xref: /titanic_41/usr/src/cmd/sgs/rtld/sparcv9/boot_elf.s (revision 49d3bc91e27cd871b950d56c01398fa2f2e12ab4)
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22/*
23 *	Copyright (c) 1988 AT&T
24 *	  All Rights Reserved
25 *
26 * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
27 * Use is subject to license terms.
28 */
29#pragma ident	"%Z%%M%	%I%	%E% SMI"
30
31#include	"machdep.h"
32#include	"_audit.h"
33#if	defined(lint)
34#include	<sys/types.h>
35#include	"_rtld.h"
36#else
37#include	<sys/stack.h>
38#include	<sys/asm_linkage.h>
39
40	.file	"boot_elf.s"
41	.seg	".text"
42#endif
43
44/*
45 * We got here because the initial call to a function resolved to a procedure
46 * linkage table entry.  That entry did a branch to the first PLT entry, which
47 * in turn did a call to elf_rtbndr (refer elf_plt_init()).
48 *
49 * the code sequence that got us here was:
50 *
51 * PLT entry for foo():
52 *	sethi	(.-PLT0), %g1
53 *	ba,a	.PLT0				! patched atomically 2nd
54 *	nop					! patched 1st
55 *	nop
56 *	nop
57 *	nop
58 *	nop
59 *	nop
60 *
61 * Therefore on entry, %i7 has the address of the call, which will be added
62 * to the offset to the plt entry in %g1 to calculate the plt entry address
63 * we must also subtract 4 because the address of PLT0 points to the
64 * save instruction before the call.
65 *
66 * The PLT entry is rewritten in one of several ways.  For the full 64-bit
67 * span, the following sequence is generated:
68 *
69 *	nop
70 *	sethi	%hh(entry_pt), %g1
71 *	sethi	%lm(entry_pt), %g5
72 *	or	%g1, %hm(entry_pt), %g1
73 *	sllx	%g1, 32, %g1
74 *	or	%g1, %g5, %g5
75 *	jmpl	%g5 + %lo(entry_pt), %g0
76 *	nop
77 *
78 * Shorter code sequences are possible, depending on reachability
79 * constraints.  Note that 'call' is not as useful as it might seem in
80 * this context, because it is only capable of plus or minus 2Gbyte
81 * PC-relative jumps, and the rdpc instruction is very slow.
82 *
83 * At the time of writing, the present and future SPARC CPUs that will use
84 * this code are only capable of addressing the bottom 43-bits and top 43-bits
85 * of the address space.  And since shared libraries are placed at the top
86 * of the address space, the "top 44-bits" sequence will effectively always be
87 * used.  See elf_plt_write() below.  The "top 32-bits" are used when they
88 * can reach.
89 */
90
91#if	defined(lint)
92
93extern unsigned long	elf_bndr(Rt_map *, unsigned long, caddr_t);
94
95/*
96 * We're called here from .PLTn in a new frame, with %o0 containing
97 * the result of a sethi (. - .PLT0), and %o1 containing the pc of
98 * the jmpl instruction we're got here with inside .PLT1
99 */
100void
101elf_rtbndr(Rt_map *lmp, unsigned long pltoff, caddr_t from)
102{
103	(void) elf_bndr(lmp, pltoff, from);
104}
105
106#else
107	.weak	_elf_rtbndr		! keep dbx happy as it likes to
108	_elf_rtbndr = elf_rtbndr	! rummage around for our symbols
109
110	ENTRY(elf_rtbndr)
111	mov	%i7, %o3		! Save callers address(profiling)
112	save	%sp, -SA(MINFRAME), %sp
113	mov	%g4, %l5		! Save g4 (safe across function calls)
114	sub	%i1, 0x38, %o1		! compute addr of .PLT0 from addr of .PLT1 jmpl
115	ldx	[%o1 + 0x40], %o0	! ld PLT2[X] into third arg
116	srl	%i0, 10, %o1		! shift offset set by sethi
117	call	elf_bndr		! returns function address in %o0
118	mov	%i3, %o2		! Callers address is arg 3
119	mov	%o0, %g1		! save address of routine binded
120	mov	%l5, %g4		! restore g4
121	restore				! how many restores needed ? 2
122	jmp	%g1			! jump to it
123	restore
124	SET_SIZE(elf_rtbndr)
125
126#endif
127
128
129#if	defined(lint)
130void
131elf_rtbndr_far(Rt_map *lmp, unsigned long pltoff, caddr_t from)
132{
133	(void) elf_bndr(lmp, pltoff, from);
134}
135#else
136ENTRY(elf_rtbndr_far)
137	mov	%i7, %o3		! Save callers address
138	save	%sp, -SA(MINFRAME), %sp
139	mov	%g4, %l5		! preserve %g4
140	sub	%i1, 0x18, %o2		! compute address of .PLT0 from
141					!   .PLT0 jmpl instr.
142	sub	%i0, %o2, %o1		! pltoff = pc - 0x10 - .PLT0
143	sub	%o1, 0x10, %o1
144	ldx	[%o2 + 0x40], %o0	! ld PLT2[X] into third arg
145	call	elf_bndr		! returns function address in %o0
146	mov	%i3, %o2		! Callers address is arg3
147	mov	%o0, %g1		! save address of routine binded
148	mov	%l5, %g4		! restore g4
149	restore				! how many restores needed ? 2
150	jmp	%g1			! jump to it
151	restore
152SET_SIZE(elf_rtbndr_far)
153#endif
154
155
156/*
157 * Initialize a plt entry so that function calls go to 'bindfunc'
158 * (We parameterize the binding function here because we call this
159 * routine twice - once for PLT0 and once for PLT1 with different
160 * binding functions.)
161 *
162 * The plt entries (PLT0 and PLT1) look like:
163 *
164 *	save	%sp, -176, %sp
165 *	sethi	%hh(bindfunc), %l0
166 *	sethi	%lm(bindfunc), %l1
167 *	or	%l0, %hm(bindfunc), %l0
168 *	sllx	%l0, 32, %l0
169 *	or	%l0, %l1, %l0
170 *	jmpl	%l0 + %lo(bindfunc), %o1
171 *	mov	%g1, %o0
172 */
173
174#define	M_SAVE_SP176SP	0x9de3bf50	/*	save	%sp, -176, %sp */
175#define	M_SETHI_L0	0x21000000	/*	sethi	0x0, %l0 */
176#define	M_SETHI_L1	0x23000000	/*	sethi	0x0, %l1 */
177#define	M_OR_L0L0	0xa0142000	/*	or	%l0, 0x0, %l0 */
178#define	M_SLLX_L032L0	0xa12c3020	/*	sllx	%l0, 32, %l0 */
179#define	M_OR_L0L1L0	0xa0140011	/*	or	%l0, %l1, %l0 */
180#define	M_JMPL_L0O1	0x93c42000	/*	jmpl	%l0 + 0, %o1 */
181#define	M_MOV_G1O0	0x90100001	/*	or	%g0, %g1, %o0 */
182
183#if	defined(lint)
184
185#define	HH22(x)	0		/* for lint's benefit */
186#define	LM22(x)	0
187#define	HM10(x)	0
188#define	LO10(x)	0
189
190/* ARGSUSED */
191void
192elf_plt_init(void *plt, caddr_t bindfunc)
193{
194	uint_t	*_plt;
195
196	_plt = (uint_t *)plt;
197	_plt[0] = M_SAVE_SP176SP;
198	_plt[1] = M_SETHI_L0 | HH22(bindfunc);
199	_plt[2] = M_SETHI_L1 | LM22(bindfunc);
200	_plt[3] = M_OR_L0L0 | HM10(bindfunc);
201	_plt[4] = M_SLLX_L032L0;
202	_plt[5] = M_OR_L0L1L0;
203	_plt[6] = M_JMPL_L0O1 | LO10(bindfunc);
204	_plt[7] = M_MOV_G1O0;
205}
206
207#else
208	ENTRY(elf_plt_init)
209	save	%sp, -SA(MINFRAME), %sp	! Make a frame
210
211	sethi	%hi(M_SAVE_SP176SP), %o0	! Get save instruction
212	or	%o0, %lo(M_SAVE_SP176SP), %o0
213	st	%o0, [%i0]		! Store in plt[0]
214
215	sethi	%hi(M_SETHI_L0), %o4	! Get "sethi 0x0, %l0" insn
216	srlx	%i1, 42, %o2		! get %hh(function address)
217	or	%o4, %o2, %o4		!	or value into instruction
218	st	%o4, [%i0 + 0x4]	! Store instruction in plt[1]
219	iflush	%i0			! .. and flush
220
221	sethi	%hi(M_SETHI_L1), %o4	! Get "sethi 0x0, %l1" insn
222	srl	%i1, 10, %o2		! get %lm(function address)
223	or	%o4, %o2, %o4		!	or value into instruction
224	st	%o4, [%i0 + 0x8]	! Store instruction in plt[2]
225
226	sethi	%hi(M_OR_L0L0), %o4	! Get "or %l0, 0x0, %l0" insn
227	or	%o4, %lo(M_OR_L0L0), %o4
228	srlx	%i1, 32, %o2		! get %hm(function address)
229	and	%o2, 0x3ff, %o2		! pick out bits 42-33
230	or	%o4, %o2, %o4		!	or value into instruction
231	st	%o4, [%i0 + 0xc]	! Store instruction in plt[3]
232	iflush	%i0 + 8			! .. and flush
233
234	sethi	%hi(M_SLLX_L032L0), %o4	! get "sllx %l0, 32, %l0" insn
235	or	%o4, %lo(M_SLLX_L032L0), %o4
236	st	%o4, [%i0 + 0x10]	! Store instruction in plt[4]
237
238	sethi	%hi(M_OR_L0L1L0), %o4	! get "or %l0, %l1, %l0" insn
239	or	%o4, %lo(M_OR_L0L1L0), %o4
240	st	%o4, [%i0 + 0x14]	! Store instruction in plt[5]
241	iflush	%i0 + 0x10		! .. and flush
242
243	sethi	%hi(M_JMPL_L0O1), %o4	! get "jmpl %l0 + 0, %o1" insn
244	or	%o4, %lo(M_JMPL_L0O1), %o4
245	and	%i1, 0x3ff, %o2		! get %lo(function address)
246	or	%o4, %o2, %o4		!	or value into instruction
247	st	%o4, [%i0 + 0x18]	! Store instruction in plt[6]
248
249	sethi	%hi(M_MOV_G1O0), %o4	! get "mov %g1, %o0" insn
250	or	%o4, %lo(M_MOV_G1O0), %o4
251	st	%o4, [%i0 + 0x1c]	! Store instruction in plt[7]
252	iflush	%i0 + 0x18		! .. and flush
253
254	ret
255	restore
256	SET_SIZE(elf_plt_init)
257#endif
258
259
260
261
262#if	defined(lint)
263/*
264 *  The V9 ABI assigns the link map identifier, the
265 *  Rt_map pointer, to the start of .PLT2.
266 */
267void
268elf_plt2_init(unsigned int *plt2, Rt_map * lmp)
269{
270	/* LINTED */
271	*(unsigned long *)plt2 = (unsigned long)lmp;
272}
273#else
274	ENTRY(elf_plt2_init)
275	stx	%o1, [%o0]
276	retl
277	iflush	%o0
278	SET_SIZE(elf_plt2_init)
279#endif
280
281
282
283/*
284 * After the first call to a plt, elf_bndr() will have determined the true
285 * address of the function being bound.  The plt is now rewritten so that
286 * any subsequent calls go directly to the bound function.  If the library
287 * to which the function belongs is being profiled refer to _plt_cg_write.
288 *
289 * For complete 64-bit spanning, the new plt entry is:
290 *
291 *	nop
292 *	sethi	%hh(function address), %g1
293 *	sethi	%lm(function address), %g5
294 *	or	%g1, %hm(function address), %g1
295 *	sllx	%g1, 32, %g1
296 *	or	%g1, %g5, %g5
297 *	jmpl	%g5, %lo(function address), %g0
298 *	nop
299 *
300 * However, shorter instruction sequences are possible and useful.
301 * This version gets us anywhere in the top 44 bits of the
302 * address space - since this is where shared objects live most
303 * of the time, this case is worth optimizing.
304 *
305 *	nop
306 *	sethi	%h44(~function_address), %g5
307 *	xnor	%g5, %m44(~function address), %g1
308 *	sllx	%g1, 12, %g1
309 *	jmpl	%g1 + %l44(function address), %g0
310 *	nop
311 *	nop
312 *	nop
313 *
314 * This version gets anywhere in the top 32 bits:
315 *
316 *	nop
317 *	sethi	%hi(~function_address), %g5
318 *	xnor	%g5, %lo(~function_address), %g1
319 *	jmpl	%g1, %g0
320 *	nop
321 *	nop
322 *	nop
323 *	nop
324 *
325 * This version get's us to a destination within
326 * +- 8megs of the PLT's address:
327 *
328 *	nop
329 *	ba,a	<dest>
330 *	nop
331 *	nop
332 *	nop
333 *	nop
334 *	nop
335 *	nop
336 *
337 * This version get's us to a destination within
338 * +- 2megs of the PLT's address:
339 *
340 *	nop
341 *	ba,a,pt	%icc, <dest>
342 *	nop
343 *	nop
344 *	nop
345 *	nop
346 *	nop
347 *	nop
348 *
349 *
350 * The PLT is written in reverse order to ensure re-entrant behaviour.
351 * Note that the first two instructions must be overwritten with a
352 * single stx.
353 *
354 * Note that even in the 44-bit case, we deliberately use both %g5 and
355 * %g1 to prevent anyone accidentally relying on either of them being
356 * non-volatile across a function call.
357 */
358
359#define	M_JMPL_G5G0	0x81c16000	/* jmpl %g5 + 0, %g0 */
360#define	M_OR_G1G5G5	0x8a104005	/* or %g1, %g5, %g5 */
361#define	M_SLLX_G132G1	0x83287020	/* sllx %g1, 32, %g1 */
362#define	M_OR_G1G1	0x82106000	/* or %g1, 0x0, %g1 */
363#define	M_SETHI_G5	0x0b000000	/* sethi 0x0, %g5 */
364#define	M_SETHI_G1	0x03000000	/* sethi 0x0, %g1 */
365#define	M_NOP		0x01000000	/* sethi 0x0, %g0 */
366
367#define	M_JMPL_G1G0	0x81c06000	/* jmpl %g1 + 0, %g0 */
368#define	M_SLLX_G112G1	0x8328700c	/* sllx %g1, 12, %g1 */
369#define	M_XNOR_G5G1	0x82396000	/* xnor	%g5, 0, %g1 */
370
371#if	defined(lint)
372
373/* ARGSUSED */
374#define	MASK(m)		((1ul << (m)) - 1ul)
375#define	BITS(v, u, l)	(((v) >> (l)) & MASK((u) - (l) + 1))
376#define	H44(v)		BITS(v, 43, 22)
377#define	M44(v)		BITS(v, 21, 12)
378#define	L44(v)		BITS(v, 11, 0)
379
380#endif
381
382#if	defined(lint)
383
384void
385/* ARGSUSED1 */
386plt_upper_32(uintptr_t pc, uintptr_t symval)
387{
388	ulong_t		sym = (ulong_t)symval;
389	/* LINTED */
390	ulong_t		nsym = ~sym;
391	uint_t *	plttab = (uint_t *)pc;
392
393	plttab[3] = M_JMPL_G1G0;
394	plttab[2] = (uint_t)(M_XNOR_G5G1 | LO10(nsym));
395	*(ulong_t *)pc =
396	    ((ulong_t)M_NOP << 32) | (M_SETHI_G5 | LM22(nsym));
397}
398
399#else
400
401
402	ENTRY(plt_upper_32)
403	!
404	! Address lies in top 32-bits of address space, so use
405	! compact PLT sequence
406	!
407	sethi	%hi(M_JMPL_G1G0), %o3	! Get "jmpl %g1, %g0" insn
408	st	%o3, [%o0 + 0xc]	! store instruction in plt[3]
409	iflush	%o0 + 0xc		! .. and flush
410
411	not	%o1, %o4
412	sethi	%hi(M_XNOR_G5G1), %o3	! Get "xnor %g5, %g1, %g1" insn
413	and	%o4, 0x3ff, %o2		! pick out bits 0-9
414	or	%o3, %o2, %o3		!	or value into instruction
415	st	%o3, [%o0 + 0x8]	! store instruction in plt[2]
416	iflush	%o0 + 0x8		! .. and flush
417
418	sethi	%hi(M_SETHI_G5), %o3	! Get "sethi 0x0, %g5" insn
419	srl	%o4, 10, %o2		! get %lm(~function address)
420	or	%o3, %o2, %o3		!	or value into instruction
421
422	sethi	%hi(M_NOP), %o4		! Get "nop" instruction
423	sllx	%o4, 32, %o4		! shift to top of instruction pair
424	or	%o3, %o4, %o3		!	or value into instruction pair
425	stx	%o3, [%o0]		! store instructions into plt[0] plt[1]
426	retl
427	iflush	%o0			! .. and flush
428	SET_SIZE(plt_upper_32)
429#endif	/* defined lint */
430
431
432#if	defined(lint)
433
434void
435/* ARGSUSED1 */
436plt_upper_44(uintptr_t pc, uintptr_t symval)
437{
438	ulong_t		sym = (ulong_t)symval;
439	ulong_t		nsym = ~sym;
440	uint_t *	plttab = (uint_t *)pc;
441
442	/* LINTED */
443	plttab[4] = (uint_t)(M_JMPL_G1G0 | L44(sym));
444	plttab[3] = M_SLLX_G112G1;
445	/* LINTED */
446	plttab[2] = (uint_t)(M_XNOR_G5G1 | M44(nsym));
447	*(ulong_t *)pc = ((ulong_t)M_NOP << 32) | (M_SETHI_G5 | H44(nsym));
448}
449
450#else
451
452
453	ENTRY(plt_upper_44)
454	!
455	! Address lies in top 44-bits of address space, so use
456	! compact PLT sequence
457	!
458	setuw	M_JMPL_G1G0, %o3	! Get "jmpl %g1, %g0" insn
459	and	%o1, 0xfff, %o2		! lower 12 bits of function address
460	or	%o3, %o2, %o3		!	is or'ed into instruction
461	st	%o3, [%o0 + 0x10]	! store instruction in plt[4]
462	iflush	%o0 + 0x10		! .. and flush
463
464	setuw	M_SLLX_G112G1, %o3	! Get "sllx %g1, 12, %g1" insn
465	st	%o3, [%o0 + 0xc]	! store instruction in plt[3]
466
467	not	%o1, %o4
468	setuw	M_XNOR_G5G1, %o3	! Get "xnor %g5, 0, %g1" insn
469	srlx	%o4, 12, %o2		! get %m44(0 - function address)
470	and	%o2, 0x3ff, %o2		! pick out bits 21-12
471	or	%o3, %o2, %o3		!	or value into instruction
472	st	%o3, [%o0 + 8]		! store instruction in plt[2]
473	iflush	%o0 + 8			! .. and flush
474
475	setuw	M_SETHI_G5, %o3		! Get "sethi 0x0, %g5" insn
476	srlx	%o4, 22, %o2		! get %h44(0 - function address)
477	or	%o3, %o2, %o3		!	or value into instruction
478
479	setuw	M_NOP, %o4		! Get "nop" instruction
480	sllx	%o4, 32, %o4		! shift to top of instruction pair
481	or	%o3, %o4, %o3		!	or value into instruction pair
482	stx	%o3, [%o0]		! store instructions into plt[0] plt[1]
483	retl
484	iflush	%o0			! .. and flush
485	SET_SIZE(plt_upper_44)
486
487#endif	/* defined(lint) */
488
489
490#if	defined(lint)
491
492void
493/* ARGSUSED1 */
494plt_full_range(uintptr_t pc, uintptr_t symval)
495{
496	uint_t *	plttab = (uint_t *)pc;
497
498	plttab[6] = M_JMPL_G5G0 | LO10(symval);
499	plttab[5] = M_OR_G1G5G5;
500	plttab[4] = M_SLLX_G132G1;
501	plttab[3] = M_OR_G1G1 | HM10(symval);
502	plttab[2] = M_SETHI_G5 | LM22(symval);
503	*(ulong_t *)pc =
504		((ulong_t)M_NOP << 32) | (M_SETHI_G1 | HH22(symval));
505}
506
507#else
508	ENTRY(plt_full_range)
509	!
510	! Address lies anywhere in 64-bit address space, so use
511	! full PLT sequence
512	!
513	sethi	%hi(M_JMPL_G5G0), %o3	! Get "jmpl %g5, %g0" insn
514	and	%o1, 0x3ff, %o2		! lower 10 bits of function address
515	or	%o3, %o2, %o3		!	is or'ed into instruction
516	st	%o3, [%o0 + 0x18]	! store instruction in plt[6]
517	iflush	%o0 + 0x18		! .. and flush
518
519	sethi	%hi(M_OR_G1G5G5), %o3	! Get "or %g1, %g5, %g1" insn
520	or	%o3, %lo(M_OR_G1G5G5), %o3
521	st	%o3, [%o0 + 0x14]	! store instruction in plt[5]
522
523	sethi	%hi(M_SLLX_G132G1), %o3	!  Get "sllx %g1, 32, %g1" insn
524	or	%o3, %lo(M_SLLX_G132G1), %o3
525	st	%o3, [%o0 + 0x10]	! store instruction in plt[4]
526	iflush	%o0 + 0x10		! .. and flush
527
528	sethi	%hi(M_OR_G1G1), %o3	! Get "or %g1, 0x0, %g1" insn
529	or	%o3, %lo(M_OR_G1G1), %o3
530	srlx	%o1, 32, %o2		! get %hm(function address)
531	and	%o2, 0x3ff, %o2		! pick out bits 42-33
532	or	%o3, %o2, %o3		!	or value into instruction
533	st	%o3, [%o0 + 0xc]	! store instruction in plt[3]
534
535	sethi	%hi(M_SETHI_G5), %o3	! Get "sethi 0x0, %g5" insn
536	srl	%o1, 10, %o2		! get %lm(function address)
537	or	%o3, %o2, %o3		!	or value into instruction
538	st	%o3, [%o0 + 0x8]	! store instruction in plt[2]
539	iflush	%o0 + 8			! .. and flush
540
541	sethi	%hi(M_SETHI_G1), %o3	! Get "sethi 0x0, %g1" insn
542	srlx	%o1, 42, %o2		! get %hh(function address)
543	or	%o3, %o2, %o3		!	or value into instruction
544
545	sethi	%hi(M_NOP), %o4		! Get "nop" instruction
546	sllx	%o4, 32, %o4		! shift to top of instruction pair
547	or	%o3, %o4, %o3		!	or value into instruction pair
548	stx	%o3, [%o0]		! store instructions into plt[0] plt[1]
549	retl
550	iflush	%o0			! .. and flush
551
552	SET_SIZE(plt_full_range)
553
554#endif	/* defined(lint) */
555
556/*
557 * performs the 'iflush' instruction on a range of memory.
558 */
559#if	defined(lint)
560void
561iflush_range(caddr_t addr, size_t len)
562{
563	/* LINTED */
564	uintptr_t base;
565
566	base = (uintptr_t)addr & ~7;	/* round down to 8 byte alignment */
567	len = (len + 7) & ~7;		/* round up to multiple of 8 bytes */
568	for (len -= 8; (long)len >= 0; len -= 8)
569		/* iflush(base + len) */;
570}
571#else
572	ENTRY(iflush_range)
573	add	%o1, 7, %o1
574	andn	%o0, 7, %o0
575	andn	%o1, 7, %o1
5761:	subcc	%o1, 8, %o1
577	bge,a,pt %xcc, 1b
578	iflush	%o0 + %o1
579	retl
580	nop
581	SET_SIZE(iflush_range)
582#endif
583
584
585#if	defined(lint)
586
587ulong_t
588elf_plt_trace()
589{
590	return (0);
591}
592#else
593	.global	elf_plt_trace
594	.type   elf_plt_trace, #function
595
596/*
597 * The dyn_plt that called us has already created a stack-frame for
598 * us and placed the following entries in it:
599 *
600 *	[%fp + STACK_BIAS + -0x8]	* dyndata
601 *	[%fp + STACK_BIAS + -0x10]	* prev stack size
602 *
603 * dyndata currently contains:
604 *
605 *	dyndata:
606 *	0x0	Addr		*reflmp
607 *	0x8	Addr		*deflmp
608 *	0x10	Word		symndx
609 *	0x14	Word		sb_flags
610 *	0x18	Sym		symdef.st_name
611 *	0x1c			symdef.st_info
612 *	0x1d			symdef.st_other
613 *	0x1e			symdef.st_shndx
614 *	0x20			symdef.st_value
615 *	0x28			symdef.st_size
616 */
617#define	REFLMP_OFF		0x0
618#define	DEFLMP_OFF		0x8
619#define	SYMNDX_OFF		0x10
620#define	SBFLAGS_OFF		0x14
621#define	SYMDEF_OFF		0x18
622#define	SYMDEF_VALUE_OFF	0x20
623
624#define	LAREGSSZ	0x40	/* sizeof (La_sparcv9_regs) */
625
626
627elf_plt_trace:
6281:	call	2f
629	sethi	%hi(_GLOBAL_OFFSET_TABLE_ - (1b - .)), %l7
6302:	or	%l7, %lo(_GLOBAL_OFFSET_TABLE_ - (1b - .)), %l7
631	add	%l7, %o7, %l7
632
633	ldx	[%fp + STACK_BIAS + -CLONGSIZE], %l1	! l1 = * dyndata
634	lduw	[%l1 + SBFLAGS_OFF], %l2		! l2 = sb_flags
635	andcc	%l2, LA_SYMB_NOPLTENTER, %g0
636	be,pt	%icc, .start_pltenter
637	ldx	[%l1 + SYMDEF_VALUE_OFF], %l0	! l0 =
638						!  sym.st_value(calling address)
639	ba,a,pt	%icc, .end_pltenter
640	nop
641
642	/*
643	 * save all registers into La_sparcv9_regs
644	 */
645.start_pltenter:
646	sub	%sp, LAREGSSZ, %sp	! create space for La_sparcv9_regs
647					! storage on the stack.
648
649	add	%fp, STACK_BIAS - (LAREGSSZ + (2 * CLONGSIZE)), %o4	! addr of new space.
650
651	stx	%i0, [%o4 + 0x0]
652	stx	%i1, [%o4 + 0x8]
653	stx	%i2, [%o4 + 0x10]
654	stx	%i3, [%o4 + 0x18]	! because a regwindow shift has
655	stx	%i4, [%o4 + 0x20]	! already occured our current %i*
656	stx	%i5, [%o4 + 0x28]	! register's are the equivalent of
657	stx	%i6, [%o4 + 0x30]	! the %o* registers that the final
658	stx	%i7, [%o4 + 0x38]	! procedure shall see.
659	mov	%g4, %l5		! save g4 (safe across function calls)
660
661
662	ldx	[%fp + STACK_BIAS + -CLONGSIZE], %l1	! %l1 == * dyndata
663	ldx	[%l1 + REFLMP_OFF], %o0		! %o0 = reflmp
664	ldx	[%l1 + DEFLMP_OFF], %o1		! %o1 = deflmp
665	add	%l1, SYMDEF_OFF, %o2		! %o2 = symp
666	lduw	[%l1 + SYMNDX_OFF], %o3		! %o3 = symndx
667	call	audit_pltenter
668	add	%l1, SBFLAGS_OFF, %o5		! %o3 = * sb_flags
669
670	mov	%o0, %l0		! %l0 == calling address
671	add	%sp, LAREGSSZ, %sp	! cleanup La_sparcv9_regs off
672					! of the stack.
673
674.end_pltenter:
675	/*
676	 * If *no* la_pltexit() routines exist we do not need
677	 * to keep the stack frame before we call the actual
678	 * routine.  Instead we jump to it and remove ourself
679	 * from the stack at the same time.
680	 */
681	ldx	[%l7+audit_flags], %l3
682	lduw	[%l3], %l3				! %l3 = audit_flags
683	andcc	%l3, AF_PLTEXIT, %g0			! AF_PLTEXIT = 2
684	be,pt	%icc, .bypass_pltexit
685	ldx	[%fp + STACK_BIAS + -CLONGSIZE], %l1	! %l1 = * dyndata
686	lduw	[%l1 + SBFLAGS_OFF], %l2		! %l2 = sb_flags
687	andcc	%l2, LA_SYMB_NOPLTEXIT, %g0		! LA_SYMB_NOPLTEXIT = 2
688	bne,a,pt	%icc, .bypass_pltexit
689	nop
690
691	ba,a,pt	%icc, .start_pltexit
692	nop
693.bypass_pltexit:
694	mov	%l5, %g4		! restore g4
695	jmpl	%l0, %g0
696	restore
697
698.start_pltexit:
699	/*
700	 * In order to call la_pltexit() we must duplicate the
701	 * arguments from the 'callers' stack on our stack frame.
702	 *
703	 * First we check the size of the callers stack and grow
704	 * our stack to hold any of the arguments that need
705	 * duplicating (these are arguments 6->N), because the
706	 * first 6 (0->5) are passed via register windows on sparc.
707	 */
708
709	/*
710	 * The first calculation is to determine how large the
711	 * argument passing area might be.  Since there is no
712	 * way to distinquish between 'argument passing' and
713	 * 'local storage' from the previous stack this amount must
714	 * cover both.
715	 */
716	ldx	[%fp + STACK_BIAS + -(2 * CLONGSIZE)], %l1	! %l1 = callers
717						!	stack size
718	sub	%l1, MINFRAME, %l1		! %l1 = argument space on
719						!	caller's stack
720	/*
721	 * Next we compare the prev. stack size against the audit_argcnt.  We
722	 * copy at most 'audit_argcnt' arguments.  The default arg count is 64.
723	 *
724	 * NOTE: on sparc we always copy at least six args since these
725	 *	 are in reg-windows and not on the stack.
726	 *
727	 * NOTE: Also note that we multiply (shift really) the arg count
728	 *	 by 8 which is the 'word size' to calculate the amount
729	 *	 of stack space needed.
730	 */
731	ldx	[%l7 + audit_argcnt], %l2
732	lduw	[%l2], %l2			! %l2 = audit_argcnt
733	cmp	%l2, 6
734	ble,pn	%icc, .grow_stack
735	sub	%l2, 6, %l2
736	sllx	%l2, CLONGSHIFT, %l2		! arg count * 8
737	cmp	%l1, %l2			!
738	ble,a,pn	%icc, .grow_stack
739	nop
740	mov	%l2, %l1
741.grow_stack:
742	/*
743	 * When duplicating the stack we skip the first SA(MINFRAME)
744	 * bytes. This is the space on the stack reserved for preserving
745	 * the register windows and such and do not need to be duplicated
746	 * on this new stack frame.  We start duplicating at the portion
747	 * of the stack reserved for argument's above 6.
748	 */
749	sub	%sp, %l1, %sp		! grow our stack by amount required.
750	srax	%l1, CLONGSHIFT, %l1	! %l1 = %l1 / 8 (words to copy)
751	mov	SA(MINFRAME), %l2	! %l2 = index into stack & frame
752
7531:
754	cmp	%l1, 0
755	ble,a,pn	%icc, 2f
756	nop
757
758	add	%fp, %l2, %l4
759	ldx	[%l4 + STACK_BIAS], %l3		! duplicate args from previous
760	add	%sp, %l2, %l4
761	stx	%l3, [%l4 + STACK_BIAS]		! stack onto current stack
762
763	add	%l2, CLONGSIZE, %l2
764	ba,pt	%icc, 1b
765	sub	%l1, 0x1, %l1
7662:
767	mov	%i0, %o0		! copy ins to outs
768	mov	%i1, %o1
769	mov	%i2, %o2
770	mov	%i3, %o3
771	mov	%i4, %o4
772	mov	%i5, %o5
773	call	%l0			! call original routine
774	mov	%l5, %g4		! restore g4
775	mov	%o1, %l2		! l2 = second 1/2 of return value
776					! for those those 64 bit operations
777					! link div64 - yuck...
778
779					! %o0 = retval
780	ldx	[%fp + STACK_BIAS + -CLONGSIZE], %l1
781	ldx	[%l1 + REFLMP_OFF], %o1		! %o1 = reflmp
782	ldx	[%l1 + DEFLMP_OFF], %o2		! %o2 = deflmp
783	add	%l1, SYMDEF_OFF, %o3		! %o3 = symp
784	call	audit_pltexit
785	lduw	[%l1 + SYMNDX_OFF], %o4		! %o4 = symndx
786
787	mov	%o0, %i0			! pass on return code
788	mov	%l2, %i1
789	ret
790	restore
791	.size	elf_plt_trace, . - elf_plt_trace
792
793#endif
794
795