xref: /titanic_41/usr/src/cmd/sgs/rtld/sparcv9/sparc_elf.c (revision e0724c534a46ca4754330bc022bf1e2a68f5bb93)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
24  */
25 
26 /*
27  * SPARC V9 machine dependent and ELF file class dependent functions.
28  * Contains routines for performing function binding and symbol relocations.
29  */
30 
31 #include	<stdio.h>
32 #include	<sys/elf.h>
33 #include	<sys/elf_SPARC.h>
34 #include	<sys/mman.h>
35 #include	<dlfcn.h>
36 #include	<synch.h>
37 #include	<string.h>
38 #include	<debug.h>
39 #include	<reloc.h>
40 #include	<conv.h>
41 #include	"_rtld.h"
42 #include	"_audit.h"
43 #include	"_elf.h"
44 #include	"_inline_gen.h"
45 #include	"_inline_reloc.h"
46 #include	"msg.h"
47 
48 extern void	iflush_range(caddr_t, size_t);
49 extern void	plt_upper_32(uintptr_t, uintptr_t);
50 extern void	plt_upper_44(uintptr_t, uintptr_t);
51 extern void	plt_full_range(uintptr_t, uintptr_t);
52 extern void	elf_rtbndr(Rt_map *, ulong_t, caddr_t);
53 extern void	elf_rtbndr_far(Rt_map *, ulong_t, caddr_t);
54 
55 int
56 elf_mach_flags_check(Rej_desc *rej, Ehdr *ehdr)
57 {
58 	/*
59 	 * Check machine type and flags.
60 	 */
61 	if (ehdr->e_flags & EF_SPARC_EXT_MASK) {
62 		/*
63 		 * Check vendor-specific extensions.
64 		 */
65 		if (ehdr->e_flags & EF_SPARC_HAL_R1) {
66 			rej->rej_type = SGS_REJ_HAL;
67 			rej->rej_info = (uint_t)ehdr->e_flags;
68 			return (0);
69 		}
70 		if ((ehdr->e_flags & EF_SPARC_SUN_US3) & ~at_flags) {
71 			rej->rej_type = SGS_REJ_US3;
72 			rej->rej_info = (uint_t)ehdr->e_flags;
73 			return (0);
74 		}
75 
76 		/*
77 		 * Generic check.
78 		 * All of our 64-bit SPARC's support the US1 (UltraSPARC 1)
79 		 * instructions so that bit isn't worth checking for explicitly.
80 		 */
81 		if ((ehdr->e_flags & EF_SPARC_EXT_MASK) & ~at_flags) {
82 			rej->rej_type = SGS_REJ_BADFLAG;
83 			rej->rej_info = (uint_t)ehdr->e_flags;
84 			return (0);
85 		}
86 	} else if ((ehdr->e_flags & ~EF_SPARCV9_MM) != 0) {
87 		rej->rej_type = SGS_REJ_BADFLAG;
88 		rej->rej_info = (uint_t)ehdr->e_flags;
89 		return (0);
90 	}
91 	return (1);
92 }
93 
94 
95 void
96 ldso_plt_init(Rt_map *lmp)
97 {
98 	/*
99 	 * There is no need to analyze ld.so because we don't map in any of
100 	 * its dependencies.  However we may map these dependencies in later
101 	 * (as if ld.so had dlopened them), so initialize the plt and the
102 	 * permission information.
103 	 */
104 	if (PLTGOT(lmp)) {
105 		Xword pltoff;
106 
107 		/*
108 		 * Install the lm pointer in .PLT2 as per the ABI.
109 		 */
110 		pltoff = (2 * M_PLT_ENTSIZE) / M_PLT_INSSIZE;
111 		elf_plt2_init(PLTGOT(lmp) + pltoff, lmp);
112 
113 		/*
114 		 * The V9 ABI states that the first 32k PLT entries
115 		 * use .PLT1, with .PLT0 used by the "latter" entries.
116 		 * We don't currently implement the extendend format,
117 		 * so install an error handler in .PLT0 to catch anyone
118 		 * trying to use it.
119 		 */
120 		elf_plt_init(PLTGOT(lmp), (caddr_t)elf_rtbndr_far);
121 
122 		/*
123 		 * Initialize .PLT1
124 		 */
125 		pltoff = M_PLT_ENTSIZE / M_PLT_INSSIZE;
126 		elf_plt_init(PLTGOT(lmp) + pltoff, (caddr_t)elf_rtbndr);
127 	}
128 }
129 
130 /*
131  * elf_plt_write() will test to see how far away our destination
132  *	address lies.  If it is close enough that a branch can
133  *	be used instead of a jmpl - we will fill the plt in with
134  * 	single branch.  The branches are much quicker then
135  *	a jmpl instruction - see bug#4356879 for further
136  *	details.
137  *
138  *	NOTE: we pass in both a 'pltaddr' and a 'vpltaddr' since
139  *		librtld/dldump update PLT's who's physical
140  *		address is not the same as the 'virtual' runtime
141  *		address.
142  */
143 Pltbindtype
144 elf_plt_write(uintptr_t addr, uintptr_t vaddr, void *rptr, uintptr_t symval,
145 	Xword pltndx)
146 {
147 	Rela		*rel = (Rela *)rptr;
148 	uintptr_t	nsym = ~symval;
149 	uintptr_t	vpltaddr, pltaddr;
150 	long		disp;
151 
152 
153 	pltaddr = addr + rel->r_offset;
154 	vpltaddr = vaddr + rel->r_offset;
155 	disp = symval - vpltaddr - 4;
156 
157 	if (pltndx >= (M64_PLT_NEARPLTS - M_PLT_XNumber)) {
158 		*((Sxword *)pltaddr) = (uintptr_t)symval +
159 		    (uintptr_t)rel->r_addend - vaddr;
160 		DBG_CALL(pltcntfar++);
161 		return (PLT_T_FAR);
162 	}
163 
164 	/*
165 	 * Test if the destination address is close enough to use
166 	 * a ba,a... instruction to reach it.
167 	 */
168 	if (S_INRANGE(disp, 23) && !(rtld_flags & RT_FL_NOBAPLT)) {
169 		uint_t		*pltent, bainstr;
170 		Pltbindtype	rc;
171 
172 		pltent = (uint_t *)pltaddr;
173 
174 		/*
175 		 * The
176 		 *
177 		 *	ba,a,pt %icc, <dest>
178 		 *
179 		 * is the most efficient of the PLT's.  If we
180 		 * are within +-20 bits - use that branch.
181 		 */
182 		if (S_INRANGE(disp, 20)) {
183 			bainstr = M_BA_A_PT;	/* ba,a,pt %icc,<dest> */
184 			/* LINTED */
185 			bainstr |= (uint_t)(S_MASK(19) & (disp >> 2));
186 			rc = PLT_T_21D;
187 			DBG_CALL(pltcnt21d++);
188 		} else {
189 			/*
190 			 * Otherwise - we fall back to the good old
191 			 *
192 			 *	ba,a	<dest>
193 			 *
194 			 * Which still beats a jmpl instruction.
195 			 */
196 			bainstr = M_BA_A;		/* ba,a <dest> */
197 			/* LINTED */
198 			bainstr |= (uint_t)(S_MASK(22) & (disp >> 2));
199 			rc = PLT_T_24D;
200 			DBG_CALL(pltcnt24d++);
201 		}
202 
203 		pltent[2] = M_NOP;		/* nop instr */
204 		pltent[1] = bainstr;
205 
206 		iflush_range((char *)(&pltent[1]), 4);
207 		pltent[0] = M_NOP;		/* nop instr */
208 		iflush_range((char *)(&pltent[0]), 4);
209 		return (rc);
210 	}
211 
212 	if ((nsym >> 32) == 0) {
213 		plt_upper_32(pltaddr, symval);
214 		DBG_CALL(pltcntu32++);
215 		return (PLT_T_U32);
216 	}
217 
218 	if ((nsym >> 44) == 0) {
219 		plt_upper_44(pltaddr, symval);
220 		DBG_CALL(pltcntu44++);
221 		return (PLT_T_U44);
222 	}
223 
224 	/*
225 	 * The PLT destination is not in reach of
226 	 * a branch instruction - so we fall back
227 	 * to a 'jmpl' sequence.
228 	 */
229 	plt_full_range(pltaddr, symval);
230 	DBG_CALL(pltcntfull++);
231 	return (PLT_T_FULL);
232 }
233 
234 /*
235  * Once relocated, the following 6 instruction sequence moves
236  * a 64-bit immediate value into register %g1
237  */
238 #define	VAL64_TO_G1 \
239 /* 0x00 */	0x0b, 0x00, 0x00, 0x00,	/* sethi %hh(value), %g5 */ \
240 /* 0x04 */	0x8a, 0x11, 0x60, 0x00,	/* or %g5, %hm(value), %g5 */ \
241 /* 0x08 */	0x8b, 0x29, 0x70, 0x20,	/* sllx %g5, 32, %g5 */ \
242 /* 0x0c */	0x03, 0x00, 0x00, 0x00,	/* sethi %lm(value), %g1 */ \
243 /* 0x10 */	0x82, 0x10, 0x60, 0x00,	/* or %g1, %lo(value), %g1 */ \
244 /* 0x14 */	0x82, 0x10, 0x40, 0x05	/* or %g1, %g5, %g1 */
245 
246 /*
247  * Local storage space created on the stack created for this glue
248  * code includes space for:
249  *		0x8	pointer to dyn_data
250  *		0x8	size prev stack frame
251  */
252 static const Byte dyn_plt_template[] = {
253 /* 0x0 */	0x2a, 0xcf, 0x80, 0x03,	/* brnz,a,pt %fp, 0xc	*/
254 /* 0x4 */	0x82, 0x27, 0x80, 0x0e,	/* sub %fp, %sp, %g1 */
255 /* 0x8 */	0x82, 0x10, 0x20, 0xb0,	/* mov 176, %g1	*/
256 /* 0xc */	0x9d, 0xe3, 0xbf, 0x40,	/* save %sp, -192, %sp	*/
257 /* 0x10 */	0xc2, 0x77, 0xa7, 0xef,	/* stx %g1, [%fp + 2031] */
258 
259 					/* store prev stack size */
260 /* 0x14 */	VAL64_TO_G1,		/* dyn_data to g1 */
261 /* 0x2c */	0xc2, 0x77, 0xa7, 0xf7,	/* stx %g1, [%fp + 2039] */
262 
263 /* 0x30 */	VAL64_TO_G1,		/* elf_plt_trace() addr to g1 */
264 
265 					/* Call to elf_plt_trace() via g1 */
266 /* 0x48 */	0x9f, 0xc0, 0x60, 0x00,	/* jmpl ! link r[15] to addr in g1 */
267 /* 0x4c */	0x01, 0x00, 0x00, 0x00	/* nop ! for jmpl delay slot *AND* */
268 					/*	to get 8-byte alignment */
269 };
270 
271 int	dyn_plt_ent_size = sizeof (dyn_plt_template) +
272 		sizeof (Addr) +		/* reflmp */
273 		sizeof (Addr) +		/* deflmp */
274 		sizeof (Word) +		/* symndx */
275 		sizeof (Word) +		/* sb_flags */
276 		sizeof (Sym);		/* symdef */
277 
278 /*
279  * the dynamic plt entry is:
280  *
281  *	brnz,a,pt	%fp, 1f
282  *	sub     	%sp, %fp, %g1
283  *	mov     	SA(MINFRAME), %g1
284  * 1:
285  *	save    	%sp, -(SA(MINFRAME) + (2 * CLONGSIZE)), %sp
286  *
287  *	! store prev stack size
288  *	stx     	%g1, [%fp + STACK_BIAS - (2 * CLONGSIZE)]
289  *
290  * 2:
291  *	! move dyn_data to %g1
292  *	sethi   	%hh(dyn_data), %g5
293  *	or      	%g5, %hm(dyn_data), %g5
294  *	sllx    	%g5, 32, %g5
295  *	sethi   	%lm(dyn_data), %g1
296  *	or      	%g1, %lo(dyn_data), %g1
297  *	or      	%g1, %g5, %g1
298  *
299  *	! store dyn_data ptr on frame (from %g1)
300  *	 stx     	%g1, [%fp + STACK_BIAS - CLONGSIZE]
301  *
302  *	! Move address of elf_plt_trace() into %g1
303  *	[Uses same 6 instructions as shown at label 2: above. Not shown.]
304  *
305  *	! Use JMPL to make call. CALL instruction is limited to 30-bits.
306  *	! of displacement.
307  *	jmp1		%g1, %o7
308  *
309  *	! JMPL has a delay slot that must be filled. And, the sequence
310  *	! of instructions needs to have 8-byte alignment. This NOP does both.
311  *	! The alignment is needed for the data we put following the
312  *	! instruction.
313  *	nop
314  *
315  * dyn data:
316  *	Addr		reflmp
317  *	Addr		deflmp
318  *	Word		symndx
319  *	Word		sb_flags
320  *	Sym		symdef  (Elf64_Sym = 24-bytes)
321  */
322 
323 /*
324  * Relocate the instructions given by the VAL64_TO_G1 macro above.
325  * The arguments parallel those of do_reloc_rtld().
326  *
327  * entry:
328  *	off - Address of 1st instruction in sequence.
329  *	value - Value being relocated (addend)
330  *	sym - Name of value being relocated.
331  *	lml - link map list
332  *
333  * exit:
334  *	Returns TRUE for success, FALSE for failure.
335  */
336 static int
337 reloc_val64_to_g1(uchar_t *off, Addr *value, const char *sym, Lm_list *lml)
338 {
339 	Xword	tmp_value;
340 
341 	/*
342 	 * relocating:
343 	 *	sethi	%hh(value), %g5
344 	 */
345 	tmp_value = (Xword)value;
346 	if (do_reloc_rtld(R_SPARC_HH22, off, &tmp_value, sym,
347 	    MSG_ORIG(MSG_SPECFIL_DYNPLT), lml) == 0) {
348 		return (0);
349 	}
350 
351 	/*
352 	 * relocating:
353 	 *	or	%g5, %hm(value), %g5
354 	 */
355 	tmp_value = (Xword)value;
356 	if (do_reloc_rtld(R_SPARC_HM10, off + 4, &tmp_value, sym,
357 	    MSG_ORIG(MSG_SPECFIL_DYNPLT), lml) == 0) {
358 		return (0);
359 	}
360 
361 	/*
362 	 * relocating:
363 	 *	sethi	%lm(value), %g1
364 	 */
365 	tmp_value = (Xword)value;
366 	if (do_reloc_rtld(R_SPARC_LM22, off + 12, &tmp_value, sym,
367 	    MSG_ORIG(MSG_SPECFIL_DYNPLT), lml) == 0) {
368 		return (0);
369 	}
370 
371 	/*
372 	 * relocating:
373 	 *	or	%g1, %lo(value), %g1
374 	 */
375 	tmp_value = (Xword)value;
376 	if (do_reloc_rtld(R_SPARC_LO10, off + 16, &tmp_value, sym,
377 	    MSG_ORIG(MSG_SPECFIL_DYNPLT), lml) == 0) {
378 		return (0);
379 	}
380 
381 	return (1);
382 }
383 
384 static caddr_t
385 elf_plt_trace_write(caddr_t addr, Rela *rptr, Rt_map *rlmp, Rt_map *dlmp,
386     Sym *sym, uint_t symndx, ulong_t pltndx, caddr_t to, uint_t sb_flags,
387     int *fail)
388 {
389 	extern ulong_t	elf_plt_trace();
390 	uchar_t		*dyn_plt;
391 	uintptr_t	*dyndata;
392 
393 	/*
394 	 * If both pltenter & pltexit have been disabled there
395 	 * there is no reason to even create the glue code.
396 	 */
397 	if ((sb_flags & (LA_SYMB_NOPLTENTER | LA_SYMB_NOPLTEXIT)) ==
398 	    (LA_SYMB_NOPLTENTER | LA_SYMB_NOPLTEXIT)) {
399 		(void) elf_plt_write((uintptr_t)addr, (uintptr_t)addr,
400 		    rptr, (uintptr_t)to, pltndx);
401 		return (to);
402 	}
403 
404 	/*
405 	 * We only need to add the glue code if there is an auditing
406 	 * library that is interested in this binding.
407 	 */
408 	dyn_plt = (uchar_t *)((uintptr_t)AUDINFO(rlmp)->ai_dynplts +
409 	    (pltndx * dyn_plt_ent_size));
410 
411 	/*
412 	 * Have we initialized this dynamic plt entry yet?  If we haven't do it
413 	 * now.  Otherwise this function has been called before, but from a
414 	 * different plt (ie. from another shared object).  In that case
415 	 * we just set the plt to point to the new dyn_plt.
416 	 */
417 	if (*dyn_plt == 0) {
418 		Sym	*symp;
419 		Lm_list	*lml = LIST(rlmp);
420 
421 		(void) memcpy((void *)dyn_plt, dyn_plt_template,
422 		    sizeof (dyn_plt_template));
423 		dyndata = (uintptr_t *)((uintptr_t)dyn_plt +
424 		    sizeof (dyn_plt_template));
425 
426 		/*
427 		 * relocating:
428 		 *	VAL64_TO_G1(dyndata)
429 		 *	VAL64_TO_G1(&elf_plt_trace)
430 		 */
431 		if (!(reloc_val64_to_g1((dyn_plt + 0x14), dyndata,
432 		    MSG_ORIG(MSG_SYM_LADYNDATA), lml) &&
433 		    reloc_val64_to_g1((dyn_plt + 0x30), (Addr *)&elf_plt_trace,
434 		    MSG_ORIG(MSG_SYM_ELFPLTTRACE), lml))) {
435 			*fail = 1;
436 			return (0);
437 		}
438 
439 		*dyndata++ = (Addr)rlmp;
440 		*dyndata++ = (Addr)dlmp;
441 
442 		/*
443 		 * symndx in the high word, sb_flags in the low.
444 		 */
445 		*dyndata = (Addr)sb_flags;
446 		*(Word *)dyndata = symndx;
447 		dyndata++;
448 
449 		symp = (Sym *)dyndata;
450 		*symp = *sym;
451 		symp->st_value = (Addr)to;
452 		iflush_range((void *)dyn_plt, sizeof (dyn_plt_template));
453 	}
454 
455 	(void) elf_plt_write((uintptr_t)addr, (uintptr_t)addr, rptr,
456 	    (uintptr_t)dyn_plt, pltndx);
457 	return ((caddr_t)dyn_plt);
458 }
459 
460 /*
461  * Function binding routine - invoked on the first call to a function through
462  * the procedure linkage table;
463  * passes first through an assembly language interface.
464  *
465  * Takes the address of the PLT entry where the call originated,
466  * the offset into the relocation table of the associated
467  * relocation entry and the address of the link map (rt_private_map struct)
468  * for the entry.
469  *
470  * Returns the address of the function referenced after re-writing the PLT
471  * entry to invoke the function directly.
472  *
473  * On error, causes process to terminate with a signal.
474  */
475 ulong_t
476 elf_bndr(Rt_map *lmp, ulong_t pltoff, caddr_t from)
477 {
478 	Rt_map		*nlmp, *llmp;
479 	Addr		addr, vaddr, reloff, symval;
480 	char		*name;
481 	Rela		*rptr;
482 	Sym		*rsym, *nsym;
483 	Xword		pltndx;
484 	uint_t		binfo, sb_flags = 0, dbg_class;
485 	ulong_t		rsymndx;
486 	Slookup		sl;
487 	Sresult		sr;
488 	Pltbindtype	pbtype;
489 	int		entry, lmflags, farplt = 0;
490 	Lm_list		*lml;
491 
492 	/*
493 	 * For compatibility with libthread (TI_VERSION 1) we track the entry
494 	 * value.  A zero value indicates we have recursed into ld.so.1 to
495 	 * further process a locking request.  Under this recursion we disable
496 	 * tsort and cleanup activities.
497 	 */
498 	entry = enter(0);
499 
500 	lml = LIST(lmp);
501 	if ((lmflags = lml->lm_flags) & LML_FLG_RTLDLM) {
502 		dbg_class = dbg_desc->d_class;
503 		dbg_desc->d_class = 0;
504 	}
505 
506 	/*
507 	 * Must calculate true plt relocation address from reloc.
508 	 * Take offset, subtract number of reserved PLT entries, and divide
509 	 * by PLT entry size, which should give the index of the plt
510 	 * entry (and relocation entry since they have been defined to be
511 	 * in the same order).  Then we must multiply by the size of
512 	 * a relocation entry, which will give us the offset of the
513 	 * plt relocation entry from the start of them given by JMPREL(lm).
514 	 */
515 	addr = pltoff - M_PLT_RESERVSZ;
516 
517 	if (pltoff < (M64_PLT_NEARPLTS * M_PLT_ENTSIZE)) {
518 		pltndx = addr / M_PLT_ENTSIZE;
519 	} else {
520 		ulong_t	pltblockoff;
521 
522 		pltblockoff = pltoff - (M64_PLT_NEARPLTS * M_PLT_ENTSIZE);
523 		pltndx = M64_PLT_NEARPLTS +
524 		    ((pltblockoff / M64_PLT_FBLOCKSZ) * M64_PLT_FBLKCNTS) +
525 		    ((pltblockoff % M64_PLT_FBLOCKSZ) / M64_PLT_FENTSIZE) -
526 		    M_PLT_XNumber;
527 		farplt = 1;
528 	}
529 
530 	/*
531 	 * Perform some basic sanity checks.  If we didn't get a load map
532 	 * or the plt offset is invalid then its possible someone has walked
533 	 * over the plt entries or jumped to plt[01] out of the blue.
534 	 */
535 	if (!lmp || (!farplt && (addr % M_PLT_ENTSIZE) != 0) ||
536 	    (farplt && (addr % M_PLT_INSSIZE))) {
537 		Conv_inv_buf_t	inv_buf;
538 
539 		eprintf(lml, ERR_FATAL, MSG_INTL(MSG_REL_PLTREF),
540 		    conv_reloc_SPARC_type(R_SPARC_JMP_SLOT, 0, &inv_buf),
541 		    EC_NATPTR(lmp), EC_XWORD(pltoff), EC_NATPTR(from));
542 		rtldexit(lml, 1);
543 	}
544 	reloff = pltndx * sizeof (Rela);
545 
546 	/*
547 	 * Use relocation entry to get symbol table entry and symbol name.
548 	 */
549 	addr = (ulong_t)JMPREL(lmp);
550 	rptr = (Rela *)(addr + reloff);
551 	rsymndx = ELF_R_SYM(rptr->r_info);
552 	rsym = (Sym *)((ulong_t)SYMTAB(lmp) + (rsymndx * SYMENT(lmp)));
553 	name = (char *)(STRTAB(lmp) + rsym->st_name);
554 
555 	/*
556 	 * Determine the last link-map of this list, this'll be the starting
557 	 * point for any tsort() processing.
558 	 */
559 	llmp = lml->lm_tail;
560 
561 	/*
562 	 * Find definition for symbol.  Initialize the symbol lookup, and symbol
563 	 * result, data structures.
564 	 */
565 	SLOOKUP_INIT(sl, name, lmp, lml->lm_head, ld_entry_cnt, 0,
566 	    rsymndx, rsym, 0, LKUP_DEFT);
567 	SRESULT_INIT(sr, name);
568 
569 	if (lookup_sym(&sl, &sr, &binfo, NULL) == 0) {
570 		eprintf(lml, ERR_FATAL, MSG_INTL(MSG_REL_NOSYM), NAME(lmp),
571 		    demangle(name));
572 		rtldexit(lml, 1);
573 	}
574 
575 	name = (char *)sr.sr_name;
576 	nlmp = sr.sr_dmap;
577 	nsym = sr.sr_sym;
578 
579 	symval = nsym->st_value;
580 
581 	if (!(FLAGS(nlmp) & FLG_RT_FIXED) &&
582 	    (nsym->st_shndx != SHN_ABS))
583 		symval += ADDR(nlmp);
584 	if ((lmp != nlmp) && ((FLAGS1(nlmp) & FL1_RT_NOINIFIN) == 0)) {
585 		/*
586 		 * Record that this new link map is now bound to the caller.
587 		 */
588 		if (bind_one(lmp, nlmp, BND_REFER) == 0)
589 			rtldexit(lml, 1);
590 	}
591 
592 	if ((lml->lm_tflags | AFLAGS(lmp)) & LML_TFLG_AUD_SYMBIND) {
593 		/* LINTED */
594 		uint_t	symndx = (uint_t)(((uintptr_t)nsym -
595 		    (uintptr_t)SYMTAB(nlmp)) / SYMENT(nlmp));
596 
597 		symval = audit_symbind(lmp, nlmp, nsym, symndx, symval,
598 		    &sb_flags);
599 	}
600 
601 	if (FLAGS(lmp) & FLG_RT_FIXED)
602 		vaddr = 0;
603 	else
604 		vaddr = ADDR(lmp);
605 
606 	pbtype = PLT_T_NONE;
607 	if (!(rtld_flags & RT_FL_NOBIND)) {
608 		if (((lml->lm_tflags | AFLAGS(lmp)) &
609 		    (LML_TFLG_AUD_PLTENTER | LML_TFLG_AUD_PLTEXIT)) &&
610 		    AUDINFO(lmp)->ai_dynplts) {
611 			int	fail = 0;
612 			/* LINTED */
613 			uint_t	symndx = (uint_t)(((uintptr_t)nsym -
614 			    (uintptr_t)SYMTAB(nlmp)) / SYMENT(nlmp));
615 
616 			symval = (ulong_t)elf_plt_trace_write((caddr_t)vaddr,
617 			    rptr, lmp, nlmp, nsym, symndx, pltndx,
618 			    (caddr_t)symval, sb_flags, &fail);
619 			if (fail)
620 				rtldexit(lml, 1);
621 		} else {
622 			/*
623 			 * Write standard PLT entry to jump directly
624 			 * to newly bound function.
625 			 */
626 			pbtype = elf_plt_write((uintptr_t)vaddr,
627 			    (uintptr_t)vaddr, rptr, symval, pltndx);
628 		}
629 	}
630 
631 	/*
632 	 * Print binding information and rebuild PLT entry.
633 	 */
634 	DBG_CALL(Dbg_bind_global(lmp, (Addr)from, (Off)(from - ADDR(lmp)),
635 	    (Xword)pltndx, pbtype, nlmp, (Addr)symval, nsym->st_value,
636 	    name, binfo));
637 
638 	/*
639 	 * Complete any processing for newly loaded objects.  Note we don't
640 	 * know exactly where any new objects are loaded (we know the object
641 	 * that supplied the symbol, but others may have been loaded lazily as
642 	 * we searched for the symbol), so sorting starts from the last
643 	 * link-map know on entry to this routine.
644 	 */
645 	if (entry)
646 		load_completion(llmp);
647 
648 	/*
649 	 * Some operations like dldump() or dlopen()'ing a relocatable object
650 	 * result in objects being loaded on rtld's link-map, make sure these
651 	 * objects are initialized also.
652 	 */
653 	if ((LIST(nlmp)->lm_flags & LML_FLG_RTLDLM) && LIST(nlmp)->lm_init)
654 		load_completion(nlmp);
655 
656 	/*
657 	 * Make sure the object to which we've bound has had it's .init fired.
658 	 * Cleanup before return to user code.
659 	 */
660 	if (entry) {
661 		is_dep_init(nlmp, lmp);
662 		leave(lml, 0);
663 	}
664 
665 	if (lmflags & LML_FLG_RTLDLM)
666 		dbg_desc->d_class = dbg_class;
667 
668 	return (symval);
669 }
670 
671 static int
672 bindpltpad(Rt_map *lmp, Alist **padlist, Addr value, void **pltaddr,
673     const char *fname, const char *sname)
674 {
675 	Aliste		idx = 0;
676 	Pltpadinfo	ppi, *ppip;
677 	void		*plt;
678 	uintptr_t	pltoff;
679 	Rela		rel;
680 	int		i;
681 
682 	for (ALIST_TRAVERSE(*padlist, idx, ppip)) {
683 		if (ppip->pp_addr == value) {
684 			*pltaddr = ppip->pp_plt;
685 			DBG_CALL(Dbg_bind_pltpad_from(lmp, (Addr)*pltaddr,
686 			    sname));
687 			return (1);
688 		}
689 		if (ppip->pp_addr > value)
690 			break;
691 	}
692 
693 	plt = PLTPAD(lmp);
694 	pltoff = (uintptr_t)plt - (uintptr_t)ADDR(lmp);
695 
696 	PLTPAD(lmp) = (void *)((uintptr_t)PLTPAD(lmp) + M_PLT_ENTSIZE);
697 
698 	if (PLTPAD(lmp) > PLTPADEND(lmp)) {
699 		/*
700 		 * Just fail in usual relocation way
701 		 */
702 		*pltaddr = (void *)value;
703 		return (1);
704 	}
705 	rel.r_offset = pltoff;
706 	rel.r_info = 0;
707 	rel.r_addend = 0;
708 
709 	/*
710 	 * elf_plt_write assumes the plt was previously filled
711 	 * with NOP's, so fill it in now.
712 	 */
713 	for (i = 0; i < (M_PLT_ENTSIZE / sizeof (uint_t)); i++) {
714 		((uint_t *)plt)[i] = M_NOP;
715 	}
716 	iflush_range((caddr_t)plt, M_PLT_ENTSIZE);
717 
718 	(void) elf_plt_write(ADDR(lmp), ADDR(lmp), &rel, value, 0);
719 
720 	ppi.pp_addr = value;
721 	ppi.pp_plt = plt;
722 
723 	if (alist_insert(padlist, &ppi, sizeof (Pltpadinfo),
724 	    AL_CNT_PLTPAD, idx) == NULL)
725 		return (0);
726 
727 	*pltaddr = plt;
728 	DBG_CALL(Dbg_bind_pltpad_to(lmp, (Addr)*pltaddr, fname, sname));
729 	return (1);
730 }
731 
732 /*
733  * Read and process the relocations for one link object, we assume all
734  * relocation sections for loadable segments are stored contiguously in
735  * the file.
736  */
737 int
738 elf_reloc(Rt_map *lmp, uint_t plt, int *in_nfavl, APlist **textrel)
739 {
740 	ulong_t		relbgn, relend, relsiz, basebgn, pltbgn, pltend;
741 	ulong_t		pltndx, roffset, rsymndx, psymndx = 0;
742 	uint_t		dsymndx, binfo, pbinfo;
743 	uchar_t		rtype;
744 	long		reladd;
745 	Addr		value, pvalue;
746 	Sym		*symref, *psymref, *symdef, *psymdef;
747 	Syminfo		*sip;
748 	char		*name, *pname;
749 	Rt_map		*_lmp, *plmp;
750 	int		ret = 1, noplt = 0;
751 	long		relacount = RELACOUNT(lmp);
752 	Rela		*rel;
753 	Pltbindtype	pbtype;
754 	Alist		*pltpadlist = NULL;
755 	APlist		*bound = NULL;
756 
757 	/*
758 	 * If an object has any DT_REGISTER entries associated with
759 	 * it, they are processed now.
760 	 */
761 	if ((plt == 0) && (FLAGS(lmp) & FLG_RT_REGSYMS)) {
762 		if (elf_regsyms(lmp) == 0)
763 			return (0);
764 	}
765 
766 	/*
767 	 * Although only necessary for lazy binding, initialize the first
768 	 * procedure linkage table entry to go to elf_rtbndr().  dbx(1) seems
769 	 * to find this useful.
770 	 */
771 	if ((plt == 0) && PLTGOT(lmp)) {
772 		mmapobj_result_t	*mpp;
773 		Xword			pltoff;
774 
775 		/*
776 		 * Make sure the segment is writable.
777 		 */
778 		if ((((mpp =
779 		    find_segment((caddr_t)PLTGOT(lmp), lmp)) != NULL) &&
780 		    ((mpp->mr_prot & PROT_WRITE) == 0)) &&
781 		    ((set_prot(lmp, mpp, 1) == 0) ||
782 		    (aplist_append(textrel, mpp, AL_CNT_TEXTREL) == NULL)))
783 			return (0);
784 
785 		/*
786 		 * Install the lm pointer in .PLT2 as per the ABI.
787 		 */
788 		pltoff = (2 * M_PLT_ENTSIZE) / M_PLT_INSSIZE;
789 		elf_plt2_init(PLTGOT(lmp) + pltoff, lmp);
790 
791 		/*
792 		 * The V9 ABI states that the first 32k PLT entries
793 		 * use .PLT1, with .PLT0 used by the "latter" entries.
794 		 * We don't currently implement the extendend format,
795 		 * so install an error handler in .PLT0 to catch anyone
796 		 * trying to use it.
797 		 */
798 		elf_plt_init(PLTGOT(lmp), (caddr_t)elf_rtbndr_far);
799 
800 		/*
801 		 * Initialize .PLT1
802 		 */
803 		pltoff = M_PLT_ENTSIZE / M_PLT_INSSIZE;
804 		elf_plt_init(PLTGOT(lmp) + pltoff, (caddr_t)elf_rtbndr);
805 	}
806 
807 	/*
808 	 * Initialize the plt start and end addresses.
809 	 */
810 	if ((pltbgn = (ulong_t)JMPREL(lmp)) != 0)
811 		pltend = pltbgn + (ulong_t)(PLTRELSZ(lmp));
812 
813 	/*
814 	 * If we've been called upon to promote an RTLD_LAZY object to an
815 	 * RTLD_NOW then we're only interested in scaning the .plt table.
816 	 */
817 	if (plt) {
818 		relbgn = pltbgn;
819 		relend = pltend;
820 	} else {
821 		/*
822 		 * The relocation sections appear to the run-time linker as a
823 		 * single table.  Determine the address of the beginning and end
824 		 * of this table.  There are two different interpretations of
825 		 * the ABI at this point:
826 		 *
827 		 *   o	The REL table and its associated RELSZ indicate the
828 		 *	concatenation of *all* relocation sections (this is the
829 		 *	model our link-editor constructs).
830 		 *
831 		 *   o	The REL table and its associated RELSZ indicate the
832 		 *	concatenation of all *but* the .plt relocations.  These
833 		 *	relocations are specified individually by the JMPREL and
834 		 *	PLTRELSZ entries.
835 		 *
836 		 * Determine from our knowledege of the relocation range and
837 		 * .plt range, the range of the total relocation table.  Note
838 		 * that one other ABI assumption seems to be that the .plt
839 		 * relocations always follow any other relocations, the
840 		 * following range checking drops that assumption.
841 		 */
842 		relbgn = (ulong_t)(REL(lmp));
843 		relend = relbgn + (ulong_t)(RELSZ(lmp));
844 		if (pltbgn) {
845 			if (!relbgn || (relbgn > pltbgn))
846 				relbgn = pltbgn;
847 			if (!relbgn || (relend < pltend))
848 				relend = pltend;
849 		}
850 	}
851 	if (!relbgn || (relbgn == relend)) {
852 		DBG_CALL(Dbg_reloc_run(lmp, 0, plt, DBG_REL_NONE));
853 		return (1);
854 	}
855 
856 	relsiz = (ulong_t)(RELENT(lmp));
857 	basebgn = ADDR(lmp);
858 
859 	DBG_CALL(Dbg_reloc_run(lmp, M_REL_SHT_TYPE, plt, DBG_REL_START));
860 
861 	/*
862 	 * If we're processing in lazy mode there is no need to scan the
863 	 * .rela.plt table.
864 	 */
865 	if (pltbgn && ((MODE(lmp) & RTLD_NOW) == 0))
866 		noplt = 1;
867 
868 	sip = SYMINFO(lmp);
869 	/*
870 	 * Loop through relocations.
871 	 */
872 	while (relbgn < relend) {
873 		mmapobj_result_t	*mpp;
874 		uint_t			sb_flags = 0;
875 		Addr			vaddr;
876 
877 		rtype = ELF_R_TYPE(((Rela *)relbgn)->r_info, M_MACH);
878 
879 		/*
880 		 * If this is a RELATIVE relocation in a shared object
881 		 * (the common case), and if we are not debugging, then
882 		 * jump into a tighter relocaiton loop (elf_reloc_relacount)
883 		 * Only make the jump if we've been given a hint on the
884 		 * number of relocations.
885 		 */
886 		if ((rtype == R_SPARC_RELATIVE) &&
887 		    ((FLAGS(lmp) & FLG_RT_FIXED) == 0) && (DBG_ENABLED == 0)) {
888 			if (relacount) {
889 				relbgn = elf_reloc_relative_count(relbgn,
890 				    relacount, relsiz, basebgn, lmp,
891 				    textrel, 0);
892 				relacount = 0;
893 			} else {
894 				relbgn = elf_reloc_relative(relbgn, relend,
895 				    relsiz, basebgn, lmp, textrel, 0);
896 			}
897 			if (relbgn >= relend)
898 				break;
899 			rtype = ELF_R_TYPE(((Rela *)relbgn)->r_info, M_MACH);
900 		}
901 
902 		roffset = ((Rela *)relbgn)->r_offset;
903 
904 		reladd = (long)(((Rela *)relbgn)->r_addend);
905 		rsymndx = ELF_R_SYM(((Rela *)relbgn)->r_info);
906 		rel = (Rela *)relbgn;
907 		relbgn += relsiz;
908 
909 		/*
910 		 * Optimizations.
911 		 */
912 		if (rtype == R_SPARC_NONE)
913 			continue;
914 		if (noplt && ((ulong_t)rel >= pltbgn) &&
915 		    ((ulong_t)rel < pltend)) {
916 			relbgn = pltend;
917 			continue;
918 		}
919 
920 		if (rtype != R_SPARC_REGISTER) {
921 			/*
922 			 * If this is a shared object, add the base address
923 			 * to offset.
924 			 */
925 			if (!(FLAGS(lmp) & FLG_RT_FIXED))
926 				roffset += basebgn;
927 
928 			/*
929 			 * If this relocation is not against part of the image
930 			 * mapped into memory we skip it.
931 			 */
932 			if ((mpp = find_segment((caddr_t)roffset,
933 			    lmp)) == NULL) {
934 				elf_reloc_bad(lmp, (void *)rel, rtype, roffset,
935 				    rsymndx);
936 				continue;
937 			}
938 		}
939 
940 		/*
941 		 * If we're promoting plts, determine if this one has already
942 		 * been written. An uninitialized plts' second instruction is a
943 		 * branch.
944 		 */
945 		if (plt) {
946 			uchar_t	*_roffset = (uchar_t *)roffset;
947 
948 			_roffset += M_PLT_INSSIZE;
949 			/* LINTED */
950 			if ((*(uint_t *)_roffset &
951 			    (~(S_MASK(19)))) != M_BA_A_XCC)
952 				continue;
953 		}
954 
955 		binfo = 0;
956 		pltndx = (ulong_t)-1;
957 		pbtype = PLT_T_NONE;
958 
959 		/*
960 		 * If a symbol index is specified then get the symbol table
961 		 * entry, locate the symbol definition, and determine its
962 		 * address.
963 		 */
964 		if (rsymndx) {
965 			/*
966 			 * If a Syminfo section is provided, determine if this
967 			 * symbol is deferred, and if so, skip this relocation.
968 			 */
969 			if (sip && is_sym_deferred((ulong_t)rel, basebgn, lmp,
970 			    textrel, sip, rsymndx))
971 				continue;
972 
973 			/*
974 			 * Get the local symbol table entry.
975 			 */
976 			symref = (Sym *)((ulong_t)SYMTAB(lmp) +
977 			    (rsymndx * SYMENT(lmp)));
978 
979 			/*
980 			 * If this is a local symbol, just use the base address.
981 			 * (we should have no local relocations in the
982 			 * executable).
983 			 */
984 			if (ELF_ST_BIND(symref->st_info) == STB_LOCAL) {
985 				value = basebgn;
986 				name = NULL;
987 
988 				/*
989 				 * Special case TLS relocations.
990 				 */
991 				if ((rtype == R_SPARC_TLS_DTPMOD32) ||
992 				    (rtype == R_SPARC_TLS_DTPMOD64)) {
993 					/*
994 					 * Use the TLS modid.
995 					 */
996 					value = TLSMODID(lmp);
997 
998 				} else if ((rtype == R_SPARC_TLS_TPOFF32) ||
999 				    (rtype == R_SPARC_TLS_TPOFF64)) {
1000 					if ((value = elf_static_tls(lmp, symref,
1001 					    rel, rtype, 0, roffset, 0)) == 0) {
1002 						ret = 0;
1003 						break;
1004 					}
1005 				}
1006 			} else {
1007 				/*
1008 				 * If the symbol index is equal to the previous
1009 				 * symbol index relocation we processed then
1010 				 * reuse the previous values. (Note that there
1011 				 * have been cases where a relocation exists
1012 				 * against a copy relocation symbol, our ld(1)
1013 				 * should optimize this away, but make sure we
1014 				 * don't use the same symbol information should
1015 				 * this case exist).
1016 				 */
1017 				if ((rsymndx == psymndx) &&
1018 				    (rtype != R_SPARC_COPY)) {
1019 					/* LINTED */
1020 					if (psymdef == 0) {
1021 						DBG_CALL(Dbg_bind_weak(lmp,
1022 						    (Addr)roffset, (Addr)
1023 						    (roffset - basebgn), name));
1024 						continue;
1025 					}
1026 					/* LINTED */
1027 					value = pvalue;
1028 					/* LINTED */
1029 					name = pname;
1030 					symdef = psymdef;
1031 					/* LINTED */
1032 					symref = psymref;
1033 					/* LINTED */
1034 					_lmp = plmp;
1035 					/* LINTED */
1036 					binfo = pbinfo;
1037 
1038 					if ((LIST(_lmp)->lm_tflags |
1039 					    AFLAGS(_lmp)) &
1040 					    LML_TFLG_AUD_SYMBIND) {
1041 						value = audit_symbind(lmp, _lmp,
1042 						    /* LINTED */
1043 						    symdef, dsymndx, value,
1044 						    &sb_flags);
1045 					}
1046 				} else {
1047 					Slookup		sl;
1048 					Sresult		sr;
1049 
1050 					/*
1051 					 * Lookup the symbol definition.
1052 					 * Initialize the symbol lookup, and
1053 					 * symbol result, data structures.
1054 					 */
1055 					name = (char *)(STRTAB(lmp) +
1056 					    symref->st_name);
1057 
1058 					SLOOKUP_INIT(sl, name, lmp, 0,
1059 					    ld_entry_cnt, 0, rsymndx, symref,
1060 					    rtype, LKUP_STDRELOC);
1061 					SRESULT_INIT(sr, name);
1062 					symdef = NULL;
1063 
1064 					if (lookup_sym(&sl, &sr, &binfo,
1065 					    in_nfavl)) {
1066 						name = (char *)sr.sr_name;
1067 						_lmp = sr.sr_dmap;
1068 						symdef = sr.sr_sym;
1069 					}
1070 
1071 					/*
1072 					 * If the symbol is not found and the
1073 					 * reference was not to a weak symbol,
1074 					 * report an error.  Weak references
1075 					 * may be unresolved.
1076 					 */
1077 					/* BEGIN CSTYLED */
1078 					if (symdef == 0) {
1079 					    if (sl.sl_bind != STB_WEAK) {
1080 						if (elf_reloc_error(lmp, name,
1081 						    rel, binfo))
1082 							continue;
1083 
1084 						ret = 0;
1085 						break;
1086 
1087 					    } else {
1088 						psymndx = rsymndx;
1089 						psymdef = 0;
1090 
1091 						DBG_CALL(Dbg_bind_weak(lmp,
1092 						    (Addr)roffset, (Addr)
1093 						    (roffset - basebgn), name));
1094 						continue;
1095 					    }
1096 					}
1097 					/* END CSTYLED */
1098 
1099 					/*
1100 					 * If symbol was found in an object
1101 					 * other than the referencing object
1102 					 * then record the binding.
1103 					 */
1104 					if ((lmp != _lmp) && ((FLAGS1(_lmp) &
1105 					    FL1_RT_NOINIFIN) == 0)) {
1106 						if (aplist_test(&bound, _lmp,
1107 						    AL_CNT_RELBIND) == 0) {
1108 							ret = 0;
1109 							break;
1110 						}
1111 					}
1112 
1113 					/*
1114 					 * Calculate the location of definition;
1115 					 * symbol value plus base address of
1116 					 * containing shared object.
1117 					 */
1118 					if (IS_SIZE(rtype))
1119 						value = symdef->st_size;
1120 					else
1121 						value = symdef->st_value;
1122 
1123 					if (!(FLAGS(_lmp) & FLG_RT_FIXED) &&
1124 					    !(IS_SIZE(rtype)) &&
1125 					    (symdef->st_shndx != SHN_ABS) &&
1126 					    (ELF_ST_TYPE(symdef->st_info) !=
1127 					    STT_TLS))
1128 						value += ADDR(_lmp);
1129 
1130 					/*
1131 					 * Retain this symbol index and the
1132 					 * value in case it can be used for the
1133 					 * subsequent relocations.
1134 					 */
1135 					if (rtype != R_SPARC_COPY) {
1136 						psymndx = rsymndx;
1137 						pvalue = value;
1138 						pname = name;
1139 						psymdef = symdef;
1140 						psymref = symref;
1141 						plmp = _lmp;
1142 						pbinfo = binfo;
1143 					}
1144 					if ((LIST(_lmp)->lm_tflags |
1145 					    AFLAGS(_lmp)) &
1146 					    LML_TFLG_AUD_SYMBIND) {
1147 						/* LINTED */
1148 						dsymndx = (((uintptr_t)symdef -
1149 						    (uintptr_t)SYMTAB(_lmp)) /
1150 						    SYMENT(_lmp));
1151 						value = audit_symbind(lmp, _lmp,
1152 						    symdef, dsymndx, value,
1153 						    &sb_flags);
1154 					}
1155 				}
1156 
1157 				/*
1158 				 * If relocation is PC-relative, subtract
1159 				 * offset address.
1160 				 */
1161 				if (IS_PC_RELATIVE(rtype))
1162 					value -= roffset;
1163 
1164 				/*
1165 				 * Special case TLS relocations.
1166 				 */
1167 				if ((rtype == R_SPARC_TLS_DTPMOD32) ||
1168 				    (rtype == R_SPARC_TLS_DTPMOD64)) {
1169 					/*
1170 					 * Relocation value is the TLS modid.
1171 					 */
1172 					value = TLSMODID(_lmp);
1173 
1174 				} else if ((rtype == R_SPARC_TLS_TPOFF64) ||
1175 				    (rtype == R_SPARC_TLS_TPOFF32)) {
1176 					if ((value = elf_static_tls(_lmp,
1177 					    symdef, rel, rtype, name, roffset,
1178 					    value)) == 0) {
1179 						ret = 0;
1180 						break;
1181 					}
1182 				}
1183 			}
1184 		} else {
1185 			/*
1186 			 * Special cases.
1187 			 */
1188 			if (rtype == R_SPARC_REGISTER) {
1189 				/*
1190 				 * A register symbol associated with symbol
1191 				 * index 0 is initialized (i.e. relocated) to
1192 				 * a constant in the r_addend field rather than
1193 				 * to a symbol value.
1194 				 */
1195 				value = 0;
1196 
1197 			} else if ((rtype == R_SPARC_TLS_DTPMOD32) ||
1198 			    (rtype == R_SPARC_TLS_DTPMOD64)) {
1199 				/*
1200 				 * TLS relocation value is the TLS modid.
1201 				 */
1202 				value = TLSMODID(lmp);
1203 			} else
1204 				value = basebgn;
1205 
1206 			name = NULL;
1207 		}
1208 
1209 		DBG_CALL(Dbg_reloc_in(LIST(lmp), ELF_DBG_RTLD, M_MACH,
1210 		    M_REL_SHT_TYPE, rel, NULL, 0, name));
1211 
1212 		/*
1213 		 * Make sure the segment is writable.
1214 		 */
1215 		if ((rtype != R_SPARC_REGISTER) &&
1216 		    ((mpp->mr_prot & PROT_WRITE) == 0) &&
1217 		    ((set_prot(lmp, mpp, 1) == 0) ||
1218 		    (aplist_append(textrel, mpp, AL_CNT_TEXTREL) == NULL))) {
1219 			ret = 0;
1220 			break;
1221 		}
1222 
1223 		/*
1224 		 * Call relocation routine to perform required relocation.
1225 		 */
1226 		switch (rtype) {
1227 		case R_SPARC_REGISTER:
1228 			/*
1229 			 * The v9 ABI 4.2.4 says that system objects may,
1230 			 * but are not required to, use register symbols
1231 			 * to inidcate how they use global registers. Thus
1232 			 * at least %g6, %g7 must be allowed in addition
1233 			 * to %g2 and %g3.
1234 			 */
1235 			value += reladd;
1236 			if (roffset == STO_SPARC_REGISTER_G1) {
1237 				set_sparc_g1(value);
1238 			} else if (roffset == STO_SPARC_REGISTER_G2) {
1239 				set_sparc_g2(value);
1240 			} else if (roffset == STO_SPARC_REGISTER_G3) {
1241 				set_sparc_g3(value);
1242 			} else if (roffset == STO_SPARC_REGISTER_G4) {
1243 				set_sparc_g4(value);
1244 			} else if (roffset == STO_SPARC_REGISTER_G5) {
1245 				set_sparc_g5(value);
1246 			} else if (roffset == STO_SPARC_REGISTER_G6) {
1247 				set_sparc_g6(value);
1248 			} else if (roffset == STO_SPARC_REGISTER_G7) {
1249 				set_sparc_g7(value);
1250 			} else {
1251 				eprintf(LIST(lmp), ERR_FATAL,
1252 				    MSG_INTL(MSG_REL_BADREG), NAME(lmp),
1253 				    EC_ADDR(roffset));
1254 				ret = 0;
1255 				break;
1256 			}
1257 
1258 			DBG_CALL(Dbg_reloc_apply_reg(LIST(lmp), ELF_DBG_RTLD,
1259 			    M_MACH, (Xword)roffset, (Xword)value));
1260 			break;
1261 		case R_SPARC_COPY:
1262 			if (elf_copy_reloc(name, symref, lmp, (void *)roffset,
1263 			    symdef, _lmp, (const void *)value) == 0)
1264 				ret = 0;
1265 			break;
1266 		case R_SPARC_JMP_SLOT:
1267 			pltndx = ((uintptr_t)rel -
1268 			    (uintptr_t)JMPREL(lmp)) / relsiz;
1269 
1270 			if (FLAGS(lmp) & FLG_RT_FIXED)
1271 				vaddr = 0;
1272 			else
1273 				vaddr = ADDR(lmp);
1274 
1275 			if (((LIST(lmp)->lm_tflags | AFLAGS(lmp)) &
1276 			    (LML_TFLG_AUD_PLTENTER | LML_TFLG_AUD_PLTEXIT)) &&
1277 			    AUDINFO(lmp)->ai_dynplts) {
1278 				int	fail = 0;
1279 				/* LINTED */
1280 				uint_t	symndx = (uint_t)(((uintptr_t)symdef -
1281 				    (uintptr_t)SYMTAB(_lmp)) / SYMENT(_lmp));
1282 
1283 				(void) elf_plt_trace_write((caddr_t)vaddr,
1284 				    (Rela *)rel, lmp, _lmp, symdef, symndx,
1285 				    pltndx, (caddr_t)value, sb_flags, &fail);
1286 				if (fail)
1287 					ret = 0;
1288 			} else {
1289 				/*
1290 				 * Write standard PLT entry to jump directly
1291 				 * to newly bound function.
1292 				 */
1293 				DBG_CALL(Dbg_reloc_apply_val(LIST(lmp),
1294 				    ELF_DBG_RTLD, (Xword)roffset,
1295 				    (Xword)value));
1296 				pbtype = elf_plt_write((uintptr_t)vaddr,
1297 				    (uintptr_t)vaddr, (void *)rel, value,
1298 				    pltndx);
1299 			}
1300 			break;
1301 		case R_SPARC_WDISP30:
1302 			if (PLTPAD(lmp) &&
1303 			    (S_INRANGE((Sxword)value, 29) == 0)) {
1304 				void *	plt = 0;
1305 
1306 				if (bindpltpad(lmp, &pltpadlist,
1307 				    value + roffset, &plt,
1308 				    NAME(_lmp), name) == 0) {
1309 					ret = 0;
1310 					break;
1311 				}
1312 				value = (Addr)((Addr)plt - roffset);
1313 			}
1314 			/* FALLTHROUGH */
1315 		default:
1316 			value += reladd;
1317 			if (IS_EXTOFFSET(rtype))
1318 				value += (Word)ELF_R_TYPE_DATA(rel->r_info);
1319 
1320 			/*
1321 			 * Write the relocation out.  If this relocation is a
1322 			 * common basic write, skip the doreloc() engine.
1323 			 */
1324 			if ((rtype == R_SPARC_GLOB_DAT) ||
1325 			    (rtype == R_SPARC_64)) {
1326 				if (roffset & 0x7) {
1327 					Conv_inv_buf_t	inv_buf;
1328 
1329 					eprintf(LIST(lmp), ERR_FATAL,
1330 					    MSG_INTL(MSG_REL_NONALIGN),
1331 					    conv_reloc_SPARC_type(rtype,
1332 					    0, &inv_buf),
1333 					    NAME(lmp), demangle(name),
1334 					    EC_OFF(roffset));
1335 					ret = 0;
1336 				} else
1337 					*(ulong_t *)roffset += value;
1338 			} else {
1339 				if (do_reloc_rtld(rtype, (uchar_t *)roffset,
1340 				    (Xword *)&value, name,
1341 				    NAME(lmp), LIST(lmp)) == 0)
1342 					ret = 0;
1343 			}
1344 
1345 			/*
1346 			 * The value now contains the 'bit-shifted' value that
1347 			 * was or'ed into memory (this was set by
1348 			 * do_reloc_rtld()).
1349 			 */
1350 			DBG_CALL(Dbg_reloc_apply_val(LIST(lmp), ELF_DBG_RTLD,
1351 			    (Xword)roffset, (Xword)value));
1352 
1353 			/*
1354 			 * If this relocation is against a text segment, make
1355 			 * sure that the instruction cache is flushed.
1356 			 */
1357 			if (textrel)
1358 				iflush_range((caddr_t)roffset, 0x4);
1359 		}
1360 
1361 		if ((ret == 0) &&
1362 		    ((LIST(lmp)->lm_flags & LML_FLG_TRC_WARN) == 0))
1363 			break;
1364 
1365 		if (binfo) {
1366 			DBG_CALL(Dbg_bind_global(lmp, (Addr)roffset,
1367 			    (Off)(roffset - basebgn), pltndx, pbtype,
1368 			    _lmp, (Addr)value, symdef->st_value, name, binfo));
1369 		}
1370 	}
1371 
1372 	/*
1373 	 * Free up any items on the pltpadlist if it was allocated
1374 	 */
1375 	if (pltpadlist)
1376 		free(pltpadlist);
1377 
1378 	return (relocate_finish(lmp, bound, ret));
1379 }
1380 
1381 /*
1382  * Provide a machine specific interface to the conversion routine.  By calling
1383  * the machine specific version, rather than the generic version, we insure that
1384  * the data tables/strings for all known machine versions aren't dragged into
1385  * ld.so.1.
1386  */
1387 const char *
1388 _conv_reloc_type(uint_t rel)
1389 {
1390 	static Conv_inv_buf_t	inv_buf;
1391 
1392 	return (conv_reloc_SPARC_type(rel, 0, &inv_buf));
1393 }
1394