1*fa9e4066Sahrens /* 2*fa9e4066Sahrens * CDDL HEADER START 3*fa9e4066Sahrens * 4*fa9e4066Sahrens * The contents of this file are subject to the terms of the 5*fa9e4066Sahrens * Common Development and Distribution License, Version 1.0 only 6*fa9e4066Sahrens * (the "License"). You may not use this file except in compliance 7*fa9e4066Sahrens * with the License. 8*fa9e4066Sahrens * 9*fa9e4066Sahrens * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 10*fa9e4066Sahrens * or http://www.opensolaris.org/os/licensing. 11*fa9e4066Sahrens * See the License for the specific language governing permissions 12*fa9e4066Sahrens * and limitations under the License. 13*fa9e4066Sahrens * 14*fa9e4066Sahrens * When distributing Covered Code, include this CDDL HEADER in each 15*fa9e4066Sahrens * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 16*fa9e4066Sahrens * If applicable, add the following below this CDDL HEADER, with the 17*fa9e4066Sahrens * fields enclosed by brackets "[]" replaced with your own identifying 18*fa9e4066Sahrens * information: Portions Copyright [yyyy] [name of copyright owner] 19*fa9e4066Sahrens * 20*fa9e4066Sahrens * CDDL HEADER END 21*fa9e4066Sahrens */ 22*fa9e4066Sahrens /* 23*fa9e4066Sahrens * Copyright 2005 Sun Microsystems, Inc. All rights reserved. 24*fa9e4066Sahrens * Use is subject to license terms. 25*fa9e4066Sahrens */ 26*fa9e4066Sahrens 27*fa9e4066Sahrens #pragma ident "%Z%%M% %I% %E% SMI" 28*fa9e4066Sahrens 29*fa9e4066Sahrens /* 30*fa9e4066Sahrens * Functions to convert between a list of vdevs and an nvlist representing the 31*fa9e4066Sahrens * configuration. Each entry in the list can be one of: 32*fa9e4066Sahrens * 33*fa9e4066Sahrens * Device vdevs 34*fa9e4066Sahrens * disk=(path=..., devid=...) 35*fa9e4066Sahrens * file=(path=...) 36*fa9e4066Sahrens * 37*fa9e4066Sahrens * Group vdevs 38*fa9e4066Sahrens * raidz=(...) 39*fa9e4066Sahrens * mirror=(...) 40*fa9e4066Sahrens * 41*fa9e4066Sahrens * While the underlying implementation supports it, group vdevs cannot contain 42*fa9e4066Sahrens * other group vdevs. All userland verification of devices is contained within 43*fa9e4066Sahrens * this file. If successful, the nvlist returned can be passed directly to the 44*fa9e4066Sahrens * kernel; we've done as much verification as possible in userland. 45*fa9e4066Sahrens * 46*fa9e4066Sahrens * The only function exported by this file is 'get_vdev_spec'. The function 47*fa9e4066Sahrens * performs several passes: 48*fa9e4066Sahrens * 49*fa9e4066Sahrens * 1. Construct the vdev specification. Performs syntax validation and 50*fa9e4066Sahrens * makes sure each device is valid. 51*fa9e4066Sahrens * 2. Check for devices in use. Using libdiskmgt, makes sure that no 52*fa9e4066Sahrens * devices are also in use. Some can be overridden using the 'force' 53*fa9e4066Sahrens * flag, others cannot. 54*fa9e4066Sahrens * 3. Check for replication errors if the 'force' flag is not specified. 55*fa9e4066Sahrens * validates that the replication level is consistent across the 56*fa9e4066Sahrens * entire pool. 57*fa9e4066Sahrens * 4. Label any whole disks with an EFI label. 58*fa9e4066Sahrens */ 59*fa9e4066Sahrens 60*fa9e4066Sahrens #include <assert.h> 61*fa9e4066Sahrens #include <devid.h> 62*fa9e4066Sahrens #include <errno.h> 63*fa9e4066Sahrens #include <fcntl.h> 64*fa9e4066Sahrens #include <libdiskmgt.h> 65*fa9e4066Sahrens #include <libintl.h> 66*fa9e4066Sahrens #include <libnvpair.h> 67*fa9e4066Sahrens #include <stdio.h> 68*fa9e4066Sahrens #include <string.h> 69*fa9e4066Sahrens #include <unistd.h> 70*fa9e4066Sahrens #include <sys/efi_partition.h> 71*fa9e4066Sahrens #include <sys/stat.h> 72*fa9e4066Sahrens #include <sys/vtoc.h> 73*fa9e4066Sahrens #include <sys/mntent.h> 74*fa9e4066Sahrens 75*fa9e4066Sahrens #include <libzfs.h> 76*fa9e4066Sahrens 77*fa9e4066Sahrens #include "zpool_util.h" 78*fa9e4066Sahrens 79*fa9e4066Sahrens #define DISK_ROOT "/dev/dsk" 80*fa9e4066Sahrens #define RDISK_ROOT "/dev/rdsk" 81*fa9e4066Sahrens #define BACKUP_SLICE "s2" 82*fa9e4066Sahrens 83*fa9e4066Sahrens /* 84*fa9e4066Sahrens * For any given vdev specification, we can have multiple errors. The 85*fa9e4066Sahrens * vdev_error() function keeps track of whether we have seen an error yet, and 86*fa9e4066Sahrens * prints out a header if its the first error we've seen. 87*fa9e4066Sahrens */ 88*fa9e4066Sahrens int error_seen; 89*fa9e4066Sahrens int is_force; 90*fa9e4066Sahrens 91*fa9e4066Sahrens void 92*fa9e4066Sahrens vdev_error(const char *fmt, ...) 93*fa9e4066Sahrens { 94*fa9e4066Sahrens va_list ap; 95*fa9e4066Sahrens 96*fa9e4066Sahrens if (!error_seen) { 97*fa9e4066Sahrens (void) fprintf(stderr, gettext("invalid vdev specification\n")); 98*fa9e4066Sahrens if (!is_force) 99*fa9e4066Sahrens (void) fprintf(stderr, gettext("use '-f' to override " 100*fa9e4066Sahrens "the following errors:\n")); 101*fa9e4066Sahrens else 102*fa9e4066Sahrens (void) fprintf(stderr, gettext("the following errors " 103*fa9e4066Sahrens "must be manually repaired:\n")); 104*fa9e4066Sahrens error_seen = TRUE; 105*fa9e4066Sahrens } 106*fa9e4066Sahrens 107*fa9e4066Sahrens va_start(ap, fmt); 108*fa9e4066Sahrens (void) vfprintf(stderr, fmt, ap); 109*fa9e4066Sahrens va_end(ap); 110*fa9e4066Sahrens } 111*fa9e4066Sahrens 112*fa9e4066Sahrens void 113*fa9e4066Sahrens _libdskmgt_error(int err, const char *file, int line) 114*fa9e4066Sahrens { 115*fa9e4066Sahrens if (err == 0) 116*fa9e4066Sahrens no_memory(); 117*fa9e4066Sahrens 118*fa9e4066Sahrens /* 119*fa9e4066Sahrens * Some of the libdiskmgt stuff requires root privileges in order to 120*fa9e4066Sahrens * examine devices. Bail out gracefully in this case. 121*fa9e4066Sahrens */ 122*fa9e4066Sahrens if (err == EACCES) { 123*fa9e4066Sahrens (void) fprintf(stderr, gettext("cannot determine disk " 124*fa9e4066Sahrens "configuration: permission denied\n")); 125*fa9e4066Sahrens exit(1); 126*fa9e4066Sahrens } 127*fa9e4066Sahrens 128*fa9e4066Sahrens (void) fprintf(stderr, gettext("internal error: disk configuration " 129*fa9e4066Sahrens "error %d at line %d of file %s\n"), err, line, file); 130*fa9e4066Sahrens abort(); 131*fa9e4066Sahrens } 132*fa9e4066Sahrens 133*fa9e4066Sahrens #define libdskmgt_error(err) (_libdskmgt_error((err), __FILE__, __LINE__)) 134*fa9e4066Sahrens 135*fa9e4066Sahrens /* 136*fa9e4066Sahrens * Checks whether a single slice overlaps with any of the slices in the provided 137*fa9e4066Sahrens * list. Called by check_overlapping(). 138*fa9e4066Sahrens */ 139*fa9e4066Sahrens int 140*fa9e4066Sahrens is_overlapping(dm_descriptor_t slice, dm_descriptor_t media, 141*fa9e4066Sahrens dm_descriptor_t *slice_list, int *error, char **overlaps_with) 142*fa9e4066Sahrens { 143*fa9e4066Sahrens int i = 0; 144*fa9e4066Sahrens uint32_t in_snum; 145*fa9e4066Sahrens uint64_t start_block = 0; 146*fa9e4066Sahrens uint64_t end_block = 0; 147*fa9e4066Sahrens uint64_t media_size = 0; 148*fa9e4066Sahrens uint64_t size = 0; 149*fa9e4066Sahrens nvlist_t *media_attrs; 150*fa9e4066Sahrens nvlist_t *slice_attrs; 151*fa9e4066Sahrens 152*fa9e4066Sahrens media_attrs = dm_get_attributes(media, error); 153*fa9e4066Sahrens if (*error != 0) { 154*fa9e4066Sahrens return (-1); 155*fa9e4066Sahrens } 156*fa9e4066Sahrens 157*fa9e4066Sahrens if (media_attrs == NULL) { 158*fa9e4066Sahrens return (0); 159*fa9e4066Sahrens } 160*fa9e4066Sahrens 161*fa9e4066Sahrens *error = nvlist_lookup_uint64(media_attrs, DM_NACCESSIBLE, &media_size); 162*fa9e4066Sahrens if (*error != 0) { 163*fa9e4066Sahrens nvlist_free(media_attrs); 164*fa9e4066Sahrens return (-1); 165*fa9e4066Sahrens } 166*fa9e4066Sahrens 167*fa9e4066Sahrens slice_attrs = dm_get_attributes(slice, error); 168*fa9e4066Sahrens if (*error != 0) { 169*fa9e4066Sahrens nvlist_free(media_attrs); 170*fa9e4066Sahrens return (-1); 171*fa9e4066Sahrens } 172*fa9e4066Sahrens /* 173*fa9e4066Sahrens * Not really possible, but the error above would catch any system 174*fa9e4066Sahrens * errors. 175*fa9e4066Sahrens */ 176*fa9e4066Sahrens if (slice_attrs == NULL) { 177*fa9e4066Sahrens nvlist_free(media_attrs); 178*fa9e4066Sahrens return (0); 179*fa9e4066Sahrens } 180*fa9e4066Sahrens 181*fa9e4066Sahrens *error = nvlist_lookup_uint64(slice_attrs, DM_START, &start_block); 182*fa9e4066Sahrens if (*error != 0) { 183*fa9e4066Sahrens nvlist_free(media_attrs); 184*fa9e4066Sahrens nvlist_free(slice_attrs); 185*fa9e4066Sahrens return (-1); 186*fa9e4066Sahrens } 187*fa9e4066Sahrens 188*fa9e4066Sahrens *error = nvlist_lookup_uint64(slice_attrs, DM_SIZE, &size); 189*fa9e4066Sahrens if (*error != 0) { 190*fa9e4066Sahrens nvlist_free(media_attrs); 191*fa9e4066Sahrens nvlist_free(slice_attrs); 192*fa9e4066Sahrens return (-1); 193*fa9e4066Sahrens } 194*fa9e4066Sahrens *error = nvlist_lookup_uint32(slice_attrs, DM_INDEX, &in_snum); 195*fa9e4066Sahrens if (*error != 0) { 196*fa9e4066Sahrens nvlist_free(media_attrs); 197*fa9e4066Sahrens nvlist_free(slice_attrs); 198*fa9e4066Sahrens return (-1); 199*fa9e4066Sahrens } 200*fa9e4066Sahrens 201*fa9e4066Sahrens end_block = (start_block + size) - 1; 202*fa9e4066Sahrens 203*fa9e4066Sahrens for (i = 0; slice_list[i]; i ++) { 204*fa9e4066Sahrens uint64_t other_start; 205*fa9e4066Sahrens uint64_t other_end; 206*fa9e4066Sahrens uint64_t other_size; 207*fa9e4066Sahrens uint32_t snum; 208*fa9e4066Sahrens 209*fa9e4066Sahrens nvlist_t *other_attrs = dm_get_attributes(slice_list[i], error); 210*fa9e4066Sahrens if (*error != 0) { 211*fa9e4066Sahrens return (-1); 212*fa9e4066Sahrens } 213*fa9e4066Sahrens 214*fa9e4066Sahrens if (other_attrs == NULL) 215*fa9e4066Sahrens continue; 216*fa9e4066Sahrens 217*fa9e4066Sahrens *error = nvlist_lookup_uint64(other_attrs, DM_START, 218*fa9e4066Sahrens &other_start); 219*fa9e4066Sahrens if (*error) { 220*fa9e4066Sahrens nvlist_free(media_attrs); 221*fa9e4066Sahrens nvlist_free(slice_attrs); 222*fa9e4066Sahrens nvlist_free(other_attrs); 223*fa9e4066Sahrens return (-1); 224*fa9e4066Sahrens } 225*fa9e4066Sahrens 226*fa9e4066Sahrens *error = nvlist_lookup_uint64(other_attrs, DM_SIZE, 227*fa9e4066Sahrens &other_size); 228*fa9e4066Sahrens 229*fa9e4066Sahrens if (*error) { 230*fa9e4066Sahrens nvlist_free(media_attrs); 231*fa9e4066Sahrens nvlist_free(slice_attrs); 232*fa9e4066Sahrens nvlist_free(other_attrs); 233*fa9e4066Sahrens return (-1); 234*fa9e4066Sahrens } 235*fa9e4066Sahrens 236*fa9e4066Sahrens other_end = (other_size + other_start) - 1; 237*fa9e4066Sahrens 238*fa9e4066Sahrens *error = nvlist_lookup_uint32(other_attrs, DM_INDEX, 239*fa9e4066Sahrens &snum); 240*fa9e4066Sahrens 241*fa9e4066Sahrens if (*error) { 242*fa9e4066Sahrens nvlist_free(media_attrs); 243*fa9e4066Sahrens nvlist_free(slice_attrs); 244*fa9e4066Sahrens nvlist_free(other_attrs); 245*fa9e4066Sahrens return (-1); 246*fa9e4066Sahrens } 247*fa9e4066Sahrens 248*fa9e4066Sahrens /* 249*fa9e4066Sahrens * Check to see if there are > 2 overlapping regions 250*fa9e4066Sahrens * on this media in the same region as this slice. 251*fa9e4066Sahrens * This is done by assuming the following: 252*fa9e4066Sahrens * Slice 2 is the backup slice if it is the size 253*fa9e4066Sahrens * of the whole disk 254*fa9e4066Sahrens * If slice 2 is the overlap and slice 2 is the size of 255*fa9e4066Sahrens * the whole disk, continue. If another slice is found 256*fa9e4066Sahrens * that overlaps with our slice, return it. 257*fa9e4066Sahrens * There is the potential that there is more than one slice 258*fa9e4066Sahrens * that our slice overlaps with, however, we only return 259*fa9e4066Sahrens * the first overlapping slice we find. 260*fa9e4066Sahrens * 261*fa9e4066Sahrens */ 262*fa9e4066Sahrens 263*fa9e4066Sahrens if (start_block >= other_start && start_block <= other_end) { 264*fa9e4066Sahrens if ((snum == 2 && (other_size == media_size)) || 265*fa9e4066Sahrens snum == in_snum) { 266*fa9e4066Sahrens continue; 267*fa9e4066Sahrens } else { 268*fa9e4066Sahrens char *str = dm_get_name(slice_list[i], error); 269*fa9e4066Sahrens if (*error != 0) { 270*fa9e4066Sahrens nvlist_free(media_attrs); 271*fa9e4066Sahrens nvlist_free(slice_attrs); 272*fa9e4066Sahrens nvlist_free(other_attrs); 273*fa9e4066Sahrens return (-1); 274*fa9e4066Sahrens } 275*fa9e4066Sahrens *overlaps_with = strdup(str); 276*fa9e4066Sahrens dm_free_name(str); 277*fa9e4066Sahrens nvlist_free(media_attrs); 278*fa9e4066Sahrens nvlist_free(slice_attrs); 279*fa9e4066Sahrens nvlist_free(other_attrs); 280*fa9e4066Sahrens return (1); 281*fa9e4066Sahrens } 282*fa9e4066Sahrens } else if (other_start >= start_block && 283*fa9e4066Sahrens other_start <= end_block) { 284*fa9e4066Sahrens if ((snum == 2 && (other_size == media_size)) || 285*fa9e4066Sahrens snum == in_snum) { 286*fa9e4066Sahrens continue; 287*fa9e4066Sahrens } else { 288*fa9e4066Sahrens char *str = dm_get_name(slice_list[i], error); 289*fa9e4066Sahrens if (*error != 0) { 290*fa9e4066Sahrens nvlist_free(media_attrs); 291*fa9e4066Sahrens nvlist_free(slice_attrs); 292*fa9e4066Sahrens nvlist_free(other_attrs); 293*fa9e4066Sahrens return (-1); 294*fa9e4066Sahrens } 295*fa9e4066Sahrens *overlaps_with = strdup(str); 296*fa9e4066Sahrens dm_free_name(str); 297*fa9e4066Sahrens nvlist_free(media_attrs); 298*fa9e4066Sahrens nvlist_free(slice_attrs); 299*fa9e4066Sahrens nvlist_free(other_attrs); 300*fa9e4066Sahrens return (1); 301*fa9e4066Sahrens } 302*fa9e4066Sahrens } 303*fa9e4066Sahrens nvlist_free(other_attrs); 304*fa9e4066Sahrens } 305*fa9e4066Sahrens nvlist_free(media_attrs); 306*fa9e4066Sahrens nvlist_free(slice_attrs); 307*fa9e4066Sahrens return (0); 308*fa9e4066Sahrens } 309*fa9e4066Sahrens 310*fa9e4066Sahrens /* 311*fa9e4066Sahrens * Check to see whether the given slice overlaps with any other slices. Get the 312*fa9e4066Sahrens * associated slice information and pass on to is_overlapping(). 313*fa9e4066Sahrens */ 314*fa9e4066Sahrens int 315*fa9e4066Sahrens check_overlapping(const char *slicename, dm_descriptor_t slice) 316*fa9e4066Sahrens { 317*fa9e4066Sahrens dm_descriptor_t *media; 318*fa9e4066Sahrens dm_descriptor_t *slices; 319*fa9e4066Sahrens int error; 320*fa9e4066Sahrens char *overlaps; 321*fa9e4066Sahrens int ret = 0; 322*fa9e4066Sahrens 323*fa9e4066Sahrens /* 324*fa9e4066Sahrens * Get the list of slices be fetching the associated media, and then all 325*fa9e4066Sahrens * associated slices. 326*fa9e4066Sahrens */ 327*fa9e4066Sahrens media = dm_get_associated_descriptors(slice, DM_MEDIA, &error); 328*fa9e4066Sahrens if (media == NULL || *media == NULL || error != 0) 329*fa9e4066Sahrens libdskmgt_error(error); 330*fa9e4066Sahrens 331*fa9e4066Sahrens slices = dm_get_associated_descriptors(*media, DM_SLICE, &error); 332*fa9e4066Sahrens if (slices == NULL || *slices == NULL || error != 0) 333*fa9e4066Sahrens libdskmgt_error(error); 334*fa9e4066Sahrens 335*fa9e4066Sahrens 336*fa9e4066Sahrens overlaps = NULL; 337*fa9e4066Sahrens if (is_overlapping(slice, *media, slices, &error, &overlaps)) { 338*fa9e4066Sahrens vdev_error(gettext("device '%s' overlaps with '%s'\n"), 339*fa9e4066Sahrens slicename, overlaps); 340*fa9e4066Sahrens ret = -1; 341*fa9e4066Sahrens } 342*fa9e4066Sahrens 343*fa9e4066Sahrens if (overlaps != NULL) 344*fa9e4066Sahrens free(overlaps); 345*fa9e4066Sahrens dm_free_descriptors(slices); 346*fa9e4066Sahrens dm_free_descriptors(media); 347*fa9e4066Sahrens 348*fa9e4066Sahrens return (ret); 349*fa9e4066Sahrens } 350*fa9e4066Sahrens 351*fa9e4066Sahrens /* 352*fa9e4066Sahrens * Validate the given slice. If 'diskname' is non-NULL, then this is a single 353*fa9e4066Sahrens * slice on a complete disk. If 'force' is set, then the user specified '-f' 354*fa9e4066Sahrens * and we only want to report error for completely forbidden uses. 355*fa9e4066Sahrens */ 356*fa9e4066Sahrens int 357*fa9e4066Sahrens check_slice(const char *slicename, dm_descriptor_t slice, int force, 358*fa9e4066Sahrens int overlap) 359*fa9e4066Sahrens { 360*fa9e4066Sahrens nvlist_t *stats; 361*fa9e4066Sahrens int err; 362*fa9e4066Sahrens nvpair_t *nvwhat, *nvdesc; 363*fa9e4066Sahrens char *what, *desc, *name; 364*fa9e4066Sahrens int found = FALSE; 365*fa9e4066Sahrens int found_zfs = FALSE; 366*fa9e4066Sahrens int fd; 367*fa9e4066Sahrens 368*fa9e4066Sahrens if ((stats = dm_get_stats(slice, DM_SLICE_STAT_USE, &err)) == NULL) 369*fa9e4066Sahrens libdskmgt_error(err); 370*fa9e4066Sahrens 371*fa9e4066Sahrens /* 372*fa9e4066Sahrens * Always check to see if this is used by an active ZFS pool. 373*fa9e4066Sahrens */ 374*fa9e4066Sahrens if ((fd = open(slicename, O_RDONLY)) > 0) { 375*fa9e4066Sahrens if (zpool_in_use(fd, &desc, &name)) { 376*fa9e4066Sahrens 377*fa9e4066Sahrens if (!force) { 378*fa9e4066Sahrens vdev_error(gettext("%s is part of %s pool " 379*fa9e4066Sahrens "'%s'\n"), slicename, desc, name); 380*fa9e4066Sahrens found = found_zfs = TRUE; 381*fa9e4066Sahrens } 382*fa9e4066Sahrens 383*fa9e4066Sahrens free(desc); 384*fa9e4066Sahrens free(name); 385*fa9e4066Sahrens } 386*fa9e4066Sahrens 387*fa9e4066Sahrens (void) close(fd); 388*fa9e4066Sahrens } 389*fa9e4066Sahrens 390*fa9e4066Sahrens /* 391*fa9e4066Sahrens * This slice is in use. Print out a descriptive message describing who 392*fa9e4066Sahrens * is using it. The 'used_by' nvlist is formatted as: 393*fa9e4066Sahrens * 394*fa9e4066Sahrens * (used_by=what, used_name=desc, ...) 395*fa9e4066Sahrens * 396*fa9e4066Sahrens * Each 'used_by' must be accompanied by a 'used_name'. 397*fa9e4066Sahrens */ 398*fa9e4066Sahrens nvdesc = NULL; 399*fa9e4066Sahrens for (;;) { 400*fa9e4066Sahrens nvwhat = nvlist_next_nvpair(stats, nvdesc); 401*fa9e4066Sahrens nvdesc = nvlist_next_nvpair(stats, nvwhat); 402*fa9e4066Sahrens 403*fa9e4066Sahrens if (nvwhat == NULL || nvdesc == NULL) 404*fa9e4066Sahrens break; 405*fa9e4066Sahrens 406*fa9e4066Sahrens assert(strcmp(nvpair_name(nvwhat), DM_USED_BY) == 0); 407*fa9e4066Sahrens assert(strcmp(nvpair_name(nvdesc), DM_USED_NAME) == 0); 408*fa9e4066Sahrens 409*fa9e4066Sahrens verify(nvpair_value_string(nvwhat, &what) == 0); 410*fa9e4066Sahrens verify(nvpair_value_string(nvdesc, &desc) == 0); 411*fa9e4066Sahrens 412*fa9e4066Sahrens /* 413*fa9e4066Sahrens * For currently mounted filesystems, filesystems in 414*fa9e4066Sahrens * /etc/vfstab, or dedicated dump devices, we can never use 415*fa9e4066Sahrens * them, even if '-f' is specified. The rest of the errors 416*fa9e4066Sahrens * indicate that a filesystem was detected on disk, which can be 417*fa9e4066Sahrens * overridden with '-f'. 418*fa9e4066Sahrens */ 419*fa9e4066Sahrens if (strcmp(what, DM_USE_MOUNT) == 0 || 420*fa9e4066Sahrens strcmp(what, DM_USE_VFSTAB) == 0 || 421*fa9e4066Sahrens strcmp(what, DM_USE_DUMP) == 0) { 422*fa9e4066Sahrens found = TRUE; 423*fa9e4066Sahrens if (strcmp(what, DM_USE_MOUNT) == 0) { 424*fa9e4066Sahrens vdev_error(gettext("%s is " 425*fa9e4066Sahrens "currently mounted on %s\n"), 426*fa9e4066Sahrens slicename, desc); 427*fa9e4066Sahrens } else if (strcmp(what, DM_USE_VFSTAB) == 0) { 428*fa9e4066Sahrens vdev_error(gettext("%s is usually " 429*fa9e4066Sahrens "mounted at %s in /etc/vfstab\n"), 430*fa9e4066Sahrens slicename, desc); 431*fa9e4066Sahrens } else if (strcmp(what, DM_USE_DUMP) == 0) { 432*fa9e4066Sahrens vdev_error(gettext("%s is the " 433*fa9e4066Sahrens "dedicated dump device\n"), slicename); 434*fa9e4066Sahrens } 435*fa9e4066Sahrens } else if (!force) { 436*fa9e4066Sahrens found = TRUE; 437*fa9e4066Sahrens if (strcmp(what, DM_USE_SVM) == 0) { 438*fa9e4066Sahrens vdev_error(gettext("%s is part of " 439*fa9e4066Sahrens "SVM volume %s\n"), slicename, desc); 440*fa9e4066Sahrens } else if (strcmp(what, DM_USE_LU) == 0) { 441*fa9e4066Sahrens vdev_error(gettext("%s is in use " 442*fa9e4066Sahrens "for live upgrade %s\n"), slicename, desc); 443*fa9e4066Sahrens } else if (strcmp(what, DM_USE_VXVM) == 0) { 444*fa9e4066Sahrens vdev_error(gettext("%s is part of " 445*fa9e4066Sahrens "VxVM volume %s\n"), slicename, desc); 446*fa9e4066Sahrens } else if (strcmp(what, DM_USE_FS) == 0) { 447*fa9e4066Sahrens /* 448*fa9e4066Sahrens * We should have already caught ZFS in-use 449*fa9e4066Sahrens * filesystems above. If the ZFS version is 450*fa9e4066Sahrens * different, or there was some other critical 451*fa9e4066Sahrens * failure, it's possible for fstyp to report it 452*fa9e4066Sahrens * as in-use, but zpool_open_by_dev() to fail. 453*fa9e4066Sahrens */ 454*fa9e4066Sahrens if (strcmp(desc, MNTTYPE_ZFS) != 0) 455*fa9e4066Sahrens vdev_error(gettext("%s contains a %s " 456*fa9e4066Sahrens "filesystem\n"), slicename, desc); 457*fa9e4066Sahrens else if (!found_zfs) 458*fa9e4066Sahrens vdev_error(gettext("%s is part of an " 459*fa9e4066Sahrens "outdated or damaged ZFS " 460*fa9e4066Sahrens "pool\n"), slicename); 461*fa9e4066Sahrens } else { 462*fa9e4066Sahrens vdev_error(gettext("is used by %s as %s\n"), 463*fa9e4066Sahrens slicename, what, desc); 464*fa9e4066Sahrens } 465*fa9e4066Sahrens } else { 466*fa9e4066Sahrens found = FALSE; 467*fa9e4066Sahrens } 468*fa9e4066Sahrens } 469*fa9e4066Sahrens 470*fa9e4066Sahrens /* 471*fa9e4066Sahrens * Perform any overlap checking if requested to do so. 472*fa9e4066Sahrens */ 473*fa9e4066Sahrens if (overlap && !force) 474*fa9e4066Sahrens found |= (check_overlapping(slicename, slice) != 0); 475*fa9e4066Sahrens 476*fa9e4066Sahrens return (found ? -1 : 0); 477*fa9e4066Sahrens } 478*fa9e4066Sahrens 479*fa9e4066Sahrens /* 480*fa9e4066Sahrens * Validate a whole disk. Iterate over all slices on the disk and make sure 481*fa9e4066Sahrens * that none is in use by calling check_slice(). 482*fa9e4066Sahrens */ 483*fa9e4066Sahrens /* ARGSUSED */ 484*fa9e4066Sahrens int 485*fa9e4066Sahrens check_disk(const char *name, dm_descriptor_t disk, int force) 486*fa9e4066Sahrens { 487*fa9e4066Sahrens dm_descriptor_t *drive, *media, *slice; 488*fa9e4066Sahrens int err = 0; 489*fa9e4066Sahrens int i; 490*fa9e4066Sahrens int ret; 491*fa9e4066Sahrens 492*fa9e4066Sahrens /* 493*fa9e4066Sahrens * Get the drive associated with this disk. This should never fail, 494*fa9e4066Sahrens * because we already have an alias handle open for the device. 495*fa9e4066Sahrens */ 496*fa9e4066Sahrens if ((drive = dm_get_associated_descriptors(disk, DM_DRIVE, 497*fa9e4066Sahrens &err)) == NULL || *drive == NULL) 498*fa9e4066Sahrens libdskmgt_error(err); 499*fa9e4066Sahrens 500*fa9e4066Sahrens if ((media = dm_get_associated_descriptors(*drive, DM_MEDIA, 501*fa9e4066Sahrens &err)) == NULL) 502*fa9e4066Sahrens libdskmgt_error(err); 503*fa9e4066Sahrens 504*fa9e4066Sahrens dm_free_descriptors(drive); 505*fa9e4066Sahrens 506*fa9e4066Sahrens /* 507*fa9e4066Sahrens * It is possible that the user has specified a removable media drive, 508*fa9e4066Sahrens * and the media is not present. 509*fa9e4066Sahrens */ 510*fa9e4066Sahrens if (*media == NULL) { 511*fa9e4066Sahrens vdev_error(gettext("'%s' has no media in drive\n"), name); 512*fa9e4066Sahrens dm_free_descriptors(media); 513*fa9e4066Sahrens return (-1); 514*fa9e4066Sahrens } 515*fa9e4066Sahrens 516*fa9e4066Sahrens if ((slice = dm_get_associated_descriptors(*media, DM_SLICE, 517*fa9e4066Sahrens &err)) == NULL) 518*fa9e4066Sahrens libdskmgt_error(err); 519*fa9e4066Sahrens 520*fa9e4066Sahrens dm_free_descriptors(media); 521*fa9e4066Sahrens 522*fa9e4066Sahrens ret = 0; 523*fa9e4066Sahrens 524*fa9e4066Sahrens /* 525*fa9e4066Sahrens * Iterate over all slices and report any errors. We don't care about 526*fa9e4066Sahrens * overlapping slices because we are using the whole disk. 527*fa9e4066Sahrens */ 528*fa9e4066Sahrens for (i = 0; slice[i] != NULL; i++) { 529*fa9e4066Sahrens if (check_slice(dm_get_name(slice[i], &err), slice[i], 530*fa9e4066Sahrens force, FALSE) != 0) 531*fa9e4066Sahrens ret = -1; 532*fa9e4066Sahrens } 533*fa9e4066Sahrens 534*fa9e4066Sahrens dm_free_descriptors(slice); 535*fa9e4066Sahrens return (ret); 536*fa9e4066Sahrens } 537*fa9e4066Sahrens 538*fa9e4066Sahrens 539*fa9e4066Sahrens /* 540*fa9e4066Sahrens * Validate a device. Determines whether the device is a disk, slice, or 541*fa9e4066Sahrens * partition, and passes it off to an appropriate function. 542*fa9e4066Sahrens */ 543*fa9e4066Sahrens int 544*fa9e4066Sahrens check_device(const char *path, int force) 545*fa9e4066Sahrens { 546*fa9e4066Sahrens dm_descriptor_t desc; 547*fa9e4066Sahrens int err; 548*fa9e4066Sahrens char *dev, rpath[MAXPATHLEN]; 549*fa9e4066Sahrens 550*fa9e4066Sahrens /* 551*fa9e4066Sahrens * For whole disks, libdiskmgt does not include the leading dev path. 552*fa9e4066Sahrens */ 553*fa9e4066Sahrens dev = strrchr(path, '/'); 554*fa9e4066Sahrens assert(dev != NULL); 555*fa9e4066Sahrens dev++; 556*fa9e4066Sahrens if ((desc = dm_get_descriptor_by_name(DM_ALIAS, dev, &err)) != NULL) 557*fa9e4066Sahrens return (check_disk(path, desc, force)); 558*fa9e4066Sahrens 559*fa9e4066Sahrens /* 560*fa9e4066Sahrens * If 'err' is not ENODEV, then we've had an unexpected error from 561*fa9e4066Sahrens * libdiskmgt. The only explanation is that we ran out of memory. 562*fa9e4066Sahrens */ 563*fa9e4066Sahrens if (err != ENODEV) 564*fa9e4066Sahrens libdskmgt_error(err); 565*fa9e4066Sahrens 566*fa9e4066Sahrens /* 567*fa9e4066Sahrens * Determine if this is a slice. 568*fa9e4066Sahrens */ 569*fa9e4066Sahrens if ((desc = dm_get_descriptor_by_name(DM_SLICE, (char *)path, &err)) 570*fa9e4066Sahrens != NULL) 571*fa9e4066Sahrens return (check_slice(path, desc, force, TRUE)); 572*fa9e4066Sahrens 573*fa9e4066Sahrens if (err != ENODEV) 574*fa9e4066Sahrens libdskmgt_error(err); 575*fa9e4066Sahrens 576*fa9e4066Sahrens /* 577*fa9e4066Sahrens * Check for a partition. libdiskmgt expects path of /dev/rdsk when 578*fa9e4066Sahrens * dealing with partitions, so convert it. 579*fa9e4066Sahrens */ 580*fa9e4066Sahrens (void) snprintf(rpath, sizeof (rpath), "/dev/rdsk/%s", dev); 581*fa9e4066Sahrens if ((desc = dm_get_descriptor_by_name(DM_PARTITION, rpath, &err)) 582*fa9e4066Sahrens != NULL) { 583*fa9e4066Sahrens /* XXZFS perform checking on partitions */ 584*fa9e4066Sahrens return (0); 585*fa9e4066Sahrens } 586*fa9e4066Sahrens 587*fa9e4066Sahrens if (err != ENODEV) 588*fa9e4066Sahrens libdskmgt_error(err); 589*fa9e4066Sahrens 590*fa9e4066Sahrens /* 591*fa9e4066Sahrens * At this point, libdiskmgt failed to find the device as either a whole 592*fa9e4066Sahrens * disk or a slice. Ignore these errors, as we know that it at least a 593*fa9e4066Sahrens * block device. The user may have provided us with some unknown device 594*fa9e4066Sahrens * that libdiskmgt doesn't know about. 595*fa9e4066Sahrens */ 596*fa9e4066Sahrens return (0); 597*fa9e4066Sahrens } 598*fa9e4066Sahrens 599*fa9e4066Sahrens /* 600*fa9e4066Sahrens * Check that a file is valid. All we can do in this case is check that it's 601*fa9e4066Sahrens * not in use by another pool. 602*fa9e4066Sahrens */ 603*fa9e4066Sahrens int 604*fa9e4066Sahrens check_file(const char *file, int force) 605*fa9e4066Sahrens { 606*fa9e4066Sahrens char *desc, *name; 607*fa9e4066Sahrens int fd; 608*fa9e4066Sahrens int ret = 0; 609*fa9e4066Sahrens 610*fa9e4066Sahrens if ((fd = open(file, O_RDONLY)) < 0) 611*fa9e4066Sahrens return (0); 612*fa9e4066Sahrens 613*fa9e4066Sahrens if (zpool_in_use(fd, &desc, &name)) { 614*fa9e4066Sahrens if (strcmp(desc, gettext("active")) == 0 || 615*fa9e4066Sahrens !force) { 616*fa9e4066Sahrens vdev_error(gettext("%s is part of %s pool '%s'\n"), 617*fa9e4066Sahrens file, desc, name); 618*fa9e4066Sahrens ret = -1; 619*fa9e4066Sahrens } 620*fa9e4066Sahrens 621*fa9e4066Sahrens free(desc); 622*fa9e4066Sahrens free(name); 623*fa9e4066Sahrens } 624*fa9e4066Sahrens 625*fa9e4066Sahrens (void) close(fd); 626*fa9e4066Sahrens return (ret); 627*fa9e4066Sahrens } 628*fa9e4066Sahrens 629*fa9e4066Sahrens static int 630*fa9e4066Sahrens is_whole_disk(const char *arg, struct stat64 *statbuf) 631*fa9e4066Sahrens { 632*fa9e4066Sahrens char path[MAXPATHLEN]; 633*fa9e4066Sahrens 634*fa9e4066Sahrens (void) snprintf(path, sizeof (path), "%s%s", arg, BACKUP_SLICE); 635*fa9e4066Sahrens if (stat64(path, statbuf) == 0) 636*fa9e4066Sahrens return (TRUE); 637*fa9e4066Sahrens 638*fa9e4066Sahrens return (FALSE); 639*fa9e4066Sahrens } 640*fa9e4066Sahrens 641*fa9e4066Sahrens /* 642*fa9e4066Sahrens * Create a leaf vdev. Determine if this is a file or a device. If it's a 643*fa9e4066Sahrens * device, fill in the device id to make a complete nvlist. Valid forms for a 644*fa9e4066Sahrens * leaf vdev are: 645*fa9e4066Sahrens * 646*fa9e4066Sahrens * /dev/dsk/xxx Complete disk path 647*fa9e4066Sahrens * /xxx Full path to file 648*fa9e4066Sahrens * xxx Shorthand for /dev/dsk/xxx 649*fa9e4066Sahrens */ 650*fa9e4066Sahrens nvlist_t * 651*fa9e4066Sahrens make_leaf_vdev(const char *arg) 652*fa9e4066Sahrens { 653*fa9e4066Sahrens char path[MAXPATHLEN]; 654*fa9e4066Sahrens struct stat64 statbuf; 655*fa9e4066Sahrens nvlist_t *vdev = NULL; 656*fa9e4066Sahrens char *type = NULL; 657*fa9e4066Sahrens int wholedisk = FALSE; 658*fa9e4066Sahrens 659*fa9e4066Sahrens /* 660*fa9e4066Sahrens * Determine what type of vdev this is, and put the full path into 661*fa9e4066Sahrens * 'path'. We detect whether this is a device of file afterwards by 662*fa9e4066Sahrens * checking the st_mode of the file. 663*fa9e4066Sahrens */ 664*fa9e4066Sahrens if (arg[0] == '/') { 665*fa9e4066Sahrens /* 666*fa9e4066Sahrens * Complete device or file path. Exact type is determined by 667*fa9e4066Sahrens * examining the file descriptor afterwards. 668*fa9e4066Sahrens */ 669*fa9e4066Sahrens if (is_whole_disk(arg, &statbuf)) { 670*fa9e4066Sahrens wholedisk = TRUE; 671*fa9e4066Sahrens } else if (stat64(arg, &statbuf) != 0) { 672*fa9e4066Sahrens (void) fprintf(stderr, 673*fa9e4066Sahrens gettext("cannot open '%s': %s\n"), 674*fa9e4066Sahrens arg, strerror(errno)); 675*fa9e4066Sahrens return (NULL); 676*fa9e4066Sahrens } 677*fa9e4066Sahrens 678*fa9e4066Sahrens (void) strlcpy(path, arg, sizeof (path)); 679*fa9e4066Sahrens } else { 680*fa9e4066Sahrens /* 681*fa9e4066Sahrens * This may be a short path for a device, or it could be total 682*fa9e4066Sahrens * gibberish. Check to see if it's a known device in 683*fa9e4066Sahrens * /dev/dsk/. As part of this check, see if we've been given a 684*fa9e4066Sahrens * an entire disk (minus the slice number). 685*fa9e4066Sahrens */ 686*fa9e4066Sahrens (void) snprintf(path, sizeof (path), "%s/%s", DISK_ROOT, 687*fa9e4066Sahrens arg); 688*fa9e4066Sahrens if (is_whole_disk(path, &statbuf)) { 689*fa9e4066Sahrens wholedisk = TRUE; 690*fa9e4066Sahrens } else if (stat64(path, &statbuf) != 0) { 691*fa9e4066Sahrens /* 692*fa9e4066Sahrens * If we got ENOENT, then the user gave us 693*fa9e4066Sahrens * gibberish, so try to direct them with a 694*fa9e4066Sahrens * reasonable error message. Otherwise, 695*fa9e4066Sahrens * regurgitate strerror() since it's the best we 696*fa9e4066Sahrens * can do. 697*fa9e4066Sahrens */ 698*fa9e4066Sahrens if (errno == ENOENT) { 699*fa9e4066Sahrens (void) fprintf(stderr, 700*fa9e4066Sahrens gettext("cannot open '%s': no such " 701*fa9e4066Sahrens "device in %s\n"), arg, DISK_ROOT); 702*fa9e4066Sahrens (void) fprintf(stderr, 703*fa9e4066Sahrens gettext("must be a full path or " 704*fa9e4066Sahrens "shorthand device name\n")); 705*fa9e4066Sahrens return (NULL); 706*fa9e4066Sahrens } else { 707*fa9e4066Sahrens (void) fprintf(stderr, 708*fa9e4066Sahrens gettext("cannot open '%s': %s\n"), 709*fa9e4066Sahrens path, strerror(errno)); 710*fa9e4066Sahrens return (NULL); 711*fa9e4066Sahrens } 712*fa9e4066Sahrens } 713*fa9e4066Sahrens } 714*fa9e4066Sahrens 715*fa9e4066Sahrens /* 716*fa9e4066Sahrens * Determine whether this is a device or a file. 717*fa9e4066Sahrens */ 718*fa9e4066Sahrens if (S_ISBLK(statbuf.st_mode)) { 719*fa9e4066Sahrens type = VDEV_TYPE_DISK; 720*fa9e4066Sahrens } else if (S_ISREG(statbuf.st_mode)) { 721*fa9e4066Sahrens type = VDEV_TYPE_FILE; 722*fa9e4066Sahrens } else { 723*fa9e4066Sahrens (void) fprintf(stderr, gettext("cannot use '%s': must be a " 724*fa9e4066Sahrens "block device or regular file\n"), path); 725*fa9e4066Sahrens return (NULL); 726*fa9e4066Sahrens } 727*fa9e4066Sahrens 728*fa9e4066Sahrens /* 729*fa9e4066Sahrens * Finally, we have the complete device or file, and we know that it is 730*fa9e4066Sahrens * acceptable to use. Construct the nvlist to describe this vdev. All 731*fa9e4066Sahrens * vdevs have a 'path' element, and devices also have a 'devid' element. 732*fa9e4066Sahrens */ 733*fa9e4066Sahrens verify(nvlist_alloc(&vdev, NV_UNIQUE_NAME, 0) == 0); 734*fa9e4066Sahrens verify(nvlist_add_string(vdev, ZPOOL_CONFIG_PATH, path) == 0); 735*fa9e4066Sahrens verify(nvlist_add_string(vdev, ZPOOL_CONFIG_TYPE, type) == 0); 736*fa9e4066Sahrens 737*fa9e4066Sahrens /* 738*fa9e4066Sahrens * For a whole disk, defer getting its devid until after labeling it. 739*fa9e4066Sahrens */ 740*fa9e4066Sahrens if (S_ISBLK(statbuf.st_mode) && !wholedisk) { 741*fa9e4066Sahrens /* 742*fa9e4066Sahrens * Get the devid for the device. 743*fa9e4066Sahrens */ 744*fa9e4066Sahrens int fd; 745*fa9e4066Sahrens ddi_devid_t devid; 746*fa9e4066Sahrens char *minor = NULL, *devid_str = NULL; 747*fa9e4066Sahrens 748*fa9e4066Sahrens if ((fd = open(path, O_RDONLY)) < 0) { 749*fa9e4066Sahrens (void) fprintf(stderr, gettext("cannot open '%s': " 750*fa9e4066Sahrens "%s\n"), path, strerror(errno)); 751*fa9e4066Sahrens nvlist_free(vdev); 752*fa9e4066Sahrens return (NULL); 753*fa9e4066Sahrens } 754*fa9e4066Sahrens 755*fa9e4066Sahrens if (devid_get(fd, &devid) == 0) { 756*fa9e4066Sahrens if (devid_get_minor_name(fd, &minor) == 0 && 757*fa9e4066Sahrens (devid_str = devid_str_encode(devid, minor)) != 758*fa9e4066Sahrens NULL) { 759*fa9e4066Sahrens verify(nvlist_add_string(vdev, 760*fa9e4066Sahrens ZPOOL_CONFIG_DEVID, devid_str) == 0); 761*fa9e4066Sahrens } 762*fa9e4066Sahrens if (devid_str != NULL) 763*fa9e4066Sahrens devid_str_free(devid_str); 764*fa9e4066Sahrens if (minor != NULL) 765*fa9e4066Sahrens devid_str_free(minor); 766*fa9e4066Sahrens devid_free(devid); 767*fa9e4066Sahrens } 768*fa9e4066Sahrens 769*fa9e4066Sahrens (void) close(fd); 770*fa9e4066Sahrens } 771*fa9e4066Sahrens 772*fa9e4066Sahrens return (vdev); 773*fa9e4066Sahrens } 774*fa9e4066Sahrens 775*fa9e4066Sahrens /* 776*fa9e4066Sahrens * Go through and verify the replication level of the pool is consistent. 777*fa9e4066Sahrens * Performs the following checks: 778*fa9e4066Sahrens * 779*fa9e4066Sahrens * For the new spec, verifies that devices in mirrors and raidz are the 780*fa9e4066Sahrens * same size. 781*fa9e4066Sahrens * 782*fa9e4066Sahrens * If the current configuration already has inconsistent replication 783*fa9e4066Sahrens * levels, ignore any other potential problems in the new spec. 784*fa9e4066Sahrens * 785*fa9e4066Sahrens * Otherwise, make sure that the current spec (if there is one) and the new 786*fa9e4066Sahrens * spec have consistent replication levels. 787*fa9e4066Sahrens */ 788*fa9e4066Sahrens typedef struct replication_level { 789*fa9e4066Sahrens char *type; 790*fa9e4066Sahrens int level; 791*fa9e4066Sahrens } replication_level_t; 792*fa9e4066Sahrens 793*fa9e4066Sahrens /* 794*fa9e4066Sahrens * Given a list of toplevel vdevs, return the current replication level. If 795*fa9e4066Sahrens * the config is inconsistent, then NULL is returned. If 'fatal' is set, then 796*fa9e4066Sahrens * an error message will be displayed for each self-inconsistent vdev. 797*fa9e4066Sahrens */ 798*fa9e4066Sahrens replication_level_t * 799*fa9e4066Sahrens get_replication(nvlist_t *nvroot, int fatal) 800*fa9e4066Sahrens { 801*fa9e4066Sahrens nvlist_t **top; 802*fa9e4066Sahrens uint_t t, toplevels; 803*fa9e4066Sahrens nvlist_t **child; 804*fa9e4066Sahrens uint_t c, children; 805*fa9e4066Sahrens nvlist_t *nv; 806*fa9e4066Sahrens char *type; 807*fa9e4066Sahrens replication_level_t lastrep, rep, *ret; 808*fa9e4066Sahrens int dontreport; 809*fa9e4066Sahrens 810*fa9e4066Sahrens ret = safe_malloc(sizeof (replication_level_t)); 811*fa9e4066Sahrens 812*fa9e4066Sahrens verify(nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN, 813*fa9e4066Sahrens &top, &toplevels) == 0); 814*fa9e4066Sahrens 815*fa9e4066Sahrens lastrep.type = NULL; 816*fa9e4066Sahrens for (t = 0; t < toplevels; t++) { 817*fa9e4066Sahrens nv = top[t]; 818*fa9e4066Sahrens 819*fa9e4066Sahrens verify(nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) == 0); 820*fa9e4066Sahrens 821*fa9e4066Sahrens if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, 822*fa9e4066Sahrens &child, &children) != 0) { 823*fa9e4066Sahrens /* 824*fa9e4066Sahrens * This is a 'file' or 'disk' vdev. 825*fa9e4066Sahrens */ 826*fa9e4066Sahrens rep.type = type; 827*fa9e4066Sahrens rep.level = 1; 828*fa9e4066Sahrens } else { 829*fa9e4066Sahrens uint64_t vdev_size; 830*fa9e4066Sahrens 831*fa9e4066Sahrens /* 832*fa9e4066Sahrens * This is a mirror or RAID-Z vdev. Go through and make 833*fa9e4066Sahrens * sure the contents are all the same (files vs. disks), 834*fa9e4066Sahrens * keeping track of the number of elements in the 835*fa9e4066Sahrens * process. 836*fa9e4066Sahrens * 837*fa9e4066Sahrens * We also check that the size of each vdev (if it can 838*fa9e4066Sahrens * be determined) is the same. 839*fa9e4066Sahrens */ 840*fa9e4066Sahrens rep.type = type; 841*fa9e4066Sahrens rep.level = 0; 842*fa9e4066Sahrens 843*fa9e4066Sahrens /* 844*fa9e4066Sahrens * The 'dontreport' variable indicatest that we've 845*fa9e4066Sahrens * already reported an error for this spec, so don't 846*fa9e4066Sahrens * bother doing it again. 847*fa9e4066Sahrens */ 848*fa9e4066Sahrens type = NULL; 849*fa9e4066Sahrens dontreport = 0; 850*fa9e4066Sahrens vdev_size = -1ULL; 851*fa9e4066Sahrens for (c = 0; c < children; c++) { 852*fa9e4066Sahrens nvlist_t *cnv = child[c]; 853*fa9e4066Sahrens char *path; 854*fa9e4066Sahrens struct stat64 statbuf; 855*fa9e4066Sahrens uint64_t size = -1ULL; 856*fa9e4066Sahrens char *childtype; 857*fa9e4066Sahrens int fd, err; 858*fa9e4066Sahrens 859*fa9e4066Sahrens rep.level++; 860*fa9e4066Sahrens 861*fa9e4066Sahrens verify(nvlist_lookup_string(cnv, 862*fa9e4066Sahrens ZPOOL_CONFIG_TYPE, &childtype) == 0); 863*fa9e4066Sahrens verify(nvlist_lookup_string(cnv, 864*fa9e4066Sahrens ZPOOL_CONFIG_PATH, &path) == 0); 865*fa9e4066Sahrens 866*fa9e4066Sahrens /* 867*fa9e4066Sahrens * If we have a raidz/mirror that combines disks 868*fa9e4066Sahrens * with files, report it as an error. 869*fa9e4066Sahrens */ 870*fa9e4066Sahrens if (!dontreport && type != NULL && 871*fa9e4066Sahrens strcmp(type, childtype) != 0) { 872*fa9e4066Sahrens if (ret != NULL) 873*fa9e4066Sahrens free(ret); 874*fa9e4066Sahrens ret = NULL; 875*fa9e4066Sahrens if (fatal) 876*fa9e4066Sahrens vdev_error(gettext( 877*fa9e4066Sahrens "mismatched replication " 878*fa9e4066Sahrens "level: %s contains both " 879*fa9e4066Sahrens "files and devices\n"), 880*fa9e4066Sahrens rep.type); 881*fa9e4066Sahrens else 882*fa9e4066Sahrens return (NULL); 883*fa9e4066Sahrens dontreport = TRUE; 884*fa9e4066Sahrens } 885*fa9e4066Sahrens 886*fa9e4066Sahrens /* 887*fa9e4066Sahrens * According to stat(2), the value of 'st_size' 888*fa9e4066Sahrens * is undefined for block devices and character 889*fa9e4066Sahrens * devices. But there is no effective way to 890*fa9e4066Sahrens * determine the real size in userland. 891*fa9e4066Sahrens * 892*fa9e4066Sahrens * Instead, we'll take advantage of an 893*fa9e4066Sahrens * implementation detail of spec_size(). If the 894*fa9e4066Sahrens * device is currently open, then we (should) 895*fa9e4066Sahrens * return a valid size. 896*fa9e4066Sahrens * 897*fa9e4066Sahrens * If we still don't get a valid size (indicated 898*fa9e4066Sahrens * by a size of 0 or MAXOFFSET_T), then ignore 899*fa9e4066Sahrens * this device altogether. 900*fa9e4066Sahrens */ 901*fa9e4066Sahrens if ((fd = open(path, O_RDONLY)) >= 0) { 902*fa9e4066Sahrens err = fstat64(fd, &statbuf); 903*fa9e4066Sahrens (void) close(fd); 904*fa9e4066Sahrens } else { 905*fa9e4066Sahrens err = stat64(path, &statbuf); 906*fa9e4066Sahrens } 907*fa9e4066Sahrens 908*fa9e4066Sahrens if (err != 0 || 909*fa9e4066Sahrens statbuf.st_size == 0 || 910*fa9e4066Sahrens statbuf.st_size == MAXOFFSET_T) 911*fa9e4066Sahrens continue; 912*fa9e4066Sahrens 913*fa9e4066Sahrens size = statbuf.st_size; 914*fa9e4066Sahrens 915*fa9e4066Sahrens /* 916*fa9e4066Sahrens * Also check the size of each device. If they 917*fa9e4066Sahrens * differ, then report an error. 918*fa9e4066Sahrens */ 919*fa9e4066Sahrens if (!dontreport && vdev_size != -1ULL && 920*fa9e4066Sahrens size != vdev_size) { 921*fa9e4066Sahrens if (ret != NULL) 922*fa9e4066Sahrens free(ret); 923*fa9e4066Sahrens ret = NULL; 924*fa9e4066Sahrens if (fatal) 925*fa9e4066Sahrens vdev_error(gettext( 926*fa9e4066Sahrens "%s contains devices of " 927*fa9e4066Sahrens "different sizes\n"), 928*fa9e4066Sahrens rep.type); 929*fa9e4066Sahrens else 930*fa9e4066Sahrens return (NULL); 931*fa9e4066Sahrens dontreport = TRUE; 932*fa9e4066Sahrens } 933*fa9e4066Sahrens 934*fa9e4066Sahrens type = childtype; 935*fa9e4066Sahrens vdev_size = size; 936*fa9e4066Sahrens } 937*fa9e4066Sahrens } 938*fa9e4066Sahrens 939*fa9e4066Sahrens /* 940*fa9e4066Sahrens * At this point, we have the replication of the last toplevel 941*fa9e4066Sahrens * vdev in 'rep'. Compare it to 'lastrep' to see if its 942*fa9e4066Sahrens * different. 943*fa9e4066Sahrens */ 944*fa9e4066Sahrens if (lastrep.type != NULL) { 945*fa9e4066Sahrens if (strcmp(lastrep.type, rep.type) != 0) { 946*fa9e4066Sahrens if (ret != NULL) 947*fa9e4066Sahrens free(ret); 948*fa9e4066Sahrens ret = NULL; 949*fa9e4066Sahrens if (fatal) 950*fa9e4066Sahrens vdev_error(gettext( 951*fa9e4066Sahrens "mismatched replication " 952*fa9e4066Sahrens "level: both %s and %s vdevs are " 953*fa9e4066Sahrens "present\n"), 954*fa9e4066Sahrens lastrep.type, rep.type); 955*fa9e4066Sahrens else 956*fa9e4066Sahrens return (NULL); 957*fa9e4066Sahrens } else if (lastrep.level != rep.level) { 958*fa9e4066Sahrens if (ret) 959*fa9e4066Sahrens free(ret); 960*fa9e4066Sahrens ret = NULL; 961*fa9e4066Sahrens if (fatal) 962*fa9e4066Sahrens vdev_error(gettext( 963*fa9e4066Sahrens "mismatched replication " 964*fa9e4066Sahrens "level: %d-way %s and %d-way %s " 965*fa9e4066Sahrens "vdevs are present\n"), 966*fa9e4066Sahrens lastrep.level, lastrep.type, 967*fa9e4066Sahrens rep.level, rep.type); 968*fa9e4066Sahrens else 969*fa9e4066Sahrens return (NULL); 970*fa9e4066Sahrens } 971*fa9e4066Sahrens } 972*fa9e4066Sahrens lastrep = rep; 973*fa9e4066Sahrens } 974*fa9e4066Sahrens 975*fa9e4066Sahrens if (ret != NULL) { 976*fa9e4066Sahrens ret->type = rep.type; 977*fa9e4066Sahrens ret->level = rep.level; 978*fa9e4066Sahrens } 979*fa9e4066Sahrens 980*fa9e4066Sahrens return (ret); 981*fa9e4066Sahrens } 982*fa9e4066Sahrens 983*fa9e4066Sahrens /* 984*fa9e4066Sahrens * Check the replication level of the vdev spec against the current pool. Calls 985*fa9e4066Sahrens * get_replication() to make sure the new spec is self-consistent. If the pool 986*fa9e4066Sahrens * has a consistent replication level, then we ignore any errors. Otherwise, 987*fa9e4066Sahrens * report any difference between the two. 988*fa9e4066Sahrens */ 989*fa9e4066Sahrens int 990*fa9e4066Sahrens check_replication(nvlist_t *config, nvlist_t *newroot) 991*fa9e4066Sahrens { 992*fa9e4066Sahrens replication_level_t *current = NULL, *new; 993*fa9e4066Sahrens int ret; 994*fa9e4066Sahrens 995*fa9e4066Sahrens /* 996*fa9e4066Sahrens * If we have a current pool configuration, check to see if it's 997*fa9e4066Sahrens * self-consistent. If not, simply return success. 998*fa9e4066Sahrens */ 999*fa9e4066Sahrens if (config != NULL) { 1000*fa9e4066Sahrens nvlist_t *nvroot; 1001*fa9e4066Sahrens 1002*fa9e4066Sahrens verify(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 1003*fa9e4066Sahrens &nvroot) == 0); 1004*fa9e4066Sahrens if ((current = get_replication(nvroot, FALSE)) == NULL) 1005*fa9e4066Sahrens return (0); 1006*fa9e4066Sahrens } 1007*fa9e4066Sahrens 1008*fa9e4066Sahrens /* 1009*fa9e4066Sahrens * Get the replication level of the new vdev spec, reporting any 1010*fa9e4066Sahrens * inconsistencies found. 1011*fa9e4066Sahrens */ 1012*fa9e4066Sahrens if ((new = get_replication(newroot, TRUE)) == NULL) { 1013*fa9e4066Sahrens free(current); 1014*fa9e4066Sahrens return (-1); 1015*fa9e4066Sahrens } 1016*fa9e4066Sahrens 1017*fa9e4066Sahrens /* 1018*fa9e4066Sahrens * Check to see if the new vdev spec matches the replication level of 1019*fa9e4066Sahrens * the current pool. 1020*fa9e4066Sahrens */ 1021*fa9e4066Sahrens ret = 0; 1022*fa9e4066Sahrens if (current != NULL) { 1023*fa9e4066Sahrens if (strcmp(current->type, new->type) != 0 || 1024*fa9e4066Sahrens current->level != new->level) { 1025*fa9e4066Sahrens vdev_error(gettext( 1026*fa9e4066Sahrens "mismatched replication level: pool uses %d-way %s " 1027*fa9e4066Sahrens "and new vdev uses %d-way %s\n"), 1028*fa9e4066Sahrens current->level, current->type, new->level, 1029*fa9e4066Sahrens new->type); 1030*fa9e4066Sahrens ret = -1; 1031*fa9e4066Sahrens } 1032*fa9e4066Sahrens } 1033*fa9e4066Sahrens 1034*fa9e4066Sahrens free(new); 1035*fa9e4066Sahrens if (current != NULL) 1036*fa9e4066Sahrens free(current); 1037*fa9e4066Sahrens 1038*fa9e4066Sahrens return (ret); 1039*fa9e4066Sahrens } 1040*fa9e4066Sahrens 1041*fa9e4066Sahrens /* 1042*fa9e4066Sahrens * Label an individual disk. The name provided is the short name, stripped of 1043*fa9e4066Sahrens * any leading /dev path. 1044*fa9e4066Sahrens */ 1045*fa9e4066Sahrens int 1046*fa9e4066Sahrens label_disk(char *name) 1047*fa9e4066Sahrens { 1048*fa9e4066Sahrens char path[MAXPATHLEN]; 1049*fa9e4066Sahrens struct dk_gpt *vtoc; 1050*fa9e4066Sahrens int fd; 1051*fa9e4066Sahrens size_t resv = 16384; 1052*fa9e4066Sahrens 1053*fa9e4066Sahrens (void) snprintf(path, sizeof (path), "%s/%s%s", RDISK_ROOT, name, 1054*fa9e4066Sahrens BACKUP_SLICE); 1055*fa9e4066Sahrens 1056*fa9e4066Sahrens if ((fd = open(path, O_RDWR | O_NDELAY)) < 0) { 1057*fa9e4066Sahrens /* 1058*fa9e4066Sahrens * This shouldn't happen. We've long since verified that this 1059*fa9e4066Sahrens * is a valid device. 1060*fa9e4066Sahrens */ 1061*fa9e4066Sahrens (void) fprintf(stderr, gettext("cannot open '%s': %s\n"), 1062*fa9e4066Sahrens path, strerror(errno)); 1063*fa9e4066Sahrens return (-1); 1064*fa9e4066Sahrens } 1065*fa9e4066Sahrens 1066*fa9e4066Sahrens 1067*fa9e4066Sahrens if (efi_alloc_and_init(fd, 9, &vtoc) != 0) { 1068*fa9e4066Sahrens /* 1069*fa9e4066Sahrens * The only way this can fail is if we run out of memory, or we 1070*fa9e4066Sahrens * were unable to read the disk geometry. 1071*fa9e4066Sahrens */ 1072*fa9e4066Sahrens if (errno == ENOMEM) 1073*fa9e4066Sahrens no_memory(); 1074*fa9e4066Sahrens 1075*fa9e4066Sahrens (void) fprintf(stderr, gettext("cannot label '%s': unable to " 1076*fa9e4066Sahrens "read disk geometry\n"), name); 1077*fa9e4066Sahrens (void) close(fd); 1078*fa9e4066Sahrens return (-1); 1079*fa9e4066Sahrens } 1080*fa9e4066Sahrens 1081*fa9e4066Sahrens vtoc->efi_parts[0].p_start = vtoc->efi_first_u_lba; 1082*fa9e4066Sahrens vtoc->efi_parts[0].p_size = vtoc->efi_last_u_lba + 1 - 1083*fa9e4066Sahrens vtoc->efi_first_u_lba - resv; 1084*fa9e4066Sahrens 1085*fa9e4066Sahrens /* 1086*fa9e4066Sahrens * Why we use V_USR: V_BACKUP confuses users, and is considered 1087*fa9e4066Sahrens * disposable by some EFI utilities (since EFI doesn't have a backup 1088*fa9e4066Sahrens * slice). V_UNASSIGNED is supposed to be used only for zero size 1089*fa9e4066Sahrens * partitions, and efi_write() will fail if we use it. V_ROOT, V_BOOT, 1090*fa9e4066Sahrens * etc. were all pretty specific. V_USR is as close to reality as we 1091*fa9e4066Sahrens * can get, in the absence of V_OTHER. 1092*fa9e4066Sahrens */ 1093*fa9e4066Sahrens vtoc->efi_parts[0].p_tag = V_USR; 1094*fa9e4066Sahrens (void) strcpy(vtoc->efi_parts[0].p_name, "zfs"); 1095*fa9e4066Sahrens 1096*fa9e4066Sahrens vtoc->efi_parts[8].p_start = vtoc->efi_last_u_lba + 1 - resv; 1097*fa9e4066Sahrens vtoc->efi_parts[8].p_size = resv; 1098*fa9e4066Sahrens vtoc->efi_parts[8].p_tag = V_RESERVED; 1099*fa9e4066Sahrens 1100*fa9e4066Sahrens if (efi_write(fd, vtoc) != 0) { 1101*fa9e4066Sahrens /* 1102*fa9e4066Sahrens * Currently, EFI labels are not supported for IDE disks, and it 1103*fa9e4066Sahrens * is likely that they will not be supported on other drives for 1104*fa9e4066Sahrens * some time. Print out a helpful error message directing the 1105*fa9e4066Sahrens * user to manually label the disk and give a specific slice. 1106*fa9e4066Sahrens */ 1107*fa9e4066Sahrens (void) fprintf(stderr, gettext("cannot label '%s': failed to " 1108*fa9e4066Sahrens "write EFI label\n"), name); 1109*fa9e4066Sahrens (void) fprintf(stderr, gettext("use fdisk(1M) to partition " 1110*fa9e4066Sahrens "the disk, and provide a specific slice\n")); 1111*fa9e4066Sahrens (void) close(fd); 1112*fa9e4066Sahrens return (-1); 1113*fa9e4066Sahrens } 1114*fa9e4066Sahrens 1115*fa9e4066Sahrens (void) close(fd); 1116*fa9e4066Sahrens return (0); 1117*fa9e4066Sahrens } 1118*fa9e4066Sahrens 1119*fa9e4066Sahrens /* 1120*fa9e4066Sahrens * Go through and find any whole disks in the vdev specification, labelling them 1121*fa9e4066Sahrens * as appropriate. When constructing the vdev spec, we were unable to open this 1122*fa9e4066Sahrens * device in order to provide a devid. Now that we have labelled the disk and 1123*fa9e4066Sahrens * know that slice 0 is valid, we can construct the devid now. 1124*fa9e4066Sahrens * 1125*fa9e4066Sahrens * If the disk was already labelled with an EFI label, we will have gotten the 1126*fa9e4066Sahrens * devid already (because we were able to open the whole disk). Otherwise, we 1127*fa9e4066Sahrens * need to get the devid after we label the disk. 1128*fa9e4066Sahrens */ 1129*fa9e4066Sahrens int 1130*fa9e4066Sahrens make_disks(nvlist_t *nv) 1131*fa9e4066Sahrens { 1132*fa9e4066Sahrens nvlist_t **child; 1133*fa9e4066Sahrens uint_t c, children; 1134*fa9e4066Sahrens char *type, *path, *diskname; 1135*fa9e4066Sahrens char buf[MAXPATHLEN]; 1136*fa9e4066Sahrens struct stat64 statbuf; 1137*fa9e4066Sahrens int fd; 1138*fa9e4066Sahrens int ret; 1139*fa9e4066Sahrens ddi_devid_t devid; 1140*fa9e4066Sahrens char *minor = NULL, *devid_str = NULL; 1141*fa9e4066Sahrens 1142*fa9e4066Sahrens verify(nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) == 0); 1143*fa9e4066Sahrens 1144*fa9e4066Sahrens if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, 1145*fa9e4066Sahrens &child, &children) != 0) { 1146*fa9e4066Sahrens 1147*fa9e4066Sahrens if (strcmp(type, VDEV_TYPE_DISK) != 0) 1148*fa9e4066Sahrens return (0); 1149*fa9e4066Sahrens 1150*fa9e4066Sahrens /* 1151*fa9e4066Sahrens * We have a disk device. Get the path to the device 1152*fa9e4066Sahrens * and see if its a whole disk by appending the backup 1153*fa9e4066Sahrens * slice and stat()ing the device. 1154*fa9e4066Sahrens */ 1155*fa9e4066Sahrens verify(nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &path) == 0); 1156*fa9e4066Sahrens 1157*fa9e4066Sahrens if (!is_whole_disk(path, &statbuf)) 1158*fa9e4066Sahrens return (0); 1159*fa9e4066Sahrens 1160*fa9e4066Sahrens diskname = strrchr(path, '/'); 1161*fa9e4066Sahrens assert(diskname != NULL); 1162*fa9e4066Sahrens diskname++; 1163*fa9e4066Sahrens if (label_disk(diskname) != 0) 1164*fa9e4066Sahrens return (-1); 1165*fa9e4066Sahrens 1166*fa9e4066Sahrens /* 1167*fa9e4066Sahrens * Fill in the devid, now that we've labeled the disk. 1168*fa9e4066Sahrens */ 1169*fa9e4066Sahrens (void) snprintf(buf, sizeof (buf), "%ss0", path); 1170*fa9e4066Sahrens if ((fd = open(buf, O_RDONLY)) < 0) { 1171*fa9e4066Sahrens (void) fprintf(stderr, 1172*fa9e4066Sahrens gettext("cannot open '%s': %s\n"), 1173*fa9e4066Sahrens buf, strerror(errno)); 1174*fa9e4066Sahrens return (-1); 1175*fa9e4066Sahrens } 1176*fa9e4066Sahrens 1177*fa9e4066Sahrens if (devid_get(fd, &devid) == 0) { 1178*fa9e4066Sahrens if (devid_get_minor_name(fd, &minor) == 0 && 1179*fa9e4066Sahrens (devid_str = devid_str_encode(devid, minor)) != 1180*fa9e4066Sahrens NULL) { 1181*fa9e4066Sahrens verify(nvlist_add_string(nv, 1182*fa9e4066Sahrens ZPOOL_CONFIG_DEVID, devid_str) == 0); 1183*fa9e4066Sahrens } 1184*fa9e4066Sahrens if (devid_str != NULL) 1185*fa9e4066Sahrens devid_str_free(devid_str); 1186*fa9e4066Sahrens if (minor != NULL) 1187*fa9e4066Sahrens devid_str_free(minor); 1188*fa9e4066Sahrens devid_free(devid); 1189*fa9e4066Sahrens } 1190*fa9e4066Sahrens 1191*fa9e4066Sahrens (void) close(fd); 1192*fa9e4066Sahrens 1193*fa9e4066Sahrens return (0); 1194*fa9e4066Sahrens } 1195*fa9e4066Sahrens 1196*fa9e4066Sahrens for (c = 0; c < children; c++) 1197*fa9e4066Sahrens if ((ret = make_disks(child[c])) != 0) 1198*fa9e4066Sahrens return (ret); 1199*fa9e4066Sahrens 1200*fa9e4066Sahrens return (0); 1201*fa9e4066Sahrens } 1202*fa9e4066Sahrens 1203*fa9e4066Sahrens /* 1204*fa9e4066Sahrens * Go through and find any devices that are in use. We rely on libdiskmgt for 1205*fa9e4066Sahrens * the majority of this task. 1206*fa9e4066Sahrens */ 1207*fa9e4066Sahrens int 1208*fa9e4066Sahrens check_in_use(nvlist_t *nv, int force) 1209*fa9e4066Sahrens { 1210*fa9e4066Sahrens nvlist_t **child; 1211*fa9e4066Sahrens uint_t c, children; 1212*fa9e4066Sahrens char *type, *path; 1213*fa9e4066Sahrens int ret; 1214*fa9e4066Sahrens 1215*fa9e4066Sahrens verify(nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) == 0); 1216*fa9e4066Sahrens 1217*fa9e4066Sahrens if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, 1218*fa9e4066Sahrens &child, &children) != 0) { 1219*fa9e4066Sahrens 1220*fa9e4066Sahrens verify(nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &path) == 0); 1221*fa9e4066Sahrens 1222*fa9e4066Sahrens if (strcmp(type, VDEV_TYPE_DISK) == 0) 1223*fa9e4066Sahrens ret = check_device(path, force); 1224*fa9e4066Sahrens 1225*fa9e4066Sahrens if (strcmp(type, VDEV_TYPE_FILE) == 0) 1226*fa9e4066Sahrens ret = check_file(path, force); 1227*fa9e4066Sahrens 1228*fa9e4066Sahrens return (ret); 1229*fa9e4066Sahrens } 1230*fa9e4066Sahrens 1231*fa9e4066Sahrens for (c = 0; c < children; c++) 1232*fa9e4066Sahrens if ((ret = check_in_use(child[c], force)) != 0) 1233*fa9e4066Sahrens return (ret); 1234*fa9e4066Sahrens 1235*fa9e4066Sahrens return (0); 1236*fa9e4066Sahrens } 1237*fa9e4066Sahrens 1238*fa9e4066Sahrens /* 1239*fa9e4066Sahrens * Construct a syntactically valid vdev specification, 1240*fa9e4066Sahrens * and ensure that all devices and files exist and can be opened. 1241*fa9e4066Sahrens * Note: we don't bother freeing anything in the error paths 1242*fa9e4066Sahrens * because the program is just going to exit anyway. 1243*fa9e4066Sahrens */ 1244*fa9e4066Sahrens nvlist_t * 1245*fa9e4066Sahrens construct_spec(int argc, char **argv) 1246*fa9e4066Sahrens { 1247*fa9e4066Sahrens nvlist_t *nvroot, *nv, **top; 1248*fa9e4066Sahrens int t, toplevels; 1249*fa9e4066Sahrens 1250*fa9e4066Sahrens top = NULL; 1251*fa9e4066Sahrens toplevels = 0; 1252*fa9e4066Sahrens 1253*fa9e4066Sahrens while (argc > 0) { 1254*fa9e4066Sahrens nv = NULL; 1255*fa9e4066Sahrens 1256*fa9e4066Sahrens /* 1257*fa9e4066Sahrens * If it's a mirror or raidz, the subsequent arguments are 1258*fa9e4066Sahrens * its leaves -- until we encounter the next mirror or raidz. 1259*fa9e4066Sahrens */ 1260*fa9e4066Sahrens if (strcmp(argv[0], VDEV_TYPE_MIRROR) == 0 || 1261*fa9e4066Sahrens strcmp(argv[0], VDEV_TYPE_RAIDZ) == 0) { 1262*fa9e4066Sahrens 1263*fa9e4066Sahrens char *type = argv[0]; 1264*fa9e4066Sahrens nvlist_t **child = NULL; 1265*fa9e4066Sahrens int children = 0; 1266*fa9e4066Sahrens int c; 1267*fa9e4066Sahrens 1268*fa9e4066Sahrens for (c = 1; c < argc; c++) { 1269*fa9e4066Sahrens if (strcmp(argv[c], VDEV_TYPE_MIRROR) == 0 || 1270*fa9e4066Sahrens strcmp(argv[c], VDEV_TYPE_RAIDZ) == 0) 1271*fa9e4066Sahrens break; 1272*fa9e4066Sahrens children++; 1273*fa9e4066Sahrens child = realloc(child, 1274*fa9e4066Sahrens children * sizeof (nvlist_t *)); 1275*fa9e4066Sahrens if (child == NULL) 1276*fa9e4066Sahrens no_memory(); 1277*fa9e4066Sahrens if ((nv = make_leaf_vdev(argv[c])) == NULL) 1278*fa9e4066Sahrens return (NULL); 1279*fa9e4066Sahrens child[children - 1] = nv; 1280*fa9e4066Sahrens } 1281*fa9e4066Sahrens 1282*fa9e4066Sahrens argc -= c; 1283*fa9e4066Sahrens argv += c; 1284*fa9e4066Sahrens 1285*fa9e4066Sahrens /* 1286*fa9e4066Sahrens * Mirrors and RAID-Z devices require at least 1287*fa9e4066Sahrens * two components. 1288*fa9e4066Sahrens */ 1289*fa9e4066Sahrens if (children < 2) { 1290*fa9e4066Sahrens (void) fprintf(stderr, 1291*fa9e4066Sahrens gettext("invalid vdev specification: " 1292*fa9e4066Sahrens "%s requires at least 2 devices\n"), type); 1293*fa9e4066Sahrens return (NULL); 1294*fa9e4066Sahrens } 1295*fa9e4066Sahrens 1296*fa9e4066Sahrens verify(nvlist_alloc(&nv, NV_UNIQUE_NAME, 0) == 0); 1297*fa9e4066Sahrens verify(nvlist_add_string(nv, ZPOOL_CONFIG_TYPE, 1298*fa9e4066Sahrens type) == 0); 1299*fa9e4066Sahrens verify(nvlist_add_nvlist_array(nv, 1300*fa9e4066Sahrens ZPOOL_CONFIG_CHILDREN, child, children) == 0); 1301*fa9e4066Sahrens 1302*fa9e4066Sahrens for (c = 0; c < children; c++) 1303*fa9e4066Sahrens nvlist_free(child[c]); 1304*fa9e4066Sahrens free(child); 1305*fa9e4066Sahrens } else { 1306*fa9e4066Sahrens /* 1307*fa9e4066Sahrens * We have a device. Pass off to make_leaf_vdev() to 1308*fa9e4066Sahrens * construct the appropriate nvlist describing the vdev. 1309*fa9e4066Sahrens */ 1310*fa9e4066Sahrens if ((nv = make_leaf_vdev(argv[0])) == NULL) 1311*fa9e4066Sahrens return (NULL); 1312*fa9e4066Sahrens argc--; 1313*fa9e4066Sahrens argv++; 1314*fa9e4066Sahrens } 1315*fa9e4066Sahrens 1316*fa9e4066Sahrens toplevels++; 1317*fa9e4066Sahrens top = realloc(top, toplevels * sizeof (nvlist_t *)); 1318*fa9e4066Sahrens if (top == NULL) 1319*fa9e4066Sahrens no_memory(); 1320*fa9e4066Sahrens top[toplevels - 1] = nv; 1321*fa9e4066Sahrens } 1322*fa9e4066Sahrens 1323*fa9e4066Sahrens /* 1324*fa9e4066Sahrens * Finally, create nvroot and add all top-level vdevs to it. 1325*fa9e4066Sahrens */ 1326*fa9e4066Sahrens verify(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, 0) == 0); 1327*fa9e4066Sahrens verify(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE, 1328*fa9e4066Sahrens VDEV_TYPE_ROOT) == 0); 1329*fa9e4066Sahrens verify(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN, 1330*fa9e4066Sahrens top, toplevels) == 0); 1331*fa9e4066Sahrens 1332*fa9e4066Sahrens for (t = 0; t < toplevels; t++) 1333*fa9e4066Sahrens nvlist_free(top[t]); 1334*fa9e4066Sahrens free(top); 1335*fa9e4066Sahrens 1336*fa9e4066Sahrens return (nvroot); 1337*fa9e4066Sahrens } 1338*fa9e4066Sahrens 1339*fa9e4066Sahrens /* 1340*fa9e4066Sahrens * Get and validate the contents of the given vdev specification. This ensures 1341*fa9e4066Sahrens * that the nvlist returned is well-formed, that all the devices exist, and that 1342*fa9e4066Sahrens * they are not currently in use by any other known consumer. The 'poolconfig' 1343*fa9e4066Sahrens * parameter is the current configuration of the pool when adding devices 1344*fa9e4066Sahrens * existing pool, and is used to perform additional checks, such as changing the 1345*fa9e4066Sahrens * replication level of the pool. It can be 'NULL' to indicate that this is a 1346*fa9e4066Sahrens * new pool. The 'force' flag controls whether devices should be forcefully 1347*fa9e4066Sahrens * added, even if they appear in use. 1348*fa9e4066Sahrens */ 1349*fa9e4066Sahrens nvlist_t * 1350*fa9e4066Sahrens make_root_vdev(nvlist_t *poolconfig, int force, int check_rep, 1351*fa9e4066Sahrens int argc, char **argv) 1352*fa9e4066Sahrens { 1353*fa9e4066Sahrens nvlist_t *newroot; 1354*fa9e4066Sahrens 1355*fa9e4066Sahrens is_force = force; 1356*fa9e4066Sahrens 1357*fa9e4066Sahrens /* 1358*fa9e4066Sahrens * Construct the vdev specification. If this is successful, we know 1359*fa9e4066Sahrens * that we have a valid specification, and that all devices can be 1360*fa9e4066Sahrens * opened. 1361*fa9e4066Sahrens */ 1362*fa9e4066Sahrens if ((newroot = construct_spec(argc, argv)) == NULL) 1363*fa9e4066Sahrens return (NULL); 1364*fa9e4066Sahrens 1365*fa9e4066Sahrens /* 1366*fa9e4066Sahrens * Validate each device to make sure that its not shared with another 1367*fa9e4066Sahrens * subsystem. We do this even if 'force' is set, because there are some 1368*fa9e4066Sahrens * uses (such as a dedicated dump device) that even '-f' cannot 1369*fa9e4066Sahrens * override. 1370*fa9e4066Sahrens */ 1371*fa9e4066Sahrens if (check_in_use(newroot, force) != 0) { 1372*fa9e4066Sahrens nvlist_free(newroot); 1373*fa9e4066Sahrens return (NULL); 1374*fa9e4066Sahrens } 1375*fa9e4066Sahrens 1376*fa9e4066Sahrens /* 1377*fa9e4066Sahrens * Check the replication level of the given vdevs and report any errors 1378*fa9e4066Sahrens * found. We include the existing pool spec, if any, as we need to 1379*fa9e4066Sahrens * catch changes against the existing replication level. 1380*fa9e4066Sahrens */ 1381*fa9e4066Sahrens if (check_rep && check_replication(poolconfig, newroot) != 0) { 1382*fa9e4066Sahrens nvlist_free(newroot); 1383*fa9e4066Sahrens return (NULL); 1384*fa9e4066Sahrens } 1385*fa9e4066Sahrens 1386*fa9e4066Sahrens /* 1387*fa9e4066Sahrens * Run through the vdev specification and label any whole disks found. 1388*fa9e4066Sahrens */ 1389*fa9e4066Sahrens if (make_disks(newroot) != 0) { 1390*fa9e4066Sahrens nvlist_free(newroot); 1391*fa9e4066Sahrens return (NULL); 1392*fa9e4066Sahrens } 1393*fa9e4066Sahrens 1394*fa9e4066Sahrens return (newroot); 1395*fa9e4066Sahrens } 1396