1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 #include <libintl.h> 29 #include <libuutil.h> 30 #include <stddef.h> 31 #include <stdio.h> 32 #include <stdlib.h> 33 #include <strings.h> 34 35 #include <libzfs.h> 36 37 #include "zfs_util.h" 38 #include "zfs_iter.h" 39 40 /* 41 * This is a private interface used to gather up all the datasets specified on 42 * the command line so that we can iterate over them in order. 43 * 44 * First, we iterate over all filesystems, gathering them together into an 45 * AVL tree. We report errors for any explicitly specified datasets 46 * that we couldn't open. 47 * 48 * When finished, we have an AVL tree of ZFS handles. We go through and execute 49 * the provided callback for each one, passing whatever data the user supplied. 50 */ 51 52 typedef struct zfs_node { 53 zfs_handle_t *zn_handle; 54 uu_avl_node_t zn_avlnode; 55 } zfs_node_t; 56 57 typedef struct callback_data { 58 uu_avl_t *cb_avl; 59 int cb_recurse; 60 zfs_type_t cb_types; 61 zfs_sort_column_t *cb_sortcol; 62 zprop_list_t **cb_proplist; 63 } callback_data_t; 64 65 uu_avl_pool_t *avl_pool; 66 67 /* 68 * Called for each dataset. If the object the object is of an appropriate type, 69 * add it to the avl tree and recurse over any children as necessary. 70 */ 71 static int 72 zfs_callback(zfs_handle_t *zhp, void *data) 73 { 74 callback_data_t *cb = data; 75 int dontclose = 0; 76 77 /* 78 * If this object is of the appropriate type, add it to the AVL tree. 79 */ 80 if (zfs_get_type(zhp) & cb->cb_types) { 81 uu_avl_index_t idx; 82 zfs_node_t *node = safe_malloc(sizeof (zfs_node_t)); 83 84 node->zn_handle = zhp; 85 uu_avl_node_init(node, &node->zn_avlnode, avl_pool); 86 if (uu_avl_find(cb->cb_avl, node, cb->cb_sortcol, 87 &idx) == NULL) { 88 if (cb->cb_proplist && 89 zfs_expand_proplist(zhp, cb->cb_proplist) != 0) { 90 free(node); 91 return (-1); 92 } 93 uu_avl_insert(cb->cb_avl, node, idx); 94 dontclose = 1; 95 } else { 96 free(node); 97 } 98 } 99 100 /* 101 * Recurse if necessary. 102 */ 103 if (cb->cb_recurse) { 104 if (zfs_get_type(zhp) == ZFS_TYPE_FILESYSTEM) 105 (void) zfs_iter_filesystems(zhp, zfs_callback, data); 106 if (zfs_get_type(zhp) != ZFS_TYPE_SNAPSHOT && 107 (cb->cb_types & ZFS_TYPE_SNAPSHOT)) 108 (void) zfs_iter_snapshots(zhp, zfs_callback, data); 109 } 110 111 if (!dontclose) 112 zfs_close(zhp); 113 114 return (0); 115 } 116 117 int 118 zfs_add_sort_column(zfs_sort_column_t **sc, const char *name, 119 boolean_t reverse) 120 { 121 zfs_sort_column_t *col; 122 zfs_prop_t prop; 123 124 if ((prop = zfs_name_to_prop(name)) == ZPROP_INVAL && 125 !zfs_prop_user(name)) 126 return (-1); 127 128 col = safe_malloc(sizeof (zfs_sort_column_t)); 129 130 col->sc_prop = prop; 131 col->sc_reverse = reverse; 132 if (prop == ZPROP_INVAL) { 133 col->sc_user_prop = safe_malloc(strlen(name) + 1); 134 (void) strcpy(col->sc_user_prop, name); 135 } 136 137 if (*sc == NULL) { 138 col->sc_last = col; 139 *sc = col; 140 } else { 141 (*sc)->sc_last->sc_next = col; 142 (*sc)->sc_last = col; 143 } 144 145 return (0); 146 } 147 148 void 149 zfs_free_sort_columns(zfs_sort_column_t *sc) 150 { 151 zfs_sort_column_t *col; 152 153 while (sc != NULL) { 154 col = sc->sc_next; 155 free(sc->sc_user_prop); 156 free(sc); 157 sc = col; 158 } 159 } 160 161 /* ARGSUSED */ 162 static int 163 zfs_compare(const void *larg, const void *rarg, void *unused) 164 { 165 zfs_handle_t *l = ((zfs_node_t *)larg)->zn_handle; 166 zfs_handle_t *r = ((zfs_node_t *)rarg)->zn_handle; 167 const char *lname = zfs_get_name(l); 168 const char *rname = zfs_get_name(r); 169 char *lat, *rat; 170 uint64_t lcreate, rcreate; 171 int ret; 172 173 lat = (char *)strchr(lname, '@'); 174 rat = (char *)strchr(rname, '@'); 175 176 if (lat != NULL) 177 *lat = '\0'; 178 if (rat != NULL) 179 *rat = '\0'; 180 181 ret = strcmp(lname, rname); 182 if (ret == 0) { 183 /* 184 * If we're comparing a dataset to one of its snapshots, we 185 * always make the full dataset first. 186 */ 187 if (lat == NULL) { 188 ret = -1; 189 } else if (rat == NULL) { 190 ret = 1; 191 } else { 192 /* 193 * If we have two snapshots from the same dataset, then 194 * we want to sort them according to creation time. We 195 * use the hidden CREATETXG property to get an absolute 196 * ordering of snapshots. 197 */ 198 lcreate = zfs_prop_get_int(l, ZFS_PROP_CREATETXG); 199 rcreate = zfs_prop_get_int(r, ZFS_PROP_CREATETXG); 200 201 if (lcreate < rcreate) 202 ret = -1; 203 else if (lcreate > rcreate) 204 ret = 1; 205 } 206 } 207 208 if (lat != NULL) 209 *lat = '@'; 210 if (rat != NULL) 211 *rat = '@'; 212 213 return (ret); 214 } 215 216 /* 217 * Sort datasets by specified columns. 218 * 219 * o Numeric types sort in ascending order. 220 * o String types sort in alphabetical order. 221 * o Types inappropriate for a row sort that row to the literal 222 * bottom, regardless of the specified ordering. 223 * 224 * If no sort columns are specified, or two datasets compare equally 225 * across all specified columns, they are sorted alphabetically by name 226 * with snapshots grouped under their parents. 227 */ 228 static int 229 zfs_sort(const void *larg, const void *rarg, void *data) 230 { 231 zfs_handle_t *l = ((zfs_node_t *)larg)->zn_handle; 232 zfs_handle_t *r = ((zfs_node_t *)rarg)->zn_handle; 233 zfs_sort_column_t *sc = (zfs_sort_column_t *)data; 234 zfs_sort_column_t *psc; 235 236 for (psc = sc; psc != NULL; psc = psc->sc_next) { 237 char lbuf[ZFS_MAXPROPLEN], rbuf[ZFS_MAXPROPLEN]; 238 char *lstr, *rstr; 239 uint64_t lnum, rnum; 240 boolean_t lvalid, rvalid; 241 int ret = 0; 242 243 /* 244 * We group the checks below the generic code. If 'lstr' and 245 * 'rstr' are non-NULL, then we do a string based comparison. 246 * Otherwise, we compare 'lnum' and 'rnum'. 247 */ 248 lstr = rstr = NULL; 249 if (psc->sc_prop == ZPROP_INVAL) { 250 nvlist_t *luser, *ruser; 251 nvlist_t *lval, *rval; 252 253 luser = zfs_get_user_props(l); 254 ruser = zfs_get_user_props(r); 255 256 lvalid = (nvlist_lookup_nvlist(luser, 257 psc->sc_user_prop, &lval) == 0); 258 rvalid = (nvlist_lookup_nvlist(ruser, 259 psc->sc_user_prop, &rval) == 0); 260 261 if (lvalid) 262 verify(nvlist_lookup_string(lval, 263 ZPROP_VALUE, &lstr) == 0); 264 if (rvalid) 265 verify(nvlist_lookup_string(rval, 266 ZPROP_VALUE, &rstr) == 0); 267 268 } else if (zfs_prop_is_string(psc->sc_prop)) { 269 lvalid = (zfs_prop_get(l, psc->sc_prop, lbuf, 270 sizeof (lbuf), NULL, NULL, 0, B_TRUE) == 0); 271 rvalid = (zfs_prop_get(r, psc->sc_prop, rbuf, 272 sizeof (rbuf), NULL, NULL, 0, B_TRUE) == 0); 273 274 lstr = lbuf; 275 rstr = rbuf; 276 } else { 277 lvalid = zfs_prop_valid_for_type(psc->sc_prop, 278 zfs_get_type(l)); 279 rvalid = zfs_prop_valid_for_type(psc->sc_prop, 280 zfs_get_type(r)); 281 282 if (lvalid) 283 (void) zfs_prop_get_numeric(l, psc->sc_prop, 284 &lnum, NULL, NULL, 0); 285 if (rvalid) 286 (void) zfs_prop_get_numeric(r, psc->sc_prop, 287 &rnum, NULL, NULL, 0); 288 } 289 290 if (!lvalid && !rvalid) 291 continue; 292 else if (!lvalid) 293 return (1); 294 else if (!rvalid) 295 return (-1); 296 297 if (lstr) 298 ret = strcmp(lstr, rstr); 299 else if (lnum < rnum) 300 ret = -1; 301 else if (lnum > rnum) 302 ret = 1; 303 304 if (ret != 0) { 305 if (psc->sc_reverse == B_TRUE) 306 ret = (ret < 0) ? 1 : -1; 307 return (ret); 308 } 309 } 310 311 return (zfs_compare(larg, rarg, NULL)); 312 } 313 314 int 315 zfs_for_each(int argc, char **argv, boolean_t recurse, zfs_type_t types, 316 zfs_sort_column_t *sortcol, zprop_list_t **proplist, zfs_iter_f callback, 317 void *data, boolean_t args_can_be_paths) 318 { 319 callback_data_t cb; 320 int ret = 0; 321 zfs_node_t *node; 322 uu_avl_walk_t *walk; 323 324 avl_pool = uu_avl_pool_create("zfs_pool", sizeof (zfs_node_t), 325 offsetof(zfs_node_t, zn_avlnode), zfs_sort, UU_DEFAULT); 326 327 if (avl_pool == NULL) { 328 (void) fprintf(stderr, 329 gettext("internal error: out of memory\n")); 330 exit(1); 331 } 332 333 cb.cb_sortcol = sortcol; 334 cb.cb_recurse = recurse; 335 cb.cb_proplist = proplist; 336 cb.cb_types = types; 337 if ((cb.cb_avl = uu_avl_create(avl_pool, NULL, UU_DEFAULT)) == NULL) { 338 (void) fprintf(stderr, 339 gettext("internal error: out of memory\n")); 340 exit(1); 341 } 342 343 if (argc == 0) { 344 /* 345 * If given no arguments, iterate over all datasets. 346 */ 347 cb.cb_recurse = 1; 348 ret = zfs_iter_root(g_zfs, zfs_callback, &cb); 349 } else { 350 int i; 351 zfs_handle_t *zhp; 352 zfs_type_t argtype; 353 354 /* 355 * If we're recursive, then we always allow filesystems as 356 * arguments. If we also are interested in snapshots, then we 357 * can take volumes as well. 358 */ 359 argtype = types; 360 if (recurse) { 361 argtype |= ZFS_TYPE_FILESYSTEM; 362 if (types & ZFS_TYPE_SNAPSHOT) 363 argtype |= ZFS_TYPE_VOLUME; 364 } 365 366 for (i = 0; i < argc; i++) { 367 if (args_can_be_paths) { 368 zhp = zfs_path_to_zhandle(g_zfs, argv[i], 369 argtype); 370 } else { 371 zhp = zfs_open(g_zfs, argv[i], argtype); 372 } 373 if (zhp != NULL) 374 ret |= zfs_callback(zhp, &cb); 375 else 376 ret = 1; 377 } 378 } 379 380 /* 381 * At this point we've got our AVL tree full of zfs handles, so iterate 382 * over each one and execute the real user callback. 383 */ 384 for (node = uu_avl_first(cb.cb_avl); node != NULL; 385 node = uu_avl_next(cb.cb_avl, node)) 386 ret |= callback(node->zn_handle, data); 387 388 /* 389 * Finally, clean up the AVL tree. 390 */ 391 if ((walk = uu_avl_walk_start(cb.cb_avl, UU_WALK_ROBUST)) == NULL) { 392 (void) fprintf(stderr, 393 gettext("internal error: out of memory")); 394 exit(1); 395 } 396 397 while ((node = uu_avl_walk_next(walk)) != NULL) { 398 uu_avl_remove(cb.cb_avl, node); 399 zfs_close(node->zn_handle); 400 free(node); 401 } 402 403 uu_avl_walk_end(walk); 404 uu_avl_destroy(cb.cb_avl); 405 uu_avl_pool_destroy(avl_pool); 406 407 return (ret); 408 } 409