1 #include <stdio.h> 2 #include <unistd.h> 3 #include <stdlib.h> 4 #include <fcntl.h> 5 #include <stropts.h> 6 #include <poll.h> 7 #include <string.h> 8 #include <sys/fs/zev.h> 9 #include <errno.h> 10 #include <sys/sysmacros.h> 11 #include <stdarg.h> 12 #include <sys/avl.h> 13 #include <sys/stat.h> 14 15 #define ZEV_DEVICE "/devices/pseudo/zev@0:ctrl" 16 17 #if !defined(offsetof) 18 #define offsetof(s, m) ((size_t)(&(((s *)0)->m))) 19 #endif 20 21 static char *zev_device = ZEV_DEVICE; 22 23 static char *zev_op_name[] = { 24 "ERROR", 25 "MARK", 26 "ZFS_MOUNT", 27 "ZFS_UMOUNT", 28 "ZVOL_WRITE", 29 "ZVOL_TRUNCATE", 30 "ZNODE_CLOSE_AFTER_UPDATE", 31 "ZNODE_CREATE", 32 "ZNODE_MKDIR", 33 "ZNODE_MAKE_XATTR_DIR", 34 "ZNODE_REMOVE", 35 "ZNODE_RMDIR", 36 "ZNODE_LINK", 37 "ZNODE_SYMLINK", 38 "ZNODE_RENAME", 39 "ZNODE_WRITE", 40 "ZNODE_TRUNCATE", 41 "ZNODE_SETATTR", 42 "ZNODE_ACL", 43 NULL 44 }; 45 46 #define MD_STATISTICS 1 47 #define MD_POLL_EVENTS 2 48 #define MD_CHECKSUMS 3 49 #define MD_DEBUG_INFO 4 50 #define MD_LIST_QUEUES 5 51 #define MD_SET_GLOBAL_MAX_QUEUE_LEN 6 52 #define MD_SET_MAX_QUEUE_LEN 7 53 #define MD_SET_POLL_WAKEUP_QUEUE_LEN 8 54 #define MD_MUTE_POOL 9 55 #define MD_UNMUTE_POOL 10 56 #define MD_MARK 11 57 #define MD_ADD_QUEUE 12 58 #define MD_ADD_BLOCKING_QUEUE 13 59 #define MD_REMOVE_QUEUE 14 60 #define MD_QUEUE_BLOCKING 15 61 #define MD_QUEUE_NONBLOCKING 16 62 #define MD_QUEUE_PROPERTIES 17 63 #define MD_ZEVSTAT 18 64 #define MD_ZEV_REPORT 19 65 #define MD_DUMP_SPOOL 20 66 67 static int verbose = 0; 68 static int grep_friendly = 0; 69 70 static void 71 zpf(char *fmt, ...) 72 { 73 va_list ap; 74 75 va_start(ap, fmt); 76 vprintf(fmt, ap); 77 va_end(ap); 78 if (grep_friendly) { 79 printf(" "); 80 } else { 81 printf("\n"); 82 } 83 } 84 85 static void 86 znl(void) 87 { 88 if (grep_friendly) 89 printf("\n"); 90 } 91 92 static void 93 sig2hex_direct(const uint8_t *sig, char *hex) 94 { 95 int i; 96 97 for (i = 0; i < SHA1_DIGEST_LENGTH; ++i) { 98 sprintf(hex + 2 * i, "%02x", sig[i]); 99 } 100 hex[SHA1_DIGEST_LENGTH * 2] = '\0'; 101 } 102 103 static int 104 zev_statistics(int fd) 105 { 106 zev_statistics_t zs; 107 if (ioctl(fd, ZEV_IOC_GET_GLOBAL_STATISTICS, &zs)) { 108 perror("getting statistics data failed"); 109 return (EXIT_FAILURE); 110 } 111 printf("ZEV module state:\n"); 112 113 printf(" queue length in bytes : %lu\n", zs.zev_queue_len); 114 printf(" queue length limit : %lu\n", zs.zev_max_queue_len); 115 printf(" bytes read from device : %lu\n", zs.zev_bytes_read); 116 printf(" module internal errors : %lu\n\n", zs.zev_cnt_errors); 117 118 printf(" discarded events : %lu\n", 119 zs.zev_cnt_discarded_events); 120 printf(" discarded bytes : %lu\n\n", zs.zev_bytes_discarded); 121 122 printf("ZFS event statistics:\n"); 123 124 printf(" total ZFS events : %lu\n", zs.zev_cnt_total_events); 125 printf(" ZFS mount : %lu\n", zs.zev_cnt_zfs_mount); 126 printf(" ZFS umount : %lu\n", zs.zev_cnt_zfs_umount); 127 printf(" ZVOL write : %lu\n", zs.zev_cnt_zvol_write); 128 printf(" ZVOL truncate : %lu\n", zs.zev_cnt_zvol_truncate); 129 printf(" ZNODE close after update: %lu\n", 130 zs.zev_cnt_znode_close_after_update); 131 printf(" ZNODE create : %lu\n", zs.zev_cnt_znode_create); 132 printf(" ZNODE remove : %lu\n", zs.zev_cnt_znode_remove); 133 printf(" ZNODE link : %lu\n", zs.zev_cnt_znode_link); 134 printf(" ZNODE symlink : %lu\n", zs.zev_cnt_znode_symlink); 135 printf(" ZNODE rename : %lu\n", zs.zev_cnt_znode_rename); 136 printf(" ZNODE write : %lu\n", zs.zev_cnt_znode_write); 137 printf(" ZNODE truncate : %lu\n", 138 zs.zev_cnt_znode_truncate); 139 printf(" ZNODE setattr : %lu\n", zs.zev_cnt_znode_setattr); 140 printf(" ZNODE acl : %lu\n", zs.zev_cnt_znode_acl); 141 return EXIT_SUCCESS; 142 } 143 144 static void 145 zev_print_inode_info(char *name, zev_inode_info_t *info) 146 { 147 zpf(" %s.inode: %llu", name, info->ino); 148 zpf(" %s.gen: %llu", name, info->gen); 149 zpf(" %s.mtime: %llu", name, info->mtime); 150 zpf(" %s.ctime: %llu", name, info->ctime); 151 zpf(" %s.size: %llu", name, info->size); 152 zpf(" %s.mode: %llo", name, info->mode); 153 zpf(" %s.links: %llu", name, info->links); 154 zpf(" %s.type: %lu", name, info->type); 155 zpf(" %s.flags: %lu", name, info->flags); 156 } 157 158 static void 159 zev_print_mark_payload(zev_mark_t *rec) 160 { 161 int i; 162 int j; 163 uint8_t *p; 164 char c; 165 166 zpf(" payload:"); 167 p = (uint8_t *)ZEV_PAYLOAD(rec); 168 for (i=0; i<rec->payload_len; i+=16) { 169 printf(" "); 170 for (j=i; j<rec->payload_len && j<i+16; j++) { 171 printf("%02x ", p[j]); 172 if (j == i + 7) 173 printf(" "); 174 } 175 if (grep_friendly) 176 continue; 177 for (; j<i+16; j++) { 178 printf(" "); 179 if (j == i + 7) 180 printf(" "); 181 } 182 printf(" "); 183 for (j=i; j<rec->payload_len && j<i+16; j++) { 184 c = '.'; 185 if (p[j] >= ' ' && p[j] <= '~') 186 c = p[j]; 187 printf("%c", c); 188 if (j == i + 7) 189 printf(" "); 190 } 191 printf("\n"); 192 } 193 } 194 195 static void 196 zev_print_error(char *buf) 197 { 198 zev_error_t *rec = (zev_error_t *)buf; 199 time_t op_time = rec->op_time; 200 char *ct = ctime(&op_time); ct[24] = '\0'; 201 202 if (verbose) { 203 zpf("%s %s", ct, zev_op_name[rec->op - ZEV_OP_MIN]); 204 zpf(" guid: %llu", rec->guid); 205 zpf(" failed.op: %s", 206 zev_op_name[rec->failed_op - ZEV_OP_MIN]); 207 zpf(" message: %s", ZEV_ERRSTR(rec)); 208 znl(); 209 } else { 210 printf("%s %s: failed_op=%s msg=%s\n", 211 ct, zev_op_name[rec->op - ZEV_OP_MIN], 212 zev_op_name[rec->failed_op - ZEV_OP_MIN], 213 ZEV_ERRSTR(rec)); 214 } 215 } 216 217 static void 218 zev_print_mark(char *buf) 219 { 220 zev_mark_t *rec = (zev_mark_t *)buf; 221 time_t op_time = rec->op_time; 222 char *ct = ctime(&op_time); ct[24] = '\0'; 223 224 if (verbose) { 225 zpf("%s %s", ct, zev_op_name[rec->op - ZEV_OP_MIN]); 226 zpf(" guid: %llu", rec->guid); 227 zpf(" mark.id: %llu", rec->mark_id); 228 zpf(" payload.len: %llu", rec->payload_len); 229 if (rec->payload_len) 230 zev_print_mark_payload(rec); 231 znl(); 232 } else { 233 printf("%s %s: guid=%llu mark_id=%lld payload_len=%ld " 234 "payload=\"%.*s\"\n", 235 ct, zev_op_name[rec->op - ZEV_OP_MIN], rec->guid, 236 rec->mark_id, rec->payload_len, 237 rec->payload_len, (char *)(rec + 1)); 238 } 239 } 240 241 static void 242 zev_print_zfs_mount(char *buf) 243 { 244 zev_zfs_mount_t *rec = (zev_zfs_mount_t *)buf; 245 time_t op_time = rec->op_time; 246 char *ct = ctime(&op_time); ct[24] = '\0'; 247 248 if (verbose) { 249 zpf("%s %s", ct, zev_op_name[rec->op - ZEV_OP_MIN]); 250 zpf(" guid: %llu", rec->guid); 251 zpf(" dataset: %s", ZEV_DATASET(rec)); 252 zpf(" mountpoint: %s", ZEV_MOUNTPOINT(rec)); 253 zpf(" remount: %s", rec->remount ? "true" : "false"); 254 zev_print_inode_info("root", &rec->root); 255 znl(); 256 } else { 257 printf("%s %s: guid=%llu remount=%s dataset='%s' " 258 "mountpoint='%s'\n", 259 ct, zev_op_name[rec->op - ZEV_OP_MIN], 260 rec->guid, 261 rec->remount ? "true" : "false", 262 ZEV_DATASET(rec), 263 ZEV_MOUNTPOINT(rec)); 264 } 265 } 266 267 static void 268 zev_print_zfs_umount(char *buf) 269 { 270 zev_zfs_umount_t *rec = (zev_zfs_umount_t *)buf; 271 time_t op_time = rec->op_time; 272 char *ct = ctime(&op_time); ct[24] = '\0'; 273 274 if (verbose) { 275 zpf("%s %s", ct, zev_op_name[rec->op - ZEV_OP_MIN]); 276 zpf(" guid: %llu", rec->guid); 277 zev_print_inode_info("covered", &rec->covered); 278 znl(); 279 } else { 280 printf("%s %s: guid=%llu\n", 281 ct, zev_op_name[rec->op - ZEV_OP_MIN], 282 rec->guid); 283 } 284 } 285 286 static void 287 zev_print_zvol_truncate(char *buf) 288 { 289 zev_zvol_truncate_t *rec = (zev_zvol_truncate_t *)buf; 290 time_t op_time = rec->op_time; 291 char *ct = ctime(&op_time); ct[24] = '\0'; 292 293 if (verbose) { 294 zpf("%s %s", ct, zev_op_name[rec->op - ZEV_OP_MIN]); 295 zpf(" guid: %llu", rec->guid); 296 zpf(" txg: %llu", rec->txg); 297 zpf(" offset: %llu", rec->offset); 298 zpf(" length: %llu", rec->length); 299 znl(); 300 } else { 301 printf("%s %s: guid=%llu offset=%llu length=%llu\n", 302 ct, zev_op_name[rec->op - ZEV_OP_MIN], 303 rec->guid, 304 rec->offset, 305 rec->length); 306 } 307 } 308 309 static void 310 zev_print_zvol_write(char *buf) 311 { 312 zev_print_zvol_truncate(buf); 313 } 314 315 static void 316 zev_print_znode_close_after_update(char *buf) 317 { 318 zev_znode_close_after_update_t *rec = 319 (zev_znode_close_after_update_t *)buf; 320 time_t op_time = rec->op_time; 321 char *ct = ctime(&op_time); ct[24] = '\0'; 322 323 if (verbose) { 324 zpf("%s %s", ct, zev_op_name[rec->op - ZEV_OP_MIN]); 325 zpf(" guid: %llu", rec->guid); 326 zev_print_inode_info("file", &rec->file); 327 znl(); 328 } else { 329 printf("%s %s: guid=%llu file=%llu.%llu\n", 330 ct, zev_op_name[rec->op - ZEV_OP_MIN], 331 rec->guid, 332 rec->file.ino, rec->file.gen); 333 } 334 } 335 336 static void 337 zev_print_znode_create(char *buf) 338 { 339 zev_znode_create_t *rec = (zev_znode_create_t *)buf; 340 time_t op_time = rec->op_time; 341 char *ct = ctime(&op_time); ct[24] = '\0'; 342 zev_sig_t *sig; 343 char sigval[(SHA1_DIGEST_LENGTH * 2) + 1]; 344 345 if (verbose) { 346 zpf("%s %s", ct, zev_op_name[rec->op - ZEV_OP_MIN]); 347 zpf(" guid: %llu", rec->guid); 348 zpf(" txg: %llu", rec->txg); 349 zpf(" name: '%s'", ZEV_NAME(rec)); 350 sig = &rec->signature; 351 sig2hex_direct(sig->value, sigval); 352 zpf(" sig: level %d, offset %llu, value %s", 353 sig->level, sig->block_offset, sigval); 354 zev_print_inode_info("file", &rec->file); 355 zev_print_inode_info("parent", &rec->parent); 356 znl(); 357 } else { 358 printf("%s %s: guid=%llu parent=%llu.%llu file=%llu.%llu " 359 "file.mtime=%llu, parent.mtime=%llu, name='%s'\n", 360 ct, zev_op_name[rec->op - ZEV_OP_MIN], 361 rec->guid, 362 rec->parent.ino, rec->parent.gen, 363 rec->file.ino, rec->file.gen, 364 rec->file.mtime, rec->parent.mtime, 365 ZEV_NAME(rec)); 366 } 367 } 368 369 static void 370 zev_print_znode_mkdir(char *buf) 371 { 372 zev_print_znode_create(buf); 373 } 374 375 static void 376 zev_print_znode_make_xattr_dir(char *buf) 377 { 378 zev_print_znode_create(buf); 379 } 380 381 static void 382 zev_print_znode_remove(char *buf) 383 { 384 zev_znode_remove_t *rec = (zev_znode_remove_t *)buf; 385 time_t op_time = rec->op_time; 386 char *ct = ctime(&op_time); ct[24] = '\0'; 387 388 if (verbose) { 389 zpf("%s %s", ct, zev_op_name[rec->op - ZEV_OP_MIN]); 390 zpf(" guid: %llu", rec->guid); 391 zpf(" txg: %llu", rec->txg); 392 zpf(" file.name: '%s'", ZEV_NAME(rec)); 393 zev_print_inode_info("file", &rec->file); 394 zev_print_inode_info("parent", &rec->parent); 395 znl(); 396 } else { 397 printf("%s %s: guid=%llu parent=%llu.%llu " 398 "file.mtime=%llu name='%s'\n", 399 ct, zev_op_name[rec->op - ZEV_OP_MIN], 400 rec->guid, 401 rec->parent.ino, rec->parent.gen, 402 rec->file.mtime, 403 ZEV_NAME(rec)); 404 } 405 } 406 407 static void 408 zev_print_znode_rmdir(char *buf) 409 { 410 zev_print_znode_remove(buf); 411 } 412 413 static void 414 zev_print_znode_link(char *buf) 415 { 416 zev_znode_link_t *rec = (zev_znode_link_t *)buf; 417 time_t op_time = rec->op_time; 418 char *ct = ctime(&op_time); ct[24] = '\0'; 419 420 if (verbose) { 421 zpf("%s %s", ct, zev_op_name[rec->op - ZEV_OP_MIN]); 422 zpf(" guid: %llu", rec->guid); 423 zpf(" txg: %llu", rec->txg); 424 zpf(" link.name: '%s'", ZEV_NAME(rec)); 425 zev_print_inode_info("file", &rec->file); 426 zev_print_inode_info("parent", &rec->parent); 427 znl(); 428 } else { 429 printf("%s %s: parent=%llu.%llu file=%llu.%llu " 430 "file.ctime=%llu parent.ctime=%llu name='%s'\n", 431 ct, zev_op_name[rec->op - ZEV_OP_MIN], 432 rec->parent.ino, rec->parent.gen, 433 rec->file.ino, rec->file.gen, 434 rec->file.ctime, rec->parent.ctime, 435 ZEV_NAME(rec)); 436 } 437 } 438 439 static void 440 zev_print_znode_symlink(char *buf) 441 { 442 zev_znode_symlink_t *rec = (zev_znode_symlink_t *)buf; 443 time_t op_time = rec->op_time; 444 char *ct = ctime(&op_time); ct[24] = '\0'; 445 zev_sig_t *sig; 446 char sigval[(SHA1_DIGEST_LENGTH * 2) + 1]; 447 448 if (verbose) { 449 zpf("%s %s", ct, zev_op_name[rec->op - ZEV_OP_MIN]); 450 zpf(" guid: %llu", rec->guid); 451 zpf(" txg: %llu", rec->txg); 452 zpf(" symlink.name: '%s'", ZEV_NAME(rec)); 453 zpf(" symlink.link: '%s'", ZEV_LINK(rec)); 454 sig = &rec->signature; 455 sig2hex_direct(sig->value, sigval); 456 zpf(" sig: level %d, offset %llu, value %s", 457 sig->level, sig->block_offset, sigval); 458 zev_print_inode_info("file", &rec->file); 459 zev_print_inode_info("parent", &rec->parent); 460 znl(); 461 } else { 462 printf("%s %s: parent=%llu.%llu file=%llu.%llu " 463 "name='%s' link='%s'\n", 464 ct, zev_op_name[rec->op - ZEV_OP_MIN], 465 rec->parent.ino, rec->parent.gen, 466 rec->file.ino, rec->file.gen, 467 ZEV_NAME(rec), 468 ZEV_LINK(rec)); 469 } 470 } 471 472 static void 473 zev_print_znode_rename(char *buf) 474 { 475 zev_znode_rename_t *rec = (zev_znode_rename_t *)buf; 476 time_t op_time = rec->op_time; 477 char *ct = ctime(&op_time); ct[24] = '\0'; 478 479 if (verbose) { 480 zpf("%s %s", ct, zev_op_name[rec->op - ZEV_OP_MIN]); 481 zpf(" guid: %llu", rec->guid); 482 zpf(" txg: %llu", rec->txg); 483 zpf(" file.srcname: '%s'", ZEV_SRCNAME(rec)); 484 zpf(" file.dstname: '%s'", ZEV_DSTNAME(rec)); 485 zev_print_inode_info("file", &rec->file); 486 if (rec->clobbered_file.ino) 487 zev_print_inode_info("clobbered_file", 488 &rec->clobbered_file); 489 zev_print_inode_info("srcdir", &rec->srcdir); 490 zev_print_inode_info("dstdir", &rec->dstdir); 491 znl(); 492 } else { 493 printf("%s %s: srcdir=%llu.%llu dstdir=%llu.%llu " 494 "file=%llu.%llu file.mtime=%llu, file.ctime=%llu, " 495 "srcdir.mtime=%llu, srcdir.ctime=%llu, " 496 "dstdir.mtime=%llu, dstdir.ctime=%llu, " 497 "srcname='%s' dstname='%s'\n", 498 ct, zev_op_name[rec->op - ZEV_OP_MIN], 499 rec->srcdir.ino, rec->srcdir.gen, 500 rec->dstdir.ino, rec->dstdir.gen, 501 rec->file.ino, rec->file.gen, 502 rec->file.mtime, rec->file.ctime, 503 rec->srcdir.mtime, rec->srcdir.ctime, 504 rec->dstdir.mtime, rec->dstdir.ctime, 505 ZEV_SRCNAME(rec), 506 ZEV_DSTNAME(rec)); 507 } 508 } 509 510 static void 511 zev_print_znode_write(char *buf) 512 { 513 zev_znode_write_t *rec = (zev_znode_write_t *)buf; 514 time_t op_time = rec->op_time; 515 char *ct = ctime(&op_time); ct[24] = '\0'; 516 zev_sig_t *sig; 517 char sigval[(SHA1_DIGEST_LENGTH * 2) + 1]; 518 int i; 519 520 if (verbose) { 521 zpf("%s %s", ct, zev_op_name[rec->op - ZEV_OP_MIN]); 522 zpf(" guid: %llu", rec->guid); 523 zpf(" txg: %llu", rec->txg); 524 zpf(" offset: %llu", rec->offset); 525 zpf(" length: %llu", rec->length); 526 zev_print_inode_info("file", &rec->file); 527 znl(); 528 for (i=0; i<rec->signature_cnt; i++) { 529 sig = (zev_sig_t *)ZEV_SIGNATURES(rec); 530 sig += i; 531 sig2hex_direct(sig->value, sigval); 532 zpf(" sig: level %d, offset %llu, value %s", 533 sig->level, sig->block_offset, sigval); 534 } 535 } else { 536 printf("%s %s: file=%llu.%llu offset=%llu length=%llu\n", 537 ct, zev_op_name[rec->op - ZEV_OP_MIN], 538 rec->file.ino, rec->file.gen, 539 rec->offset, rec->length); 540 } 541 } 542 543 static void 544 zev_print_znode_truncate(char *buf) 545 { 546 zev_print_znode_write(buf); 547 } 548 549 static void 550 zev_print_znode_setattr(char *buf) 551 { 552 zev_znode_setattr_t *rec = (zev_znode_setattr_t *)buf; 553 time_t op_time = rec->op_time; 554 char *ct = ctime(&op_time); ct[24] = '\0'; 555 556 if (verbose) { 557 zpf("%s %s", ct, zev_op_name[rec->op - ZEV_OP_MIN]); 558 zpf(" guid: %llu", rec->guid); 559 zpf(" txg: %llu", rec->txg); 560 zev_print_inode_info("file", &rec->file); 561 znl(); 562 } else { 563 printf("%s %s: file=%llu.%llu mtime=%llu\n", 564 ct, zev_op_name[rec->op - ZEV_OP_MIN], 565 rec->file.ino, rec->file.gen, rec->file.mtime); 566 } 567 } 568 569 static void 570 zev_print_znode_acl(char *buf) 571 { 572 zev_print_znode_setattr(buf); 573 } 574 575 static void 576 zev_print_event(char *buf, int len) 577 { 578 int record_len; 579 int op; 580 581 record_len = *(uint32_t *)buf; 582 if (record_len != len) { 583 fprintf(stderr, "record length mismatch: got %d, expected %d\n", 584 record_len, len); 585 exit(1); 586 } 587 op = *((uint32_t *)buf + 1); 588 if (op < ZEV_OP_MIN || op > ZEV_OP_MAX) { 589 fprintf(stderr, "unknown op code: %d\n", op); 590 exit(1); 591 } 592 switch (op) { 593 case ZEV_OP_ERROR: 594 zev_print_error(buf); 595 break; 596 case ZEV_OP_MARK: 597 zev_print_mark(buf); 598 break; 599 case ZEV_OP_ZFS_MOUNT: 600 zev_print_zfs_mount(buf); 601 break; 602 case ZEV_OP_ZFS_UMOUNT: 603 zev_print_zfs_umount(buf); 604 break; 605 case ZEV_OP_ZVOL_TRUNCATE: 606 zev_print_zvol_truncate(buf); 607 break; 608 case ZEV_OP_ZVOL_WRITE: 609 zev_print_zvol_write(buf); 610 break; 611 case ZEV_OP_ZNODE_CLOSE_AFTER_UPDATE: 612 zev_print_znode_close_after_update(buf); 613 break; 614 case ZEV_OP_ZNODE_CREATE: 615 zev_print_znode_create(buf); 616 break; 617 case ZEV_OP_ZNODE_MKDIR: 618 zev_print_znode_mkdir(buf); 619 break; 620 case ZEV_OP_ZNODE_MAKE_XATTR_DIR: 621 zev_print_znode_make_xattr_dir(buf); 622 break; 623 case ZEV_OP_ZNODE_REMOVE: 624 zev_print_znode_remove(buf); 625 break; 626 case ZEV_OP_ZNODE_RMDIR: 627 zev_print_znode_rmdir(buf); 628 break; 629 case ZEV_OP_ZNODE_LINK: 630 zev_print_znode_link(buf); 631 break; 632 case ZEV_OP_ZNODE_SYMLINK: 633 zev_print_znode_symlink(buf); 634 break; 635 case ZEV_OP_ZNODE_RENAME: 636 zev_print_znode_rename(buf); 637 break; 638 case ZEV_OP_ZNODE_WRITE: 639 zev_print_znode_write(buf); 640 break; 641 case ZEV_OP_ZNODE_TRUNCATE: 642 zev_print_znode_truncate(buf); 643 break; 644 case ZEV_OP_ZNODE_SETATTR: 645 zev_print_znode_setattr(buf); 646 break; 647 case ZEV_OP_ZNODE_ACL: 648 zev_print_znode_acl(buf); 649 break; 650 default: 651 fprintf(stderr, "unhandled op code: %d\n", op); 652 exit(1); 653 } 654 } 655 656 static int 657 zev_poll_events(int fd, int create_tmp_queue) 658 { 659 struct pollfd pfd[1]; 660 int ret; 661 char buf[4096]; 662 zev_event_t *ev; 663 int off = 0; 664 zev_ioctl_add_queue_t aq; 665 int q_fd; 666 667 if (create_tmp_queue) { 668 aq.zev_max_queue_len = 0; 669 aq.zev_flags = ZEV_FL_INITIALLY_EMPTY; 670 snprintf(aq.zev_name, ZEV_MAX_QUEUE_NAME_LEN, 671 "zevadm.%ld.%ld", time(NULL), getpid()); 672 aq.zev_namelen = strlen(aq.zev_name); 673 674 if (ioctl(fd, ZEV_IOC_ADD_QUEUE, &aq)) { 675 perror("adding temporary queue failed"); 676 return (EXIT_FAILURE); 677 } 678 679 snprintf(buf, sizeof(buf), 680 "/devices/pseudo/zev@0:%s", aq.zev_name); 681 q_fd = open(buf, O_RDONLY); 682 if (q_fd < 0) { 683 perror("opening queue device failed"); 684 return (EXIT_FAILURE); 685 } 686 } else { 687 q_fd = fd; 688 } 689 690 while (1) { 691 pfd[0].fd = q_fd; 692 pfd[0].events = POLLIN; 693 ret = poll(pfd, 1, 1000); 694 if (ret < 0) { 695 perror("poll failed"); 696 close(q_fd); 697 return(EXIT_FAILURE); 698 } 699 if (!(pfd[0].revents & POLLIN)) 700 continue; 701 /* data available */ 702 ret = read(q_fd, buf, sizeof(buf)); 703 if (ret < 0) { 704 perror("read failed"); 705 close(q_fd); 706 return(EXIT_FAILURE); 707 } 708 if (ret == 0) 709 continue; 710 while (ret > off) { 711 ev = (zev_event_t *)(buf + off); 712 zev_print_event(buf + off, ev->header.record_len); 713 off += ev->header.record_len; 714 } 715 off = 0; 716 } 717 if (create_tmp_queue) 718 close(q_fd); 719 return EXIT_SUCCESS; 720 } 721 722 static int 723 zev_dump_spool(int fd) 724 { 725 int len; 726 char buf[4096]; 727 int off = 0; 728 729 while (1) { 730 len = read(fd, buf + off, sizeof(buf) - off); 731 if (len == -1) { 732 fprintf(stderr, "reading from spool failed: %s\n", 733 strerror(errno)); 734 return EXIT_FAILURE; 735 } 736 if (len == 0) 737 break; 738 739 len += off; 740 off = 0; 741 while (len > off + sizeof(uint32_t)) { 742 uint32_t evlen; 743 char *mp; 744 zev_event_t *ev; 745 746 ev = (zev_event_t *)(buf + off); 747 evlen = ev->header.record_len; 748 if (len < off + evlen + 1) 749 break; 750 mp = buf + off + evlen; 751 if (!memchr(mp, 0, len - off - evlen)) 752 break; 753 zev_print_event(buf + off, ev->header.record_len); 754 off += ev->header.record_len + strlen(mp) + 1; 755 } 756 757 memmove(buf, buf + off, len - off); 758 off = len - off; 759 } 760 761 return EXIT_SUCCESS; 762 } 763 764 static void 765 usage(char *progname) 766 { 767 fprintf(stderr, "usage: %s [-d <dev>] [options]\n", progname); 768 fprintf(stderr, "\n"); 769 fprintf(stderr, " Status information:\n"); 770 fprintf(stderr, " -s show zev statistics\n"); 771 fprintf(stderr, " -p poll for ZFS events\n"); 772 fprintf(stderr, " -f <name> dump events from spool\n"); 773 fprintf(stderr, " -D print zev module debug " 774 "information\n"); 775 fprintf(stderr, " -T <interval> <cnt> zevstat mode\n"); 776 fprintf(stderr, " -R <base filename> zevreport mode\n"); 777 fprintf(stderr, "\n"); 778 fprintf(stderr, " Tune zev module settings:\n"); 779 fprintf(stderr, " -Q <bytes> set maximum event queue " 780 "length\n"); 781 fprintf(stderr, " -m <pool> mute pool, no events for " 782 "this pool\n"); 783 fprintf(stderr, " -M <pool> unmute pool\n"); 784 fprintf(stderr, "\n"); 785 fprintf(stderr, " Queue management:\n"); 786 fprintf(stderr, " -l list queues\n"); 787 fprintf(stderr, " -a <name> add non-blocking queue\n"); 788 fprintf(stderr, " -A <name> add blocking queue\n"); 789 fprintf(stderr, " -r <name> remove queue\n"); 790 fprintf(stderr, " -b <name> make queue non-blocking " 791 "(default)\n"); 792 fprintf(stderr, " -B <name> make queue block when full\n"); 793 fprintf(stderr, " -P <name> display queue properties\n"); 794 fprintf(stderr, " -L <name> <bytes> set maximum event queue " 795 "length\n"); 796 fprintf(stderr, " -t <name> <bytes> set queue length poll " 797 "throttle\n"); 798 fprintf(stderr, "\n"); 799 fprintf(stderr, " Other options:\n"); 800 fprintf(stderr, " -d <dev> non-default device file. " 801 "('%s')\n", ZEV_DEVICE); 802 fprintf(stderr, " -q <name> use device file for this " 803 "queue name\n"); 804 fprintf(stderr, " -k <guid>:<payload> queue mark event\n"); 805 fprintf(stderr, " -c <filename> list file's content " 806 "checksums\n"); 807 fprintf(stderr, " -v verbose: additional output " 808 "for some operations\n"); 809 fprintf(stderr, " -g grep-friendly event output, " 810 "one event per line\n"); 811 exit (EXIT_FAILURE); 812 } 813 814 static void 815 zevstat_usage(char *progname) 816 { 817 fprintf(stderr, "usage: %s [-v] <interval> [count]\n", progname); 818 fprintf(stderr, " -v verbose, show counters for all event types\n"); 819 exit (EXIT_FAILURE); 820 } 821 822 static void 823 zevreport_usage(char *progname) 824 { 825 fprintf(stderr, "usage: %s <output base filename>\n", progname); 826 exit (EXIT_FAILURE); 827 } 828 829 static int 830 zev_add_queue(int fd, char *arg, int blocking) 831 { 832 zev_ioctl_add_queue_t aq; 833 int namelen; 834 835 namelen = strlen(arg); 836 if (namelen > ZEV_MAX_QUEUE_NAME_LEN) { 837 fprintf(stderr, "queue name too long: %s\n", arg); 838 return (EXIT_FAILURE); 839 } 840 841 aq.zev_namelen = namelen; 842 strcpy(aq.zev_name, arg); 843 aq.zev_flags = ZEV_FL_PERSISTENT | ZEV_FL_INITIALLY_EMPTY; 844 if (blocking) { 845 aq.zev_flags |= ZEV_FL_BLOCK_WHILE_QUEUE_FULL; 846 aq.zev_max_queue_len = ZEV_MAX_QUEUE_LEN; 847 } else { 848 aq.zev_max_queue_len = (1024 * 1024); 849 } 850 851 if (ioctl(fd, ZEV_IOC_ADD_QUEUE, &aq)) { 852 perror("adding queue failed"); 853 return (EXIT_FAILURE); 854 } 855 return (0); 856 } 857 858 static int 859 zev_remove_queue(int fd, char *arg) 860 { 861 zev_ioctl_remove_queue_t aq; 862 int namelen; 863 864 namelen = strlen(arg); 865 if (namelen > ZEV_MAX_QUEUE_NAME_LEN) { 866 fprintf(stderr, "queue name too long: %s\n", arg); 867 return (EXIT_FAILURE); 868 } 869 870 aq.zev_queue_name.zev_namelen = namelen; 871 strcpy(aq.zev_queue_name.zev_name, arg); 872 873 if (ioctl(fd, ZEV_IOC_REMOVE_QUEUE, &aq)) { 874 perror("removing queue failed"); 875 return (EXIT_FAILURE); 876 } 877 return (0); 878 } 879 880 static int 881 zev_set_global_max_queue_len(int fd, char *arg) 882 { 883 uint64_t maxqueuelen; 884 885 if (!arg) { 886 fprintf(stderr, "missing queue length parameter\n"); 887 return (EXIT_FAILURE); 888 } 889 890 errno = 0; 891 maxqueuelen = strtol(arg, (char **)NULL, 10); 892 if (errno) { 893 fprintf(stderr, "invalid queue length parameter: %s\n", arg); 894 return (EXIT_FAILURE); 895 } 896 if (ioctl(fd, ZEV_IOC_SET_MAX_QUEUE_LEN, &maxqueuelen)) { 897 perror("setting max queue length failed"); 898 return (EXIT_FAILURE); 899 } 900 return (0); 901 } 902 903 static int 904 zev_mute_unmute_impl(int fd, char *poolname, int mute) 905 { 906 zev_ioctl_poolarg_t pa; 907 int len; 908 int op = mute ? ZEV_IOC_MUTE_POOL : ZEV_IOC_UNMUTE_POOL; 909 len = strlen(poolname); 910 if (len <= 0 || len >= sizeof(pa.zev_poolname)) { 911 fprintf(stderr, "invalid poolname: %s\n", poolname); 912 return (EXIT_FAILURE); 913 } 914 strcpy(pa.zev_poolname, poolname); 915 pa.zev_poolname_len = len; 916 if (ioctl(fd, op, &pa)) { 917 perror("muting pool data failed"); 918 return (EXIT_FAILURE); 919 } 920 return (0); 921 } 922 923 int 924 zev_mute_pool(int fd, char *poolname) 925 { 926 return zev_mute_unmute_impl(fd, poolname, 1); 927 } 928 929 int 930 zev_unmute_pool(int fd, char *poolname) 931 { 932 return zev_mute_unmute_impl(fd, poolname, 0); 933 } 934 935 static int 936 zev_debug_info(int fd) 937 { 938 zev_ioctl_debug_info_t di; 939 940 if (ioctl(fd, ZEV_IOC_GET_DEBUG_INFO, &di)) { 941 perror("getting zev debug info failed"); 942 return (EXIT_FAILURE); 943 } 944 945 printf("memory allocated: %llu bytes\n", di.zev_memory_allocated); 946 printf("checksum cache size: %llu\n", di.zev_chksum_cache_size); 947 printf("checksum cache hits: %llu\n", di.zev_chksum_cache_hits); 948 printf("checksum cache misses: %llu\n", di.zev_chksum_cache_misses); 949 return 0; 950 } 951 952 static int 953 zev_mark(int fd, char *arg) 954 { 955 zev_ioctl_mark_t *mark; 956 uint64_t guid; 957 int len; 958 char *p; 959 960 p = strchr(arg, ':'); 961 if (!p) { 962 fprintf(stderr, "expected value is <guid>:<payload>, " 963 "e.g. '123:hello'\n"); 964 exit (EXIT_FAILURE); 965 } 966 *p = '\n'; 967 p++; 968 969 errno = 0; 970 guid = strtoll(arg, (char **)NULL, 10); 971 if (errno) { 972 fprintf(stderr, "guid must be a number.\n"); 973 exit (EXIT_FAILURE); 974 } 975 976 len = strlen(p); 977 978 mark = malloc(sizeof(*mark) + len + 1); 979 if (!mark) { 980 fprintf(stderr, "can't allocate mark structure: %s\n", 981 strerror(errno)); 982 exit (EXIT_FAILURE); 983 } 984 mark->zev_guid = guid; 985 mark->zev_mark_id = 0; 986 mark->zev_payload_len = len; 987 strcpy(ZEV_PAYLOAD(mark), p); 988 989 if (ioctl(fd, ZEV_IOC_MARK, mark)) { 990 perror("queueing mark failed"); 991 return (EXIT_FAILURE); 992 } 993 994 printf("mark id: %lu\n", mark->zev_mark_id); 995 return (0); 996 } 997 998 static int 999 zev_queue_blocking(int fd, char *arg, int block) 1000 { 1001 zev_ioctl_get_queue_properties_t gqp; 1002 1003 gqp.zev_queue_name.zev_namelen = strlen(arg); 1004 if (gqp.zev_queue_name.zev_namelen > ZEV_MAX_QUEUE_NAME_LEN) { 1005 fprintf(stderr, "queue name too long.\n"); 1006 return EXIT_FAILURE; 1007 } 1008 strcpy(gqp.zev_queue_name.zev_name, arg); 1009 1010 if (ioctl(fd, ZEV_IOC_GET_QUEUE_PROPERTIES, &gqp)) { 1011 perror("getting queue properties failed"); 1012 return (EXIT_FAILURE); 1013 } 1014 if (block) { 1015 gqp.zev_flags |= ZEV_FL_BLOCK_WHILE_QUEUE_FULL; 1016 } else { 1017 gqp.zev_flags &= ~ZEV_FL_BLOCK_WHILE_QUEUE_FULL; 1018 } 1019 if (ioctl(fd, ZEV_IOC_SET_QUEUE_PROPERTIES, &gqp)) { 1020 perror("setting queue properties failed"); 1021 return (EXIT_FAILURE); 1022 } 1023 return (0); 1024 } 1025 1026 static int 1027 zev_set_max_queue_len(int fd, char *arg, char *len) 1028 { 1029 zev_ioctl_get_queue_properties_t gqp; 1030 1031 if (!len) { 1032 fprintf(stderr, "queue size parameter missing.\n"); 1033 return EXIT_FAILURE; 1034 } 1035 1036 gqp.zev_queue_name.zev_namelen = strlen(arg); 1037 if (gqp.zev_queue_name.zev_namelen > ZEV_MAX_QUEUE_NAME_LEN) { 1038 fprintf(stderr, "queue name too long.\n"); 1039 return EXIT_FAILURE; 1040 } 1041 strcpy(gqp.zev_queue_name.zev_name, arg); 1042 1043 if (ioctl(fd, ZEV_IOC_GET_QUEUE_PROPERTIES, &gqp)) { 1044 perror("getting queue properties failed"); 1045 return (EXIT_FAILURE); 1046 } 1047 gqp.zev_max_queue_len = atol(len); 1048 if (gqp.zev_max_queue_len == 0 && strcmp("0", len)) { 1049 fprintf(stderr, "queue size parameter garbled.\n"); 1050 return (EXIT_FAILURE); 1051 } 1052 if (gqp.zev_max_queue_len > ZEV_MAX_QUEUE_LEN) { 1053 fprintf(stderr, "queue size parameter out of bounds.\n"); 1054 return (EXIT_FAILURE); 1055 } 1056 1057 if (ioctl(fd, ZEV_IOC_SET_QUEUE_PROPERTIES, &gqp)) { 1058 perror("setting queue properties failed"); 1059 return (EXIT_FAILURE); 1060 } 1061 return (0); 1062 } 1063 1064 static int 1065 zev_set_poll_wakeup_queue_len(int fd, char *arg, char *len) 1066 { 1067 zev_ioctl_get_queue_properties_t gqp; 1068 1069 if (!len) { 1070 fprintf(stderr, "poll throttle parameter missing.\n"); 1071 return EXIT_FAILURE; 1072 } 1073 1074 gqp.zev_queue_name.zev_namelen = strlen(arg); 1075 if (gqp.zev_queue_name.zev_namelen > ZEV_MAX_QUEUE_NAME_LEN) { 1076 fprintf(stderr, "queue name too long.\n"); 1077 return EXIT_FAILURE; 1078 } 1079 strcpy(gqp.zev_queue_name.zev_name, arg); 1080 1081 if (ioctl(fd, ZEV_IOC_GET_QUEUE_PROPERTIES, &gqp)) { 1082 perror("getting queue properties failed"); 1083 return (EXIT_FAILURE); 1084 } 1085 gqp.zev_poll_wakeup_threshold = atol(len); 1086 if (gqp.zev_poll_wakeup_threshold == 0 && strcmp("0", len)) { 1087 fprintf(stderr, "poll throttle parameter garbled.\n"); 1088 return (EXIT_FAILURE); 1089 } 1090 if (gqp.zev_poll_wakeup_threshold > ZEV_MAX_POLL_WAKEUP_QUEUE_LEN) { 1091 fprintf(stderr, "poll throttle parameter out of bounds.\n"); 1092 return (EXIT_FAILURE); 1093 } 1094 1095 if (ioctl(fd, ZEV_IOC_SET_QUEUE_PROPERTIES, &gqp)) { 1096 perror("setting queue properties failed"); 1097 return (EXIT_FAILURE); 1098 } 1099 return (0); 1100 } 1101 1102 static int 1103 zev_queue_properties(int fd, char *arg) 1104 { 1105 zev_ioctl_get_queue_properties_t gqp; 1106 1107 gqp.zev_queue_name.zev_namelen = strlen(arg); 1108 if (gqp.zev_queue_name.zev_namelen > ZEV_MAX_QUEUE_NAME_LEN) { 1109 fprintf(stderr, "queue name too long.\n"); 1110 return EXIT_FAILURE; 1111 } 1112 strcpy(gqp.zev_queue_name.zev_name, arg); 1113 1114 if (ioctl(fd, ZEV_IOC_GET_QUEUE_PROPERTIES, &gqp)) { 1115 perror("getting queue properties failed"); 1116 return (EXIT_FAILURE); 1117 } 1118 1119 printf("queue : %s\n", arg); 1120 printf("max size : %" PRIu64 "\n", gqp.zev_max_queue_len); 1121 printf("poll throttle: %" PRIu64 "\n", gqp.zev_poll_wakeup_threshold); 1122 printf("persistent : %s\n", 1123 gqp.zev_flags & ZEV_FL_PERSISTENT ? "yes" : "no"); 1124 printf("blocking : %s\n", 1125 gqp.zev_flags & ZEV_FL_BLOCK_WHILE_QUEUE_FULL ? "yes" : "no"); 1126 1127 return (0); 1128 } 1129 1130 static int 1131 zev_list_queues(int fd) 1132 { 1133 zev_ioctl_get_queue_properties_t gqp; 1134 zev_ioctl_get_queue_list_t gql; 1135 zev_ioctl_get_queue_statistics_t gs; 1136 uint64_t i; 1137 char name[ZEV_MAX_QUEUE_NAME_LEN+1]; 1138 1139 if (ioctl(fd, ZEV_IOC_GET_QUEUE_LIST, &gql)) { 1140 perror("getting queue list failed"); 1141 return (EXIT_FAILURE); 1142 } 1143 1144 printf("Name Size " 1145 "Max Size Wakeup Per Block\n"); 1146 1147 for (i=0; i<gql.zev_n_queues; i++) { 1148 strncpy(name, gql.zev_queue_name[i].zev_name, 1149 ZEV_MAX_QUEUE_NAME_LEN); 1150 name[gql.zev_queue_name[i].zev_namelen] = '\0'; 1151 1152 memcpy(gqp.zev_queue_name.zev_name, 1153 gql.zev_queue_name[i].zev_name, ZEV_MAX_QUEUE_NAME_LEN); 1154 gqp.zev_queue_name.zev_namelen = 1155 gql.zev_queue_name[i].zev_namelen; 1156 1157 if (ioctl(fd, ZEV_IOC_GET_QUEUE_PROPERTIES, &gqp)) { 1158 if (errno == ENOENT) 1159 continue; 1160 perror("getting queue properties failed"); 1161 return (EXIT_FAILURE); 1162 } 1163 1164 memcpy(gs.zev_queue_name.zev_name, 1165 gql.zev_queue_name[i].zev_name, ZEV_MAX_QUEUE_NAME_LEN); 1166 gs.zev_queue_name.zev_namelen = 1167 gql.zev_queue_name[i].zev_namelen; 1168 1169 if (ioctl(fd, ZEV_IOC_GET_QUEUE_STATISTICS, &gs)) { 1170 if (errno == ENOENT) 1171 continue; 1172 perror("getting statistics data failed"); 1173 return (EXIT_FAILURE); 1174 } 1175 1176 printf("%-40s %-10" PRIu64 " %-10" PRIu64 " %-6" PRIu64 1177 " %-3s %-3s\n", 1178 name, 1179 gs.zev_statistics.zev_queue_len, 1180 gqp.zev_max_queue_len, 1181 gqp.zev_poll_wakeup_threshold, 1182 gqp.zev_flags & ZEV_FL_PERSISTENT ? "yes" : "no", 1183 gqp.zev_flags & ZEV_FL_BLOCK_WHILE_QUEUE_FULL ? 1184 "yes" : "no"); 1185 } 1186 1187 return (0); 1188 } 1189 1190 static int 1191 zev_checksum(int dev_fd, char *filename) 1192 { 1193 int fd; 1194 offset_t off; 1195 offset_t data; 1196 zev_sig_t *sig; 1197 char *buf; 1198 zev_ioctl_get_signatures_t *gs; 1199 int i; 1200 char sigval[(SHA1_DIGEST_LENGTH * 2) + 1]; 1201 int buf_size; 1202 1203 /* control struct, one lv1 signature and up to 256 lv0 signatures */ 1204 buf_size = (1 + 256) * sizeof(zev_sig_t); 1205 buf = malloc(sizeof(zev_ioctl_get_signatures_t) + buf_size); 1206 if (!buf) { 1207 perror("can't allocate checksum buffer"); 1208 return (EXIT_FAILURE); 1209 } 1210 1211 fd = open(filename, O_RDONLY); 1212 if (fd < 0) { 1213 perror("can't open file"); 1214 return (EXIT_FAILURE); 1215 } 1216 1217 gs = (zev_ioctl_get_signatures_t *)buf; 1218 gs->zev_fd = fd; 1219 gs->zev_bufsize = buf_size; 1220 1221 off = 0; 1222 data = 0; 1223 while (1) { 1224 errno = 0; 1225 data = llseek(fd, off, SEEK_DATA); 1226 if (data < 0) { 1227 if (errno == ENXIO) /* no more data */ 1228 break; 1229 perror("llseek failed"); 1230 goto err; 1231 } 1232 data = P2ALIGN(data, ZEV_L1_SIZE); 1233 off = data + ZEV_L1_SIZE; 1234 1235 gs->zev_offset = data; 1236 gs->zev_len = ZEV_L1_SIZE; 1237 1238 if (ioctl(dev_fd, ZEV_IOC_GET_FILE_SIGNATURES, gs)) { 1239 perror("ioctl to get signatures failed"); 1240 goto err; 1241 } 1242 1243 for (i=0; i<gs->zev_signature_cnt; i++) { 1244 sig = (zev_sig_t *)ZEV_SIGNATURES(gs); 1245 sig += i; 1246 sig2hex_direct(sig->value, sigval); 1247 printf("level %d, offset %llu, value %s\n", 1248 sig->level, sig->block_offset, sigval); 1249 } 1250 } 1251 1252 free(buf); 1253 close(fd); 1254 return 0; 1255 err: 1256 free(buf); 1257 close(fd); 1258 return (EXIT_FAILURE); 1259 } 1260 1261 typedef struct zevstat { 1262 uint64_t ns_start; 1263 uint64_t events[ZEV_OP_MIN + ZEV_OP_MAX]; 1264 uint64_t guids; 1265 uint64_t total_events; 1266 uint64_t total_guids; 1267 avl_tree_t guids_interval; 1268 avl_tree_t guids_runtime; 1269 } zevstat_t; 1270 1271 typedef struct zev_guidtrack_t { 1272 uint64_t guid; 1273 avl_node_t avl_interval; 1274 avl_node_t avl_runtime; 1275 } zev_guidtrack_t; 1276 1277 zevstat_t zevstat; 1278 1279 static void 1280 zev_eventstat(char *buf, int len) 1281 { 1282 zev_header_t *rec = (zev_header_t *)buf; 1283 zev_guidtrack_t *gt; 1284 zev_guidtrack_t *gt_int; 1285 zev_guidtrack_t to_find; 1286 avl_index_t where; 1287 1288 zevstat.total_events++; 1289 zevstat.events[rec->op]++; 1290 1291 to_find.guid = rec->guid; 1292 gt = avl_find(&zevstat.guids_runtime, &to_find, &where); 1293 if (!gt) { 1294 gt = malloc(sizeof(*gt)); 1295 if (!gt) { 1296 perror("can't get guid tracking record"); 1297 exit (EXIT_FAILURE); 1298 } 1299 gt->guid = rec->guid; 1300 avl_insert(&zevstat.guids_runtime, gt, where); 1301 } 1302 gt_int = avl_find(&zevstat.guids_interval, &to_find, &where); 1303 if (!gt_int) 1304 avl_insert(&zevstat.guids_interval, gt, where); 1305 } 1306 1307 static void 1308 zev_eventstat_interval(FILE *out) 1309 { 1310 uint64_t events; 1311 int i; 1312 zev_guidtrack_t *gt; 1313 1314 events = 0; 1315 for (i = ZEV_OP_MIN; i <= ZEV_OP_MAX; i++) { 1316 events += zevstat.events[i]; 1317 } 1318 1319 if (verbose) { 1320 fprintf(out, "%u %6llu %6llu %6llu %6llu ", 1321 time(NULL), 1322 events, 1323 zevstat.total_events, 1324 avl_numnodes(&zevstat.guids_interval), 1325 avl_numnodes(&zevstat.guids_runtime)); 1326 for (i = ZEV_OP_MIN; i <= ZEV_OP_MAX; i++) 1327 fprintf(out, "%6llu ", zevstat.events[i]); 1328 fprintf(out, "\n"); 1329 } else { 1330 fprintf(out, "%u %6llu %6llu %6llu %6llu\n", 1331 time(NULL), 1332 events, 1333 zevstat.total_events, 1334 avl_numnodes(&zevstat.guids_interval), 1335 avl_numnodes(&zevstat.guids_runtime)); 1336 } 1337 memset(&zevstat.events, 0, sizeof(zevstat.events)); 1338 zevstat.guids = 0; 1339 while (gt = avl_first(&zevstat.guids_interval)) 1340 avl_remove(&zevstat.guids_interval, gt); 1341 fflush(out); 1342 } 1343 1344 static int 1345 zev_evcompar(const void *a, const void *b) 1346 { 1347 const zev_guidtrack_t *ga = a; 1348 const zev_guidtrack_t *gb = b; 1349 1350 if (ga->guid > gb->guid) 1351 return 1; 1352 if (ga->guid < gb->guid) 1353 return -1; 1354 return 0; 1355 } 1356 1357 static int 1358 zev_zevstat(int fd, char *s_interval, char *s_count, char *outfile) 1359 { 1360 uint64_t interval = 1000; 1361 uint64_t ms; 1362 uint64_t t_until; 1363 uint64_t t_now; 1364 int cnt = -1; 1365 struct pollfd pfd[1]; 1366 int ret; 1367 char buf[4096]; 1368 zev_event_t *ev; 1369 int off = 0; 1370 zev_ioctl_add_queue_t aq; 1371 int q_fd; 1372 zev_guidtrack_t *gt; 1373 FILE *out = stdout; 1374 struct stat st; 1375 char filename[MAXPATHLEN]; 1376 int retry; 1377 1378 if (outfile) { 1379 retry = 0; 1380 strncpy(filename, outfile, sizeof(filename)); 1381 while (stat(filename, &st) == 0) { 1382 /* file exists */ 1383 snprintf(filename, sizeof(filename), 1384 "%s.%d", outfile, retry); 1385 retry++; 1386 } 1387 out = fopen(filename, "wb+"); 1388 if (!out) { 1389 perror("opening output file failed"); 1390 return (EXIT_FAILURE); 1391 } 1392 } 1393 1394 memset(&zevstat, 0, sizeof(zevstat)); 1395 avl_create(&zevstat.guids_runtime, zev_evcompar, 1396 sizeof(zev_guidtrack_t), 1397 offsetof(zev_guidtrack_t, avl_runtime)); 1398 avl_create(&zevstat.guids_interval, zev_evcompar, 1399 sizeof(zev_guidtrack_t), 1400 offsetof(zev_guidtrack_t, avl_interval)); 1401 1402 if (s_interval) { 1403 interval = atol(s_interval); 1404 if (interval == 0) { 1405 fprintf(stderr, "invalid interval.\n"); 1406 return (EXIT_FAILURE); 1407 } 1408 interval *= 1000; 1409 } 1410 if (s_count) { 1411 cnt = atol(s_count); 1412 if (interval == 0) { 1413 fprintf(stderr, "invalid count.\n"); 1414 return (EXIT_FAILURE); 1415 } 1416 } 1417 1418 aq.zev_max_queue_len = 1024 * 1024; 1419 aq.zev_flags = ZEV_FL_INITIALLY_EMPTY; 1420 snprintf(aq.zev_name, ZEV_MAX_QUEUE_NAME_LEN, 1421 "zevstat.%ld.%ld", time(NULL), getpid()); 1422 aq.zev_namelen = strlen(aq.zev_name); 1423 1424 if (ioctl(fd, ZEV_IOC_ADD_QUEUE, &aq)) { 1425 perror("adding temporary queue failed"); 1426 return (EXIT_FAILURE); 1427 } 1428 1429 snprintf(buf, sizeof(buf), 1430 "/devices/pseudo/zev@0:%s", aq.zev_name); 1431 q_fd = open(buf, O_RDONLY); 1432 if (q_fd < 0) { 1433 perror("opening queue device failed"); 1434 return (EXIT_FAILURE); 1435 } 1436 1437 pfd[0].fd = q_fd; 1438 pfd[0].events = POLLIN; 1439 1440 /* drain queue */ 1441 while ((ret = poll(pfd, 1, 0)) > 0) { 1442 if (read(q_fd, buf, sizeof(buf)) < 0) { 1443 perror("read failed"); 1444 close(q_fd); 1445 return(EXIT_FAILURE); 1446 } 1447 } 1448 if (ret < 0) { 1449 perror("poll failed"); 1450 close(q_fd); 1451 return(EXIT_FAILURE); 1452 } 1453 1454 fprintf(out, "timestamp events tevents guids tguids"); 1455 if (verbose) { 1456 fprintf(out, " error mark mount umount zvol_w "); 1457 fprintf(out, "zvol_t close create mkdir mxattr "); 1458 fprintf(out, "remove rmdir link symlnk rename "); 1459 fprintf(out, "write trunc setatt acl"); 1460 } 1461 fprintf(out, "\n"); 1462 while (cnt) { 1463 t_until = gethrtime() + (interval * 1000000); 1464 ms = interval; 1465 do { 1466 ret = poll(pfd, 1, ms); 1467 t_now = gethrtime(); 1468 if (t_now < t_until) { 1469 ms = t_until - t_now; 1470 ms /= 1000000ull; 1471 } 1472 if (ret < 0) { 1473 perror("poll failed"); 1474 close(q_fd); 1475 return(EXIT_FAILURE); 1476 } 1477 if (!(pfd[0].revents & POLLIN)) 1478 continue; 1479 /* data available */ 1480 ret = read(q_fd, buf, sizeof(buf)); 1481 if (ret < 0) { 1482 perror("read failed"); 1483 close(q_fd); 1484 return(EXIT_FAILURE); 1485 } 1486 if (ret == 0) 1487 continue; 1488 while (ret > off) { 1489 ev = (zev_event_t *)(buf + off); 1490 zev_eventstat(buf + off, ev->header.record_len); 1491 off += ev->header.record_len; 1492 } 1493 off = 0; 1494 } while ((t_now) < t_until && (ms > 0)); 1495 zev_eventstat_interval(out); 1496 if (cnt > 0) 1497 cnt--; 1498 } 1499 close(q_fd); 1500 if (outfile) 1501 fclose(out); 1502 while (gt = avl_first(&zevstat.guids_interval)) 1503 avl_remove(&zevstat.guids_interval, gt); 1504 while (gt = avl_first(&zevstat.guids_runtime)) { 1505 avl_remove(&zevstat.guids_runtime, gt); 1506 free(gt); 1507 } 1508 return EXIT_SUCCESS; 1509 } 1510 1511 static int 1512 zev_report(int fd, char *basename) 1513 { 1514 char filename[MAXPATHLEN]; 1515 char count[10]; 1516 time_t now; 1517 time_t midnight; 1518 struct tm tm; 1519 int minutes; 1520 int ret; 1521 1522 verbose++; 1523 while (1) { 1524 now = time(NULL); 1525 localtime_r(&now, &tm); 1526 snprintf(filename, sizeof(filename), "%s.%04d-%02d-%02d", 1527 basename, tm.tm_year + 1900, tm.tm_mon + 1, tm.tm_mday); 1528 tm.tm_sec = 0; 1529 tm.tm_min = 0; 1530 tm.tm_hour = 0; 1531 tm.tm_mday++; /* works for Jan 32nd, Feb 30th, etc. */ 1532 midnight = mktime(&tm); 1533 if (now % 60) 1534 sleep(60 - (now % 60)); 1535 minutes = (midnight - time(NULL)) / 60; 1536 snprintf(count, sizeof(count), "%d", minutes); 1537 ret = zev_zevstat(fd, "60", count, filename); 1538 if (ret) 1539 return EXIT_FAILURE; 1540 } 1541 return EXIT_SUCCESS; /* never reached */ 1542 } 1543 1544 static void 1545 zev_sigint(int sig) 1546 { 1547 fflush(stdout); 1548 } 1549 1550 int 1551 main(int argc, char **argv) 1552 { 1553 int fd; 1554 int c; 1555 extern char *optarg; 1556 int create_tmp_queue = 1; 1557 char buf[MAXPATHLEN]; 1558 int mode = 0; 1559 char *arg = NULL; 1560 char *arg2 = NULL; 1561 char *p; 1562 1563 sigset(SIGINT, zev_sigint); 1564 1565 /* open device */ 1566 fd = open(zev_device, O_RDONLY); 1567 if (fd < 0) { 1568 perror("opening zev device failed"); 1569 return EXIT_FAILURE; 1570 } 1571 1572 p = strrchr(argv[0], '/'); 1573 if (!p) { 1574 p = argv[0]; 1575 } else { 1576 p++; 1577 } 1578 if (!strcmp(p, "zevstat")) { 1579 mode = MD_ZEVSTAT; 1580 if (argc < 2) 1581 zevstat_usage(argv[0]); 1582 if (!strcmp(argv[1], "-v")) { 1583 if (argc < 3) 1584 zevstat_usage(argv[0]); 1585 verbose++; 1586 arg = argv[2]; 1587 arg2 = argv[3]; 1588 } else { 1589 arg = argv[1]; 1590 arg2 = argv[2]; 1591 } 1592 return zev_zevstat(fd, arg, arg2, NULL); 1593 } else if(!strcmp(p, "zevreport")) { 1594 mode = MD_ZEV_REPORT; 1595 if (argc != 2) 1596 zevreport_usage(argv[0]); 1597 return zev_report(fd, argv[1]); 1598 } 1599 1600 while ((c = getopt(argc, argv, 1601 "gvspc:d:Dlk:L:q:Q:t:m:M:a:A:r:P:b:B:T:R:f:h?")) != -1) { 1602 switch(c) { 1603 case 'g': 1604 grep_friendly++; 1605 verbose++; 1606 break; 1607 case 'v': 1608 verbose++; 1609 break; 1610 case 's': 1611 mode = MD_STATISTICS; 1612 break; 1613 case 'p': 1614 mode = MD_POLL_EVENTS; 1615 break; 1616 case 'c': 1617 mode = MD_CHECKSUMS; 1618 arg = optarg; 1619 break; 1620 case 'D': 1621 mode = MD_DEBUG_INFO; 1622 break; 1623 case 'd': 1624 close(fd); 1625 zev_device = optarg; 1626 fd = open(zev_device, O_RDONLY); 1627 if (fd < 0) { 1628 perror("opening zev device failed"); 1629 return EXIT_FAILURE; 1630 } 1631 create_tmp_queue = 0; 1632 break; 1633 case 'q': 1634 snprintf(buf, sizeof(buf), 1635 "/devices/pseudo/zev@0:%s", optarg); 1636 close(fd); 1637 zev_device = buf; 1638 fd = open(zev_device, O_RDONLY); 1639 if (fd < 0) { 1640 perror("opening zev device failed"); 1641 return EXIT_FAILURE; 1642 } 1643 create_tmp_queue = 0; 1644 break; 1645 case 'f': 1646 fd = open(optarg, O_RDONLY); 1647 if (fd < 0) { 1648 perror("opening spool file failed"); 1649 return EXIT_FAILURE; 1650 } 1651 mode = MD_DUMP_SPOOL; 1652 break; 1653 case 'l': 1654 mode = MD_LIST_QUEUES; 1655 break; 1656 case 'Q': 1657 mode = MD_SET_GLOBAL_MAX_QUEUE_LEN; 1658 arg = optarg; 1659 break; 1660 case 'L': 1661 mode = MD_SET_MAX_QUEUE_LEN; 1662 arg = optarg; 1663 arg2 = argv[optind]; 1664 break; 1665 case 'T': 1666 mode = MD_ZEVSTAT; 1667 arg = optarg; 1668 arg2 = argv[optind]; 1669 break; 1670 case 'R': 1671 mode = MD_ZEV_REPORT; 1672 arg = optarg; 1673 break; 1674 case 't': 1675 mode = MD_SET_POLL_WAKEUP_QUEUE_LEN; 1676 arg = optarg; 1677 arg2 = argv[optind]; 1678 break; 1679 case 'm': 1680 mode = MD_MUTE_POOL; 1681 arg = optarg; 1682 break; 1683 case 'M': 1684 mode = MD_UNMUTE_POOL; 1685 arg = optarg; 1686 break; 1687 case 'k': 1688 mode = MD_MARK; 1689 arg = optarg; 1690 break; 1691 case 'a': 1692 mode = MD_ADD_QUEUE; 1693 arg = optarg; 1694 break; 1695 case 'A': 1696 mode = MD_ADD_BLOCKING_QUEUE; 1697 arg = optarg; 1698 break; 1699 case 'r': 1700 mode = MD_REMOVE_QUEUE; 1701 arg = optarg; 1702 break; 1703 case 'b': 1704 mode = MD_QUEUE_BLOCKING; 1705 arg = optarg; 1706 break; 1707 case 'B': 1708 mode = MD_QUEUE_NONBLOCKING; 1709 arg = optarg; 1710 break; 1711 case 'P': 1712 mode = MD_QUEUE_PROPERTIES; 1713 arg = optarg; 1714 break; 1715 case 'h': 1716 case '?': 1717 default: 1718 usage(argv[0]); 1719 } 1720 } 1721 1722 switch (mode) { 1723 case MD_STATISTICS: 1724 return zev_statistics(fd); 1725 case MD_POLL_EVENTS: 1726 return zev_poll_events(fd, create_tmp_queue); 1727 case MD_DUMP_SPOOL: 1728 return zev_dump_spool(fd); 1729 case MD_CHECKSUMS: 1730 return zev_checksum(fd, arg); 1731 case MD_DEBUG_INFO: 1732 return zev_debug_info(fd); 1733 case MD_LIST_QUEUES: 1734 return zev_list_queues(fd); 1735 case MD_SET_GLOBAL_MAX_QUEUE_LEN: 1736 return zev_set_global_max_queue_len(fd, arg); 1737 case MD_SET_MAX_QUEUE_LEN: 1738 return zev_set_max_queue_len(fd, arg, arg2); 1739 case MD_SET_POLL_WAKEUP_QUEUE_LEN: 1740 return zev_set_poll_wakeup_queue_len(fd, arg, arg2); 1741 case MD_ZEVSTAT: 1742 return zev_zevstat(fd, arg, arg2, NULL); 1743 case MD_ZEV_REPORT: 1744 return zev_report(fd, arg); 1745 case MD_MUTE_POOL: 1746 return zev_mute_pool(fd, arg); 1747 case MD_UNMUTE_POOL: 1748 return zev_unmute_pool(fd, arg); 1749 case MD_MARK: 1750 return zev_mark(fd, arg); 1751 case MD_ADD_QUEUE: 1752 return zev_add_queue(fd, arg, 0); 1753 case MD_ADD_BLOCKING_QUEUE: 1754 return zev_add_queue(fd, arg, 1); 1755 case MD_REMOVE_QUEUE: 1756 return zev_remove_queue(fd, arg); 1757 case MD_QUEUE_BLOCKING: 1758 return zev_queue_blocking(fd, arg, 0); 1759 case MD_QUEUE_NONBLOCKING: 1760 return zev_queue_blocking(fd, arg, 1); 1761 case MD_QUEUE_PROPERTIES: 1762 return zev_queue_properties(fd, arg); 1763 default: 1764 close(fd); 1765 usage(argv[0]); 1766 return EXIT_FAILURE; 1767 }; 1768 } 1769 1770