1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 1988 AT&T 24 * All Rights Reserved 25 * 26 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 27 * Use is subject to license terms. 28 */ 29 #pragma ident "%Z%%M% %I% %E% SMI" 30 31 /* 32 * SPARC machine dependent and ELF file class dependent functions. 33 * Contains routines for performing function binding and symbol relocations. 34 */ 35 #include "_synonyms.h" 36 37 #include <stdio.h> 38 #include <sys/elf.h> 39 #include <sys/elf_SPARC.h> 40 #include <sys/mman.h> 41 #include <dlfcn.h> 42 #include <synch.h> 43 #include <string.h> 44 #include <debug.h> 45 #include <reloc.h> 46 #include <conv.h> 47 #include "_rtld.h" 48 #include "_audit.h" 49 #include "_elf.h" 50 #include "msg.h" 51 52 53 extern void iflush_range(caddr_t, size_t); 54 extern void plt_full_range(uintptr_t, uintptr_t); 55 56 57 int 58 elf_mach_flags_check(Rej_desc *rej, Ehdr *ehdr) 59 { 60 /* 61 * Check machine type and flags. 62 */ 63 if (ehdr->e_machine != EM_SPARC) { 64 if (ehdr->e_machine != EM_SPARC32PLUS) { 65 rej->rej_type = SGS_REJ_MACH; 66 rej->rej_info = (uint_t)ehdr->e_machine; 67 return (0); 68 } 69 if ((ehdr->e_flags & EF_SPARC_32PLUS) == 0) { 70 rej->rej_type = SGS_REJ_MISFLAG; 71 rej->rej_info = (uint_t)ehdr->e_flags; 72 return (0); 73 } 74 if ((ehdr->e_flags & ~at_flags) & EF_SPARC_32PLUS_MASK) { 75 rej->rej_type = SGS_REJ_BADFLAG; 76 rej->rej_info = (uint_t)ehdr->e_flags; 77 return (0); 78 } 79 } else if ((ehdr->e_flags & ~EF_SPARCV9_MM) != 0) { 80 rej->rej_type = SGS_REJ_BADFLAG; 81 rej->rej_info = (uint_t)ehdr->e_flags; 82 return (0); 83 } 84 return (1); 85 } 86 87 void 88 ldso_plt_init(Rt_map * lmp) 89 { 90 /* 91 * There is no need to analyze ld.so because we don't map in any of 92 * its dependencies. However we may map these dependencies in later 93 * (as if ld.so had dlopened them), so initialize the plt and the 94 * permission information. 95 */ 96 if (PLTGOT(lmp)) 97 elf_plt_init((PLTGOT(lmp)), (caddr_t)lmp); 98 } 99 100 /* 101 * elf_plt_write() will test to see how far away our destination 102 * address lies. If it is close enough that a branch can 103 * be used instead of a jmpl - we will fill the plt in with 104 * single branch. The branches are much quicker then 105 * a jmpl instruction - see bug#4356879 for further 106 * details. 107 * 108 * NOTE: we pass in both a 'pltaddr' and a 'vpltaddr' since 109 * librtld/dldump update PLT's who's physical 110 * address is not the same as the 'virtual' runtime 111 * address. 112 */ 113 Pltbindtype 114 /* ARGSUSED4 */ 115 elf_plt_write(uintptr_t addr, uintptr_t vaddr, void *rptr, uintptr_t symval, 116 Xword pltndx) 117 { 118 Rela *rel = (Rela *)rptr; 119 uintptr_t vpltaddr, pltaddr; 120 long disp; 121 122 123 pltaddr = addr + rel->r_offset; 124 vpltaddr = vaddr + rel->r_offset; 125 disp = symval - vpltaddr - 4; 126 127 /* 128 * Test if the destination address is close enough to use 129 * a ba,a... instruction to reach it. 130 */ 131 if (S_INRANGE(disp, 23) && !(rtld_flags & RT_FL_NOBAPLT)) { 132 uint_t *pltent, bainstr; 133 Pltbindtype rc; 134 135 pltent = (uint_t *)pltaddr; 136 /* 137 * The 138 * 139 * ba,a,pt %icc, <dest> 140 * 141 * is the most efficient of the PLT's. If we 142 * are within +-20 bits *and* running on a 143 * v8plus architecture - use that branch. 144 */ 145 if ((at_flags & EF_SPARC_32PLUS) && 146 S_INRANGE(disp, 20)) { 147 bainstr = M_BA_A_PT; /* ba,a,pt %icc,<dest> */ 148 bainstr |= (S_MASK(19) & (disp >> 2)); 149 rc = PLT_T_21D; 150 DBG_CALL(pltcnt21d++); 151 } else { 152 /* 153 * Otherwise - we fall back to the good old 154 * 155 * ba,a <dest> 156 * 157 * Which still beats a jmpl instruction. 158 */ 159 bainstr = M_BA_A; /* ba,a <dest> */ 160 bainstr |= (S_MASK(22) & (disp >> 2)); 161 rc = PLT_T_24D; 162 DBG_CALL(pltcnt24d++); 163 } 164 165 pltent[2] = M_NOP; /* nop instr */ 166 pltent[1] = bainstr; 167 168 iflush_range((char *)(&pltent[1]), 4); 169 pltent[0] = M_NOP; /* nop instr */ 170 iflush_range((char *)(&pltent[0]), 4); 171 return (rc); 172 } 173 174 /* 175 * The PLT destination is not in reach of 176 * a branch instruction - so we fall back 177 * to a 'jmpl' sequence. 178 */ 179 plt_full_range(pltaddr, symval); 180 DBG_CALL(pltcntfull++); 181 return (PLT_T_FULL); 182 } 183 184 185 /* 186 * Local storage space created on the stack created for this glue 187 * code includes space for: 188 * 0x4 pointer to dyn_data 189 * 0x4 size prev stack frame 190 */ 191 static const uchar_t dyn_plt_template[] = { 192 /* 0x00 */ 0x80, 0x90, 0x00, 0x1e, /* tst %fp */ 193 /* 0x04 */ 0x02, 0x80, 0x00, 0x04, /* be 0x14 */ 194 /* 0x08 */ 0x82, 0x27, 0x80, 0x0e, /* sub %sp, %fp, %g1 */ 195 /* 0x0c */ 0x10, 0x80, 0x00, 0x03, /* ba 0x20 */ 196 /* 0x10 */ 0x01, 0x00, 0x00, 0x00, /* nop */ 197 /* 0x14 */ 0x82, 0x10, 0x20, 0x60, /* mov 0x60, %g1 */ 198 /* 0x18 */ 0x9d, 0xe3, 0xbf, 0x98, /* save %sp, -0x68, %sp */ 199 /* 0x1c */ 0xc2, 0x27, 0xbf, 0xf8, /* st %g1, [%fp + -0x8] */ 200 /* 0x20 */ 0x03, 0x00, 0x00, 0x00, /* sethi %hi(val), %g1 */ 201 /* 0x24 */ 0x82, 0x10, 0x60, 0x00, /* or %g1, %lo(val), %g1 */ 202 /* 0x28 */ 0x40, 0x00, 0x00, 0x00, /* call <rel_addr> */ 203 /* 0x2c */ 0xc2, 0x27, 0xbf, 0xfc /* st %g1, [%fp + -0x4] */ 204 }; 205 206 int dyn_plt_ent_size = sizeof (dyn_plt_template) + 207 sizeof (uintptr_t) + /* reflmp */ 208 sizeof (uintptr_t) + /* deflmp */ 209 sizeof (ulong_t) + /* symndx */ 210 sizeof (ulong_t) + /* sb_flags */ 211 sizeof (Sym); /* symdef */ 212 213 /* 214 * the dynamic plt entry is: 215 * 216 * tst %fp 217 * be 1f 218 * nop 219 * sub %sp, %fp, %g1 220 * ba 2f 221 * nop 222 * 1: 223 * mov SA(MINFRAME), %g1 ! if %fp is null this is the 224 * ! 'minimum stack'. %fp is null 225 * ! on the initial stack frame 226 * 2: 227 * save %sp, -(SA(MINFRAME) + 2 * CLONGSIZE), %sp 228 * st %g1, [%fp + -0x8] ! store prev_stack size in [%fp - 8] 229 * sethi %hi(dyn_data), %g1 230 * or %g1, %lo(dyn_data), %g1 231 * call elf_plt_trace 232 * st %g1, [%fp + -0x4] ! store dyn_data ptr in [%fp - 4] 233 * dyn data: 234 * uintptr_t reflmp 235 * uintptr_t deflmp 236 * ulong_t symndx 237 * ulong_t sb_flags 238 * Sym symdef 239 */ 240 static caddr_t 241 elf_plt_trace_write(caddr_t addr, Rela *rptr, Rt_map *rlmp, Rt_map *dlmp, 242 Sym *sym, ulong_t symndx, ulong_t pltndx, caddr_t to, ulong_t sb_flags, 243 int *fail) 244 { 245 extern ulong_t elf_plt_trace(); 246 uintptr_t dyn_plt, *dyndata; 247 248 /* 249 * If both pltenter & pltexit have been disabled there 250 * there is no reason to even create the glue code. 251 */ 252 if ((sb_flags & (LA_SYMB_NOPLTENTER | LA_SYMB_NOPLTEXIT)) == 253 (LA_SYMB_NOPLTENTER | LA_SYMB_NOPLTEXIT)) { 254 (void) elf_plt_write((uintptr_t)addr, (uintptr_t)addr, 255 rptr, (uintptr_t)to, pltndx); 256 return (to); 257 } 258 259 /* 260 * We only need to add the glue code if there is an auditing 261 * library that is interested in this binding. 262 */ 263 dyn_plt = (uintptr_t)AUDINFO(rlmp)->ai_dynplts + 264 (pltndx * dyn_plt_ent_size); 265 266 /* 267 * Have we initialized this dynamic plt entry yet? If we haven't do it 268 * now. Otherwise this function has been called before, but from a 269 * different plt (ie. from another shared object). In that case 270 * we just set the plt to point to the new dyn_plt. 271 */ 272 if (*(uint_t *)dyn_plt == 0) { 273 Sym *symp; 274 Xword symvalue; 275 Lm_list *lml = LIST(rlmp); 276 277 (void) memcpy((void *)dyn_plt, dyn_plt_template, 278 sizeof (dyn_plt_template)); 279 dyndata = (uintptr_t *)(dyn_plt + sizeof (dyn_plt_template)); 280 281 /* 282 * relocating: 283 * sethi %hi(dyndata), %g1 284 */ 285 symvalue = (Xword)dyndata; 286 if (do_reloc(R_SPARC_HI22, (uchar_t *)(dyn_plt + 0x20), 287 &symvalue, MSG_ORIG(MSG_SYM_LADYNDATA), 288 MSG_ORIG(MSG_SPECFIL_DYNPLT), lml) == 0) { 289 *fail = 1; 290 return (0); 291 } 292 293 /* 294 * relocating: 295 * or %g1, %lo(dyndata), %g1 296 */ 297 symvalue = (Xword)dyndata; 298 if (do_reloc(R_SPARC_LO10, (uchar_t *)(dyn_plt + 0x24), 299 &symvalue, MSG_ORIG(MSG_SYM_LADYNDATA), 300 MSG_ORIG(MSG_SPECFIL_DYNPLT), lml) == 0) { 301 *fail = 1; 302 return (0); 303 } 304 305 /* 306 * relocating: 307 * call elf_plt_trace 308 */ 309 symvalue = (Xword)((uintptr_t)&elf_plt_trace - 310 (dyn_plt + 0x28)); 311 if (do_reloc(R_SPARC_WDISP30, (uchar_t *)(dyn_plt + 0x28), 312 &symvalue, MSG_ORIG(MSG_SYM_ELFPLTTRACE), 313 MSG_ORIG(MSG_SPECFIL_DYNPLT), lml) == 0) { 314 *fail = 1; 315 return (0); 316 } 317 318 *dyndata++ = (uintptr_t)rlmp; 319 *dyndata++ = (uintptr_t)dlmp; 320 *(ulong_t *)dyndata++ = symndx; 321 *(ulong_t *)dyndata++ = sb_flags; 322 symp = (Sym *)dyndata; 323 *symp = *sym; 324 symp->st_name += (Word)STRTAB(dlmp); 325 symp->st_value = (Addr)to; 326 327 iflush_range((void *)dyn_plt, sizeof (dyn_plt_template)); 328 } 329 330 (void) elf_plt_write((uintptr_t)addr, (uintptr_t)addr, 331 rptr, (uintptr_t)dyn_plt, 0); 332 return ((caddr_t)dyn_plt); 333 } 334 335 336 /* 337 * Function binding routine - invoked on the first call to a function through 338 * the procedure linkage table; 339 * passes first through an assembly language interface. 340 * 341 * Takes the address of the PLT entry where the call originated, 342 * the offset into the relocation table of the associated 343 * relocation entry and the address of the link map (rt_private_map struct) 344 * for the entry. 345 * 346 * Returns the address of the function referenced after re-writing the PLT 347 * entry to invoke the function directly. 348 * 349 * On error, causes process to terminate with a signal. 350 */ 351 ulong_t 352 elf_bndr(Rt_map *lmp, ulong_t pltoff, caddr_t from) 353 { 354 Rt_map *nlmp, *llmp; 355 ulong_t addr, vaddr, reloff, symval, rsymndx; 356 char *name; 357 Rela *rptr; 358 Sym *sym, *nsym; 359 Xword pltndx; 360 uint_t binfo, sb_flags = 0; 361 Slookup sl; 362 Pltbindtype pbtype; 363 int entry, lmflags; 364 uint_t dbg_class; 365 Lm_list *lml = LIST(lmp); 366 367 /* 368 * For compatibility with libthread (TI_VERSION 1) we track the entry 369 * value. A zero value indicates we have recursed into ld.so.1 to 370 * further process a locking request. Under this recursion we disable 371 * tsort and cleanup activities. 372 */ 373 entry = enter(); 374 375 if ((lmflags = lml->lm_flags) & LML_FLG_RTLDLM) { 376 dbg_class = dbg_desc->d_class; 377 dbg_desc->d_class = 0; 378 } 379 380 /* 381 * Must calculate true plt relocation address from reloc. 382 * Take offset, subtract number of reserved PLT entries, and divide 383 * by PLT entry size, which should give the index of the plt 384 * entry (and relocation entry since they have been defined to be 385 * in the same order). Then we must multiply by the size of 386 * a relocation entry, which will give us the offset of the 387 * plt relocation entry from the start of them given by JMPREL(lm). 388 */ 389 addr = pltoff - M_PLT_RESERVSZ; 390 pltndx = addr / M_PLT_ENTSIZE; 391 392 /* 393 * Perform some basic sanity checks. If we didn't get a load map 394 * or the plt offset is invalid then its possible someone has walked 395 * over the plt entries or jumped to plt0 out of the blue. 396 */ 397 if (!lmp || ((addr % M_PLT_ENTSIZE) != 0)) { 398 eprintf(lml, ERR_FATAL, MSG_INTL(MSG_REL_PLTREF), 399 conv_reloc_SPARC_type(R_SPARC_JMP_SLOT, 0), 400 EC_NATPTR(lmp), EC_XWORD(pltoff), EC_NATPTR(from)); 401 rtldexit(lml, 1); 402 } 403 reloff = pltndx * sizeof (Rela); 404 405 /* 406 * Use relocation entry to get symbol table entry and symbol name. 407 */ 408 addr = (ulong_t)JMPREL(lmp); 409 rptr = (Rela *)(addr + reloff); 410 rsymndx = ELF_R_SYM(rptr->r_info); 411 sym = (Sym *)((ulong_t)SYMTAB(lmp) + (rsymndx * SYMENT(lmp))); 412 name = (char *)(STRTAB(lmp) + sym->st_name); 413 414 /* 415 * Determine the last link-map of this list, this'll be the starting 416 * point for any tsort() processing. 417 */ 418 llmp = lml->lm_tail; 419 420 /* 421 * Find definition for symbol. 422 */ 423 sl.sl_name = name; 424 sl.sl_cmap = lmp; 425 sl.sl_imap = lml->lm_head; 426 sl.sl_hash = 0; 427 sl.sl_rsymndx = rsymndx; 428 sl.sl_flags = LKUP_DEFT; 429 430 if ((nsym = lookup_sym(&sl, &nlmp, &binfo)) == 0) { 431 eprintf(lml, ERR_FATAL, MSG_INTL(MSG_REL_NOSYM), NAME(lmp), 432 demangle(name)); 433 rtldexit(lml, 1); 434 } 435 436 symval = nsym->st_value; 437 if (!(FLAGS(nlmp) & FLG_RT_FIXED) && 438 (nsym->st_shndx != SHN_ABS)) 439 symval += ADDR(nlmp); 440 if ((lmp != nlmp) && ((FLAGS1(nlmp) & FL1_RT_NOINIFIN) == 0)) { 441 /* 442 * Record that this new link map is now bound to the caller. 443 */ 444 if (bind_one(lmp, nlmp, BND_REFER) == 0) 445 rtldexit(lml, 1); 446 } 447 448 if ((lml->lm_tflags | FLAGS1(lmp)) & LML_TFLG_AUD_SYMBIND) { 449 ulong_t symndx = (((uintptr_t)nsym - 450 (uintptr_t)SYMTAB(nlmp)) / SYMENT(nlmp)); 451 452 symval = audit_symbind(lmp, nlmp, nsym, symndx, symval, 453 &sb_flags); 454 } 455 456 if (FLAGS(lmp) & FLG_RT_FIXED) 457 vaddr = 0; 458 else 459 vaddr = ADDR(lmp); 460 461 pbtype = PLT_T_NONE; 462 if (!(rtld_flags & RT_FL_NOBIND)) { 463 if (((lml->lm_tflags | FLAGS1(lmp)) & 464 (LML_TFLG_AUD_PLTENTER | LML_TFLG_AUD_PLTEXIT)) && 465 AUDINFO(lmp)->ai_dynplts) { 466 int fail = 0; 467 ulong_t symndx = (((uintptr_t)nsym - 468 (uintptr_t)SYMTAB(nlmp)) / SYMENT(nlmp)); 469 470 symval = (ulong_t)elf_plt_trace_write((caddr_t)vaddr, 471 rptr, lmp, nlmp, nsym, symndx, pltndx, 472 (caddr_t)symval, sb_flags, &fail); 473 if (fail) 474 rtldexit(lml, 1); 475 } else { 476 /* 477 * Write standard PLT entry to jump directly 478 * to newly bound function. 479 */ 480 pbtype = elf_plt_write((uintptr_t)vaddr, 481 (uintptr_t)vaddr, rptr, symval, pltndx); 482 } 483 } 484 485 /* 486 * Print binding information and rebuild PLT entry. 487 */ 488 DBG_CALL(Dbg_bind_global(lmp, (Addr)from, (Off)(from - ADDR(lmp)), 489 pltndx, pbtype, nlmp, (Addr)symval, nsym->st_value, name, binfo)); 490 491 /* 492 * Complete any processing for newly loaded objects. Note we don't 493 * know exactly where any new objects are loaded (we know the object 494 * that supplied the symbol, but others may have been loaded lazily as 495 * we searched for the symbol), so sorting starts from the last 496 * link-map know on entry to this routine. 497 */ 498 if (entry) 499 load_completion(llmp, lmp); 500 501 /* 502 * Some operations like dldump() or dlopen()'ing a relocatable object 503 * result in objects being loaded on rtld's link-map, make sure these 504 * objects are initialized also. 505 */ 506 if ((LIST(nlmp)->lm_flags & LML_FLG_RTLDLM) && LIST(nlmp)->lm_init) 507 load_completion(nlmp, 0); 508 509 /* 510 * If the object we've bound to is in the process of being initialized 511 * by another thread, determine whether we should block. 512 */ 513 is_dep_ready(nlmp, lmp, DBG_WAIT_SYMBOL); 514 515 /* 516 * Make sure the object to which we've bound has had it's .init fired. 517 * Cleanup before return to user code. 518 */ 519 if (entry) { 520 is_dep_init(nlmp, lmp); 521 leave(lml); 522 } 523 524 if (lmflags & LML_FLG_RTLDLM) 525 dbg_desc->d_class = dbg_class; 526 527 return (symval); 528 } 529 530 531 /* 532 * Read and process the relocations for one link object, we assume all 533 * relocation sections for loadable segments are stored contiguously in 534 * the file. 535 */ 536 int 537 elf_reloc(Rt_map *lmp, uint_t plt) 538 { 539 ulong_t relbgn, relend, relsiz, basebgn, pltbgn, pltend; 540 ulong_t roffset, rsymndx, psymndx = 0, etext = ETEXT(lmp); 541 ulong_t emap, dsymndx, pltndx; 542 uchar_t rtype; 543 long reladd, value, pvalue; 544 Sym *symref, *psymref, *symdef, *psymdef; 545 char *name, *pname; 546 Rt_map *_lmp, *plmp; 547 int textrel = 0, ret = 1, noplt = 0; 548 long relacount = RELACOUNT(lmp); 549 Rela *rel; 550 Pltbindtype pbtype; 551 uint_t binfo, pbinfo; 552 Alist *bound = 0; 553 554 /* 555 * If an object has any DT_REGISTER entries associated with 556 * it, they are processed now. 557 */ 558 if ((plt == 0) && (FLAGS(lmp) & FLG_RT_REGSYMS)) { 559 if (elf_regsyms(lmp) == 0) 560 return (0); 561 } 562 563 /* 564 * Although only necessary for lazy binding, initialize the first 565 * procedure linkage table entry to go to elf_rtbndr(). dbx(1) seems 566 * to find this useful. 567 */ 568 if ((plt == 0) && PLTGOT(lmp)) { 569 if ((ulong_t)PLTGOT(lmp) < etext) { 570 if (elf_set_prot(lmp, PROT_WRITE) == 0) 571 return (0); 572 textrel = 1; 573 } 574 elf_plt_init(PLTGOT(lmp), (caddr_t)lmp); 575 } 576 577 /* 578 * Initialize the plt start and end addresses. 579 */ 580 if ((pltbgn = (ulong_t)JMPREL(lmp)) != 0) 581 pltend = pltbgn + (ulong_t)(PLTRELSZ(lmp)); 582 583 /* 584 * If we've been called upon to promote an RTLD_LAZY object to an 585 * RTLD_NOW then we're only interested in scaning the .plt table. 586 */ 587 if (plt) { 588 relbgn = pltbgn; 589 relend = pltend; 590 } else { 591 /* 592 * The relocation sections appear to the run-time linker as a 593 * single table. Determine the address of the beginning and end 594 * of this table. There are two different interpretations of 595 * the ABI at this point: 596 * 597 * o The REL table and its associated RELSZ indicate the 598 * concatenation of *all* relocation sections (this is the 599 * model our link-editor constructs). 600 * 601 * o The REL table and its associated RELSZ indicate the 602 * concatenation of all *but* the .plt relocations. These 603 * relocations are specified individually by the JMPREL and 604 * PLTRELSZ entries. 605 * 606 * Determine from our knowledege of the relocation range and 607 * .plt range, the range of the total relocation table. Note 608 * that one other ABI assumption seems to be that the .plt 609 * relocations always follow any other relocations, the 610 * following range checking drops that assumption. 611 */ 612 relbgn = (ulong_t)(REL(lmp)); 613 relend = relbgn + (ulong_t)(RELSZ(lmp)); 614 if (pltbgn) { 615 if (!relbgn || (relbgn > pltbgn)) 616 relbgn = pltbgn; 617 if (!relbgn || (relend < pltend)) 618 relend = pltend; 619 } 620 } 621 if (!relbgn || (relbgn == relend)) { 622 DBG_CALL(Dbg_reloc_run(lmp, 0, plt, DBG_REL_NONE)); 623 return (1); 624 } 625 626 relsiz = (ulong_t)(RELENT(lmp)); 627 basebgn = ADDR(lmp); 628 emap = ADDR(lmp) + MSIZE(lmp); 629 630 DBG_CALL(Dbg_reloc_run(lmp, M_REL_SHT_TYPE, plt, DBG_REL_START)); 631 632 /* 633 * If we're processing in lazy mode there is no need to scan the 634 * .rela.plt table. 635 */ 636 if (pltbgn && ((MODE(lmp) & RTLD_NOW) == 0)) 637 noplt = 1; 638 639 /* 640 * Loop through relocations. 641 */ 642 while (relbgn < relend) { 643 Addr vaddr; 644 uint_t sb_flags = 0; 645 646 rtype = ELF_R_TYPE(((Rela *)relbgn)->r_info); 647 648 /* 649 * If this is a RELATIVE relocation in a shared object (the 650 * common case), and if we are not debugging, then jump into a 651 * tighter relocation loop (elf_reloc_relative). Only make the 652 * jump if we've been given a hint on the number of relocations. 653 */ 654 if ((rtype == R_SPARC_RELATIVE) && 655 ((FLAGS(lmp) & FLG_RT_FIXED) == 0) && (DBG_ENABLED == 0)) { 656 /* 657 * It's possible that the relative relocation block 658 * has relocations against the text segment as well 659 * as the data segment. Since our optimized relocation 660 * engine does not check which segment the relocation 661 * is against - just mprotect it now if it's been 662 * marked as containing TEXTREL's. 663 */ 664 if ((textrel == 0) && (FLAGS1(lmp) & FL1_RT_TEXTREL)) { 665 if (elf_set_prot(lmp, PROT_WRITE) == 0) { 666 ret = 0; 667 break; 668 } 669 textrel = 1; 670 } 671 if (relacount) { 672 relbgn = elf_reloc_relacount(relbgn, relacount, 673 relsiz, basebgn); 674 relacount = 0; 675 } else { 676 relbgn = elf_reloc_relative(relbgn, relend, 677 relsiz, basebgn, etext, emap); 678 } 679 if (relbgn >= relend) 680 break; 681 rtype = ELF_R_TYPE(((Rela *)relbgn)->r_info); 682 } 683 684 roffset = ((Rela *)relbgn)->r_offset; 685 686 reladd = (long)(((Rela *)relbgn)->r_addend); 687 rsymndx = ELF_R_SYM(((Rela *)relbgn)->r_info); 688 689 rel = (Rela *)relbgn; 690 relbgn += relsiz; 691 692 /* 693 * Optimizations. 694 */ 695 if (rtype == R_SPARC_NONE) 696 continue; 697 if (noplt && ((ulong_t)rel >= pltbgn) && 698 ((ulong_t)rel < pltend)) { 699 relbgn = pltend; 700 continue; 701 } 702 703 if (rtype != R_SPARC_REGISTER) { 704 /* 705 * If this is a shared object, add the base address 706 * to offset. 707 */ 708 if (!(FLAGS(lmp) & FLG_RT_FIXED)) 709 roffset += basebgn; 710 711 /* 712 * If this relocation is not against part of the image 713 * mapped into memory we skip it. 714 */ 715 if ((roffset < ADDR(lmp)) || (roffset > (ADDR(lmp) + 716 MSIZE(lmp)))) { 717 elf_reloc_bad(lmp, (void *)rel, rtype, roffset, 718 rsymndx); 719 continue; 720 } 721 } 722 723 /* 724 * If we're promoting plts determine if this one has already 725 * been written. An uninitialized plts' second instruction is a 726 * branch. 727 */ 728 if (plt) { 729 ulong_t *_roffset = (ulong_t *)roffset; 730 731 _roffset++; 732 if ((*_roffset & (~(S_MASK(22)))) != M_BA_A) 733 continue; 734 } 735 736 binfo = 0; 737 pltndx = (ulong_t)-1; 738 pbtype = PLT_T_NONE; 739 /* 740 * If a symbol index is specified then get the symbol table 741 * entry, locate the symbol definition, and determine its 742 * address. 743 */ 744 if (rsymndx) { 745 /* 746 * Get the local symbol table entry. 747 */ 748 symref = (Sym *)((ulong_t)SYMTAB(lmp) + 749 (rsymndx * SYMENT(lmp))); 750 751 /* 752 * If this is a local symbol, just use the base address. 753 * (we should have no local relocations in the 754 * executable). 755 */ 756 if (ELF_ST_BIND(symref->st_info) == STB_LOCAL) { 757 value = basebgn; 758 name = (char *)0; 759 760 /* 761 * Special case TLS relocations. 762 */ 763 if (rtype == R_SPARC_TLS_DTPMOD32) { 764 /* 765 * Use the TLS modid. 766 */ 767 value = TLSMODID(lmp); 768 769 } else if (rtype == R_SPARC_TLS_TPOFF32) { 770 if ((value = elf_static_tls(lmp, symref, 771 rel, rtype, 0, roffset, 0)) == 0) { 772 ret = 0; 773 break; 774 } 775 } 776 } else { 777 /* 778 * If the symbol index is equal to the previous 779 * symbol index relocation we processed then 780 * reuse the previous values. (Note that there 781 * have been cases where a relocation exists 782 * against a copy relocation symbol, our ld(1) 783 * should optimize this away, but make sure we 784 * don't use the same symbol information should 785 * this case exist). 786 */ 787 if ((rsymndx == psymndx) && 788 (rtype != R_SPARC_COPY)) { 789 /* LINTED */ 790 if (psymdef == 0) { 791 DBG_CALL(Dbg_bind_weak(lmp, 792 (Addr)roffset, (Addr) 793 (roffset - basebgn), name)); 794 continue; 795 } 796 /* LINTED */ 797 value = pvalue; 798 /* LINTED */ 799 name = pname; 800 symdef = psymdef; 801 /* LINTED */ 802 symref = psymref; 803 /* LINTED */ 804 _lmp = plmp; 805 /* LINTED */ 806 binfo = pbinfo; 807 808 if ((LIST(_lmp)->lm_tflags | 809 FLAGS1(_lmp)) & 810 LML_TFLG_AUD_SYMBIND) { 811 value = audit_symbind(lmp, _lmp, 812 /* LINTED */ 813 symdef, dsymndx, value, 814 &sb_flags); 815 } 816 } else { 817 Slookup sl; 818 uchar_t bind; 819 820 /* 821 * Lookup the symbol definition. 822 */ 823 name = (char *)(STRTAB(lmp) + 824 symref->st_name); 825 826 sl.sl_name = name; 827 sl.sl_cmap = lmp; 828 sl.sl_imap = 0; 829 sl.sl_hash = 0; 830 sl.sl_rsymndx = rsymndx; 831 832 if (rtype == R_SPARC_COPY) 833 sl.sl_flags = LKUP_COPY; 834 else 835 sl.sl_flags = LKUP_DEFT; 836 837 sl.sl_flags |= LKUP_ALLCNTLIST; 838 839 if (rtype != R_SPARC_JMP_SLOT) 840 sl.sl_flags |= LKUP_SPEC; 841 842 bind = ELF_ST_BIND(symref->st_info); 843 if (bind == STB_WEAK) 844 sl.sl_flags |= LKUP_WEAK; 845 846 symdef = lookup_sym(&sl, &_lmp, &binfo); 847 848 /* 849 * If the symbol is not found and the 850 * reference was not to a weak symbol, 851 * report an error. Weak references 852 * may be unresolved. 853 */ 854 if (symdef == 0) { 855 Lm_list *lml = LIST(lmp); 856 857 if (bind != STB_WEAK) { 858 if (lml->lm_flags & 859 LML_FLG_IGNRELERR) { 860 continue; 861 } else if (lml->lm_flags & 862 LML_FLG_TRC_WARN) { 863 (void) printf(MSG_INTL( 864 MSG_LDD_SYM_NFOUND), 865 demangle(name), 866 NAME(lmp)); 867 continue; 868 } else { 869 DBG_CALL(Dbg_reloc_in(lml, 870 ELF_DBG_RTLD, M_MACH, 871 M_REL_SHT_TYPE, rel, 872 NULL, name)); 873 eprintf(lml, ERR_FATAL, 874 MSG_INTL(MSG_REL_NOSYM), 875 NAME(lmp), 876 demangle(name)); 877 ret = 0; 878 break; 879 } 880 } else { 881 psymndx = rsymndx; 882 psymdef = 0; 883 884 DBG_CALL(Dbg_bind_weak(lmp, 885 (Addr)roffset, (Addr) 886 (roffset - basebgn), name)); 887 continue; 888 } 889 } 890 891 /* 892 * If symbol was found in an object 893 * other than the referencing object 894 * then record the binding. 895 */ 896 if ((lmp != _lmp) && ((FLAGS1(_lmp) & 897 FL1_RT_NOINIFIN) == 0)) { 898 if (alist_test(&bound, _lmp, 899 sizeof (Rt_map *), 900 AL_CNT_RELBIND) == 0) { 901 ret = 0; 902 break; 903 } 904 } 905 906 /* 907 * Calculate the location of definition; 908 * symbol value plus base address of 909 * containing shared object. 910 */ 911 value = symdef->st_value; 912 if (!(FLAGS(_lmp) & FLG_RT_FIXED) && 913 (symdef->st_shndx != SHN_ABS) && 914 (ELF_ST_TYPE(symdef->st_info) != 915 STT_TLS)) 916 value += ADDR(_lmp); 917 918 /* 919 * Retain this symbol index and the 920 * value in case it can be used for the 921 * subsequent relocations. 922 */ 923 if (rtype != R_SPARC_COPY) { 924 psymndx = rsymndx; 925 pvalue = value; 926 pname = name; 927 psymdef = symdef; 928 psymref = symref; 929 plmp = _lmp; 930 pbinfo = binfo; 931 } 932 if ((LIST(_lmp)->lm_tflags | 933 FLAGS1(_lmp)) & 934 LML_TFLG_AUD_SYMBIND) { 935 dsymndx = (((uintptr_t)symdef - 936 (uintptr_t)SYMTAB(_lmp)) / 937 SYMENT(_lmp)); 938 value = audit_symbind(lmp, _lmp, 939 symdef, dsymndx, value, 940 &sb_flags); 941 } 942 } 943 944 /* 945 * If relocation is PC-relative, subtract 946 * offset address. 947 */ 948 if (IS_PC_RELATIVE(rtype)) 949 value -= roffset; 950 951 /* 952 * Special case TLS relocations. 953 */ 954 if (rtype == R_SPARC_TLS_DTPMOD32) { 955 /* 956 * Relocation value is the TLS modid. 957 */ 958 value = TLSMODID(_lmp); 959 960 } else if (rtype == R_SPARC_TLS_TPOFF32) { 961 if ((value = elf_static_tls(_lmp, 962 symdef, rel, rtype, name, roffset, 963 value)) == 0) { 964 ret = 0; 965 break; 966 } 967 } 968 } 969 } else { 970 /* 971 * Special cases. 972 */ 973 if (rtype == R_SPARC_REGISTER) { 974 /* 975 * A register symbol associated with symbol 976 * index 0 is initialized (i.e. relocated) to 977 * a constant in the r_addend field rather than 978 * to a symbol value. 979 */ 980 value = 0; 981 982 } else if (rtype == R_SPARC_TLS_DTPMOD32) { 983 /* 984 * TLS relocation value is the TLS modid. 985 */ 986 value = TLSMODID(lmp); 987 } else 988 value = basebgn; 989 name = (char *)0; 990 } 991 992 DBG_CALL(Dbg_reloc_in(LIST(lmp), ELF_DBG_RTLD, M_MACH, 993 M_REL_SHT_TYPE, rel, NULL, name)); 994 995 /* 996 * If this object has relocations in the text segment, turn 997 * off the write protect. 998 */ 999 if ((rtype != R_SPARC_REGISTER) && (roffset < etext) && 1000 (textrel == 0)) { 1001 if (elf_set_prot(lmp, PROT_WRITE) == 0) { 1002 ret = 0; 1003 break; 1004 } 1005 textrel = 1; 1006 } 1007 1008 /* 1009 * Call relocation routine to perform required relocation. 1010 */ 1011 switch (rtype) { 1012 case R_SPARC_REGISTER: 1013 /* 1014 * The v9 ABI 4.2.4 says that system objects may, 1015 * but are not required to, use register symbols 1016 * to inidcate how they use global registers. Thus 1017 * at least %g6, %g7 must be allowed in addition 1018 * to %g2 and %g3. 1019 */ 1020 value += reladd; 1021 if (roffset == STO_SPARC_REGISTER_G1) { 1022 set_sparc_g1(value); 1023 } else if (roffset == STO_SPARC_REGISTER_G2) { 1024 set_sparc_g2(value); 1025 } else if (roffset == STO_SPARC_REGISTER_G3) { 1026 set_sparc_g3(value); 1027 } else if (roffset == STO_SPARC_REGISTER_G4) { 1028 set_sparc_g4(value); 1029 } else if (roffset == STO_SPARC_REGISTER_G5) { 1030 set_sparc_g5(value); 1031 } else if (roffset == STO_SPARC_REGISTER_G6) { 1032 set_sparc_g6(value); 1033 } else if (roffset == STO_SPARC_REGISTER_G7) { 1034 set_sparc_g7(value); 1035 } else { 1036 eprintf(LIST(lmp), ERR_FATAL, 1037 MSG_INTL(MSG_REL_BADREG), NAME(lmp), 1038 EC_ADDR(roffset)); 1039 ret = 0; 1040 break; 1041 } 1042 1043 DBG_CALL(Dbg_reloc_apply_reg(LIST(lmp), ELF_DBG_RTLD, 1044 M_MACH, (Xword)roffset, (Xword)value)); 1045 break; 1046 case R_SPARC_COPY: 1047 if (elf_copy_reloc(name, symref, lmp, (void *)roffset, 1048 symdef, _lmp, (const void *)value) == 0) 1049 ret = 0; 1050 break; 1051 case R_SPARC_JMP_SLOT: 1052 pltndx = ((ulong_t)rel - 1053 (uintptr_t)JMPREL(lmp)) / relsiz; 1054 1055 if (FLAGS(lmp) & FLG_RT_FIXED) 1056 vaddr = 0; 1057 else 1058 vaddr = ADDR(lmp); 1059 1060 if (((LIST(lmp)->lm_tflags | FLAGS1(lmp)) & 1061 (LML_TFLG_AUD_PLTENTER | LML_TFLG_AUD_PLTEXIT)) && 1062 AUDINFO(lmp)->ai_dynplts) { 1063 int fail = 0; 1064 ulong_t symndx = (((uintptr_t)symdef - 1065 (uintptr_t)SYMTAB(_lmp)) / 1066 SYMENT(_lmp)); 1067 1068 (void) elf_plt_trace_write((caddr_t)vaddr, 1069 (Rela *)rel, lmp, _lmp, symdef, symndx, 1070 pltndx, (caddr_t)value, sb_flags, &fail); 1071 if (fail) 1072 ret = 0; 1073 } else { 1074 /* 1075 * Write standard PLT entry to jump directly 1076 * to newly bound function. 1077 */ 1078 DBG_CALL(Dbg_reloc_apply_val(LIST(lmp), 1079 ELF_DBG_RTLD, (Xword)roffset, 1080 (Xword)value)); 1081 pbtype = elf_plt_write((uintptr_t)vaddr, 1082 (uintptr_t)vaddr, (void *)rel, value, 1083 pltndx); 1084 } 1085 break; 1086 default: 1087 value += reladd; 1088 1089 /* 1090 * Write the relocation out. If this relocation is a 1091 * common basic write, skip the doreloc() engine. 1092 */ 1093 if ((rtype == R_SPARC_GLOB_DAT) || 1094 (rtype == R_SPARC_32)) { 1095 if (roffset & 0x3) { 1096 eprintf(LIST(lmp), ERR_FATAL, 1097 MSG_INTL(MSG_REL_NONALIGN), 1098 conv_reloc_SPARC_type(rtype, 0), 1099 NAME(lmp), demangle(name), 1100 EC_OFF(roffset)); 1101 ret = 0; 1102 } else 1103 *(uint_t *)roffset += value; 1104 } else { 1105 if (do_reloc(rtype, (uchar_t *)roffset, 1106 (Xword *)&value, name, 1107 NAME(lmp), LIST(lmp)) == 0) 1108 ret = 0; 1109 } 1110 1111 /* 1112 * The value now contains the 'bit-shifted' value that 1113 * was or'ed into memory (this was set by do_reloc()). 1114 */ 1115 DBG_CALL(Dbg_reloc_apply_val(LIST(lmp), ELF_DBG_RTLD, 1116 (Xword)roffset, (Xword)value)); 1117 1118 /* 1119 * If this relocation is against a text segment, make 1120 * sure that the instruction cache is flushed. 1121 */ 1122 if (textrel) 1123 iflush_range((caddr_t)roffset, 0x4); 1124 } 1125 1126 if ((ret == 0) && 1127 ((LIST(lmp)->lm_flags & LML_FLG_TRC_WARN) == 0)) 1128 break; 1129 1130 if (binfo) { 1131 DBG_CALL(Dbg_bind_global(lmp, (Addr)roffset, 1132 (Off)(roffset - basebgn), pltndx, pbtype, 1133 _lmp, (Addr)value, symdef->st_value, name, binfo)); 1134 } 1135 } 1136 1137 return (relocate_finish(lmp, bound, textrel, ret)); 1138 } 1139 1140 /* 1141 * Provide a machine specific interface to the conversion routine. By calling 1142 * the machine specific version, rather than the generic version, we insure that 1143 * the data tables/strings for all known machine versions aren't dragged into 1144 * ld.so.1. 1145 */ 1146 const char * 1147 _conv_reloc_type(uint_t rel) 1148 { 1149 return (conv_reloc_SPARC_type(rel, 0)); 1150 } 1151