1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 #include <stdio.h> 30 #include <dwarf.h> 31 #include <sys/types.h> 32 #include <sys/elf.h> 33 34 /* 35 * Little Endian Base 128 (LEB128) numbers. 36 * ---------------------------------------- 37 * 38 * LEB128 is a scheme for encoding integers densely that exploits the 39 * assumption that most integers are small in magnitude. (This encoding 40 * is equally suitable whether the target machine architecture represents 41 * data in big-endian or little- endian 42 * 43 * Unsigned LEB128 numbers are encoded as follows: start at the low order 44 * end of an unsigned integer and chop it into 7-bit chunks. Place each 45 * chunk into the low order 7 bits of a byte. Typically, several of the 46 * high order bytes will be zero; discard them. Emit the remaining bytes in 47 * a stream, starting with the low order byte; set the high order bit on 48 * each byte except the last emitted byte. The high bit of zero on the last 49 * byte indicates to the decoder that it has encountered the last byte. 50 * The integer zero is a special case, consisting of a single zero byte. 51 * 52 * Signed, 2s complement LEB128 numbers are encoded in a similar except 53 * that the criterion for discarding high order bytes is not whether they 54 * are zero, but whether they consist entirely of sign extension bits. 55 * Consider the 32-bit integer -2. The three high level bytes of the number 56 * are sign extension, thus LEB128 would represent it as a single byte 57 * containing the low order 7 bits, with the high order bit cleared to 58 * indicate the end of the byte stream. 59 * 60 * Note that there is nothing within the LEB128 representation that 61 * indicates whether an encoded number is signed or unsigned. The decoder 62 * must know what type of number to expect. 63 * 64 * DWARF Exception Header Encoding 65 * ------------------------------- 66 * 67 * The DWARF Exception Header Encoding is used to describe the type of data 68 * used in the .eh_frame_hdr section. The upper 4 bits indicate how the 69 * value is to be applied. The lower 4 bits indicate the format of the data. 70 * 71 * DWARF Exception Header value format 72 * 73 * Name Value Meaning 74 * DW_EH_PE_omit 0xff No value is present. 75 * DW_EH_PE_absptr 0x00 Value is a void* 76 * DW_EH_PE_uleb128 0x01 Unsigned value is encoded using the 77 * Little Endian Base 128 (LEB128) 78 * DW_EH_PE_udata2 0x02 A 2 bytes unsigned value. 79 * DW_EH_PE_udata4 0x03 A 4 bytes unsigned value. 80 * DW_EH_PE_udata8 0x04 An 8 bytes unsigned value. 81 * DW_EH_PE_signed 0x08 bit on for all signed encodings 82 * DW_EH_PE_sleb128 0x09 Signed value is encoded using the 83 * Little Endian Base 128 (LEB128) 84 * DW_EH_PE_sdata2 0x0A A 2 bytes signed value. 85 * DW_EH_PE_sdata4 0x0B A 4 bytes signed value. 86 * DW_EH_PE_sdata8 0x0C An 8 bytes signed value. 87 * 88 * DWARF Exception Header application 89 * 90 * Name Value Meaning 91 * DW_EH_PE_absptr 0x00 Value is used with no modification. 92 * DW_EH_PE_pcrel 0x10 Value is reletive to the location of itself 93 * DW_EH_PE_textrel 0x20 94 * DW_EH_PE_datarel 0x30 Value is reletive to the beginning of the 95 * eh_frame_hdr segment ( segment type 96 * PT_GNU_EH_FRAME ) 97 * DW_EH_PE_funcrel 0x40 98 * DW_EH_PE_aligned 0x50 value is an aligned void* 99 * DW_EH_PE_indirect 0x80 bit to signal indirection after relocation 100 * DW_EH_PE_omit 0xff No value is present. 101 * 102 */ 103 104 uint64_t 105 uleb_extract(unsigned char *data, uint64_t *dotp) 106 { 107 uint64_t dot = *dotp; 108 uint64_t res = 0; 109 int more = 1; 110 int shift = 0; 111 int val; 112 113 data += dot; 114 115 while (more) { 116 /* 117 * Pull off lower 7 bits 118 */ 119 val = (*data) & 0x7f; 120 121 /* 122 * Add prepend value to head of number. 123 */ 124 res = res | (val << shift); 125 126 /* 127 * Increment shift & dot pointer 128 */ 129 shift += 7; 130 dot++; 131 132 /* 133 * Check to see if hi bit is set - if not, this 134 * is the last byte. 135 */ 136 more = ((*data++) & 0x80) >> 7; 137 } 138 *dotp = dot; 139 return (res); 140 } 141 142 int64_t 143 sleb_extract(unsigned char *data, uint64_t *dotp) 144 { 145 uint64_t dot = *dotp; 146 int64_t res = 0; 147 int more = 1; 148 int shift = 0; 149 int val; 150 151 data += dot; 152 153 while (more) { 154 /* 155 * Pull off lower 7 bits 156 */ 157 val = (*data) & 0x7f; 158 159 /* 160 * Add prepend value to head of number. 161 */ 162 res = res | (val << shift); 163 164 /* 165 * Increment shift & dot pointer 166 */ 167 shift += 7; 168 dot++; 169 170 /* 171 * Check to see if hi bit is set - if not, this 172 * is the last byte. 173 */ 174 more = ((*data++) & 0x80) >> 7; 175 } 176 *dotp = dot; 177 178 /* 179 * Make sure value is properly sign extended. 180 */ 181 res = (res << (64 - shift)) >> (64 - shift); 182 183 return (res); 184 } 185 186 uint64_t 187 dwarf_ehe_extract(unsigned char *data, uint64_t *dotp, uint_t ehe_flags, 188 unsigned char *eident, uint64_t pcaddr) 189 { 190 uint64_t dot = *dotp; 191 uint_t lsb; 192 uint_t wordsize; 193 uint_t fsize; 194 uint64_t result; 195 196 if (eident[EI_DATA] == ELFDATA2LSB) 197 lsb = 1; 198 else 199 lsb = 0; 200 201 if (eident[EI_CLASS] == ELFCLASS64) 202 wordsize = 8; 203 else 204 wordsize = 4; 205 206 switch (ehe_flags & 0x0f) { 207 case DW_EH_PE_omit: 208 return (0); 209 case DW_EH_PE_absptr: 210 fsize = wordsize; 211 break; 212 case DW_EH_PE_udata8: 213 case DW_EH_PE_sdata8: 214 fsize = 8; 215 break; 216 case DW_EH_PE_udata4: 217 case DW_EH_PE_sdata4: 218 fsize = 4; 219 break; 220 case DW_EH_PE_udata2: 221 case DW_EH_PE_sdata2: 222 fsize = 2; 223 break; 224 case DW_EH_PE_uleb128: 225 return (uleb_extract(data, dotp)); 226 case DW_EH_PE_sleb128: 227 return ((uint64_t)sleb_extract(data, dotp)); 228 default: 229 return (0); 230 } 231 232 if (lsb) { 233 /* 234 * Extract unaligned LSB formated data 235 */ 236 uint_t cnt; 237 238 result = 0; 239 for (cnt = 0; cnt < fsize; 240 cnt++, dot++) { 241 uint64_t val; 242 val = data[dot]; 243 result |= val << (cnt * 8); 244 } 245 } else { 246 /* 247 * Extract unaligned MSB formated data 248 */ 249 uint_t cnt; 250 result = 0; 251 for (cnt = 0; cnt < fsize; 252 cnt++, dot++) { 253 uint64_t val; 254 val = data[dot]; 255 result |= val << ((fsize - cnt - 1) * 8); 256 } 257 } 258 /* 259 * perform sign extension 260 */ 261 if ((ehe_flags & DW_EH_PE_signed) && 262 (fsize < sizeof (uint64_t))) { 263 int64_t sresult; 264 uint_t bitshift; 265 sresult = result; 266 bitshift = (sizeof (uint64_t) - fsize) * 8; 267 sresult = (sresult << bitshift) >> bitshift; 268 result = sresult; 269 } 270 271 /* 272 * If pcrel and we have a value (ie: we've been 273 * relocated), then adjust the value. 274 */ 275 if (result && (ehe_flags & DW_EH_PE_pcrel)) { 276 result = pcaddr + result; 277 } 278 *dotp = dot; 279 return (result); 280 } 281