xref: /titanic_41/usr/src/cmd/zfs/zfs_iter.c (revision e603b7d4a53c0b52084ca06218e6eed01ae7d6f1)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 #include <libintl.h>
29 #include <libuutil.h>
30 #include <stddef.h>
31 #include <stdio.h>
32 #include <stdlib.h>
33 #include <strings.h>
34 
35 #include <libzfs.h>
36 
37 #include "zfs_util.h"
38 #include "zfs_iter.h"
39 
40 /*
41  * This is a private interface used to gather up all the datasets specified on
42  * the command line so that we can iterate over them in order.
43  *
44  * First, we iterate over all filesystems, gathering them together into an
45  * AVL tree.  We report errors for any explicitly specified datasets
46  * that we couldn't open.
47  *
48  * When finished, we have an AVL tree of ZFS handles.  We go through and execute
49  * the provided callback for each one, passing whatever data the user supplied.
50  */
51 
52 typedef struct zfs_node {
53 	zfs_handle_t	*zn_handle;
54 	uu_avl_node_t	zn_avlnode;
55 } zfs_node_t;
56 
57 typedef struct callback_data {
58 	uu_avl_t	*cb_avl;
59 	int		cb_recurse;
60 	zfs_type_t	cb_types;
61 	zfs_sort_column_t *cb_sortcol;
62 	zfs_proplist_t	**cb_proplist;
63 } callback_data_t;
64 
65 uu_avl_pool_t *avl_pool;
66 
67 /*
68  * Called for each dataset.  If the object the object is of an appropriate type,
69  * add it to the avl tree and recurse over any children as necessary.
70  */
71 int
72 zfs_callback(zfs_handle_t *zhp, void *data)
73 {
74 	callback_data_t *cb = data;
75 	int dontclose = 0;
76 
77 	/*
78 	 * If this object is of the appropriate type, add it to the AVL tree.
79 	 */
80 	if (zfs_get_type(zhp) & cb->cb_types) {
81 		uu_avl_index_t idx;
82 		zfs_node_t *node = safe_malloc(sizeof (zfs_node_t));
83 
84 		node->zn_handle = zhp;
85 		uu_avl_node_init(node, &node->zn_avlnode, avl_pool);
86 		if (uu_avl_find(cb->cb_avl, node, cb->cb_sortcol,
87 		    &idx) == NULL) {
88 			if (cb->cb_proplist &&
89 			    zfs_expand_proplist(zhp, cb->cb_proplist) != 0) {
90 				free(node);
91 				return (-1);
92 			}
93 			uu_avl_insert(cb->cb_avl, node, idx);
94 			dontclose = 1;
95 		} else {
96 			free(node);
97 		}
98 	}
99 
100 	/*
101 	 * Recurse if necessary.
102 	 */
103 	if (cb->cb_recurse && (zfs_get_type(zhp) == ZFS_TYPE_FILESYSTEM ||
104 	    (zfs_get_type(zhp) == ZFS_TYPE_VOLUME && (cb->cb_types &
105 	    ZFS_TYPE_SNAPSHOT))))
106 		(void) zfs_iter_children(zhp, zfs_callback, data);
107 
108 	if (!dontclose)
109 		zfs_close(zhp);
110 
111 	return (0);
112 }
113 
114 int
115 zfs_add_sort_column(zfs_sort_column_t **sc, const char *name,
116     boolean_t reverse)
117 {
118 	zfs_sort_column_t *col;
119 	zfs_prop_t prop;
120 
121 	if ((prop = zfs_name_to_prop(name)) == ZFS_PROP_INVAL &&
122 	    !zfs_prop_user(name))
123 		return (-1);
124 
125 	col = safe_malloc(sizeof (zfs_sort_column_t));
126 
127 	col->sc_prop = prop;
128 	col->sc_reverse = reverse;
129 	if (prop == ZFS_PROP_INVAL) {
130 		col->sc_user_prop = safe_malloc(strlen(name) + 1);
131 		(void) strcpy(col->sc_user_prop, name);
132 	}
133 
134 	if (*sc == NULL) {
135 		col->sc_last = col;
136 		*sc = col;
137 	} else {
138 		(*sc)->sc_last->sc_next = col;
139 		(*sc)->sc_last = col;
140 	}
141 
142 	return (0);
143 }
144 
145 void
146 zfs_free_sort_columns(zfs_sort_column_t *sc)
147 {
148 	zfs_sort_column_t *col;
149 
150 	while (sc != NULL) {
151 		col = sc->sc_next;
152 		free(sc->sc_user_prop);
153 		free(sc);
154 		sc = col;
155 	}
156 }
157 
158 /* ARGSUSED */
159 static int
160 zfs_compare(const void *larg, const void *rarg, void *unused)
161 {
162 	zfs_handle_t *l = ((zfs_node_t *)larg)->zn_handle;
163 	zfs_handle_t *r = ((zfs_node_t *)rarg)->zn_handle;
164 	const char *lname = zfs_get_name(l);
165 	const char *rname = zfs_get_name(r);
166 	char *lat, *rat;
167 	uint64_t lcreate, rcreate;
168 	int ret;
169 
170 	lat = (char *)strchr(lname, '@');
171 	rat = (char *)strchr(rname, '@');
172 
173 	if (lat != NULL)
174 		*lat = '\0';
175 	if (rat != NULL)
176 		*rat = '\0';
177 
178 	ret = strcmp(lname, rname);
179 	if (ret == 0) {
180 		/*
181 		 * If we're comparing a dataset to one of its snapshots, we
182 		 * always make the full dataset first.
183 		 */
184 		if (lat == NULL) {
185 			ret = -1;
186 		} else if (rat == NULL) {
187 			ret = 1;
188 		} else {
189 			/*
190 			 * If we have two snapshots from the same dataset, then
191 			 * we want to sort them according to creation time.  We
192 			 * use the hidden CREATETXG property to get an absolute
193 			 * ordering of snapshots.
194 			 */
195 			lcreate = zfs_prop_get_int(l, ZFS_PROP_CREATETXG);
196 			rcreate = zfs_prop_get_int(r, ZFS_PROP_CREATETXG);
197 
198 			if (lcreate < rcreate)
199 				ret = -1;
200 			else if (lcreate > rcreate)
201 				ret = 1;
202 		}
203 	}
204 
205 	if (lat != NULL)
206 		*lat = '@';
207 	if (rat != NULL)
208 		*rat = '@';
209 
210 	return (ret);
211 }
212 
213 /*
214  * Sort datasets by specified columns.
215  *
216  * o  Numeric types sort in ascending order.
217  * o  String types sort in alphabetical order.
218  * o  Types inappropriate for a row sort that row to the literal
219  *    bottom, regardless of the specified ordering.
220  *
221  * If no sort columns are specified, or two datasets compare equally
222  * across all specified columns, they are sorted alphabetically by name
223  * with snapshots grouped under their parents.
224  */
225 static int
226 zfs_sort(const void *larg, const void *rarg, void *data)
227 {
228 	zfs_handle_t *l = ((zfs_node_t *)larg)->zn_handle;
229 	zfs_handle_t *r = ((zfs_node_t *)rarg)->zn_handle;
230 	zfs_sort_column_t *sc = (zfs_sort_column_t *)data;
231 	zfs_sort_column_t *psc;
232 
233 	for (psc = sc; psc != NULL; psc = psc->sc_next) {
234 		char lbuf[ZFS_MAXPROPLEN], rbuf[ZFS_MAXPROPLEN];
235 		char *lstr, *rstr;
236 		uint64_t lnum, rnum;
237 		boolean_t lvalid, rvalid;
238 		int ret = 0;
239 
240 		/*
241 		 * We group the checks below the generic code.  If 'lstr' and
242 		 * 'rstr' are non-NULL, then we do a string based comparison.
243 		 * Otherwise, we compare 'lnum' and 'rnum'.
244 		 */
245 		lstr = rstr = NULL;
246 		if (psc->sc_prop == ZFS_PROP_INVAL) {
247 			nvlist_t *luser, *ruser;
248 			nvlist_t *lval, *rval;
249 
250 			luser = zfs_get_user_props(l);
251 			ruser = zfs_get_user_props(r);
252 
253 			lvalid = (nvlist_lookup_nvlist(luser,
254 			    psc->sc_user_prop, &lval) == 0);
255 			rvalid = (nvlist_lookup_nvlist(ruser,
256 			    psc->sc_user_prop, &rval) == 0);
257 
258 			if (lvalid)
259 				verify(nvlist_lookup_string(lval,
260 				    ZFS_PROP_VALUE, &lstr) == 0);
261 			if (rvalid)
262 				verify(nvlist_lookup_string(rval,
263 				    ZFS_PROP_VALUE, &rstr) == 0);
264 
265 		} else if (zfs_prop_is_string(psc->sc_prop)) {
266 			lvalid = (zfs_prop_get(l, psc->sc_prop, lbuf,
267 			    sizeof (lbuf), NULL, NULL, 0, B_TRUE) == 0);
268 			rvalid = (zfs_prop_get(r, psc->sc_prop, rbuf,
269 			    sizeof (rbuf), NULL, NULL, 0, B_TRUE) == 0);
270 
271 			lstr = lbuf;
272 			rstr = rbuf;
273 		} else {
274 			lvalid = zfs_prop_valid_for_type(psc->sc_prop,
275 			    zfs_get_type(l));
276 			rvalid = zfs_prop_valid_for_type(psc->sc_prop,
277 			    zfs_get_type(r));
278 
279 			if (lvalid)
280 				(void) zfs_prop_get_numeric(l, psc->sc_prop,
281 				    &lnum, NULL, NULL, 0);
282 			if (rvalid)
283 				(void) zfs_prop_get_numeric(r, psc->sc_prop,
284 				    &rnum, NULL, NULL, 0);
285 		}
286 
287 		if (!lvalid && !rvalid)
288 			continue;
289 		else if (!lvalid)
290 			return (1);
291 		else if (!rvalid)
292 			return (-1);
293 
294 		if (lstr)
295 			ret = strcmp(lstr, rstr);
296 		if (lnum < rnum)
297 			ret = -1;
298 		else if (lnum > rnum)
299 			ret = 1;
300 
301 		if (ret != 0) {
302 			if (psc->sc_reverse == B_TRUE)
303 				ret = (ret < 0) ? 1 : -1;
304 			return (ret);
305 		}
306 	}
307 
308 	return (zfs_compare(larg, rarg, NULL));
309 }
310 
311 int
312 zfs_for_each(int argc, char **argv, boolean_t recurse, zfs_type_t types,
313     zfs_sort_column_t *sortcol, zfs_proplist_t **proplist, zfs_iter_f callback,
314     void *data, boolean_t args_can_be_paths)
315 {
316 	callback_data_t cb;
317 	int ret = 0;
318 	zfs_node_t *node;
319 	uu_avl_walk_t *walk;
320 
321 	avl_pool = uu_avl_pool_create("zfs_pool", sizeof (zfs_node_t),
322 	    offsetof(zfs_node_t, zn_avlnode), zfs_sort, UU_DEFAULT);
323 
324 	if (avl_pool == NULL) {
325 		(void) fprintf(stderr,
326 		    gettext("internal error: out of memory\n"));
327 		exit(1);
328 	}
329 
330 	cb.cb_sortcol = sortcol;
331 	cb.cb_recurse = recurse;
332 	cb.cb_proplist = proplist;
333 	cb.cb_types = types;
334 	if ((cb.cb_avl = uu_avl_create(avl_pool, NULL, UU_DEFAULT)) == NULL) {
335 		(void) fprintf(stderr,
336 		    gettext("internal error: out of memory\n"));
337 		exit(1);
338 	}
339 
340 	if (argc == 0) {
341 		/*
342 		 * If given no arguments, iterate over all datasets.
343 		 */
344 		cb.cb_recurse = 1;
345 		ret = zfs_iter_root(g_zfs, zfs_callback, &cb);
346 	} else {
347 		int i;
348 		zfs_handle_t *zhp;
349 		zfs_type_t argtype;
350 
351 		/*
352 		 * If we're recursive, then we always allow filesystems as
353 		 * arguments.  If we also are interested in snapshots, then we
354 		 * can take volumes as well.
355 		 */
356 		argtype = types;
357 		if (recurse) {
358 			argtype |= ZFS_TYPE_FILESYSTEM;
359 			if (types & ZFS_TYPE_SNAPSHOT)
360 				argtype |= ZFS_TYPE_VOLUME;
361 		}
362 
363 		for (i = 0; i < argc; i++) {
364 			if (args_can_be_paths) {
365 				zhp = zfs_path_to_zhandle(g_zfs, argv[i],
366 				    argtype);
367 			} else {
368 				zhp = zfs_open(g_zfs, argv[i], argtype);
369 			}
370 			if (zhp != NULL)
371 				ret |= zfs_callback(zhp, &cb);
372 			else
373 				ret = 1;
374 		}
375 	}
376 
377 	/*
378 	 * At this point we've got our AVL tree full of zfs handles, so iterate
379 	 * over each one and execute the real user callback.
380 	 */
381 	for (node = uu_avl_first(cb.cb_avl); node != NULL;
382 	    node = uu_avl_next(cb.cb_avl, node))
383 		ret |= callback(node->zn_handle, data);
384 
385 	/*
386 	 * Finally, clean up the AVL tree.
387 	 */
388 	if ((walk = uu_avl_walk_start(cb.cb_avl, UU_WALK_ROBUST)) == NULL) {
389 		(void) fprintf(stderr,
390 		    gettext("internal error: out of memory"));
391 		exit(1);
392 	}
393 
394 	while ((node = uu_avl_walk_next(walk)) != NULL) {
395 		uu_avl_remove(cb.cb_avl, node);
396 		zfs_close(node->zn_handle);
397 		free(node);
398 	}
399 
400 	uu_avl_walk_end(walk);
401 	uu_avl_destroy(cb.cb_avl);
402 	uu_avl_pool_destroy(avl_pool);
403 
404 	return (ret);
405 }
406