MAXOFFSET_T), then ignore
651 				 * this device altogether.
652 				 */
653 				if ((fd = open(path, O_RDONLY)) >= 0) {
654 					err = fstat64(fd, &statbuf);
655 					(void) close(fd);
656 				} else {
657 					err = stat64(path, &statbuf);
658 				}
659 
660 				if (err != 0 ||
661 				    statbuf.st_size == 0 ||
662 				    statbuf.st_size == MAXOFFSET_T)
663 					continue;
664 
665 				size = statbuf.st_size;
666 
667 				/*
668 				 * Also check the size of each device.  If they
669 				 * differ, then report an error.
670 				 */
671 				if (!dontreport && vdev_size != -1ULL &&
672 				    size != vdev_size) {
673 					if (ret != NULL)
674 						free(ret);
675 					ret = NULL;
676 					if (fatal)
677 						vdev_error(gettext(
678 						    "%s contains devices of "
679 						    "different sizes\n"),
680 						    rep.zprl_type);
681 					else
682 						return (NULL);
683 					dontreport = B_TRUE;
684 				}
685 
686 				type = childtype;
687 				vdev_size = size;
688 			}
689 		}
690 
691 		/*
692 		 * At this point, we have the replication of the last toplevel
693 		 * vdev in 'rep'.  Compare it to 'lastrep' to see if its
694 		 * different.
695 		 */
696 		if (lastrep.zprl_type != NULL) {
697 			if (strcmp(lastrep.zprl_type, rep.zprl_type) != 0) {
698 				if (ret != NULL)
699 					free(ret);
700 				ret = NULL;
701 				if (fatal)
702 					vdev_error(gettext(
703 					    "mismatched replication level: "
704 					    "both %s and %s vdevs are "
705 					    "present\n"),
706 					    lastrep.zprl_type, rep.zprl_type);
707 				else
708 					return (NULL);
709 			} else if (lastrep.zprl_parity != rep.zprl_parity) {
710 				if (ret)
711 					free(ret);
712 				ret = NULL;
713 				if (fatal)
714 					vdev_error(gettext(
715 					    "mismatched replication level: "
716 					    "both %llu and %llu device parity "
717 					    "%s vdevs are present\n"),
718 					    lastrep.zprl_parity,
719 					    rep.zprl_parity,
720 					    rep.zprl_type);
721 				else
722 					return (NULL);
723 			} else if (lastrep.zprl_children != rep.zprl_children) {
724 				if (ret)
725 					free(ret);
726 				ret = NULL;
727 				if (fatal)
728 					vdev_error(gettext(
729 					    "mismatched replication level: "
730 					    "both %llu-way and %llu-way %s "
731 					    "vdevs are present\n"),
732 					    lastrep.zprl_children,
733 					    rep.zprl_children,
734 					    rep.zprl_type);
735 				else
736 					return (NULL);
737 			}
738 		}
739 		lastrep = rep;
740 	}
741 
742 	if (ret != NULL)
743 		*ret = rep;
744 
745 	return (ret);
746 }
747 
748 /*
749  * Check the replication level of the vdev spec against the current pool.  Calls
750  * get_replication() to make sure the new spec is self-consistent.  If the pool
751  * has a consistent replication level, then we ignore any errors.  Otherwise,
752  * report any difference between the two.
753  */
754 int
755 check_replication(nvlist_t *config, nvlist_t *newroot)
756 {
757 	replication_level_t *current = NULL, *new;
758 	int ret;
759 
760 	/*
761 	 * If we have a current pool configuration, check to see if it's
762 	 * self-consistent.  If not, simply return success.
763 	 */
764 	if (config != NULL) {
765 		nvlist_t *nvroot;
766 
767 		verify(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
768 		    &nvroot) == 0);
769 		if ((current = get_replication(nvroot, B_FALSE)) == NULL)
770 			return (0);
771 	}
772 
773 	/*
774 	 * Get the replication level of the new vdev spec, reporting any
775 	 * inconsistencies found.
776 	 */
777 	if ((new = get_replication(newroot, B_TRUE)) == NULL) {
778 		free(current);
779 		return (-1);
780 	}
781 
782 	/*
783 	 * Check to see if the new vdev spec matches the replication level of
784 	 * the current pool.
785 	 */
786 	ret = 0;
787 	if (current != NULL) {
788 		if (strcmp(current->zprl_type, new->zprl_type) != 0) {
789 			vdev_error(gettext(
790 			    "mismatched replication level: pool uses %s "
791 			    "and new vdev is %s\n"),
792 			    current->zprl_type, new->zprl_type);
793 			ret = -1;
794 		} else if (current->zprl_parity != new->zprl_parity) {
795 			vdev_error(gettext(
796 			    "mismatched replication level: pool uses %llu "
797 			    "device parity and new vdev uses %llu\n"),
798 			    current->zprl_parity, new->zprl_parity);
799 			ret = -1;
800 		} else if (current->zprl_children != new->zprl_children) {
801 			vdev_error(gettext(
802 			    "mismatched replication level: pool uses %llu-way "
803 			    "%s and new vdev uses %llu-way %s\n"),
804 			    current->zprl_children, current->zprl_type,
805 			    new->zprl_children, new->zprl_type);
806 			ret = -1;
807 		}
808 	}
809 
810 	free(new);
811 	if (current != NULL)
812 		free(current);
813 
814 	return (ret);
815 }
816 
817 /*
818  * Label an individual disk.  The name provided is the short name, stripped of
819  * any leading /dev path.
820  */
821 int
822 label_disk(char *name)
823 {
824 	char path[MAXPATHLEN];
825 	struct dk_gpt *vtoc;
826 	int fd;
827 	size_t resv = 16384;
828 
829 	(void) snprintf(path, sizeof (path), "%s/%s%s", RDISK_ROOT, name,
830 	    BACKUP_SLICE);
831 
832 	if ((fd = open(path, O_RDWR | O_NDELAY)) < 0) {
833 		/*
834 		 * This shouldn't happen.  We've long since verified that this
835 		 * is a valid device.
836 		 */
837 		(void) fprintf(stderr, gettext("cannot open '%s': %s\n"),
838 		    path, strerror(errno));
839 		return (-1);
840 	}
841 
842 
843 	if (efi_alloc_and_init(fd, 9, &vtoc) != 0) {
844 		/*
845 		 * The only way this can fail is if we run out of memory, or we
846 		 * were unable to read the disk geometry.
847 		 */
848 		if (errno == ENOMEM)
849 			no_memory();
850 
851 		(void) fprintf(stderr, gettext("cannot label '%s': unable to "
852 		    "read disk geometry\n"), name);
853 		(void) close(fd);
854 		return (-1);
855 	}
856 
857 	vtoc->efi_parts[0].p_start = vtoc->efi_first_u_lba;
858 	vtoc->efi_parts[0].p_size = vtoc->efi_last_u_lba + 1 -
859 	    vtoc->efi_first_u_lba - resv;
860 
861 	/*
862 	 * Why we use V_USR: V_BACKUP confuses users, and is considered
863 	 * disposable by some EFI utilities (since EFI doesn't have a backup
864 	 * slice).  V_UNASSIGNED is supposed to be used only for zero size
865 	 * partitions, and efi_write() will fail if we use it.  V_ROOT, V_BOOT,
866 	 * etc. were all pretty specific.  V_USR is as close to reality as we
867 	 * can get, in the absence of V_OTHER.
868 	 */
869 	vtoc->efi_parts[0].p_tag = V_USR;
870 	(void) strcpy(vtoc->efi_parts[0].p_name, "zfs");
871 
872 	vtoc->efi_parts[8].p_start = vtoc->efi_last_u_lba + 1 - resv;
873 	vtoc->efi_parts[8].p_size = resv;
874 	vtoc->efi_parts[8].p_tag = V_RESERVED;
875 
876 	if (efi_write(fd, vtoc) != 0) {
877 		/*
878 		 * Currently, EFI labels are not supported for IDE disks, and it
879 		 * is likely that they will not be supported on other drives for
880 		 * some time.  Print out a helpful error message directing the
881 		 * user to manually label the disk and give a specific slice.
882 		 */
883 		(void) fprintf(stderr, gettext("cannot label '%s': failed to "
884 		    "write EFI label\n"), name);
885 		(void) fprintf(stderr, gettext("use fdisk(1M) to partition "
886 		    "the disk, and provide a specific slice\n"));
887 		(void) close(fd);
888 		efi_free(vtoc);
889 		return (-1);
890 	}
891 
892 	(void) close(fd);
893 	efi_free(vtoc);
894 	return (0);
895 }
896 
897 /*
898  * Go through and find any whole disks in the vdev specification, labelling them
899  * as appropriate.  When constructing the vdev spec, we were unable to open this
900  * device in order to provide a devid.  Now that we have labelled the disk and
901  * know that slice 0 is valid, we can construct the devid now.
902  *
903  * If the disk was already labelled with an EFI label, we will have gotten the
904  * devid already (because we were able to open the whole disk).  Otherwise, we
905  * need to get the devid after we label the disk.
906  */
907 int
908 make_disks(nvlist_t *nv)
909 {
910 	nvlist_t **child;
911 	uint_t c, children;
912 	char *type, *path, *diskname;
913 	char buf[MAXPATHLEN];
914 	uint64_t wholedisk;
915 	int fd;
916 	int ret;
917 	ddi_devid_t devid;
918 	char *minor = NULL, *devid_str = NULL;
919 
920 	verify(nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) == 0);
921 
922 	if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
923 	    &child, &children) != 0) {
924 
925 		if (strcmp(type, VDEV_TYPE_DISK) != 0)
926 			return (0);
927 
928 		/*
929 		 * We have a disk device.  Get the path to the device
930 		 * and see if its a whole disk by appending the backup
931 		 * slice and stat()ing the device.
932 		 */
933 		verify(nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &path) == 0);
934 
935 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
936 		    &wholedisk) != 0 || !wholedisk)
937 			return (0);
938 
939 		diskname = strrchr(path, '/');
940 		assert(diskname != NULL);
941 		diskname++;
942 		if (label_disk(diskname) != 0)
943 			return (-1);
944 
945 		/*
946 		 * Fill in the devid, now that we've labeled the disk.
947 		 */
948 		(void) snprintf(buf, sizeof (buf), "%ss0", path);
949 		if ((fd = open(buf, O_RDONLY)) < 0) {
950 			(void) fprintf(stderr,
951 			    gettext("cannot open '%s': %s\n"),
952 			    buf, strerror(errno));
953 			return (-1);
954 		}
955 
956 		if (devid_get(fd, &devid) == 0) {
957 			if (devid_get_minor_name(fd, &minor) == 0 &&
958 			    (devid_str = devid_str_encode(devid, minor)) !=
959 			    NULL) {
960 				verify(nvlist_add_string(nv,
961 				    ZPOOL_CONFIG_DEVID, devid_str) == 0);
962 			}
963 			if (devid_str != NULL)
964 				devid_str_free(devid_str);
965 			if (minor != NULL)
966 				devid_str_free(minor);
967 			devid_free(devid);
968 		}
969 
970 		/*
971 		 * Update the path to refer to the 's0' slice.  The presence of
972 		 * the 'whole_disk' field indicates to the CLI that we should
973 		 * chop off the slice number when displaying the device in
974 		 * future output.
975 		 */
976 		verify(nvlist_add_string(nv, ZPOOL_CONFIG_PATH, buf) == 0);
977 
978 		(void) close(fd);
979 
980 		return (0);
981 	}
982 
983 	for (c = 0; c < children; c++)
984 		if ((ret = make_disks(child[c])) != 0)
985 			return (ret);
986 
987 	if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_SPARES,
988 	    &child, &children) == 0)
989 		for (c = 0; c < children; c++)
990 			if ((ret = make_disks(child[c])) != 0)
991 				return (ret);
992 
993 	return (0);
994 }
995 
996 /*
997  * Determine if the given path is a hot spare within the given configuration.
998  */
999 static boolean_t
1000 is_spare(nvlist_t *config, const char *path)
1001 {
1002 	int fd;
1003 	pool_state_t state;
1004 	char *name;
1005 	nvlist_t *label;
1006 	uint64_t guid, spareguid;
1007 	nvlist_t *nvroot;
1008 	nvlist_t **spares;
1009 	uint_t i, nspares;
1010 	boolean_t inuse;
1011 
1012 	if ((fd = open(path, O_RDONLY)) < 0)
1013 		return (B_FALSE);
1014 
1015 	if (zpool_in_use(g_zfs, fd, &state, &name, &inuse) != 0 ||
1016 	    !inuse ||
1017 	    state != POOL_STATE_SPARE ||
1018 	    zpool_read_label(fd, &label) != 0) {
1019 		(void) close(fd);
1020 		return (B_FALSE);
1021 	}
1022 
1023 	(void) close(fd);
1024 	verify(nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) == 0);
1025 	nvlist_free(label);
1026 
1027 	verify(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
1028 	    &nvroot) == 0);
1029 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
1030 	    &spares, &nspares) == 0) {
1031 		for (i = 0; i < nspares; i++) {
1032 			verify(nvlist_lookup_uint64(spares[i],
1033 			    ZPOOL_CONFIG_GUID, &spareguid) == 0);
1034 			if (spareguid == guid)
1035 				return (B_TRUE);
1036 		}
1037 	}
1038 
1039 	return (B_FALSE);
1040 }
1041 
1042 /*
1043  * Go through and find any devices that are in use.  We rely on libdiskmgt for
1044  * the majority of this task.
1045  */
1046 int
1047 check_in_use(nvlist_t *config, nvlist_t *nv, int force, int isreplacing,
1048     int isspare)
1049 {
1050 	nvlist_t **child;
1051 	uint_t c, children;
1052 	char *type, *path;
1053 	int ret;
1054 	char buf[MAXPATHLEN];
1055 	uint64_t wholedisk;
1056 
1057 	verify(nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) == 0);
1058 
1059 	if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1060 	    &child, &children) != 0) {
1061 
1062 		verify(nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &path) == 0);
1063 
1064 		/*
1065 		 * As a generic check, we look to see if this is a replace of a
1066 		 * hot spare within the same pool.  If so, we allow it
1067 		 * regardless of what libdiskmgt or zpool_in_use() says.
1068 		 */
1069 		if (isreplacing) {
1070 			if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
1071 			    &wholedisk) == 0 && wholedisk)
1072 				(void) snprintf(buf, sizeof (buf), "%ss0",
1073 				    path);
1074 			else
1075 				(void) strlcpy(buf, path, sizeof (buf));
1076 			if (is_spare(config, buf))
1077 				return (0);
1078 		}
1079 
1080 		if (strcmp(type, VDEV_TYPE_DISK) == 0)
1081 			ret = check_device(path, force, isspare);
1082 
1083 		if (strcmp(type, VDEV_TYPE_FILE) == 0)
1084 			ret = check_file(path, force, isspare);
1085 
1086 		return (ret);
1087 	}
1088 
1089 	for (c = 0; c < children; c++)
1090 		if ((ret = check_in_use(config, child[c], force,
1091 		    isreplacing, B_FALSE)) != 0)
1092 			return (ret);
1093 
1094 	if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_SPARES,
1095 	    &child, &children) == 0)
1096 		for (c = 0; c < children; c++)
1097 			if ((ret = check_in_use(config, child[c], force,
1098 			    isreplacing, B_TRUE)) != 0)
1099 				return (ret);
1100 
1101 	return (0);
1102 }
1103 
1104 const char *
1105 is_grouping(const char *type, int *mindev)
1106 {
1107 	if (strcmp(type, "raidz") == 0 || strcmp(type, "raidz1") == 0) {
1108 		if (mindev != NULL)
1109 			*mindev = 2;
1110 		return (VDEV_TYPE_RAIDZ);
1111 	}
1112 
1113 	if (strcmp(type, "raidz2") == 0) {
1114 		if (mindev != NULL)
1115 			*mindev = 3;
1116 		return (VDEV_TYPE_RAIDZ);
1117 	}
1118 
1119 	if (strcmp(type, "mirror") == 0) {
1120 		if (mindev != NULL)
1121 			*mindev = 2;
1122 		return (VDEV_TYPE_MIRROR);
1123 	}
1124 
1125 	if (strcmp(type, "spare") == 0) {
1126 		if (mindev != NULL)
1127 			*mindev = 1;
1128 		return (VDEV_TYPE_SPARE);
1129 	}
1130 
1131 	return (NULL);
1132 }
1133 
1134 /*
1135  * Construct a syntactically valid vdev specification,
1136  * and ensure that all devices and files exist and can be opened.
1137  * Note: we don't bother freeing anything in the error paths
1138  * because the program is just going to exit anyway.
1139  */
1140 nvlist_t *
1141 construct_spec(int argc, char **argv)
1142 {
1143 	nvlist_t *nvroot, *nv, **top, **spares;
1144 	int t, toplevels, mindev, nspares;
1145 	const char *type;
1146 
1147 	top = NULL;
1148 	toplevels = 0;
1149 	spares = NULL;
1150 	nspares = 0;
1151 
1152 	while (argc > 0) {
1153 		nv = NULL;
1154 
1155 		/*
1156 		 * If it's a mirror or raidz, the subsequent arguments are
1157 		 * its leaves -- until we encounter the next mirror or raidz.
1158 		 */
1159 		if ((type = is_grouping(argv[0], &mindev)) != NULL) {
1160 			nvlist_t **child = NULL;
1161 			int c, children = 0;
1162 
1163 			if (strcmp(type, VDEV_TYPE_SPARE) == 0 &&
1164 			    spares != NULL) {
1165 				(void) fprintf(stderr, gettext("invalid vdev "
1166 				    "specification: 'spare' can be "
1167 				    "specified only once\n"));
1168 				return (NULL);
1169 			}
1170 
1171 			for (c = 1; c < argc; c++) {
1172 				if (is_grouping(argv[c], NULL) != NULL)
1173 					break;
1174 				children++;
1175 				child = realloc(child,
1176 				    children * sizeof (nvlist_t *));
1177 				if (child == NULL)
1178 					no_memory();
1179 				if ((nv = make_leaf_vdev(argv[c])) == NULL)
1180 					return (NULL);
1181 				child[children - 1] = nv;
1182 			}
1183 
1184 			if (children < mindev) {
1185 				(void) fprintf(stderr, gettext("invalid vdev "
1186 				    "specification: %s requires at least %d "
1187 				    "devices\n"), argv[0], mindev);
1188 				return (NULL);
1189 			}
1190 
1191 			argc -= c;
1192 			argv += c;
1193 
1194 			if (strcmp(type, VDEV_TYPE_SPARE) == 0) {
1195 				spares = child;
1196 				nspares = children;
1197 				continue;
1198 			} else {
1199 				verify(nvlist_alloc(&nv, NV_UNIQUE_NAME,
1200 				    0) == 0);
1201 				verify(nvlist_add_string(nv, ZPOOL_CONFIG_TYPE,
1202 				    type) == 0);
1203 				if (strcmp(type, VDEV_TYPE_RAIDZ) == 0) {
1204 					verify(nvlist_add_uint64(nv,
1205 					    ZPOOL_CONFIG_NPARITY,
1206 					    mindev - 1) == 0);
1207 				}
1208 				verify(nvlist_add_nvlist_array(nv,
1209 				    ZPOOL_CONFIG_CHILDREN, child,
1210 				    children) == 0);
1211 
1212 				for (c = 0; c < children; c++)
1213 					nvlist_free(child[c]);
1214 				free(child);
1215 			}
1216 		} else {
1217 			/*
1218 			 * We have a device.  Pass off to make_leaf_vdev() to
1219 			 * construct the appropriate nvlist describing the vdev.
1220 			 */
1221 			if ((nv = make_leaf_vdev(argv[0])) == NULL)
1222 				return (NULL);
1223 			argc--;
1224 			argv++;
1225 		}
1226 
1227 		toplevels++;
1228 		top = realloc(top, toplevels * sizeof (nvlist_t *));
1229 		if (top == NULL)
1230 			no_memory();
1231 		top[toplevels - 1] = nv;
1232 	}
1233 
1234 	if (toplevels == 0 && nspares == 0) {
1235 		(void) fprintf(stderr, gettext("invalid vdev "
1236 		    "specification: at least one toplevel vdev must be "
1237 		    "specified\n"));
1238 		return (NULL);
1239 	}
1240 
1241 	/*
1242 	 * Finally, create nvroot and add all top-level vdevs to it.
1243 	 */
1244 	verify(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, 0) == 0);
1245 	verify(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
1246 	    VDEV_TYPE_ROOT) == 0);
1247 	verify(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
1248 	    top, toplevels) == 0);
1249 	if (nspares != 0)
1250 		verify(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
1251 		    spares, nspares) == 0);
1252 
1253 	for (t = 0; t < toplevels; t++)
1254 		nvlist_free(top[t]);
1255 	for (t = 0; t < nspares; t++)
1256 		nvlist_free(spares[t]);
1257 	if (spares)
1258 		free(spares);
1259 	free(top);
1260 
1261 	return (nvroot);
1262 }
1263 
1264 /*
1265  * Get and validate the contents of the given vdev specification.  This ensures
1266  * that the nvlist returned is well-formed, that all the devices exist, and that
1267  * they are not currently in use by any other known consumer.  The 'poolconfig'
1268  * parameter is the current configuration of the pool when adding devices
1269  * existing pool, and is used to perform additional checks, such as changing the
1270  * replication level of the pool.  It can be 'NULL' to indicate that this is a
1271  * new pool.  The 'force' flag controls whether devices should be forcefully
1272  * added, even if they appear in use.
1273  */
1274 nvlist_t *
1275 make_root_vdev(nvlist_t *poolconfig, int force, int check_rep,
1276     boolean_t isreplacing, int argc, char **argv)
1277 {
1278 	nvlist_t *newroot;
1279 
1280 	is_force = force;
1281 
1282 	/*
1283 	 * Construct the vdev specification.  If this is successful, we know
1284 	 * that we have a valid specification, and that all devices can be
1285 	 * opened.
1286 	 */
1287 	if ((newroot = construct_spec(argc, argv)) == NULL)
1288 		return (NULL);
1289 
1290 	/*
1291 	 * Validate each device to make sure that its not shared with another
1292 	 * subsystem.  We do this even if 'force' is set, because there are some
1293 	 * uses (such as a dedicated dump device) that even '-f' cannot
1294 	 * override.
1295 	 */
1296 	if (check_in_use(poolconfig, newroot, force, isreplacing,
1297 	    B_FALSE) != 0) {
1298 		nvlist_free(newroot);
1299 		return (NULL);
1300 	}
1301 
1302 	/*
1303 	 * Check the replication level of the given vdevs and report any errors
1304 	 * found.  We include the existing pool spec, if any, as we need to
1305 	 * catch changes against the existing replication level.
1306 	 */
1307 	if (check_rep && check_replication(poolconfig, newroot) != 0) {
1308 		nvlist_free(newroot);
1309 		return (NULL);
1310 	}
1311 
1312 	/*
1313 	 * Run through the vdev specification and label any whole disks found.
1314 	 */
1315 	if (make_disks(newroot) != 0) {
1316 		nvlist_free(newroot);
1317 		return (NULL);
1318 	}
1319 
1320 	return (newroot);
1321 }
1322