1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 /* 28 * Copyright (c) 1988 AT&T 29 * All Rights Reserved 30 */ 31 32 /* 33 * Utility routines for run-time linker. some are duplicated here from libc 34 * (with different names) to avoid name space collisions. 35 */ 36 #include <stdio.h> 37 #include <sys/types.h> 38 #include <sys/mman.h> 39 #include <sys/lwp.h> 40 #include <sys/debug.h> 41 #include <stdarg.h> 42 #include <fcntl.h> 43 #include <string.h> 44 #include <ctype.h> 45 #include <dlfcn.h> 46 #include <unistd.h> 47 #include <stdlib.h> 48 #include <sys/auxv.h> 49 #include <limits.h> 50 #include <debug.h> 51 #include <conv.h> 52 #include "_rtld.h" 53 #include "_audit.h" 54 #include "_elf.h" 55 #include "msg.h" 56 57 static int ld_flags_env(const char *, Word *, Word *, uint_t, int); 58 59 /* 60 * Null function used as place where a debugger can set a breakpoint. 61 */ 62 void 63 rtld_db_dlactivity(Lm_list *lml) 64 { 65 DBG_CALL(Dbg_util_dbnotify(lml, r_debug.rtd_rdebug.r_rdevent, 66 r_debug.rtd_rdebug.r_state)); 67 } 68 69 /* 70 * Null function used as place where debugger can set a pre .init 71 * processing breakpoint. 72 */ 73 void 74 rtld_db_preinit(Lm_list *lml) 75 { 76 DBG_CALL(Dbg_util_dbnotify(lml, r_debug.rtd_rdebug.r_rdevent, 77 r_debug.rtd_rdebug.r_state)); 78 } 79 80 /* 81 * Null function used as place where debugger can set a post .init 82 * processing breakpoint. 83 */ 84 void 85 rtld_db_postinit(Lm_list *lml) 86 { 87 DBG_CALL(Dbg_util_dbnotify(lml, r_debug.rtd_rdebug.r_rdevent, 88 r_debug.rtd_rdebug.r_state)); 89 } 90 91 /* 92 * Debugger Event Notification 93 * 94 * This function centralizes all debugger event notification (ala rtld_db). 95 * 96 * There's a simple intent, focused on insuring the primary link-map control 97 * list (or each link-map list) is consistent, and the indication that objects 98 * have been added or deleted from this list. Although an RD_ADD and RD_DELETE 99 * event are posted for each of these, most debuggers don't care, as their 100 * view is that these events simply convey an "inconsistent" state. 101 * 102 * We also don't want to trigger multiple RD_ADD/RD_DELETE events any time we 103 * enter ld.so.1. 104 * 105 * With auditors, we may be in the process of relocating a collection of 106 * objects, and will leave() ld.so.1 to call the auditor. At this point we 107 * must indicate an RD_CONSISTENT event, but librtld_db will not report an 108 * object to the debuggers until relocation processing has been completed on it. 109 * To allow for the collection of these objects that are pending relocation, an 110 * RD_ADD event is set after completing a series of relocations on the primary 111 * link-map control list. 112 * 113 * Set an RD_ADD/RD_DELETE event and indicate that an RD_CONSISTENT event is 114 * required later (LML_FLG_DBNOTIF): 115 * 116 * i the first time we add or delete an object to the primary link-map 117 * control list. 118 * ii the first time we move a secondary link-map control list to the primary 119 * link-map control list (effectively, this is like adding a group of 120 * objects to the primary link-map control list). 121 * 122 * Set an RD_CONSISTENT event when it is required (LML_FLG_DBNOTIF is set) and 123 * 124 * i each time we leave the runtime linker. 125 */ 126 void 127 rd_event(Lm_list *lml, rd_event_e event, r_state_e state) 128 { 129 void (*fptr)(Lm_list *); 130 131 switch (event) { 132 case RD_PREINIT: 133 fptr = rtld_db_preinit; 134 break; 135 case RD_POSTINIT: 136 fptr = rtld_db_postinit; 137 break; 138 case RD_DLACTIVITY: 139 switch (state) { 140 case RT_CONSISTENT: 141 lml->lm_flags &= ~LML_FLG_DBNOTIF; 142 143 /* 144 * Do we need to send a notification? 145 */ 146 if ((rtld_flags & RT_FL_DBNOTIF) == 0) 147 return; 148 rtld_flags &= ~RT_FL_DBNOTIF; 149 break; 150 case RT_ADD: 151 case RT_DELETE: 152 lml->lm_flags |= LML_FLG_DBNOTIF; 153 154 /* 155 * If we are already in an inconsistent state, no 156 * notification is required. 157 */ 158 if (rtld_flags & RT_FL_DBNOTIF) 159 return; 160 rtld_flags |= RT_FL_DBNOTIF; 161 break; 162 }; 163 fptr = rtld_db_dlactivity; 164 break; 165 default: 166 /* 167 * RD_NONE - do nothing 168 */ 169 break; 170 }; 171 172 /* 173 * Set event state and call 'notification' function. 174 * 175 * The debugging clients have previously been told about these 176 * notification functions and have set breakpoints on them if they 177 * are interested in the notification. 178 */ 179 r_debug.rtd_rdebug.r_state = state; 180 r_debug.rtd_rdebug.r_rdevent = event; 181 fptr(lml); 182 r_debug.rtd_rdebug.r_rdevent = RD_NONE; 183 } 184 185 #if defined(__sparc) || defined(__x86) 186 /* 187 * Stack Cleanup. 188 * 189 * This function is invoked to 'remove' arguments that were passed in on the 190 * stack. This is most likely if ld.so.1 was invoked directly. In that case 191 * we want to remove ld.so.1 as well as it's arguments from the argv[] array. 192 * Which means we then need to slide everything above it on the stack down 193 * accordingly. 194 * 195 * While the stack layout is platform specific - it just so happens that __x86, 196 * and __sparc platforms share the following initial stack layout. 197 * 198 * !_______________________! high addresses 199 * ! ! 200 * ! Information ! 201 * ! Block ! 202 * ! (size varies) ! 203 * !_______________________! 204 * ! 0 word ! 205 * !_______________________! 206 * ! Auxiliary ! 207 * ! vector ! 208 * ! 2 word entries ! 209 * ! ! 210 * !_______________________! 211 * ! 0 word ! 212 * !_______________________! 213 * ! Environment ! 214 * ! pointers ! 215 * ! ... ! 216 * ! (one word each) ! 217 * !_______________________! 218 * ! 0 word ! 219 * !_______________________! 220 * ! Argument ! low addresses 221 * ! pointers ! 222 * ! Argc words ! 223 * !_______________________! 224 * ! ! 225 * ! Argc ! 226 * !_______________________! 227 * ! ... ! 228 * 229 */ 230 static void 231 stack_cleanup(char **argv, char ***envp, auxv_t **auxv, int rmcnt) 232 { 233 int ndx; 234 long *argc; 235 char **oargv, **nargv; 236 char **oenvp, **nenvp; 237 auxv_t *oauxv, *nauxv; 238 239 /* 240 * Slide ARGV[] and update argc. The argv pointer remains the same, 241 * however slide the applications arguments over the arguments to 242 * ld.so.1. 243 */ 244 nargv = &argv[0]; 245 oargv = &argv[rmcnt]; 246 247 for (ndx = 0; oargv[ndx]; ndx++) 248 nargv[ndx] = oargv[ndx]; 249 nargv[ndx] = oargv[ndx]; 250 251 argc = (long *)((uintptr_t)argv - sizeof (long *)); 252 *argc -= rmcnt; 253 254 /* 255 * Slide ENVP[], and update the environment array pointer. 256 */ 257 ndx++; 258 nenvp = &nargv[ndx]; 259 oenvp = &oargv[ndx]; 260 *envp = nenvp; 261 262 for (ndx = 0; oenvp[ndx]; ndx++) 263 nenvp[ndx] = oenvp[ndx]; 264 nenvp[ndx] = oenvp[ndx]; 265 266 /* 267 * Slide AUXV[], and update the aux vector pointer. 268 */ 269 ndx++; 270 nauxv = (auxv_t *)&nenvp[ndx]; 271 oauxv = (auxv_t *)&oenvp[ndx]; 272 *auxv = nauxv; 273 274 for (ndx = 0; (oauxv[ndx].a_type != AT_NULL); ndx++) 275 nauxv[ndx] = oauxv[ndx]; 276 nauxv[ndx] = oauxv[ndx]; 277 } 278 #else 279 /* 280 * Verify that the above routine is appropriate for any new platforms. 281 */ 282 #error unsupported architecture! 283 #endif 284 285 /* 286 * The only command line argument recognized is -e, followed by a runtime 287 * linker environment variable. 288 */ 289 int 290 rtld_getopt(char **argv, char ***envp, auxv_t **auxv, Word *lmflags, 291 Word *lmtflags, int aout) 292 { 293 int ndx; 294 295 for (ndx = 1; argv[ndx]; ndx++) { 296 char *str; 297 298 if (argv[ndx][0] != '-') 299 break; 300 301 if (argv[ndx][1] == '\0') { 302 ndx++; 303 break; 304 } 305 306 if (argv[ndx][1] != 'e') 307 return (1); 308 309 if (argv[ndx][2] == '\0') { 310 ndx++; 311 if (argv[ndx] == NULL) 312 return (1); 313 str = argv[ndx]; 314 } else 315 str = &argv[ndx][2]; 316 317 /* 318 * If the environment variable starts with LD_, strip the LD_. 319 * Otherwise, take things as is. 320 */ 321 if ((str[0] == 'L') && (str[1] == 'D') && (str[2] == '_') && 322 (str[3] != '\0')) 323 str += 3; 324 if (ld_flags_env(str, lmflags, lmtflags, 0, aout) == 1) 325 return (1); 326 } 327 328 /* 329 * Make sure an object file has been specified. 330 */ 331 if (argv[ndx] == NULL) 332 return (1); 333 334 /* 335 * Having gotten the arguments, clean ourselves off of the stack. 336 */ 337 stack_cleanup(argv, envp, auxv, ndx); 338 return (0); 339 } 340 341 /* 342 * Compare function for PathNode AVL tree. 343 */ 344 static int 345 pnavl_compare(const void *n1, const void *n2) 346 { 347 uint_t hash1, hash2; 348 const char *st1, *st2; 349 int rc; 350 351 hash1 = ((PathNode *)n1)->pn_hash; 352 hash2 = ((PathNode *)n2)->pn_hash; 353 354 if (hash1 > hash2) 355 return (1); 356 if (hash1 < hash2) 357 return (-1); 358 359 st1 = ((PathNode *)n1)->pn_name; 360 st2 = ((PathNode *)n2)->pn_name; 361 362 rc = strcmp(st1, st2); 363 if (rc > 0) 364 return (1); 365 if (rc < 0) 366 return (-1); 367 return (0); 368 } 369 370 /* 371 * Create an AVL tree. 372 */ 373 static avl_tree_t * 374 pnavl_create(size_t size) 375 { 376 avl_tree_t *avlt; 377 378 if ((avlt = malloc(sizeof (avl_tree_t))) == NULL) 379 return (NULL); 380 avl_create(avlt, pnavl_compare, size, SGSOFFSETOF(PathNode, pn_avl)); 381 return (avlt); 382 } 383 384 /* 385 * Determine if a pathname has already been recorded on the full path name 386 * AVL tree. This tree maintains a node for each path name that ld.so.1 has 387 * successfully loaded. If the path name does not exist in this AVL tree, then 388 * the next insertion point is deposited in "where". This value can be used by 389 * fpavl_insert() to expedite the insertion. 390 */ 391 Rt_map * 392 fpavl_recorded(Lm_list *lml, const char *name, uint_t hash, avl_index_t *where) 393 { 394 FullPathNode fpn, *fpnp; 395 396 /* 397 * Create the avl tree if required. 398 */ 399 if ((lml->lm_fpavl == NULL) && 400 ((lml->lm_fpavl = pnavl_create(sizeof (FullPathNode))) == NULL)) 401 return (NULL); 402 403 fpn.fpn_node.pn_name = name; 404 if ((fpn.fpn_node.pn_hash = hash) == 0) 405 fpn.fpn_node.pn_hash = sgs_str_hash(name); 406 407 if ((fpnp = avl_find(lml->lm_fpavl, &fpn, where)) == NULL) 408 return (NULL); 409 410 return (fpnp->fpn_lmp); 411 } 412 413 /* 414 * Insert a name into the FullPathNode AVL tree for the link-map list. The 415 * objects NAME() is the path that would have originally been searched for, and 416 * is therefore the name to associate with any "where" value. If the object has 417 * a different PATHNAME(), perhaps because it has resolved to a different file 418 * (see fullpath()), then this name will be recorded as a separate FullPathNode 419 * (see load_file()). 420 */ 421 int 422 fpavl_insert(Lm_list *lml, Rt_map *lmp, const char *name, avl_index_t where) 423 { 424 FullPathNode *fpnp; 425 uint_t hash = sgs_str_hash(name); 426 427 if (where == 0) { 428 /* LINTED */ 429 Rt_map *_lmp = fpavl_recorded(lml, name, hash, &where); 430 431 /* 432 * We better not get a hit now, we do not want duplicates in 433 * the tree. 434 */ 435 ASSERT(_lmp == NULL); 436 } 437 438 /* 439 * Insert new node in tree. 440 */ 441 if ((fpnp = calloc(sizeof (FullPathNode), 1)) == NULL) 442 return (0); 443 444 fpnp->fpn_node.pn_name = name; 445 fpnp->fpn_node.pn_hash = hash; 446 fpnp->fpn_lmp = lmp; 447 448 if (aplist_append(&FPNODE(lmp), fpnp, AL_CNT_FPNODE) == NULL) { 449 free(fpnp); 450 return (0); 451 } 452 453 ASSERT(lml->lm_fpavl != NULL); 454 avl_insert(lml->lm_fpavl, fpnp, where); 455 return (1); 456 } 457 458 /* 459 * Remove an object from the FullPathNode AVL tree. 460 */ 461 void 462 fpavl_remove(Rt_map *lmp) 463 { 464 FullPathNode *fpnp; 465 Aliste idx; 466 467 for (APLIST_TRAVERSE(FPNODE(lmp), idx, fpnp)) { 468 avl_remove(LIST(lmp)->lm_fpavl, fpnp); 469 free(fpnp); 470 } 471 free(FPNODE(lmp)); 472 FPNODE(lmp) = NULL; 473 } 474 475 /* 476 * Determine if a pathname has already been recorded on the not-found AVL tree. 477 * This tree maintains a node for each path name that ld.so.1 has explicitly 478 * inspected, but has failed to load during a single ld.so.1 operation. If the 479 * path name does not exist in this AVL tree, then the next insertion point is 480 * deposited in "where". This value can be used by nfavl_insert() to expedite 481 * the insertion. 482 */ 483 int 484 nfavl_recorded(const char *name, uint_t hash, avl_index_t *where) 485 { 486 PathNode pn; 487 488 /* 489 * Create the avl tree if required. 490 */ 491 if ((nfavl == NULL) && 492 ((nfavl = pnavl_create(sizeof (PathNode))) == NULL)) 493 return (NULL); 494 495 pn.pn_name = name; 496 if ((pn.pn_hash = hash) == 0) 497 pn.pn_hash = sgs_str_hash(name); 498 499 if (avl_find(nfavl, &pn, where) == NULL) 500 return (0); 501 502 return (1); 503 } 504 505 /* 506 * Insert a name into the not-found AVL tree. 507 */ 508 void 509 nfavl_insert(const char *name, avl_index_t where) 510 { 511 PathNode *pnp; 512 uint_t hash = sgs_str_hash(name); 513 514 if (where == 0) { 515 /* LINTED */ 516 int in_nfavl = nfavl_recorded(name, hash, &where); 517 518 /* 519 * We better not get a hit now, we do not want duplicates in 520 * the tree. 521 */ 522 ASSERT(in_nfavl == 0); 523 } 524 525 /* 526 * Insert new node in tree. 527 */ 528 if ((pnp = calloc(sizeof (PathNode), 1)) != NULL) { 529 pnp->pn_name = name; 530 pnp->pn_hash = hash; 531 avl_insert(nfavl, pnp, where); 532 } 533 } 534 535 static avl_tree_t *spavl = NULL; 536 537 /* 538 * Search for a path name within the secure path AVL tree. This tree is used 539 * to maintain a list of directories in which the dependencies of a secure 540 * process have been found. This list provides a fall-back in the case that a 541 * $ORIGIN expansion is deemed insecure, when the expansion results in a path 542 * name that has already provided dependencies. 543 */ 544 int 545 spavl_recorded(const char *name, avl_index_t *where) 546 { 547 PathNode pn; 548 549 /* 550 * Create the avl tree if required. 551 */ 552 if ((spavl == NULL) && 553 ((spavl = pnavl_create(sizeof (PathNode))) == NULL)) 554 return (0); 555 556 pn.pn_name = name; 557 pn.pn_hash = sgs_str_hash(name); 558 559 if (avl_find(spavl, &pn, where) == NULL) 560 return (0); 561 562 return (1); 563 } 564 565 /* 566 * Insert the directory name, of a full path name, into the secure path AVL 567 * tree. 568 */ 569 void 570 spavl_insert(const char *name) 571 { 572 char buffer[PATH_MAX], *str; 573 size_t size; 574 avl_index_t where; 575 PathNode *pnp; 576 577 /* 578 * Separate the directory name from the path name. 579 */ 580 if ((str = strrchr(name, '/')) == name) 581 size = 1; 582 else 583 size = str - name; 584 585 (void) strncpy(buffer, name, size); 586 buffer[size] = '\0'; 587 588 /* 589 * Determine whether this directory name is already recorded, or if 590 * not, 'where" will provide the insertion point for the new string. 591 */ 592 if (spavl_recorded(buffer, &where)) 593 return; 594 595 /* 596 * Insert new node in tree. 597 */ 598 if ((pnp = calloc(sizeof (PathNode), 1)) != NULL) { 599 pnp->pn_name = strdup(buffer); 600 pnp->pn_hash = sgs_str_hash(buffer); 601 avl_insert(spavl, pnp, where); 602 } 603 } 604 605 /* 606 * Inspect the generic string AVL tree for the given string. If the string is 607 * not present, duplicate it, and insert the string in the AVL tree. Return the 608 * duplicated string to the caller. 609 * 610 * These strings are maintained for the life of ld.so.1 and represent path 611 * names, file names, and search paths. All other AVL trees that maintain 612 * FullPathNode and not-found path names use the same string pointer 613 * established for this string. 614 */ 615 static avl_tree_t *stravl = NULL; 616 static char *strbuf = NULL; 617 static PathNode *pnbuf = NULL; 618 static size_t strsize = 0, pnsize = 0; 619 620 const char * 621 stravl_insert(const char *name, uint_t hash, size_t nsize, int substr) 622 { 623 char str[PATH_MAX]; 624 PathNode *pnp; 625 avl_index_t where; 626 627 /* 628 * Create the avl tree if required. 629 */ 630 if ((stravl == NULL) && 631 ((stravl = pnavl_create(sizeof (PathNode))) == NULL)) 632 return (NULL); 633 634 /* 635 * Determine the string size if not provided by the caller. 636 */ 637 if (nsize == 0) 638 nsize = strlen(name) + 1; 639 else if (substr) { 640 /* 641 * The string passed to us may be a multiple path string for 642 * which we only need the first component. Using the provided 643 * size, strip out the required string. 644 */ 645 (void) strncpy(str, name, nsize); 646 str[nsize - 1] = '\0'; 647 name = str; 648 } 649 650 /* 651 * Allocate a PathNode buffer if one doesn't exist, or any existing 652 * buffer has been used up. 653 */ 654 if ((pnbuf == NULL) || (sizeof (PathNode) > pnsize)) { 655 pnsize = syspagsz; 656 if ((pnbuf = dz_map(0, 0, pnsize, (PROT_READ | PROT_WRITE), 657 MAP_PRIVATE)) == MAP_FAILED) 658 return (NULL); 659 } 660 /* 661 * Determine whether this string already exists. 662 */ 663 pnbuf->pn_name = name; 664 if ((pnbuf->pn_hash = hash) == 0) 665 pnbuf->pn_hash = sgs_str_hash(name); 666 667 if ((pnp = avl_find(stravl, pnbuf, &where)) != NULL) 668 return (pnp->pn_name); 669 670 /* 671 * Allocate a string buffer if one does not exist, or if there is 672 * insufficient space for the new string in any existing buffer. 673 */ 674 if ((strbuf == NULL) || (nsize > strsize)) { 675 strsize = S_ROUND(nsize, syspagsz); 676 677 if ((strbuf = dz_map(0, 0, strsize, (PROT_READ | PROT_WRITE), 678 MAP_PRIVATE)) == MAP_FAILED) 679 return (NULL); 680 } 681 682 (void) memcpy(strbuf, name, nsize); 683 pnp = pnbuf; 684 pnp->pn_name = strbuf; 685 avl_insert(stravl, pnp, where); 686 687 strbuf += nsize; 688 strsize -= nsize; 689 pnbuf++; 690 pnsize -= sizeof (PathNode); 691 return (pnp->pn_name); 692 } 693 694 /* 695 * Prior to calling an object, either via a .plt or through dlsym(), make sure 696 * its .init has fired. Through topological sorting, ld.so.1 attempts to fire 697 * init's in the correct order, however, this order is typically based on needed 698 * dependencies and non-lazy relocation bindings. Lazy relocations (.plts) can 699 * still occur and result in bindings that were not captured during topological 700 * sorting. This routine compensates for this lack of binding information, and 701 * provides for dynamic .init firing. 702 */ 703 void 704 is_dep_init(Rt_map *dlmp, Rt_map *clmp) 705 { 706 Rt_map **tobj; 707 708 /* 709 * If the caller is an auditor, and the destination isn't, then don't 710 * run any .inits (see comments in load_completion()). 711 */ 712 if ((LIST(clmp)->lm_flags & LML_FLG_NOAUDIT) && 713 (LIST(clmp) != LIST(dlmp))) 714 return; 715 716 if ((dlmp == clmp) || (rtld_flags & RT_FL_INITFIRST)) 717 return; 718 719 if ((FLAGS(dlmp) & (FLG_RT_RELOCED | FLG_RT_INITDONE)) == 720 (FLG_RT_RELOCED | FLG_RT_INITDONE)) 721 return; 722 723 if ((FLAGS(dlmp) & (FLG_RT_RELOCED | FLG_RT_INITCALL)) == 724 (FLG_RT_RELOCED | FLG_RT_INITCALL)) { 725 DBG_CALL(Dbg_util_no_init(dlmp)); 726 return; 727 } 728 729 if ((tobj = calloc(2, sizeof (Rt_map *))) != NULL) { 730 tobj[0] = dlmp; 731 call_init(tobj, DBG_INIT_DYN); 732 } 733 } 734 735 /* 736 * Execute .{preinit|init|fini}array sections 737 */ 738 void 739 call_array(Addr *array, uint_t arraysz, Rt_map *lmp, Word shtype) 740 { 741 int start, stop, incr, ndx; 742 uint_t arraycnt = (uint_t)(arraysz / sizeof (Addr)); 743 744 if (array == NULL) 745 return; 746 747 /* 748 * initarray & preinitarray are walked from beginning to end - while 749 * finiarray is walked from end to beginning. 750 */ 751 if (shtype == SHT_FINI_ARRAY) { 752 start = arraycnt - 1; 753 stop = incr = -1; 754 } else { 755 start = 0; 756 stop = arraycnt; 757 incr = 1; 758 } 759 760 /* 761 * Call the .*array[] entries 762 */ 763 for (ndx = start; ndx != stop; ndx += incr) { 764 void (*fptr)(void) = (void(*)())array[ndx]; 765 766 DBG_CALL(Dbg_util_call_array(lmp, (void *)fptr, ndx, shtype)); 767 768 leave(LIST(lmp), 0); 769 (*fptr)(); 770 (void) enter(0); 771 } 772 } 773 774 775 /* 776 * Execute any .init sections. These are passed to us in an lmp array which 777 * (by default) will have been sorted. 778 */ 779 void 780 call_init(Rt_map **tobj, int flag) 781 { 782 Rt_map **_tobj, **_nobj; 783 static List pending = { NULL, NULL }; 784 785 /* 786 * If we're in the middle of an INITFIRST, this must complete before 787 * any new init's are fired. In this case add the object list to the 788 * pending queue and return. We'll pick up the queue after any 789 * INITFIRST objects have their init's fired. 790 */ 791 if (rtld_flags & RT_FL_INITFIRST) { 792 (void) list_append(&pending, tobj); 793 return; 794 } 795 796 /* 797 * Traverse the tobj array firing each objects init. 798 */ 799 for (_tobj = _nobj = tobj, _nobj++; *_tobj != NULL; _tobj++, _nobj++) { 800 Rt_map *lmp = *_tobj; 801 void (*iptr)() = INIT(lmp); 802 803 if (FLAGS(lmp) & FLG_RT_INITCALL) 804 continue; 805 806 FLAGS(lmp) |= FLG_RT_INITCALL; 807 808 /* 809 * Establish an initfirst state if necessary - no other inits 810 * will be fired (because of additional relocation bindings) 811 * when in this state. 812 */ 813 if (FLAGS(lmp) & FLG_RT_INITFRST) 814 rtld_flags |= RT_FL_INITFIRST; 815 816 if (INITARRAY(lmp) || iptr) 817 DBG_CALL(Dbg_util_call_init(lmp, flag)); 818 819 if (iptr) { 820 leave(LIST(lmp), 0); 821 (*iptr)(); 822 (void) enter(0); 823 } 824 825 call_array(INITARRAY(lmp), INITARRAYSZ(lmp), lmp, 826 SHT_INIT_ARRAY); 827 828 if (INITARRAY(lmp) || iptr) 829 DBG_CALL(Dbg_util_call_init(lmp, DBG_INIT_DONE)); 830 831 /* 832 * Set the initdone flag regardless of whether this object 833 * actually contains an .init section. This flag prevents us 834 * from processing this section again for an .init and also 835 * signifies that a .fini must be called should it exist. 836 * Clear the sort field for use in later .fini processing. 837 */ 838 FLAGS(lmp) |= FLG_RT_INITDONE; 839 SORTVAL(lmp) = -1; 840 841 /* 842 * If we're firing an INITFIRST object, and other objects must 843 * be fired which are not INITFIRST, make sure we grab any 844 * pending objects that might have been delayed as this 845 * INITFIRST was processed. 846 */ 847 if ((rtld_flags & RT_FL_INITFIRST) && 848 ((*_nobj == NULL) || !(FLAGS(*_nobj) & FLG_RT_INITFRST))) { 849 Listnode *lnp; 850 Rt_map **pobj; 851 852 rtld_flags &= ~RT_FL_INITFIRST; 853 854 while ((lnp = pending.head) != NULL) { 855 if ((pending.head = lnp->next) == NULL) 856 pending.tail = NULL; 857 pobj = lnp->data; 858 free(lnp); 859 860 call_init(pobj, DBG_INIT_PEND); 861 } 862 } 863 } 864 free(tobj); 865 } 866 867 /* 868 * Function called by atexit(3C). Calls all .fini sections related with the 869 * mains dependent shared libraries in the order in which the shared libraries 870 * have been loaded. Skip any .fini defined in the main executable, as this 871 * will be called by crt0 (main was never marked as initdone). 872 */ 873 void 874 call_fini(Lm_list * lml, Rt_map ** tobj) 875 { 876 Rt_map **_tobj; 877 878 for (_tobj = tobj; *_tobj != NULL; _tobj++) { 879 Rt_map *clmp, * lmp = *_tobj; 880 Aliste idx; 881 Bnd_desc *bdp; 882 883 /* 884 * Only fire a .fini if the objects corresponding .init has 885 * completed. We collect all .fini sections of objects that 886 * had their .init collected, but that doesn't mean that at 887 * the time of collection, that the .init had completed. 888 */ 889 if (FLAGS(lmp) & FLG_RT_INITDONE) { 890 void (*fptr)(void) = FINI(lmp); 891 892 if (FINIARRAY(lmp) || fptr) 893 DBG_CALL(Dbg_util_call_fini(lmp)); 894 895 call_array(FINIARRAY(lmp), FINIARRAYSZ(lmp), lmp, 896 SHT_FINI_ARRAY); 897 898 if (fptr) { 899 leave(LIST(lmp), 0); 900 (*fptr)(); 901 (void) enter(0); 902 } 903 } 904 905 /* 906 * Skip main, this is explicitly called last in atexit_fini(). 907 */ 908 if (FLAGS(lmp) & FLG_RT_ISMAIN) 909 continue; 910 911 /* 912 * Audit `close' operations at this point. The library has 913 * exercised its last instructions (regardless of whether it 914 * will be unmapped or not). 915 * 916 * First call any global auditing. 917 */ 918 if (lml->lm_tflags & LML_TFLG_AUD_OBJCLOSE) 919 _audit_objclose(&(auditors->ad_list), lmp); 920 921 /* 922 * Finally determine whether this object has local auditing 923 * requirements by inspecting itself and then its dependencies. 924 */ 925 if ((lml->lm_flags & LML_FLG_LOCAUDIT) == 0) 926 continue; 927 928 if (AFLAGS(lmp) & LML_TFLG_AUD_OBJCLOSE) 929 _audit_objclose(&(AUDITORS(lmp)->ad_list), lmp); 930 931 for (APLIST_TRAVERSE(CALLERS(lmp), idx, bdp)) { 932 clmp = bdp->b_caller; 933 934 if (AFLAGS(clmp) & LML_TFLG_AUD_OBJCLOSE) { 935 _audit_objclose(&(AUDITORS(clmp)->ad_list), 936 lmp); 937 break; 938 } 939 } 940 } 941 DBG_CALL(Dbg_bind_plt_summary(lml, M_MACH, pltcnt21d, pltcnt24d, 942 pltcntu32, pltcntu44, pltcntfull, pltcntfar)); 943 944 free(tobj); 945 } 946 947 void 948 atexit_fini() 949 { 950 Rt_map **tobj, *lmp; 951 Lm_list *lml; 952 Listnode *lnp; 953 954 (void) enter(0); 955 956 rtld_flags |= RT_FL_ATEXIT; 957 958 lml = &lml_main; 959 lml->lm_flags |= LML_FLG_ATEXIT; 960 lml->lm_flags &= ~LML_FLG_INTRPOSETSORT; 961 lmp = (Rt_map *)lml->lm_head; 962 963 /* 964 * Reverse topologically sort the main link-map for .fini execution. 965 */ 966 if (((tobj = tsort(lmp, lml->lm_obj, RT_SORT_FWD)) != NULL) && 967 (tobj != (Rt_map **)S_ERROR)) 968 call_fini(lml, tobj); 969 970 /* 971 * Add an explicit close to main and ld.so.1. Although main's .fini is 972 * collected in call_fini() to provide for FINITARRAY processing, its 973 * audit_objclose is explicitly skipped. This provides for it to be 974 * called last, here. This is the reverse of the explicit calls to 975 * audit_objopen() made in setup(). 976 */ 977 if ((lml->lm_tflags | AFLAGS(lmp)) & LML_TFLG_AUD_MASK) { 978 audit_objclose(lmp, (Rt_map *)lml_rtld.lm_head); 979 audit_objclose(lmp, lmp); 980 } 981 982 /* 983 * Now that all .fini code has been run, see what unreferenced objects 984 * remain. 985 */ 986 unused(lml); 987 988 /* 989 * Traverse any alternative link-map lists. 990 */ 991 for (LIST_TRAVERSE(&dynlm_list, lnp, lml)) { 992 /* 993 * Ignore the base-link-map list, which has already been 994 * processed, and the runtime linkers link-map list, which is 995 * typically processed last. 996 */ 997 if (lml->lm_flags & (LML_FLG_BASELM | LML_FLG_RTLDLM)) 998 continue; 999 1000 if ((lmp = (Rt_map *)lml->lm_head) == NULL) 1001 continue; 1002 1003 lml->lm_flags |= LML_FLG_ATEXIT; 1004 lml->lm_flags &= ~LML_FLG_INTRPOSETSORT; 1005 1006 /* 1007 * Reverse topologically sort the link-map for .fini execution. 1008 */ 1009 if (((tobj = tsort(lmp, lml->lm_obj, RT_SORT_FWD)) != NULL) && 1010 (tobj != (Rt_map **)S_ERROR)) 1011 call_fini(lml, tobj); 1012 1013 unused(lml); 1014 } 1015 1016 /* 1017 * Finally reverse topologically sort the runtime linkers link-map for 1018 * .fini execution. 1019 */ 1020 lml = &lml_rtld; 1021 lml->lm_flags |= LML_FLG_ATEXIT; 1022 lml->lm_flags &= ~LML_FLG_INTRPOSETSORT; 1023 lmp = (Rt_map *)lml->lm_head; 1024 1025 if (((tobj = tsort(lmp, lml->lm_obj, RT_SORT_FWD)) != NULL) && 1026 (tobj != (Rt_map **)S_ERROR)) 1027 call_fini(lml, tobj); 1028 1029 leave(&lml_main, 0); 1030 } 1031 1032 1033 /* 1034 * This routine is called to complete any runtime linker activity which may have 1035 * resulted in objects being loaded. This is called from all user entry points 1036 * and from any internal dl*() requests. 1037 */ 1038 void 1039 load_completion(Rt_map *nlmp) 1040 { 1041 Rt_map **tobj = NULL; 1042 Lm_list *nlml; 1043 1044 /* 1045 * Establish any .init processing. Note, in a world of lazy loading, 1046 * objects may have been loaded regardless of whether the users request 1047 * was fulfilled (i.e., a dlsym() request may have failed to find a 1048 * symbol but objects might have been loaded during its search). Thus, 1049 * any tsorting starts from the nlmp (new link-maps) pointer and not 1050 * necessarily from the link-map that may have satisfied the request. 1051 * 1052 * Note, the primary link-map has an initialization phase where dynamic 1053 * .init firing is suppressed. This provides for a simple and clean 1054 * handshake with the primary link-maps libc, which is important for 1055 * establishing uberdata. In addition, auditors often obtain handles 1056 * to primary link-map objects as the objects are loaded, so as to 1057 * inspect the link-map for symbols. This inspection is allowed without 1058 * running any code on the primary link-map, as running this code may 1059 * reenter the auditor, who may not yet have finished its own 1060 * initialization. 1061 */ 1062 if (nlmp) 1063 nlml = LIST(nlmp); 1064 1065 if (nlmp && nlml->lm_init && ((nlml != &lml_main) || 1066 (rtld_flags2 & (RT_FL2_PLMSETUP | RT_FL2_NOPLM)))) { 1067 if ((tobj = tsort(nlmp, nlml->lm_init, 1068 RT_SORT_REV)) == (Rt_map **)S_ERROR) 1069 tobj = NULL; 1070 } 1071 1072 /* 1073 * Make sure any alternative link-map retrieves any external interfaces 1074 * and initializes threads. 1075 */ 1076 if (nlmp && (nlml != &lml_main)) { 1077 (void) rt_get_extern(nlml, nlmp); 1078 rt_thr_init(nlml); 1079 } 1080 1081 /* 1082 * Traverse the list of new link-maps and register any dynamic TLS. 1083 * This storage is established for any objects not on the primary 1084 * link-map, and for any objects added to the primary link-map after 1085 * static TLS has been registered. 1086 */ 1087 if (nlmp && nlml->lm_tls && ((nlml != &lml_main) || 1088 (rtld_flags2 & (RT_FL2_PLMSETUP | RT_FL2_NOPLM)))) { 1089 Rt_map *lmp; 1090 1091 for (lmp = nlmp; lmp; lmp = NEXT_RT_MAP(lmp)) { 1092 if (PTTLS(lmp) && PTTLS(lmp)->p_memsz) 1093 tls_modaddrem(lmp, TM_FLG_MODADD); 1094 } 1095 nlml->lm_tls = 0; 1096 } 1097 1098 /* 1099 * Fire any .init's. 1100 */ 1101 if (tobj) 1102 call_init(tobj, DBG_INIT_SORT); 1103 } 1104 1105 /* 1106 * Append an item to the specified list, and return a pointer to the list 1107 * node created. 1108 */ 1109 Listnode * 1110 list_append(List *lst, const void *item) 1111 { 1112 Listnode *_lnp; 1113 1114 if ((_lnp = malloc(sizeof (Listnode))) == NULL) 1115 return (NULL); 1116 1117 _lnp->data = (void *)item; 1118 _lnp->next = NULL; 1119 1120 if (lst->head == NULL) 1121 lst->tail = lst->head = _lnp; 1122 else { 1123 lst->tail->next = _lnp; 1124 lst->tail = lst->tail->next; 1125 } 1126 return (_lnp); 1127 } 1128 1129 /* 1130 * Add an item after specified listnode, and return a pointer to the list 1131 * node created. 1132 */ 1133 Listnode * 1134 list_insert(List *lst, const void *item, Listnode *lnp) 1135 { 1136 Listnode *_lnp; 1137 1138 if ((_lnp = malloc(sizeof (Listnode))) == NULL) 1139 return (NULL); 1140 1141 _lnp->data = (void *)item; 1142 _lnp->next = lnp->next; 1143 if (_lnp->next == NULL) 1144 lst->tail = _lnp; 1145 lnp->next = _lnp; 1146 return (_lnp); 1147 } 1148 1149 /* 1150 * Prepend an item to the specified list, and return a pointer to the 1151 * list node created. 1152 */ 1153 Listnode * 1154 list_prepend(List *lst, const void *item) 1155 { 1156 Listnode *_lnp; 1157 1158 if ((_lnp = malloc(sizeof (Listnode))) == NULL) 1159 return (0); 1160 1161 _lnp->data = (void *)item; 1162 1163 if (lst->head == NULL) { 1164 _lnp->next = NULL; 1165 lst->tail = lst->head = _lnp; 1166 } else { 1167 _lnp->next = lst->head; 1168 lst->head = _lnp; 1169 } 1170 return (_lnp); 1171 } 1172 1173 /* 1174 * Delete a 'listnode' from a list. 1175 */ 1176 void 1177 list_delete(List *lst, void *item) 1178 { 1179 Listnode *clnp, *plnp; 1180 1181 for (plnp = NULL, clnp = lst->head; clnp; clnp = clnp->next) { 1182 if (item == clnp->data) 1183 break; 1184 plnp = clnp; 1185 } 1186 1187 if (clnp == NULL) 1188 return; 1189 1190 if (lst->head == clnp) 1191 lst->head = clnp->next; 1192 if (lst->tail == clnp) 1193 lst->tail = plnp; 1194 1195 if (plnp) 1196 plnp->next = clnp->next; 1197 1198 free(clnp); 1199 } 1200 1201 /* 1202 * Append an item to the specified link map control list. 1203 */ 1204 void 1205 lm_append(Lm_list *lml, Aliste lmco, Rt_map *lmp) 1206 { 1207 Lm_cntl *lmc; 1208 int add = 1; 1209 1210 /* 1211 * Indicate that this link-map list has a new object. 1212 */ 1213 (lml->lm_obj)++; 1214 1215 /* 1216 * If we're about to add a new object to the main link-map control list, 1217 * alert the debuggers that we are about to mess with this list. 1218 * Additions of individual objects to the main link-map control list 1219 * occur during initial setup as the applications immediate dependencies 1220 * are loaded. Individual objects are also loaded on the main link-map 1221 * control list of new alternative link-map control lists. 1222 */ 1223 if ((lmco == ALIST_OFF_DATA) && 1224 ((lml->lm_flags & LML_FLG_DBNOTIF) == 0)) 1225 rd_event(lml, RD_DLACTIVITY, RT_ADD); 1226 1227 /* LINTED */ 1228 lmc = (Lm_cntl *)alist_item_by_offset(lml->lm_lists, lmco); 1229 1230 /* 1231 * A link-map list header points to one of more link-map control lists 1232 * (see include/rtld.h). The initial list, pointed to by lm_cntl, is 1233 * the list of relocated objects. Other lists maintain objects that 1234 * are still being analyzed or relocated. This list provides the core 1235 * link-map list information used by all ld.so.1 routines. 1236 */ 1237 if (lmc->lc_head == NULL) { 1238 /* 1239 * If this is the first link-map for the given control list, 1240 * initialize the list. 1241 */ 1242 lmc->lc_head = lmc->lc_tail = lmp; 1243 add = 0; 1244 1245 } else if (FLAGS(lmp) & FLG_RT_OBJINTPO) { 1246 Rt_map *tlmp; 1247 1248 /* 1249 * If this is an interposer then append the link-map following 1250 * any other interposers (these are objects that have been 1251 * previously preloaded, or were identified with -z interpose). 1252 * Interposers can only be inserted on the first link-map 1253 * control list, as once relocation has started, interposition 1254 * from new interposers can't be guaranteed. 1255 * 1256 * NOTE: We do not interpose on the head of a list. This model 1257 * evolved because dynamic executables have already been fully 1258 * relocated within themselves and thus can't be interposed on. 1259 * Nowadays it's possible to have shared objects at the head of 1260 * a list, which conceptually means they could be interposed on. 1261 * But, shared objects can be created via dldump() and may only 1262 * be partially relocated (just relatives), in which case they 1263 * are interposable, but are marked as fixed (ET_EXEC). 1264 * 1265 * Thus we really don't have a clear method of deciding when the 1266 * head of a link-map is interposable. So, to be consistent, 1267 * for now only add interposers after the link-map lists head 1268 * object. 1269 */ 1270 for (tlmp = NEXT_RT_MAP(lmc->lc_head); tlmp; 1271 tlmp = NEXT_RT_MAP(tlmp)) { 1272 1273 if (FLAGS(tlmp) & FLG_RT_OBJINTPO) 1274 continue; 1275 1276 /* 1277 * Insert the new link-map before this non-interposer, 1278 * and indicate an interposer is found. 1279 */ 1280 NEXT(PREV_RT_MAP(tlmp)) = (Link_map *)lmp; 1281 PREV(lmp) = PREV(tlmp); 1282 1283 NEXT(lmp) = (Link_map *)tlmp; 1284 PREV(tlmp) = (Link_map *)lmp; 1285 1286 lmc->lc_flags |= LMC_FLG_REANALYZE; 1287 add = 0; 1288 break; 1289 } 1290 } 1291 1292 /* 1293 * Fall through to appending the new link map to the tail of the list. 1294 * If we're processing the initial objects of this link-map list, add 1295 * them to the backward compatibility list. 1296 */ 1297 if (add) { 1298 NEXT(lmc->lc_tail) = (Link_map *)lmp; 1299 PREV(lmp) = (Link_map *)lmc->lc_tail; 1300 lmc->lc_tail = lmp; 1301 } 1302 1303 /* 1304 * Having added this link-map to a control list, indicate which control 1305 * list the link-map belongs to. Note, control list information is 1306 * always maintained as an offset, as the Alist can be reallocated. 1307 */ 1308 CNTL(lmp) = lmco; 1309 1310 /* 1311 * Indicate if an interposer is found. Note that the first object on a 1312 * link-map can be explicitly defined as an interposer so that it can 1313 * provide interposition over direct binding requests. 1314 */ 1315 if (FLAGS(lmp) & MSK_RT_INTPOSE) 1316 lml->lm_flags |= LML_FLG_INTRPOSE; 1317 1318 /* 1319 * For backward compatibility with debuggers, the link-map list contains 1320 * pointers to the main control list. 1321 */ 1322 if (lmco == ALIST_OFF_DATA) { 1323 lml->lm_head = lmc->lc_head; 1324 lml->lm_tail = lmc->lc_tail; 1325 } 1326 } 1327 1328 /* 1329 * Delete an item from the specified link map control list. 1330 */ 1331 void 1332 lm_delete(Lm_list *lml, Rt_map *lmp) 1333 { 1334 Lm_cntl *lmc; 1335 1336 /* 1337 * If the control list pointer hasn't been initialized, this object 1338 * never got added to a link-map list. 1339 */ 1340 if (CNTL(lmp) == 0) 1341 return; 1342 1343 /* 1344 * If we're about to delete an object from the main link-map control 1345 * list, alert the debuggers that we are about to mess with this list. 1346 */ 1347 if ((CNTL(lmp) == ALIST_OFF_DATA) && 1348 ((lml->lm_flags & LML_FLG_DBNOTIF) == 0)) 1349 rd_event(lml, RD_DLACTIVITY, RT_DELETE); 1350 1351 /* LINTED */ 1352 lmc = (Lm_cntl *)alist_item_by_offset(lml->lm_lists, CNTL(lmp)); 1353 1354 if (lmc->lc_head == lmp) 1355 lmc->lc_head = NEXT_RT_MAP(lmp); 1356 else 1357 NEXT(PREV_RT_MAP(lmp)) = (void *)NEXT(lmp); 1358 1359 if (lmc->lc_tail == lmp) 1360 lmc->lc_tail = PREV_RT_MAP(lmp); 1361 else 1362 PREV(NEXT_RT_MAP(lmp)) = PREV(lmp); 1363 1364 /* 1365 * For backward compatibility with debuggers, the link-map list contains 1366 * pointers to the main control list. 1367 */ 1368 if (lmc == (Lm_cntl *)&lml->lm_lists->al_data) { 1369 lml->lm_head = lmc->lc_head; 1370 lml->lm_tail = lmc->lc_tail; 1371 } 1372 1373 /* 1374 * Indicate we have one less object on this control list. 1375 */ 1376 (lml->lm_obj)--; 1377 } 1378 1379 /* 1380 * Move a link-map control list to another. Objects that are being relocated 1381 * are maintained on secondary control lists. Once their relocation is 1382 * complete, the entire list is appended to the previous control list, as this 1383 * list must have been the trigger for generating the new control list. 1384 */ 1385 void 1386 lm_move(Lm_list *lml, Aliste nlmco, Aliste plmco, Lm_cntl *nlmc, Lm_cntl *plmc) 1387 { 1388 Rt_map *lmp; 1389 1390 /* 1391 * If we're about to add a new family of objects to the main link-map 1392 * control list, alert the debuggers that we are about to mess with this 1393 * list. Additions of object families to the main link-map control 1394 * list occur during lazy loading, filtering and dlopen(). 1395 */ 1396 if ((plmco == ALIST_OFF_DATA) && 1397 ((lml->lm_flags & LML_FLG_DBNOTIF) == 0)) 1398 rd_event(lml, RD_DLACTIVITY, RT_ADD); 1399 1400 DBG_CALL(Dbg_file_cntl(lml, nlmco, plmco)); 1401 1402 /* 1403 * Indicate each new link-map has been moved to the previous link-map 1404 * control list. 1405 */ 1406 for (lmp = nlmc->lc_head; lmp; lmp = NEXT_RT_MAP(lmp)) { 1407 CNTL(lmp) = plmco; 1408 1409 /* 1410 * If these objects are being added to the main link-map 1411 * control list, indicate that there are init's available 1412 * for harvesting. 1413 */ 1414 if (plmco == ALIST_OFF_DATA) { 1415 lml->lm_init++; 1416 lml->lm_flags |= LML_FLG_OBJADDED; 1417 } 1418 } 1419 1420 /* 1421 * Move the new link-map control list, to the callers link-map control 1422 * list. 1423 */ 1424 if (plmc->lc_head == NULL) { 1425 plmc->lc_head = nlmc->lc_head; 1426 PREV(nlmc->lc_head) = NULL; 1427 } else { 1428 NEXT(plmc->lc_tail) = (Link_map *)nlmc->lc_head; 1429 PREV(nlmc->lc_head) = (Link_map *)plmc->lc_tail; 1430 } 1431 1432 plmc->lc_tail = nlmc->lc_tail; 1433 nlmc->lc_head = nlmc->lc_tail = NULL; 1434 1435 /* 1436 * For backward compatibility with debuggers, the link-map list contains 1437 * pointers to the main control list. 1438 */ 1439 if (plmco == ALIST_OFF_DATA) { 1440 lml->lm_head = plmc->lc_head; 1441 lml->lm_tail = plmc->lc_tail; 1442 } 1443 } 1444 1445 /* 1446 * Environment variables can have a variety of defined permutations, and thus 1447 * the following infrastructure exists to allow this variety and to select the 1448 * required definition. 1449 * 1450 * Environment variables can be defined as 32- or 64-bit specific, and if so 1451 * they will take precedence over any instruction set neutral form. Typically 1452 * this is only useful when the environment value is an informational string. 1453 * 1454 * Environment variables may be obtained from the standard user environment or 1455 * from a configuration file. The latter provides a fallback if no user 1456 * environment setting is found, and can take two forms: 1457 * 1458 * - a replaceable definition - this will be used if no user environment 1459 * setting has been seen, or 1460 * 1461 * - an permanent definition - this will be used no matter what user 1462 * environment setting is seen. In the case of list variables it will be 1463 * appended to any process environment setting seen. 1464 * 1465 * Environment variables can be defined without a value (ie. LD_XXXX=) so as to 1466 * override any replaceable environment variables from a configuration file. 1467 */ 1468 static u_longlong_t rplgen; /* replaceable generic */ 1469 /* variables */ 1470 static u_longlong_t rplisa; /* replaceable ISA specific */ 1471 /* variables */ 1472 static u_longlong_t prmgen; /* permanent generic */ 1473 /* variables */ 1474 static u_longlong_t prmisa; /* permanent ISA specific */ 1475 /* variables */ 1476 1477 /* 1478 * Classify an environment variables type. 1479 */ 1480 #define ENV_TYP_IGNORE 0x1 /* ignore - variable is for */ 1481 /* the wrong ISA */ 1482 #define ENV_TYP_ISA 0x2 /* variable is ISA specific */ 1483 #define ENV_TYP_CONFIG 0x4 /* variable obtained from a */ 1484 /* config file */ 1485 #define ENV_TYP_PERMANT 0x8 /* variable is permanent */ 1486 1487 /* 1488 * Identify all environment variables. 1489 */ 1490 #define ENV_FLG_AUDIT 0x0000000001ULL 1491 #define ENV_FLG_AUDIT_ARGS 0x0000000002ULL 1492 #define ENV_FLG_BIND_NOW 0x0000000004ULL 1493 #define ENV_FLG_BIND_NOT 0x0000000008ULL 1494 #define ENV_FLG_BINDINGS 0x0000000010ULL 1495 1496 #define ENV_FLG_CONFGEN 0x0000000040ULL 1497 #define ENV_FLG_CONFIG 0x0000000080ULL 1498 #define ENV_FLG_DEBUG 0x0000000100ULL 1499 #define ENV_FLG_DEBUG_OUTPUT 0x0000000200ULL 1500 #define ENV_FLG_DEMANGLE 0x0000000400ULL 1501 #define ENV_FLG_FLAGS 0x0000000800ULL 1502 #define ENV_FLG_INIT 0x0000001000ULL 1503 #define ENV_FLG_LIBPATH 0x0000002000ULL 1504 #define ENV_FLG_LOADAVAIL 0x0000004000ULL 1505 #define ENV_FLG_LOADFLTR 0x0000008000ULL 1506 #define ENV_FLG_NOAUDIT 0x0000010000ULL 1507 #define ENV_FLG_NOAUXFLTR 0x0000020000ULL 1508 #define ENV_FLG_NOBAPLT 0x0000040000ULL 1509 #define ENV_FLG_NOCONFIG 0x0000080000ULL 1510 #define ENV_FLG_NODIRCONFIG 0x0000100000ULL 1511 #define ENV_FLG_NODIRECT 0x0000200000ULL 1512 #define ENV_FLG_NOENVCONFIG 0x0000400000ULL 1513 #define ENV_FLG_NOLAZY 0x0000800000ULL 1514 #define ENV_FLG_NOOBJALTER 0x0001000000ULL 1515 #define ENV_FLG_NOVERSION 0x0002000000ULL 1516 #define ENV_FLG_PRELOAD 0x0004000000ULL 1517 #define ENV_FLG_PROFILE 0x0008000000ULL 1518 #define ENV_FLG_PROFILE_OUTPUT 0x0010000000ULL 1519 #define ENV_FLG_SIGNAL 0x0020000000ULL 1520 #define ENV_FLG_TRACE_OBJS 0x0040000000ULL 1521 #define ENV_FLG_TRACE_PTHS 0x0080000000ULL 1522 #define ENV_FLG_UNREF 0x0100000000ULL 1523 #define ENV_FLG_UNUSED 0x0200000000ULL 1524 #define ENV_FLG_VERBOSE 0x0400000000ULL 1525 #define ENV_FLG_WARN 0x0800000000ULL 1526 #define ENV_FLG_NOFLTCONFIG 0x1000000000ULL 1527 #define ENV_FLG_BIND_LAZY 0x2000000000ULL 1528 #define ENV_FLG_NOUNRESWEAK 0x4000000000ULL 1529 #define ENV_FLG_NOPAREXT 0x8000000000ULL 1530 1531 #define SEL_REPLACE 0x0001 1532 #define SEL_PERMANT 0x0002 1533 #define SEL_ACT_RT 0x0100 /* setting rtld_flags */ 1534 #define SEL_ACT_RT2 0x0200 /* setting rtld_flags2 */ 1535 #define SEL_ACT_STR 0x0400 /* setting string value */ 1536 #define SEL_ACT_LML 0x0800 /* setting lml_flags */ 1537 #define SEL_ACT_LMLT 0x1000 /* setting lml_tflags */ 1538 #define SEL_ACT_SPEC_1 0x2000 /* For FLG_{FLAGS, LIBPATH} */ 1539 #define SEL_ACT_SPEC_2 0x4000 /* need special handling */ 1540 1541 /* 1542 * Pattern match an LD_XXXX environment variable. s1 points to the XXXX part 1543 * and len specifies its length (comparing a strings length before the string 1544 * itself speed things up). s2 points to the token itself which has already 1545 * had any leading white-space removed. 1546 */ 1547 static void 1548 ld_generic_env(const char *s1, size_t len, const char *s2, Word *lmflags, 1549 Word *lmtflags, uint_t env_flags, int aout) 1550 { 1551 u_longlong_t variable = 0; 1552 ushort_t select = 0; 1553 const char **str; 1554 Word val = 0; 1555 1556 /* 1557 * Determine whether we're dealing with a replaceable or permanent 1558 * string. 1559 */ 1560 if (env_flags & ENV_TYP_PERMANT) { 1561 /* 1562 * If the string is from a configuration file and defined as 1563 * permanent, assign it as permanent. 1564 */ 1565 select |= SEL_PERMANT; 1566 } else 1567 select |= SEL_REPLACE; 1568 1569 /* 1570 * Parse the variable given. 1571 * 1572 * The LD_AUDIT family. 1573 */ 1574 if (*s1 == 'A') { 1575 if ((len == MSG_LD_AUDIT_SIZE) && (strncmp(s1, 1576 MSG_ORIG(MSG_LD_AUDIT), MSG_LD_AUDIT_SIZE) == 0)) { 1577 /* 1578 * Replaceable and permanent audit objects can exist. 1579 */ 1580 select |= SEL_ACT_STR; 1581 if (select & SEL_REPLACE) 1582 str = &rpl_audit; 1583 else { 1584 str = &prm_audit; 1585 rpl_audit = 0; 1586 } 1587 variable = ENV_FLG_AUDIT; 1588 } else if ((len == MSG_LD_AUDIT_ARGS_SIZE) && 1589 (strncmp(s1, MSG_ORIG(MSG_LD_AUDIT_ARGS), 1590 MSG_LD_AUDIT_ARGS_SIZE) == 0)) { 1591 /* 1592 * A specialized variable for plt_exit() use, not 1593 * documented for general use. 1594 */ 1595 select |= SEL_ACT_SPEC_2; 1596 variable = ENV_FLG_AUDIT_ARGS; 1597 } 1598 } 1599 /* 1600 * The LD_BIND family. 1601 */ 1602 else if (*s1 == 'B') { 1603 if ((len == MSG_LD_BIND_LAZY_SIZE) && (strncmp(s1, 1604 MSG_ORIG(MSG_LD_BIND_LAZY), 1605 MSG_LD_BIND_LAZY_SIZE) == 0)) { 1606 select |= SEL_ACT_RT2; 1607 val = RT_FL2_BINDLAZY; 1608 variable = ENV_FLG_BIND_LAZY; 1609 } else if ((len == MSG_LD_BIND_NOW_SIZE) && (strncmp(s1, 1610 MSG_ORIG(MSG_LD_BIND_NOW), MSG_LD_BIND_NOW_SIZE) == 0)) { 1611 select |= SEL_ACT_RT2; 1612 val = RT_FL2_BINDNOW; 1613 variable = ENV_FLG_BIND_NOW; 1614 } else if ((len == MSG_LD_BIND_NOT_SIZE) && (strncmp(s1, 1615 MSG_ORIG(MSG_LD_BIND_NOT), MSG_LD_BIND_NOT_SIZE) == 0)) { 1616 /* 1617 * Another trick, enabled to help debug AOUT 1618 * applications under BCP, but not documented for 1619 * general use. 1620 */ 1621 select |= SEL_ACT_RT; 1622 val = RT_FL_NOBIND; 1623 variable = ENV_FLG_BIND_NOT; 1624 } else if ((len == MSG_LD_BINDINGS_SIZE) && (strncmp(s1, 1625 MSG_ORIG(MSG_LD_BINDINGS), MSG_LD_BINDINGS_SIZE) == 0)) { 1626 /* 1627 * This variable is simply for backward compatibility. 1628 * If this and LD_DEBUG are both specified, only one of 1629 * the strings is going to get processed. 1630 */ 1631 select |= SEL_ACT_SPEC_2; 1632 variable = ENV_FLG_BINDINGS; 1633 } 1634 } 1635 /* 1636 * LD_CONFIG family. 1637 */ 1638 else if (*s1 == 'C') { 1639 if ((len == MSG_LD_CONFGEN_SIZE) && (strncmp(s1, 1640 MSG_ORIG(MSG_LD_CONFGEN), MSG_LD_CONFGEN_SIZE) == 0)) { 1641 /* 1642 * Set by crle(1) to indicate it's building a 1643 * configuration file, not documented for general use. 1644 */ 1645 select |= SEL_ACT_SPEC_2; 1646 variable = ENV_FLG_CONFGEN; 1647 } else if ((len == MSG_LD_CONFIG_SIZE) && (strncmp(s1, 1648 MSG_ORIG(MSG_LD_CONFIG), MSG_LD_CONFIG_SIZE) == 0)) { 1649 /* 1650 * Secure applications must use a default configuration 1651 * file. A setting from a configuration file doesn't 1652 * make sense (given we must be reading a configuration 1653 * file to have gotten this). 1654 */ 1655 if ((rtld_flags & RT_FL_SECURE) || 1656 (env_flags & ENV_TYP_CONFIG)) 1657 return; 1658 select |= SEL_ACT_STR; 1659 str = &config->c_name; 1660 variable = ENV_FLG_CONFIG; 1661 } 1662 } 1663 /* 1664 * The LD_DEBUG family and LD_DEMANGLE. 1665 */ 1666 else if (*s1 == 'D') { 1667 if ((len == MSG_LD_DEBUG_SIZE) && (strncmp(s1, 1668 MSG_ORIG(MSG_LD_DEBUG), MSG_LD_DEBUG_SIZE) == 0)) { 1669 select |= SEL_ACT_STR; 1670 if (select & SEL_REPLACE) 1671 str = &rpl_debug; 1672 else { 1673 str = &prm_debug; 1674 rpl_debug = 0; 1675 } 1676 variable = ENV_FLG_DEBUG; 1677 } else if ((len == MSG_LD_DEBUG_OUTPUT_SIZE) && (strncmp(s1, 1678 MSG_ORIG(MSG_LD_DEBUG_OUTPUT), 1679 MSG_LD_DEBUG_OUTPUT_SIZE) == 0)) { 1680 select |= SEL_ACT_STR; 1681 str = &dbg_file; 1682 variable = ENV_FLG_DEBUG_OUTPUT; 1683 } else if ((len == MSG_LD_DEMANGLE_SIZE) && (strncmp(s1, 1684 MSG_ORIG(MSG_LD_DEMANGLE), MSG_LD_DEMANGLE_SIZE) == 0)) { 1685 select |= SEL_ACT_RT; 1686 val = RT_FL_DEMANGLE; 1687 variable = ENV_FLG_DEMANGLE; 1688 } 1689 } 1690 /* 1691 * LD_FLAGS - collect the best variable definition. On completion of 1692 * environment variable processing pass the result to ld_flags_env() 1693 * where they'll be decomposed and passed back to this routine. 1694 */ 1695 else if (*s1 == 'F') { 1696 if ((len == MSG_LD_FLAGS_SIZE) && (strncmp(s1, 1697 MSG_ORIG(MSG_LD_FLAGS), MSG_LD_FLAGS_SIZE) == 0)) { 1698 select |= SEL_ACT_SPEC_1; 1699 if (select & SEL_REPLACE) 1700 str = &rpl_ldflags; 1701 else { 1702 str = &prm_ldflags; 1703 rpl_ldflags = 0; 1704 } 1705 variable = ENV_FLG_FLAGS; 1706 } 1707 } 1708 /* 1709 * LD_INIT (internal, used by ldd(1)). 1710 */ 1711 else if (*s1 == 'I') { 1712 if ((len == MSG_LD_INIT_SIZE) && (strncmp(s1, 1713 MSG_ORIG(MSG_LD_INIT), MSG_LD_INIT_SIZE) == 0)) { 1714 select |= SEL_ACT_LML; 1715 val = LML_FLG_TRC_INIT; 1716 variable = ENV_FLG_INIT; 1717 } 1718 } 1719 /* 1720 * The LD_LIBRARY_PATH and LD_LOAD families. 1721 */ 1722 else if (*s1 == 'L') { 1723 if ((len == MSG_LD_LIBPATH_SIZE) && (strncmp(s1, 1724 MSG_ORIG(MSG_LD_LIBPATH), MSG_LD_LIBPATH_SIZE) == 0)) { 1725 select |= SEL_ACT_SPEC_1; 1726 if (select & SEL_REPLACE) 1727 str = &rpl_libpath; 1728 else { 1729 str = &prm_libpath; 1730 rpl_libpath = 0; 1731 } 1732 variable = ENV_FLG_LIBPATH; 1733 } else if ((len == MSG_LD_LOADAVAIL_SIZE) && (strncmp(s1, 1734 MSG_ORIG(MSG_LD_LOADAVAIL), MSG_LD_LOADAVAIL_SIZE) == 0)) { 1735 /* 1736 * Internal use by crle(1), not documented for general 1737 * use. 1738 */ 1739 select |= SEL_ACT_LML; 1740 val = LML_FLG_LOADAVAIL; 1741 variable = ENV_FLG_LOADAVAIL; 1742 } else if ((len == MSG_LD_LOADFLTR_SIZE) && (strncmp(s1, 1743 MSG_ORIG(MSG_LD_LOADFLTR), MSG_LD_LOADFLTR_SIZE) == 0)) { 1744 select |= SEL_ACT_SPEC_2; 1745 variable = ENV_FLG_LOADFLTR; 1746 } 1747 } 1748 /* 1749 * The LD_NO family. 1750 */ 1751 else if (*s1 == 'N') { 1752 if ((len == MSG_LD_NOAUDIT_SIZE) && (strncmp(s1, 1753 MSG_ORIG(MSG_LD_NOAUDIT), MSG_LD_NOAUDIT_SIZE) == 0)) { 1754 select |= SEL_ACT_RT; 1755 val = RT_FL_NOAUDIT; 1756 variable = ENV_FLG_NOAUDIT; 1757 } else if ((len == MSG_LD_NOAUXFLTR_SIZE) && (strncmp(s1, 1758 MSG_ORIG(MSG_LD_NOAUXFLTR), MSG_LD_NOAUXFLTR_SIZE) == 0)) { 1759 select |= SEL_ACT_RT; 1760 val = RT_FL_NOAUXFLTR; 1761 variable = ENV_FLG_NOAUXFLTR; 1762 } else if ((len == MSG_LD_NOBAPLT_SIZE) && (strncmp(s1, 1763 MSG_ORIG(MSG_LD_NOBAPLT), MSG_LD_NOBAPLT_SIZE) == 0)) { 1764 select |= SEL_ACT_RT; 1765 val = RT_FL_NOBAPLT; 1766 variable = ENV_FLG_NOBAPLT; 1767 } else if ((len == MSG_LD_NOCONFIG_SIZE) && (strncmp(s1, 1768 MSG_ORIG(MSG_LD_NOCONFIG), MSG_LD_NOCONFIG_SIZE) == 0)) { 1769 select |= SEL_ACT_RT; 1770 val = RT_FL_NOCFG; 1771 variable = ENV_FLG_NOCONFIG; 1772 } else if ((len == MSG_LD_NODIRCONFIG_SIZE) && (strncmp(s1, 1773 MSG_ORIG(MSG_LD_NODIRCONFIG), 1774 MSG_LD_NODIRCONFIG_SIZE) == 0)) { 1775 select |= SEL_ACT_RT; 1776 val = RT_FL_NODIRCFG; 1777 variable = ENV_FLG_NODIRCONFIG; 1778 } else if ((len == MSG_LD_NODIRECT_SIZE) && (strncmp(s1, 1779 MSG_ORIG(MSG_LD_NODIRECT), MSG_LD_NODIRECT_SIZE) == 0)) { 1780 select |= SEL_ACT_LMLT; 1781 val = LML_TFLG_NODIRECT; 1782 variable = ENV_FLG_NODIRECT; 1783 } else if ((len == MSG_LD_NOENVCONFIG_SIZE) && (strncmp(s1, 1784 MSG_ORIG(MSG_LD_NOENVCONFIG), 1785 MSG_LD_NOENVCONFIG_SIZE) == 0)) { 1786 select |= SEL_ACT_RT; 1787 val = RT_FL_NOENVCFG; 1788 variable = ENV_FLG_NOENVCONFIG; 1789 } else if ((len == MSG_LD_NOFLTCONFIG_SIZE) && (strncmp(s1, 1790 MSG_ORIG(MSG_LD_NOFLTCONFIG), 1791 MSG_LD_NOFLTCONFIG_SIZE) == 0)) { 1792 select |= SEL_ACT_RT2; 1793 val = RT_FL2_NOFLTCFG; 1794 variable = ENV_FLG_NOFLTCONFIG; 1795 } else if ((len == MSG_LD_NOLAZY_SIZE) && (strncmp(s1, 1796 MSG_ORIG(MSG_LD_NOLAZY), MSG_LD_NOLAZY_SIZE) == 0)) { 1797 select |= SEL_ACT_LMLT; 1798 val = LML_TFLG_NOLAZYLD; 1799 variable = ENV_FLG_NOLAZY; 1800 } else if ((len == MSG_LD_NOOBJALTER_SIZE) && (strncmp(s1, 1801 MSG_ORIG(MSG_LD_NOOBJALTER), 1802 MSG_LD_NOOBJALTER_SIZE) == 0)) { 1803 select |= SEL_ACT_RT; 1804 val = RT_FL_NOOBJALT; 1805 variable = ENV_FLG_NOOBJALTER; 1806 } else if ((len == MSG_LD_NOVERSION_SIZE) && (strncmp(s1, 1807 MSG_ORIG(MSG_LD_NOVERSION), MSG_LD_NOVERSION_SIZE) == 0)) { 1808 select |= SEL_ACT_RT; 1809 val = RT_FL_NOVERSION; 1810 variable = ENV_FLG_NOVERSION; 1811 } else if ((len == MSG_LD_NOUNRESWEAK_SIZE) && (strncmp(s1, 1812 MSG_ORIG(MSG_LD_NOUNRESWEAK), 1813 MSG_LD_NOUNRESWEAK_SIZE) == 0)) { 1814 /* 1815 * LD_NOUNRESWEAK (internal, used by ldd(1)). 1816 */ 1817 select |= SEL_ACT_LML; 1818 val = LML_FLG_TRC_NOUNRESWEAK; 1819 variable = ENV_FLG_NOUNRESWEAK; 1820 } else if ((len == MSG_LD_NOPAREXT_SIZE) && (strncmp(s1, 1821 MSG_ORIG(MSG_LD_NOPAREXT), MSG_LD_NOPAREXT_SIZE) == 0)) { 1822 select |= SEL_ACT_LML; 1823 val = LML_FLG_TRC_NOPAREXT; 1824 variable = ENV_FLG_NOPAREXT; 1825 } 1826 } 1827 /* 1828 * LD_PRELOAD and LD_PROFILE family. 1829 */ 1830 else if (*s1 == 'P') { 1831 if ((len == MSG_LD_PRELOAD_SIZE) && (strncmp(s1, 1832 MSG_ORIG(MSG_LD_PRELOAD), MSG_LD_PRELOAD_SIZE) == 0)) { 1833 select |= SEL_ACT_STR; 1834 if (select & SEL_REPLACE) 1835 str = &rpl_preload; 1836 else { 1837 str = &prm_preload; 1838 rpl_preload = 0; 1839 } 1840 variable = ENV_FLG_PRELOAD; 1841 } else if ((len == MSG_LD_PROFILE_SIZE) && (strncmp(s1, 1842 MSG_ORIG(MSG_LD_PROFILE), MSG_LD_PROFILE_SIZE) == 0)) { 1843 /* 1844 * Only one user library can be profiled at a time. 1845 */ 1846 select |= SEL_ACT_SPEC_2; 1847 variable = ENV_FLG_PROFILE; 1848 } else if ((len == MSG_LD_PROFILE_OUTPUT_SIZE) && (strncmp(s1, 1849 MSG_ORIG(MSG_LD_PROFILE_OUTPUT), 1850 MSG_LD_PROFILE_OUTPUT_SIZE) == 0)) { 1851 /* 1852 * Only one user library can be profiled at a time. 1853 */ 1854 select |= SEL_ACT_STR; 1855 str = &profile_out; 1856 variable = ENV_FLG_PROFILE_OUTPUT; 1857 } 1858 } 1859 /* 1860 * LD_SIGNAL. 1861 */ 1862 else if (*s1 == 'S') { 1863 if (rtld_flags & RT_FL_SECURE) 1864 return; 1865 if ((len == MSG_LD_SIGNAL_SIZE) && 1866 (strncmp(s1, MSG_ORIG(MSG_LD_SIGNAL), 1867 MSG_LD_SIGNAL_SIZE) == 0)) { 1868 select |= SEL_ACT_SPEC_2; 1869 variable = ENV_FLG_SIGNAL; 1870 } 1871 } 1872 /* 1873 * The LD_TRACE family (internal, used by ldd(1)). This definition is 1874 * the key to enabling all other ldd(1) specific environment variables. 1875 * In case an auditor is called, which in turn might exec(2) a 1876 * subprocess, this variable is disabled, so that any subprocess 1877 * escapes ldd(1) processing. 1878 */ 1879 else if (*s1 == 'T') { 1880 if (((len == MSG_LD_TRACE_OBJS_SIZE) && 1881 (strncmp(s1, MSG_ORIG(MSG_LD_TRACE_OBJS), 1882 MSG_LD_TRACE_OBJS_SIZE) == 0)) || 1883 ((len == MSG_LD_TRACE_OBJS_E_SIZE) && 1884 (((strncmp(s1, MSG_ORIG(MSG_LD_TRACE_OBJS_E), 1885 MSG_LD_TRACE_OBJS_E_SIZE) == 0) && !aout) || 1886 ((strncmp(s1, MSG_ORIG(MSG_LD_TRACE_OBJS_A), 1887 MSG_LD_TRACE_OBJS_A_SIZE) == 0) && aout)))) { 1888 char *s0 = (char *)s1; 1889 1890 select |= SEL_ACT_SPEC_2; 1891 variable = ENV_FLG_TRACE_OBJS; 1892 1893 #if defined(__sparc) || defined(__x86) 1894 /* 1895 * The simplest way to "disable" this variable is to 1896 * truncate this string to "LD_'\0'". This string is 1897 * ignored by any ld.so.1 environment processing. 1898 * Use of such interfaces as unsetenv(3c) are overkill, 1899 * and would drag too much libc implementation detail 1900 * into ld.so.1. 1901 */ 1902 *s0 = '\0'; 1903 #else 1904 /* 1905 * Verify that the above write is appropriate for any new platforms. 1906 */ 1907 #error unsupported architecture! 1908 #endif 1909 } else if ((len == MSG_LD_TRACE_PTHS_SIZE) && (strncmp(s1, 1910 MSG_ORIG(MSG_LD_TRACE_PTHS), 1911 MSG_LD_TRACE_PTHS_SIZE) == 0)) { 1912 select |= SEL_ACT_LML; 1913 val = LML_FLG_TRC_SEARCH; 1914 variable = ENV_FLG_TRACE_PTHS; 1915 } 1916 } 1917 /* 1918 * LD_UNREF and LD_UNUSED (internal, used by ldd(1)). 1919 */ 1920 else if (*s1 == 'U') { 1921 if ((len == MSG_LD_UNREF_SIZE) && (strncmp(s1, 1922 MSG_ORIG(MSG_LD_UNREF), MSG_LD_UNREF_SIZE) == 0)) { 1923 select |= SEL_ACT_LML; 1924 val = LML_FLG_TRC_UNREF; 1925 variable = ENV_FLG_UNREF; 1926 } else if ((len == MSG_LD_UNUSED_SIZE) && (strncmp(s1, 1927 MSG_ORIG(MSG_LD_UNUSED), MSG_LD_UNUSED_SIZE) == 0)) { 1928 select |= SEL_ACT_LML; 1929 val = LML_FLG_TRC_UNUSED; 1930 variable = ENV_FLG_UNUSED; 1931 } 1932 } 1933 /* 1934 * LD_VERBOSE (internal, used by ldd(1)). 1935 */ 1936 else if (*s1 == 'V') { 1937 if ((len == MSG_LD_VERBOSE_SIZE) && (strncmp(s1, 1938 MSG_ORIG(MSG_LD_VERBOSE), MSG_LD_VERBOSE_SIZE) == 0)) { 1939 select |= SEL_ACT_LML; 1940 val = LML_FLG_TRC_VERBOSE; 1941 variable = ENV_FLG_VERBOSE; 1942 } 1943 } 1944 /* 1945 * LD_WARN (internal, used by ldd(1)). 1946 */ 1947 else if (*s1 == 'W') { 1948 if ((len == MSG_LD_WARN_SIZE) && (strncmp(s1, 1949 MSG_ORIG(MSG_LD_WARN), MSG_LD_WARN_SIZE) == 0)) { 1950 select |= SEL_ACT_LML; 1951 val = LML_FLG_TRC_WARN; 1952 variable = ENV_FLG_WARN; 1953 } 1954 } 1955 1956 if (variable == 0) 1957 return; 1958 1959 /* 1960 * If the variable is already processed with ISA specific variable, 1961 * no further processing needed. 1962 */ 1963 if (((select & SEL_REPLACE) && (rplisa & variable)) || 1964 ((select & SEL_PERMANT) && (prmisa & variable))) 1965 return; 1966 1967 /* 1968 * Now mark the appropriate variables. 1969 * If the replaceable variable is already set, then the 1970 * process environment variable must be set. Any replaceable 1971 * variable specified in a configuration file can be ignored. 1972 */ 1973 if (env_flags & ENV_TYP_ISA) { 1974 /* 1975 * This is ISA setting. We do the setting 1976 * even if s2 is NULL. 1977 * If s2 is NULL, we might need to undo 1978 * the setting. 1979 */ 1980 if (select & SEL_REPLACE) { 1981 if (rplisa & variable) 1982 return; 1983 rplisa |= variable; 1984 } else { 1985 prmisa |= variable; 1986 } 1987 } else if (s2) { 1988 /* 1989 * This is non0-ISA setting 1990 */ 1991 if (select & SEL_REPLACE) { 1992 if (rplgen & variable) 1993 return; 1994 rplgen |= variable; 1995 } else 1996 prmgen |= variable; 1997 } else 1998 /* 1999 * This is non-ISA setting which 2000 * can be ignored. 2001 */ 2002 return; 2003 2004 /* 2005 * Now perform the setting. 2006 */ 2007 if (select & SEL_ACT_RT) { 2008 if (s2) 2009 rtld_flags |= val; 2010 else 2011 rtld_flags &= ~val; 2012 } else if (select & SEL_ACT_RT2) { 2013 if (s2) 2014 rtld_flags2 |= val; 2015 else 2016 rtld_flags2 &= ~val; 2017 } else if (select & SEL_ACT_STR) 2018 *str = s2; 2019 else if (select & SEL_ACT_LML) { 2020 if (s2) 2021 *lmflags |= val; 2022 else 2023 *lmflags &= ~val; 2024 } else if (select & SEL_ACT_LMLT) { 2025 if (s2) 2026 *lmtflags |= val; 2027 else 2028 *lmtflags &= ~val; 2029 } else if (select & SEL_ACT_SPEC_1) { 2030 /* 2031 * variable is either ENV_FLG_FLAGS or ENV_FLG_LIBPATH 2032 */ 2033 *str = s2; 2034 if ((select & SEL_REPLACE) && (env_flags & ENV_TYP_CONFIG)) { 2035 if (s2) { 2036 if (variable == ENV_FLG_FLAGS) 2037 env_info |= ENV_INF_FLAGCFG; 2038 else 2039 env_info |= ENV_INF_PATHCFG; 2040 } else { 2041 if (variable == ENV_FLG_FLAGS) 2042 env_info &= ~ENV_INF_FLAGCFG; 2043 else 2044 env_info &= ~ENV_INF_PATHCFG; 2045 } 2046 } 2047 } else if (select & SEL_ACT_SPEC_2) { 2048 /* 2049 * variables can be: ENV_FLG_ 2050 * AUDIT_ARGS, BINDING, CONCURRENCY, CONFGEN, 2051 * LOADFLTR, PROFILE, SIGNAL, TRACE_OBJS 2052 */ 2053 if (variable == ENV_FLG_AUDIT_ARGS) { 2054 if (s2) { 2055 audit_argcnt = atoi(s2); 2056 audit_argcnt += audit_argcnt % 2; 2057 } else 2058 audit_argcnt = 0; 2059 } else if (variable == ENV_FLG_BINDINGS) { 2060 if (s2) 2061 rpl_debug = MSG_ORIG(MSG_TKN_BINDINGS); 2062 else 2063 rpl_debug = NULL; 2064 } else if (variable == ENV_FLG_CONFGEN) { 2065 if (s2) { 2066 rtld_flags |= RT_FL_CONFGEN; 2067 *lmflags |= LML_FLG_IGNRELERR; 2068 } else { 2069 rtld_flags &= ~RT_FL_CONFGEN; 2070 *lmflags &= ~LML_FLG_IGNRELERR; 2071 } 2072 } else if (variable == ENV_FLG_LOADFLTR) { 2073 if (s2) { 2074 *lmtflags |= LML_TFLG_LOADFLTR; 2075 if (*s2 == '2') 2076 rtld_flags |= RT_FL_WARNFLTR; 2077 } else { 2078 *lmtflags &= ~LML_TFLG_LOADFLTR; 2079 rtld_flags &= ~RT_FL_WARNFLTR; 2080 } 2081 } else if (variable == ENV_FLG_PROFILE) { 2082 profile_name = s2; 2083 if (s2) { 2084 if (strcmp(s2, MSG_ORIG(MSG_FIL_RTLD)) == 0) { 2085 return; 2086 } 2087 /* BEGIN CSTYLED */ 2088 if (rtld_flags & RT_FL_SECURE) { 2089 profile_lib = 2090 #if defined(_ELF64) 2091 MSG_ORIG(MSG_PTH_LDPROFSE_64); 2092 #else 2093 MSG_ORIG(MSG_PTH_LDPROFSE); 2094 #endif 2095 } else { 2096 profile_lib = 2097 #if defined(_ELF64) 2098 MSG_ORIG(MSG_PTH_LDPROF_64); 2099 #else 2100 MSG_ORIG(MSG_PTH_LDPROF); 2101 #endif 2102 } 2103 /* END CSTYLED */ 2104 } else 2105 profile_lib = NULL; 2106 } else if (variable == ENV_FLG_SIGNAL) { 2107 killsig = s2 ? atoi(s2) : SIGKILL; 2108 } else if (variable == ENV_FLG_TRACE_OBJS) { 2109 if (s2) { 2110 *lmflags |= LML_FLG_TRC_ENABLE; 2111 if (*s2 == '2') 2112 *lmflags |= LML_FLG_TRC_LDDSTUB; 2113 } else 2114 *lmflags &= 2115 ~(LML_FLG_TRC_ENABLE|LML_FLG_TRC_LDDSTUB); 2116 } 2117 } 2118 } 2119 2120 /* 2121 * Determine whether we have an architecture specific environment variable. 2122 * If we do, and we're the wrong architecture, it'll just get ignored. 2123 * Otherwise the variable is processed in it's architecture neutral form. 2124 */ 2125 static int 2126 ld_arch_env(const char *s1, size_t *len) 2127 { 2128 size_t _len = *len - 3; 2129 2130 if (s1[_len++] == '_') { 2131 if ((s1[_len] == '3') && (s1[_len + 1] == '2')) { 2132 #if defined(_ELF64) 2133 return (ENV_TYP_IGNORE); 2134 #else 2135 *len = *len - 3; 2136 return (ENV_TYP_ISA); 2137 #endif 2138 } 2139 if ((s1[_len] == '6') && (s1[_len + 1] == '4')) { 2140 #if defined(_ELF64) 2141 *len = *len - 3; 2142 return (ENV_TYP_ISA); 2143 #else 2144 return (ENV_TYP_IGNORE); 2145 #endif 2146 } 2147 } 2148 return (0); 2149 } 2150 2151 2152 /* 2153 * Process an LD_FLAGS environment variable. The value can be a comma 2154 * separated set of tokens, which are sent (in upper case) into the generic 2155 * LD_XXXX environment variable engine. For example: 2156 * 2157 * LD_FLAGS=bind_now -> LD_BIND_NOW=1 2158 * LD_FLAGS=library_path=/foo:. -> LD_LIBRARY_PATH=/foo:. 2159 * LD_FLAGS=debug=files:detail -> LD_DEBUG=files:detail 2160 * or 2161 * LD_FLAGS=bind_now,library_path=/foo:.,debug=files:detail 2162 */ 2163 static int 2164 ld_flags_env(const char *str, Word *lmflags, Word *lmtflags, 2165 uint_t env_flags, int aout) 2166 { 2167 char *nstr, *sstr, *estr = NULL; 2168 size_t nlen, len; 2169 2170 if (str == NULL) 2171 return (0); 2172 2173 /* 2174 * Create a new string as we're going to transform the token(s) into 2175 * uppercase and separate tokens with nulls. 2176 */ 2177 len = strlen(str); 2178 if ((nstr = malloc(len + 1)) == NULL) 2179 return (1); 2180 (void) strcpy(nstr, str); 2181 2182 for (sstr = nstr; sstr; sstr++, len--) { 2183 int flags; 2184 2185 if ((*sstr != '\0') && (*sstr != ',')) { 2186 if (estr == NULL) { 2187 if (*sstr == '=') 2188 estr = sstr; 2189 else { 2190 /* 2191 * Translate token to uppercase. Don't 2192 * use toupper(3C) as including this 2193 * code doubles the size of ld.so.1. 2194 */ 2195 if ((*sstr >= 'a') && (*sstr <= 'z')) 2196 *sstr = *sstr - ('a' - 'A'); 2197 } 2198 } 2199 continue; 2200 } 2201 2202 *sstr = '\0'; 2203 if (estr) { 2204 nlen = estr - nstr; 2205 if ((*++estr == '\0') || (*estr == ',')) 2206 estr = NULL; 2207 } else 2208 nlen = sstr - nstr; 2209 2210 /* 2211 * Fabricate a boolean definition for any unqualified variable. 2212 * Thus LD_FLAGS=bind_now is represented as BIND_NOW=(null). 2213 * The value is sufficient to assert any boolean variables, plus 2214 * the term "(null)" is specifically chosen in case someone 2215 * mistakenly supplies something like LD_FLAGS=library_path. 2216 */ 2217 if (estr == NULL) 2218 estr = (char *)MSG_INTL(MSG_STR_NULL); 2219 2220 /* 2221 * Determine whether the environment variable is 32- or 64-bit 2222 * specific. The length, len, will reflect the architecture 2223 * neutral portion of the string. 2224 */ 2225 if ((flags = ld_arch_env(nstr, &nlen)) != ENV_TYP_IGNORE) { 2226 ld_generic_env(nstr, nlen, estr, lmflags, 2227 lmtflags, (env_flags | flags), aout); 2228 } 2229 if (len == 0) 2230 return (0); 2231 2232 nstr = sstr + 1; 2233 estr = NULL; 2234 } 2235 return (0); 2236 } 2237 2238 2239 /* 2240 * Process a single environment string. Only strings starting with `LD_' are 2241 * reserved for our use. By convention, all strings should be of the form 2242 * `LD_XXXX=', if the string is followed by a non-null value the appropriate 2243 * functionality is enabled. Also pick off applicable locale variables. 2244 */ 2245 #define LOC_LANG 1 2246 #define LOC_MESG 2 2247 #define LOC_ALL 3 2248 2249 static void 2250 ld_str_env(const char *s1, Word *lmflags, Word *lmtflags, uint_t env_flags, 2251 int aout) 2252 { 2253 const char *s2; 2254 static size_t loc = 0; 2255 2256 if (*s1++ != 'L') 2257 return; 2258 2259 /* 2260 * See if we have any locale environment settings. These environment 2261 * variables have a precedence, LC_ALL is higher than LC_MESSAGES which 2262 * is higher than LANG. 2263 */ 2264 s2 = s1; 2265 if ((*s2++ == 'C') && (*s2++ == '_') && (*s2 != '\0')) { 2266 if (strncmp(s2, MSG_ORIG(MSG_LC_ALL), MSG_LC_ALL_SIZE) == 0) { 2267 s2 += MSG_LC_ALL_SIZE; 2268 if ((*s2 != '\0') && (loc < LOC_ALL)) { 2269 glcs[CI_LCMESSAGES].lc_un.lc_ptr = (char *)s2; 2270 loc = LOC_ALL; 2271 } 2272 } else if (strncmp(s2, MSG_ORIG(MSG_LC_MESSAGES), 2273 MSG_LC_MESSAGES_SIZE) == 0) { 2274 s2 += MSG_LC_MESSAGES_SIZE; 2275 if ((*s2 != '\0') && (loc < LOC_MESG)) { 2276 glcs[CI_LCMESSAGES].lc_un.lc_ptr = (char *)s2; 2277 loc = LOC_MESG; 2278 } 2279 } 2280 return; 2281 } 2282 2283 s2 = s1; 2284 if ((*s2++ == 'A') && (*s2++ == 'N') && (*s2++ == 'G') && 2285 (*s2++ == '=') && (*s2 != '\0') && (loc < LOC_LANG)) { 2286 glcs[CI_LCMESSAGES].lc_un.lc_ptr = (char *)s2; 2287 loc = LOC_LANG; 2288 return; 2289 } 2290 2291 /* 2292 * Pick off any LD_XXXX environment variables. 2293 */ 2294 if ((*s1++ == 'D') && (*s1++ == '_') && (*s1 != '\0')) { 2295 size_t len; 2296 int flags; 2297 2298 /* 2299 * In a branded process we must ignore all LD_XXXX env vars 2300 * because they are intended for the brand's linker. 2301 * To affect the Solaris linker, use LD_BRAND_XXXX instead. 2302 */ 2303 if (rtld_flags2 & RT_FL2_BRANDED) { 2304 if (strncmp(s1, MSG_ORIG(MSG_LD_BRAND_PREFIX), 2305 MSG_LD_BRAND_PREFIX_SIZE) != 0) 2306 return; 2307 s1 += MSG_LD_BRAND_PREFIX_SIZE; 2308 } 2309 2310 /* 2311 * Environment variables with no value (ie. LD_XXXX=) typically 2312 * have no impact, however if environment variables are defined 2313 * within a configuration file, these null user settings can be 2314 * used to disable any configuration replaceable definitions. 2315 */ 2316 if ((s2 = strchr(s1, '=')) == NULL) { 2317 len = strlen(s1); 2318 s2 = NULL; 2319 } else if (*++s2 == '\0') { 2320 len = strlen(s1) - 1; 2321 s2 = NULL; 2322 } else { 2323 len = s2 - s1 - 1; 2324 while (isspace(*s2)) 2325 s2++; 2326 } 2327 2328 /* 2329 * Determine whether the environment variable is 32- or 64-bit 2330 * specific. The length, len, will reflect the architecture 2331 * neutral portion of the string. 2332 */ 2333 if ((flags = ld_arch_env(s1, &len)) == ENV_TYP_IGNORE) 2334 return; 2335 env_flags |= flags; 2336 2337 ld_generic_env(s1, len, s2, lmflags, lmtflags, env_flags, aout); 2338 } 2339 } 2340 2341 /* 2342 * Internal getenv routine. Called immediately after ld.so.1 initializes 2343 * itself. 2344 */ 2345 int 2346 readenv_user(const char **envp, Word *lmflags, Word *lmtflags, int aout) 2347 { 2348 char *locale; 2349 2350 if (envp == NULL) 2351 return (0); 2352 2353 while (*envp != NULL) 2354 ld_str_env(*envp++, lmflags, lmtflags, 0, aout); 2355 2356 /* 2357 * Having collected the best representation of any LD_FLAGS, process 2358 * these strings. 2359 */ 2360 if (ld_flags_env(rpl_ldflags, lmflags, lmtflags, 0, aout) == 1) 2361 return (1); 2362 2363 /* 2364 * Don't allow environment controlled auditing when tracing or if 2365 * explicitly disabled. Trigger all tracing modes from 2366 * LML_FLG_TRC_ENABLE. 2367 */ 2368 if ((*lmflags & LML_FLG_TRC_ENABLE) || (rtld_flags & RT_FL_NOAUDIT)) 2369 rpl_audit = profile_lib = profile_name = NULL; 2370 if ((*lmflags & LML_FLG_TRC_ENABLE) == 0) 2371 *lmflags &= ~LML_MSK_TRC; 2372 2373 /* 2374 * If both LD_BIND_NOW and LD_BIND_LAZY are specified, the former wins. 2375 */ 2376 if ((rtld_flags2 & (RT_FL2_BINDNOW | RT_FL2_BINDLAZY)) == 2377 (RT_FL2_BINDNOW | RT_FL2_BINDLAZY)) 2378 rtld_flags2 &= ~RT_FL2_BINDLAZY; 2379 2380 /* 2381 * When using ldd(1) -r or -d against an executable, assert -p. 2382 */ 2383 if ((*lmflags & 2384 (LML_FLG_TRC_WARN | LML_FLG_TRC_LDDSTUB)) == LML_FLG_TRC_WARN) 2385 *lmflags |= LML_FLG_TRC_NOPAREXT; 2386 2387 /* 2388 * If we have a locale setting make sure its worth processing further. 2389 * C and POSIX locales don't need any processing. In addition, to 2390 * ensure no one escapes the /usr/lib/locale hierarchy, don't allow 2391 * the locale to contain a segment that leads upward in the file system 2392 * hierarchy (i.e. no '..' segments). Given that we'll be confined to 2393 * the /usr/lib/locale hierarchy, there is no need to extensively 2394 * validate the mode or ownership of any message file (as libc's 2395 * generic handling of message files does). Duplicate the string so 2396 * that new locale setting can generically cleanup any previous locales. 2397 */ 2398 if ((locale = glcs[CI_LCMESSAGES].lc_un.lc_ptr) != NULL) { 2399 if (((*locale == 'C') && (*(locale + 1) == '\0')) || 2400 (strcmp(locale, MSG_ORIG(MSG_TKN_POSIX)) == 0) || 2401 (strstr(locale, MSG_ORIG(MSG_TKN_DOTDOT)) != NULL)) 2402 glcs[CI_LCMESSAGES].lc_un.lc_ptr = NULL; 2403 else 2404 glcs[CI_LCMESSAGES].lc_un.lc_ptr = strdup(locale); 2405 } 2406 return (0); 2407 } 2408 2409 /* 2410 * Configuration environment processing. Called after the a.out has been 2411 * processed (as the a.out can specify its own configuration file). 2412 */ 2413 int 2414 readenv_config(Rtc_env * envtbl, Addr addr, int aout) 2415 { 2416 Word *lmflags = &(lml_main.lm_flags); 2417 Word *lmtflags = &(lml_main.lm_tflags); 2418 2419 if (envtbl == NULL) 2420 return (0); 2421 2422 while (envtbl->env_str) { 2423 uint_t env_flags = ENV_TYP_CONFIG; 2424 2425 if (envtbl->env_flags & RTC_ENV_PERMANT) 2426 env_flags |= ENV_TYP_PERMANT; 2427 2428 ld_str_env((const char *)(envtbl->env_str + addr), 2429 lmflags, lmtflags, env_flags, 0); 2430 envtbl++; 2431 } 2432 2433 /* 2434 * Having collected the best representation of any LD_FLAGS, process 2435 * these strings. 2436 */ 2437 if (ld_flags_env(rpl_ldflags, lmflags, lmtflags, 0, aout) == 1) 2438 return (1); 2439 if (ld_flags_env(prm_ldflags, lmflags, lmtflags, ENV_TYP_CONFIG, 2440 aout) == 1) 2441 return (1); 2442 2443 /* 2444 * Don't allow environment controlled auditing when tracing or if 2445 * explicitly disabled. Trigger all tracing modes from 2446 * LML_FLG_TRC_ENABLE. 2447 */ 2448 if ((*lmflags & LML_FLG_TRC_ENABLE) || (rtld_flags & RT_FL_NOAUDIT)) 2449 prm_audit = profile_lib = profile_name = NULL; 2450 if ((*lmflags & LML_FLG_TRC_ENABLE) == 0) 2451 *lmflags &= ~LML_MSK_TRC; 2452 2453 return (0); 2454 } 2455 2456 int 2457 dowrite(Prfbuf * prf) 2458 { 2459 /* 2460 * We do not have a valid file descriptor, so we are unable 2461 * to flush the buffer. 2462 */ 2463 if (prf->pr_fd == -1) 2464 return (0); 2465 (void) write(prf->pr_fd, prf->pr_buf, prf->pr_cur - prf->pr_buf); 2466 prf->pr_cur = prf->pr_buf; 2467 return (1); 2468 } 2469 2470 /* 2471 * Simplified printing. The following conversion specifications are supported: 2472 * 2473 * % [#] [-] [min field width] [. precision] s|d|x|c 2474 * 2475 * 2476 * dorprf takes the output buffer in the form of Prfbuf which permits 2477 * the verification of the output buffer size and the concatenation 2478 * of data to an already existing output buffer. The Prfbuf 2479 * structure contains the following: 2480 * 2481 * pr_buf pointer to the beginning of the output buffer. 2482 * pr_cur pointer to the next available byte in the output buffer. By 2483 * setting pr_cur ahead of pr_buf you can append to an already 2484 * existing buffer. 2485 * pr_len the size of the output buffer. By setting pr_len to '0' you 2486 * disable protection from overflows in the output buffer. 2487 * pr_fd a pointer to the file-descriptor the buffer will eventually be 2488 * output to. If pr_fd is set to '-1' then it's assumed there is 2489 * no output buffer, and doprf() will return with an error to 2490 * indicate an output buffer overflow. If pr_fd is > -1 then when 2491 * the output buffer is filled it will be flushed to pr_fd and will 2492 * then be available for additional data. 2493 */ 2494 #define FLG_UT_MINUS 0x0001 /* - */ 2495 #define FLG_UT_SHARP 0x0002 /* # */ 2496 #define FLG_UT_DOTSEEN 0x0008 /* dot appeared in format spec */ 2497 2498 /* 2499 * This macro is for use from within doprf only. It is to be used for checking 2500 * the output buffer size and placing characters into the buffer. 2501 */ 2502 #define PUTC(c) \ 2503 { \ 2504 char tmpc; \ 2505 \ 2506 tmpc = (c); \ 2507 if (bufsiz && (bp >= bufend)) { \ 2508 prf->pr_cur = bp; \ 2509 if (dowrite(prf) == 0) \ 2510 return (0); \ 2511 bp = prf->pr_cur; \ 2512 } \ 2513 *bp++ = tmpc; \ 2514 } 2515 2516 /* 2517 * Define a local buffer size for building a numeric value - large enough to 2518 * hold a 64-bit value. 2519 */ 2520 #define NUM_SIZE 22 2521 2522 size_t 2523 doprf(const char *format, va_list args, Prfbuf *prf) 2524 { 2525 char c; 2526 char *bp = prf->pr_cur; 2527 char *bufend = prf->pr_buf + prf->pr_len; 2528 size_t bufsiz = prf->pr_len; 2529 2530 while ((c = *format++) != '\0') { 2531 if (c != '%') { 2532 PUTC(c); 2533 } else { 2534 int base = 0, flag = 0, width = 0, prec = 0; 2535 size_t _i; 2536 int _c, _n; 2537 char *_s; 2538 int ls = 0; 2539 again: 2540 c = *format++; 2541 switch (c) { 2542 case '-': 2543 flag |= FLG_UT_MINUS; 2544 goto again; 2545 case '#': 2546 flag |= FLG_UT_SHARP; 2547 goto again; 2548 case '.': 2549 flag |= FLG_UT_DOTSEEN; 2550 goto again; 2551 case '0': 2552 case '1': 2553 case '2': 2554 case '3': 2555 case '4': 2556 case '5': 2557 case '6': 2558 case '7': 2559 case '8': 2560 case '9': 2561 if (flag & FLG_UT_DOTSEEN) 2562 prec = (prec * 10) + c - '0'; 2563 else 2564 width = (width * 10) + c - '0'; 2565 goto again; 2566 case 'x': 2567 case 'X': 2568 base = 16; 2569 break; 2570 case 'd': 2571 case 'D': 2572 case 'u': 2573 base = 10; 2574 flag &= ~FLG_UT_SHARP; 2575 break; 2576 case 'l': 2577 base = 10; 2578 ls++; /* number of l's (long or long long) */ 2579 if ((*format == 'l') || 2580 (*format == 'd') || (*format == 'D') || 2581 (*format == 'x') || (*format == 'X') || 2582 (*format == 'o') || (*format == 'O')) 2583 goto again; 2584 break; 2585 case 'o': 2586 case 'O': 2587 base = 8; 2588 break; 2589 case 'c': 2590 _c = va_arg(args, int); 2591 2592 for (_i = 24; _i > 0; _i -= 8) { 2593 if ((c = ((_c >> _i) & 0x7f)) != 0) { 2594 PUTC(c); 2595 } 2596 } 2597 if ((c = ((_c >> _i) & 0x7f)) != 0) { 2598 PUTC(c); 2599 } 2600 break; 2601 case 's': 2602 _s = va_arg(args, char *); 2603 _i = strlen(_s); 2604 /* LINTED */ 2605 _n = (int)(width - _i); 2606 if (!prec) 2607 /* LINTED */ 2608 prec = (int)_i; 2609 2610 if (width && !(flag & FLG_UT_MINUS)) { 2611 while (_n-- > 0) 2612 PUTC(' '); 2613 } 2614 while (((c = *_s++) != 0) && prec--) { 2615 PUTC(c); 2616 } 2617 if (width && (flag & FLG_UT_MINUS)) { 2618 while (_n-- > 0) 2619 PUTC(' '); 2620 } 2621 break; 2622 case '%': 2623 PUTC('%'); 2624 break; 2625 default: 2626 break; 2627 } 2628 2629 /* 2630 * Numeric processing 2631 */ 2632 if (base) { 2633 char local[NUM_SIZE]; 2634 size_t ssize = 0, psize = 0; 2635 const char *string = 2636 MSG_ORIG(MSG_STR_HEXNUM); 2637 const char *prefix = 2638 MSG_ORIG(MSG_STR_EMPTY); 2639 u_longlong_t num; 2640 2641 switch (ls) { 2642 case 0: /* int */ 2643 num = (u_longlong_t) 2644 va_arg(args, uint_t); 2645 break; 2646 case 1: /* long */ 2647 num = (u_longlong_t) 2648 va_arg(args, ulong_t); 2649 break; 2650 case 2: /* long long */ 2651 num = va_arg(args, u_longlong_t); 2652 break; 2653 } 2654 2655 if (flag & FLG_UT_SHARP) { 2656 if (base == 16) { 2657 prefix = MSG_ORIG(MSG_STR_HEX); 2658 psize = 2; 2659 } else { 2660 prefix = MSG_ORIG(MSG_STR_ZERO); 2661 psize = 1; 2662 } 2663 } 2664 if ((base == 10) && (long)num < 0) { 2665 prefix = MSG_ORIG(MSG_STR_NEGATE); 2666 psize = MSG_STR_NEGATE_SIZE; 2667 num = (u_longlong_t)(-(longlong_t)num); 2668 } 2669 2670 /* 2671 * Convert the numeric value into a local 2672 * string (stored in reverse order). 2673 */ 2674 _s = local; 2675 do { 2676 *_s++ = string[num % base]; 2677 num /= base; 2678 ssize++; 2679 } while (num); 2680 2681 ASSERT(ssize < sizeof (local)); 2682 2683 /* 2684 * Provide any precision or width padding. 2685 */ 2686 if (prec) { 2687 /* LINTED */ 2688 _n = (int)(prec - ssize); 2689 while ((_n-- > 0) && 2690 (ssize < sizeof (local))) { 2691 *_s++ = '0'; 2692 ssize++; 2693 } 2694 } 2695 if (width && !(flag & FLG_UT_MINUS)) { 2696 /* LINTED */ 2697 _n = (int)(width - ssize - psize); 2698 while (_n-- > 0) { 2699 PUTC(' '); 2700 } 2701 } 2702 2703 /* 2704 * Print any prefix and the numeric string 2705 */ 2706 while (*prefix) 2707 PUTC(*prefix++); 2708 do { 2709 PUTC(*--_s); 2710 } while (_s > local); 2711 2712 /* 2713 * Provide any width padding. 2714 */ 2715 if (width && (flag & FLG_UT_MINUS)) { 2716 /* LINTED */ 2717 _n = (int)(width - ssize - psize); 2718 while (_n-- > 0) 2719 PUTC(' '); 2720 } 2721 } 2722 } 2723 } 2724 2725 PUTC('\0'); 2726 prf->pr_cur = bp; 2727 return (1); 2728 } 2729 2730 static int 2731 doprintf(const char *format, va_list args, Prfbuf *prf) 2732 { 2733 char *ocur = prf->pr_cur; 2734 2735 if (doprf(format, args, prf) == 0) 2736 return (0); 2737 /* LINTED */ 2738 return ((int)(prf->pr_cur - ocur)); 2739 } 2740 2741 /* VARARGS2 */ 2742 int 2743 sprintf(char *buf, const char *format, ...) 2744 { 2745 va_list args; 2746 int len; 2747 Prfbuf prf; 2748 2749 va_start(args, format); 2750 prf.pr_buf = prf.pr_cur = buf; 2751 prf.pr_len = 0; 2752 prf.pr_fd = -1; 2753 len = doprintf(format, args, &prf); 2754 va_end(args); 2755 2756 /* 2757 * sprintf() return value excludes the terminating null byte. 2758 */ 2759 return (len - 1); 2760 } 2761 2762 /* VARARGS3 */ 2763 int 2764 snprintf(char *buf, size_t n, const char *format, ...) 2765 { 2766 va_list args; 2767 int len; 2768 Prfbuf prf; 2769 2770 va_start(args, format); 2771 prf.pr_buf = prf.pr_cur = buf; 2772 prf.pr_len = n; 2773 prf.pr_fd = -1; 2774 len = doprintf(format, args, &prf); 2775 va_end(args); 2776 2777 return (len); 2778 } 2779 2780 /* VARARGS2 */ 2781 int 2782 bufprint(Prfbuf *prf, const char *format, ...) 2783 { 2784 va_list args; 2785 int len; 2786 2787 va_start(args, format); 2788 len = doprintf(format, args, prf); 2789 va_end(args); 2790 2791 return (len); 2792 } 2793 2794 /*PRINTFLIKE1*/ 2795 int 2796 printf(const char *format, ...) 2797 { 2798 va_list args; 2799 char buffer[ERRSIZE]; 2800 Prfbuf prf; 2801 2802 va_start(args, format); 2803 prf.pr_buf = prf.pr_cur = buffer; 2804 prf.pr_len = ERRSIZE; 2805 prf.pr_fd = 1; 2806 (void) doprf(format, args, &prf); 2807 va_end(args); 2808 /* 2809 * Trim trailing '\0' form buffer 2810 */ 2811 prf.pr_cur--; 2812 return (dowrite(&prf)); 2813 } 2814 2815 static char errbuf[ERRSIZE], *nextptr = errbuf, *prevptr = NULL; 2816 2817 /* 2818 * All error messages go through eprintf(). During process initialization, 2819 * these messages are directed to the standard error, however once control has 2820 * been passed to the applications code these messages are stored in an internal 2821 * buffer for use with dlerror(). Note, fatal error conditions that may occur 2822 * while running the application will still cause a standard error message, see 2823 * rtldexit() in this file for details. 2824 * The RT_FL_APPLIC flag serves to indicate the transition between process 2825 * initialization and when the applications code is running. 2826 */ 2827 /*PRINTFLIKE3*/ 2828 void 2829 eprintf(Lm_list *lml, Error error, const char *format, ...) 2830 { 2831 va_list args; 2832 int overflow = 0; 2833 static int lock = 0; 2834 Prfbuf prf; 2835 2836 if (lock || (nextptr == (errbuf + ERRSIZE))) 2837 return; 2838 2839 /* 2840 * Note: this lock is here to prevent the same thread from recursively 2841 * entering itself during a eprintf. ie: during eprintf malloc() fails 2842 * and we try and call eprintf ... and then malloc() fails .... 2843 */ 2844 lock = 1; 2845 2846 /* 2847 * If we have completed startup initialization, all error messages 2848 * must be saved. These are reported through dlerror(). If we're 2849 * still in the initialization stage, output the error directly and 2850 * add a newline. 2851 */ 2852 va_start(args, format); 2853 2854 prf.pr_buf = prf.pr_cur = nextptr; 2855 prf.pr_len = ERRSIZE - (nextptr - errbuf); 2856 2857 if (!(rtld_flags & RT_FL_APPLIC)) 2858 prf.pr_fd = 2; 2859 else 2860 prf.pr_fd = -1; 2861 2862 if (error > ERR_NONE) { 2863 if ((error == ERR_FATAL) && (rtld_flags2 & RT_FL2_FTL2WARN)) 2864 error = ERR_WARNING; 2865 if (error == ERR_WARNING) { 2866 if (err_strs[ERR_WARNING] == NULL) 2867 err_strs[ERR_WARNING] = 2868 MSG_INTL(MSG_ERR_WARNING); 2869 } else if (error == ERR_FATAL) { 2870 if (err_strs[ERR_FATAL] == NULL) 2871 err_strs[ERR_FATAL] = MSG_INTL(MSG_ERR_FATAL); 2872 } else if (error == ERR_ELF) { 2873 if (err_strs[ERR_ELF] == NULL) 2874 err_strs[ERR_ELF] = MSG_INTL(MSG_ERR_ELF); 2875 } 2876 if (procname) { 2877 if (bufprint(&prf, MSG_ORIG(MSG_STR_EMSGFOR1), 2878 rtldname, procname, err_strs[error]) == 0) 2879 overflow = 1; 2880 } else { 2881 if (bufprint(&prf, MSG_ORIG(MSG_STR_EMSGFOR2), 2882 rtldname, err_strs[error]) == 0) 2883 overflow = 1; 2884 } 2885 if (overflow == 0) { 2886 /* 2887 * Remove the terminating '\0'. 2888 */ 2889 prf.pr_cur--; 2890 } 2891 } 2892 2893 if ((overflow == 0) && doprf(format, args, &prf) == 0) 2894 overflow = 1; 2895 2896 /* 2897 * If this is an ELF error, it will have been generated by a support 2898 * object that has a dependency on libelf. ld.so.1 doesn't generate any 2899 * ELF error messages as it doesn't interact with libelf. Determine the 2900 * ELF error string. 2901 */ 2902 if ((overflow == 0) && (error == ERR_ELF)) { 2903 static int (*elfeno)() = 0; 2904 static const char *(*elfemg)(); 2905 const char *emsg; 2906 Rt_map *dlmp, *lmp = lml_rtld.lm_head; 2907 2908 if (NEXT(lmp) && (elfeno == 0)) { 2909 if (((elfemg = (const char *(*)())dlsym_intn(RTLD_NEXT, 2910 MSG_ORIG(MSG_SYM_ELFERRMSG), 2911 lmp, &dlmp)) == NULL) || 2912 ((elfeno = (int (*)())dlsym_intn(RTLD_NEXT, 2913 MSG_ORIG(MSG_SYM_ELFERRNO), lmp, &dlmp)) == NULL)) 2914 elfeno = 0; 2915 } 2916 2917 /* 2918 * Lookup the message; equivalent to elf_errmsg(elf_errno()). 2919 */ 2920 if (elfeno && ((emsg = (* elfemg)((* elfeno)())) != NULL)) { 2921 prf.pr_cur--; 2922 if (bufprint(&prf, MSG_ORIG(MSG_STR_EMSGFOR2), 2923 emsg) == 0) 2924 overflow = 1; 2925 } 2926 } 2927 2928 /* 2929 * Push out any message that's been built. Note, in the case of an 2930 * overflow condition, this message may be incomplete, in which case 2931 * make sure any partial string is null terminated. 2932 */ 2933 if ((rtld_flags & (RT_FL_APPLIC | RT_FL_SILENCERR)) == 0) { 2934 *(prf.pr_cur - 1) = '\n'; 2935 (void) dowrite(&prf); 2936 } 2937 if (overflow) 2938 *(prf.pr_cur - 1) = '\0'; 2939 2940 DBG_CALL(Dbg_util_str(lml, nextptr)); 2941 va_end(args); 2942 2943 /* 2944 * Determine if there was insufficient space left in the buffer to 2945 * complete the message. If so, we'll have printed out as much as had 2946 * been processed if we're not yet executing the application. 2947 * Otherwise, there will be some debugging diagnostic indicating 2948 * as much of the error message as possible. Write out a final buffer 2949 * overflow diagnostic - unlocalized, so we don't chance more errors. 2950 */ 2951 if (overflow) { 2952 char *str = (char *)MSG_INTL(MSG_EMG_BUFOVRFLW); 2953 2954 if ((rtld_flags & RT_FL_SILENCERR) == 0) { 2955 lasterr = str; 2956 2957 if ((rtld_flags & RT_FL_APPLIC) == 0) { 2958 (void) write(2, str, strlen(str)); 2959 (void) write(2, MSG_ORIG(MSG_STR_NL), 2960 MSG_STR_NL_SIZE); 2961 } 2962 } 2963 DBG_CALL(Dbg_util_str(lml, str)); 2964 2965 lock = 0; 2966 nextptr = errbuf + ERRSIZE; 2967 return; 2968 } 2969 2970 /* 2971 * If the application has started, then error messages are being saved 2972 * for retrieval by dlerror(), or possible flushing from rtldexit() in 2973 * the case of a fatal error. In this case, establish the next error 2974 * pointer. If we haven't started the application, the whole message 2975 * buffer can be reused. 2976 */ 2977 if ((rtld_flags & RT_FL_SILENCERR) == 0) { 2978 lasterr = nextptr; 2979 2980 /* 2981 * Note, should we encounter an error such as ENOMEM, there may 2982 * be a number of the same error messages (ie. an operation 2983 * fails with ENOMEM, and then the attempts to construct the 2984 * error message itself, which incurs additional ENOMEM errors). 2985 * Compare any previous error message with the one we've just 2986 * created to prevent any duplication clutter. 2987 */ 2988 if ((rtld_flags & RT_FL_APPLIC) && 2989 ((prevptr == NULL) || (strcmp(prevptr, nextptr) != 0))) { 2990 prevptr = nextptr; 2991 nextptr = prf.pr_cur; 2992 *nextptr = '\0'; 2993 } 2994 } 2995 lock = 0; 2996 } 2997 2998 2999 #if DEBUG 3000 /* 3001 * Provide assfail() for ASSERT() statements. See <sys/debug.h> for further 3002 * details. 3003 */ 3004 int 3005 assfail(const char *a, const char *f, int l) 3006 { 3007 (void) printf("assertion failed: %s, file: %s, line: %d\n", a, f, l); 3008 (void) _lwp_kill(_lwp_self(), SIGABRT); 3009 return (0); 3010 } 3011 #endif 3012 3013 /* 3014 * Exit. If we arrive here with a non zero status it's because of a fatal 3015 * error condition (most commonly a relocation error). If the application has 3016 * already had control, then the actual fatal error message will have been 3017 * recorded in the dlerror() message buffer. Print the message before really 3018 * exiting. 3019 */ 3020 void 3021 rtldexit(Lm_list * lml, int status) 3022 { 3023 if (status) { 3024 if (rtld_flags & RT_FL_APPLIC) { 3025 /* 3026 * If the error buffer has been used, write out all 3027 * pending messages - lasterr is simply a pointer to 3028 * the last message in this buffer. However, if the 3029 * buffer couldn't be created at all, lasterr points 3030 * to a constant error message string. 3031 */ 3032 if (*errbuf) { 3033 char *errptr = errbuf; 3034 char *errend = errbuf + ERRSIZE; 3035 3036 while ((errptr < errend) && *errptr) { 3037 size_t size = strlen(errptr); 3038 (void) write(2, errptr, size); 3039 (void) write(2, MSG_ORIG(MSG_STR_NL), 3040 MSG_STR_NL_SIZE); 3041 errptr += (size + 1); 3042 } 3043 } 3044 if (lasterr && ((lasterr < errbuf) || 3045 (lasterr > (errbuf + ERRSIZE)))) { 3046 (void) write(2, lasterr, strlen(lasterr)); 3047 (void) write(2, MSG_ORIG(MSG_STR_NL), 3048 MSG_STR_NL_SIZE); 3049 } 3050 } 3051 leave(lml, 0); 3052 (void) _lwp_kill(_lwp_self(), killsig); 3053 } 3054 _exit(status); 3055 } 3056 3057 /* 3058 * Map anonymous memory via MAP_ANON (added in Solaris 8). 3059 */ 3060 void * 3061 dz_map(Lm_list *lml, caddr_t addr, size_t len, int prot, int flags) 3062 { 3063 caddr_t va; 3064 3065 if ((va = (caddr_t)mmap(addr, len, prot, 3066 (flags | MAP_ANON), -1, 0)) == MAP_FAILED) { 3067 int err = errno; 3068 eprintf(lml, ERR_FATAL, MSG_INTL(MSG_SYS_MMAPANON), 3069 strerror(err)); 3070 return (MAP_FAILED); 3071 } 3072 return (va); 3073 } 3074 3075 static int nu_fd = FD_UNAVAIL; 3076 3077 void * 3078 nu_map(Lm_list *lml, caddr_t addr, size_t len, int prot, int flags) 3079 { 3080 caddr_t va; 3081 int err; 3082 3083 if (nu_fd == FD_UNAVAIL) { 3084 if ((nu_fd = open(MSG_ORIG(MSG_PTH_DEVNULL), 3085 O_RDONLY)) == FD_UNAVAIL) { 3086 err = errno; 3087 eprintf(lml, ERR_FATAL, MSG_INTL(MSG_SYS_OPEN), 3088 MSG_ORIG(MSG_PTH_DEVNULL), strerror(err)); 3089 return (MAP_FAILED); 3090 } 3091 } 3092 3093 if ((va = (caddr_t)mmap(addr, len, prot, flags, nu_fd, 0)) == 3094 MAP_FAILED) { 3095 err = errno; 3096 eprintf(lml, ERR_FATAL, MSG_INTL(MSG_SYS_MMAP), 3097 MSG_ORIG(MSG_PTH_DEVNULL), strerror(err)); 3098 } 3099 return (va); 3100 } 3101 3102 /* 3103 * Generic entry point from user code - simply grabs a lock, and bumps the 3104 * entrance count. 3105 */ 3106 int 3107 enter(int flags) 3108 { 3109 if (rt_bind_guard(THR_FLG_RTLD | thr_flg_nolock | flags)) { 3110 if (!thr_flg_nolock) 3111 (void) rt_mutex_lock(&rtldlock); 3112 if (rtld_flags & RT_FL_OPERATION) 3113 ld_entry_cnt++; 3114 return (1); 3115 } 3116 return (0); 3117 } 3118 3119 /* 3120 * Determine whether a search path has been used. 3121 */ 3122 static void 3123 is_path_used(Lm_list *lml, Word unref, int *nl, Alist *alp, const char *obj) 3124 { 3125 Pdesc *pdp; 3126 Aliste idx; 3127 3128 for (ALIST_TRAVERSE(alp, idx, pdp)) { 3129 const char *fmt, *name; 3130 3131 if ((pdp->pd_plen == 0) || (pdp->pd_flags & PD_FLG_USED)) 3132 continue; 3133 3134 /* 3135 * If this pathname originated from an expanded token, use the 3136 * original for any diagnostic output. 3137 */ 3138 if ((name = pdp->pd_oname) == NULL) 3139 name = pdp->pd_pname; 3140 3141 if (unref == 0) { 3142 if ((*nl)++ == 0) 3143 DBG_CALL(Dbg_util_nl(lml, DBG_NL_STD)); 3144 DBG_CALL(Dbg_unused_path(lml, name, pdp->pd_flags, 3145 (pdp->pd_flags & PD_FLG_DUPLICAT), obj)); 3146 continue; 3147 } 3148 3149 if (pdp->pd_flags & LA_SER_LIBPATH) { 3150 if (pdp->pd_flags & LA_SER_CONFIG) { 3151 if (pdp->pd_flags & PD_FLG_DUPLICAT) 3152 fmt = MSG_INTL(MSG_DUP_LDLIBPATHC); 3153 else 3154 fmt = MSG_INTL(MSG_USD_LDLIBPATHC); 3155 } else { 3156 if (pdp->pd_flags & PD_FLG_DUPLICAT) 3157 fmt = MSG_INTL(MSG_DUP_LDLIBPATH); 3158 else 3159 fmt = MSG_INTL(MSG_USD_LDLIBPATH); 3160 } 3161 } else if (pdp->pd_flags & LA_SER_RUNPATH) { 3162 fmt = MSG_INTL(MSG_USD_RUNPATH); 3163 } else 3164 continue; 3165 3166 if ((*nl)++ == 0) 3167 (void) printf(MSG_ORIG(MSG_STR_NL)); 3168 (void) printf(fmt, name, obj); 3169 } 3170 } 3171 3172 /* 3173 * Generate diagnostics as to whether an object has been used. A symbolic 3174 * reference that gets bound to an object marks it as used. Dependencies that 3175 * are unused when RTLD_NOW is in effect should be removed from future builds 3176 * of an object. Dependencies that are unused without RTLD_NOW in effect are 3177 * candidates for lazy-loading. 3178 * 3179 * Unreferenced objects identify objects that are defined as dependencies but 3180 * are unreferenced by the caller. These unreferenced objects may however be 3181 * referenced by other objects within the process, and therefore don't qualify 3182 * as completely unused. They are still an unnecessary overhead. 3183 * 3184 * Unreferenced runpaths are also captured under ldd -U, or "unused,detail" 3185 * debugging. 3186 */ 3187 void 3188 unused(Lm_list *lml) 3189 { 3190 Rt_map *lmp; 3191 int nl = 0; 3192 Word unref, unuse; 3193 3194 /* 3195 * If we're not tracing unused references or dependencies, or debugging 3196 * there's nothing to do. 3197 */ 3198 unref = lml->lm_flags & LML_FLG_TRC_UNREF; 3199 unuse = lml->lm_flags & LML_FLG_TRC_UNUSED; 3200 3201 if ((unref == 0) && (unuse == 0) && (DBG_ENABLED == 0)) 3202 return; 3203 3204 /* 3205 * Detect unused global search paths. 3206 */ 3207 if (rpl_libdirs) 3208 is_path_used(lml, unref, &nl, rpl_libdirs, config->c_name); 3209 if (prm_libdirs) 3210 is_path_used(lml, unref, &nl, prm_libdirs, config->c_name); 3211 3212 nl = 0; 3213 lmp = lml->lm_head; 3214 if (RLIST(lmp)) 3215 is_path_used(lml, unref, &nl, RLIST(lmp), NAME(lmp)); 3216 3217 /* 3218 * Traverse the link-maps looking for unreferenced or unused 3219 * dependencies. Ignore the first object on a link-map list, as this 3220 * is always used. 3221 */ 3222 nl = 0; 3223 for (lmp = NEXT_RT_MAP(lmp); lmp; lmp = NEXT_RT_MAP(lmp)) { 3224 /* 3225 * Determine if this object contains any runpaths that have 3226 * not been used. 3227 */ 3228 if (RLIST(lmp)) 3229 is_path_used(lml, unref, &nl, RLIST(lmp), NAME(lmp)); 3230 3231 /* 3232 * If tracing unreferenced objects, or under debugging, 3233 * determine whether any of this objects callers haven't 3234 * referenced it. 3235 */ 3236 if (unref || DBG_ENABLED) { 3237 Bnd_desc *bdp; 3238 Aliste idx; 3239 3240 for (APLIST_TRAVERSE(CALLERS(lmp), idx, bdp)) { 3241 Rt_map *clmp; 3242 3243 if (bdp->b_flags & BND_REFER) 3244 continue; 3245 3246 clmp = bdp->b_caller; 3247 if (FLAGS1(clmp) & FL1_RT_LDDSTUB) 3248 continue; 3249 3250 /* BEGIN CSTYLED */ 3251 if (nl++ == 0) { 3252 if (unref) 3253 (void) printf(MSG_ORIG(MSG_STR_NL)); 3254 else 3255 DBG_CALL(Dbg_util_nl(lml, 3256 DBG_NL_STD)); 3257 } 3258 3259 if (unref) 3260 (void) printf(MSG_INTL(MSG_LDD_UNREF_FMT), 3261 NAME(lmp), NAME(clmp)); 3262 else 3263 DBG_CALL(Dbg_unused_unref(lmp, NAME(clmp))); 3264 /* END CSTYLED */ 3265 } 3266 } 3267 3268 /* 3269 * If tracing unused objects simply display those objects that 3270 * haven't been referenced by anyone. 3271 */ 3272 if (FLAGS1(lmp) & FL1_RT_USED) 3273 continue; 3274 3275 if (nl++ == 0) { 3276 if (unref || unuse) 3277 (void) printf(MSG_ORIG(MSG_STR_NL)); 3278 else 3279 DBG_CALL(Dbg_util_nl(lml, DBG_NL_STD)); 3280 } 3281 if (CYCGROUP(lmp)) { 3282 if (unref || unuse) 3283 (void) printf(MSG_INTL(MSG_LDD_UNCYC_FMT), 3284 NAME(lmp), CYCGROUP(lmp)); 3285 else 3286 DBG_CALL(Dbg_unused_file(lml, NAME(lmp), 0, 3287 CYCGROUP(lmp))); 3288 } else { 3289 if (unref || unuse) 3290 (void) printf(MSG_INTL(MSG_LDD_UNUSED_FMT), 3291 NAME(lmp)); 3292 else 3293 DBG_CALL(Dbg_unused_file(lml, NAME(lmp), 0, 0)); 3294 } 3295 } 3296 3297 DBG_CALL(Dbg_util_nl(lml, DBG_NL_STD)); 3298 } 3299 3300 /* 3301 * Generic cleanup routine called prior to returning control to the user. 3302 * Insures that any ld.so.1 specific file descriptors or temporary mapping are 3303 * released, and any locks dropped. 3304 */ 3305 void 3306 leave(Lm_list *lml, int flags) 3307 { 3308 Lm_list *elml = lml; 3309 Rt_map *clmp; 3310 Aliste idx; 3311 3312 /* 3313 * Alert the debuggers that the link-maps are consistent. Note, in the 3314 * case of tearing down a whole link-map list, lml will be null. In 3315 * this case use the main link-map list to test for a notification. 3316 */ 3317 if (elml == NULL) 3318 elml = &lml_main; 3319 if (elml->lm_flags & LML_FLG_DBNOTIF) 3320 rd_event(elml, RD_DLACTIVITY, RT_CONSISTENT); 3321 3322 /* 3323 * Alert any auditors that the link-maps are consistent. 3324 */ 3325 for (APLIST_TRAVERSE(elml->lm_actaudit, idx, clmp)) { 3326 audit_activity(clmp, LA_ACT_CONSISTENT); 3327 3328 aplist_delete(elml->lm_actaudit, &idx); 3329 } 3330 3331 if (nu_fd != FD_UNAVAIL) { 3332 (void) close(nu_fd); 3333 nu_fd = FD_UNAVAIL; 3334 } 3335 3336 /* 3337 * Reinitialize error message pointer, and any overflow indication. 3338 */ 3339 nextptr = errbuf; 3340 prevptr = NULL; 3341 3342 /* 3343 * Defragment any freed memory. 3344 */ 3345 if (aplist_nitems(free_alp)) 3346 defrag(); 3347 3348 /* 3349 * Don't drop our lock if we are running on our link-map list as 3350 * there's little point in doing so since we are single-threaded. 3351 * 3352 * LML_FLG_HOLDLOCK is set for: 3353 * - The ld.so.1's link-map list. 3354 * - The auditor's link-map if the environment is pre-UPM. 3355 */ 3356 if (lml && (lml->lm_flags & LML_FLG_HOLDLOCK)) 3357 return; 3358 3359 if (rt_bind_clear(0) & THR_FLG_RTLD) { 3360 if (!thr_flg_nolock) 3361 (void) rt_mutex_unlock(&rtldlock); 3362 (void) rt_bind_clear(THR_FLG_RTLD | thr_flg_nolock | flags); 3363 } 3364 } 3365 3366 int 3367 callable(Rt_map *clmp, Rt_map *dlmp, Grp_hdl *ghp, uint_t slflags) 3368 { 3369 APlist *calp, *dalp; 3370 Aliste idx1, idx2; 3371 Grp_hdl *ghp1, *ghp2; 3372 3373 /* 3374 * An object can always find symbols within itself. 3375 */ 3376 if (clmp == dlmp) 3377 return (1); 3378 3379 /* 3380 * The search for a singleton must look in every loaded object. 3381 */ 3382 if (slflags & LKUP_SINGLETON) 3383 return (1); 3384 3385 /* 3386 * Don't allow an object to bind to an object that is being deleted 3387 * unless the binder is also being deleted. 3388 */ 3389 if ((FLAGS(dlmp) & FLG_RT_DELETE) && 3390 ((FLAGS(clmp) & FLG_RT_DELETE) == 0)) 3391 return (0); 3392 3393 /* 3394 * An object with world access can always bind to an object with global 3395 * visibility. 3396 */ 3397 if (((MODE(clmp) & RTLD_WORLD) || (slflags & LKUP_WORLD)) && 3398 (MODE(dlmp) & RTLD_GLOBAL)) 3399 return (1); 3400 3401 /* 3402 * An object with local access can only bind to an object that is a 3403 * member of the same group. 3404 */ 3405 if (((MODE(clmp) & RTLD_GROUP) == 0) || 3406 ((calp = GROUPS(clmp)) == NULL) || ((dalp = GROUPS(dlmp)) == NULL)) 3407 return (0); 3408 3409 /* 3410 * Traverse the list of groups the caller is a part of. 3411 */ 3412 for (APLIST_TRAVERSE(calp, idx1, ghp1)) { 3413 /* 3414 * If we're testing for the ability of two objects to bind to 3415 * each other regardless of a specific group, ignore that group. 3416 */ 3417 if (ghp && (ghp1 == ghp)) 3418 continue; 3419 3420 /* 3421 * Traverse the list of groups the destination is a part of. 3422 */ 3423 for (APLIST_TRAVERSE(dalp, idx2, ghp2)) { 3424 Grp_desc *gdp; 3425 Aliste idx3; 3426 3427 if (ghp1 != ghp2) 3428 continue; 3429 3430 /* 3431 * Make sure the relationship between the destination 3432 * and the caller provide symbols for relocation. 3433 * Parents are maintained as callers, but unless the 3434 * destination object was opened with RTLD_PARENT, the 3435 * parent doesn't provide symbols for the destination 3436 * to relocate against. 3437 */ 3438 for (ALIST_TRAVERSE(ghp2->gh_depends, idx3, gdp)) { 3439 if (dlmp != gdp->gd_depend) 3440 continue; 3441 3442 if (gdp->gd_flags & GPD_RELOC) 3443 return (1); 3444 } 3445 } 3446 } 3447 return (0); 3448 } 3449 3450 /* 3451 * Initialize the environ symbol. Traditionally this is carried out by the crt 3452 * code prior to jumping to main. However, init sections get fired before this 3453 * variable is initialized, so ld.so.1 sets this directly from the AUX vector 3454 * information. In addition, a process may have multiple link-maps (ld.so.1's 3455 * debugging and preloading objects), and link auditing, and each may need an 3456 * environ variable set. 3457 * 3458 * This routine is called after a relocation() pass, and thus provides for: 3459 * 3460 * - setting environ on the main link-map after the initial application and 3461 * its dependencies have been established. Typically environ lives in the 3462 * application (provided by its crt), but in older applications it might 3463 * be in libc. Who knows what's expected of applications not built on 3464 * Solaris. 3465 * 3466 * - after loading a new shared object. We can add shared objects to various 3467 * link-maps, and any link-map dependencies requiring getopt() require 3468 * their own environ. In addition, lazy loading might bring in the 3469 * supplier of environ (libc used to be a lazy loading candidate) after 3470 * the link-map has been established and other objects are present. 3471 * 3472 * This routine handles all these scenarios, without adding unnecessary overhead 3473 * to ld.so.1. 3474 */ 3475 void 3476 set_environ(Lm_list *lml) 3477 { 3478 Rt_map *dlmp; 3479 Sym *sym; 3480 Slookup sl; 3481 uint_t binfo; 3482 3483 /* 3484 * Initialize the symbol lookup data structure. 3485 */ 3486 SLOOKUP_INIT(sl, MSG_ORIG(MSG_SYM_ENVIRON), lml->lm_head, lml->lm_head, 3487 ld_entry_cnt, 0, 0, 0, 0, LKUP_WEAK); 3488 3489 if (sym = LM_LOOKUP_SYM(lml->lm_head)(&sl, &dlmp, &binfo, 0)) { 3490 lml->lm_environ = (char ***)sym->st_value; 3491 3492 if (!(FLAGS(dlmp) & FLG_RT_FIXED)) 3493 lml->lm_environ = 3494 (char ***)((uintptr_t)lml->lm_environ + 3495 (uintptr_t)ADDR(dlmp)); 3496 *(lml->lm_environ) = (char **)environ; 3497 lml->lm_flags |= LML_FLG_ENVIRON; 3498 } 3499 } 3500 3501 /* 3502 * Determine whether we have a secure executable. Uid and gid information 3503 * can be passed to us via the aux vector, however if these values are -1 3504 * then use the appropriate system call to obtain them. 3505 * 3506 * - If the user is the root they can do anything 3507 * 3508 * - If the real and effective uid's don't match, or the real and 3509 * effective gid's don't match then this is determined to be a `secure' 3510 * application. 3511 * 3512 * This function is called prior to any dependency processing (see _setup.c). 3513 * Any secure setting will remain in effect for the life of the process. 3514 */ 3515 void 3516 security(uid_t uid, uid_t euid, gid_t gid, gid_t egid, int auxflags) 3517 { 3518 if (auxflags != -1) { 3519 if ((auxflags & AF_SUN_SETUGID) != 0) 3520 rtld_flags |= RT_FL_SECURE; 3521 return; 3522 } 3523 3524 if (uid == (uid_t)-1) 3525 uid = getuid(); 3526 if (uid) { 3527 if (euid == (uid_t)-1) 3528 euid = geteuid(); 3529 if (uid != euid) 3530 rtld_flags |= RT_FL_SECURE; 3531 else { 3532 if (gid == (gid_t)-1) 3533 gid = getgid(); 3534 if (egid == (gid_t)-1) 3535 egid = getegid(); 3536 if (gid != egid) 3537 rtld_flags |= RT_FL_SECURE; 3538 } 3539 } 3540 } 3541 3542 /* 3543 * Determine whether ld.so.1 itself is owned by root and has its mode setuid. 3544 */ 3545 int 3546 is_rtld_setuid() 3547 { 3548 rtld_stat_t status; 3549 3550 if ((rtld_flags2 & RT_FL2_SETUID) || 3551 ((rtld_stat(NAME(lml_rtld.lm_head), &status) == 0) && 3552 (status.st_uid == 0) && (status.st_mode & S_ISUID))) { 3553 rtld_flags2 |= RT_FL2_SETUID; 3554 return (1); 3555 } 3556 return (0); 3557 } 3558 3559 /* 3560 * _REENTRANT code gets errno redefined to a function so provide for return 3561 * of the thread errno if applicable. This has no meaning in ld.so.1 which 3562 * is basically singled threaded. Provide the interface for our dependencies. 3563 */ 3564 #undef errno 3565 int * 3566 ___errno() 3567 { 3568 extern int errno; 3569 3570 return (&errno); 3571 } 3572 3573 /* 3574 * Determine whether a symbol name should be demangled. 3575 */ 3576 const char * 3577 demangle(const char *name) 3578 { 3579 if (rtld_flags & RT_FL_DEMANGLE) 3580 return (conv_demangle_name(name)); 3581 else 3582 return (name); 3583 } 3584 3585 #ifndef _LP64 3586 /* 3587 * Wrappers on stat() and fstat() for 32-bit rtld that uses stat64() 3588 * underneath while preserving the object size limits of a non-largefile 3589 * enabled 32-bit process. The purpose of this is to prevent large inode 3590 * values from causing stat() to fail. 3591 */ 3592 inline static int 3593 rtld_stat_process(int r, struct stat64 *lbuf, rtld_stat_t *restrict buf) 3594 { 3595 extern int errno; 3596 3597 /* 3598 * Although we used a 64-bit capable stat(), the 32-bit rtld 3599 * can only handle objects < 2GB in size. If this object is 3600 * too big, turn the success into an overflow error. 3601 */ 3602 if ((lbuf->st_size & 0xffffffff80000000) != 0) { 3603 errno = EOVERFLOW; 3604 return (-1); 3605 } 3606 3607 /* 3608 * Transfer the information needed by rtld into a rtld_stat_t 3609 * structure that preserves the non-largile types for everything 3610 * except inode. 3611 */ 3612 buf->st_dev = lbuf->st_dev; 3613 buf->st_ino = lbuf->st_ino; 3614 buf->st_mode = lbuf->st_mode; 3615 buf->st_uid = lbuf->st_uid; 3616 buf->st_size = (off_t)lbuf->st_size; 3617 buf->st_mtim = lbuf->st_mtim; 3618 #ifdef sparc 3619 buf->st_blksize = lbuf->st_blksize; 3620 #endif 3621 3622 return (r); 3623 } 3624 3625 int 3626 rtld_stat(const char *restrict path, rtld_stat_t *restrict buf) 3627 { 3628 struct stat64 lbuf; 3629 int r; 3630 3631 r = stat64(path, &lbuf); 3632 if (r != -1) 3633 r = rtld_stat_process(r, &lbuf, buf); 3634 return (r); 3635 } 3636 3637 int 3638 rtld_fstat(int fildes, rtld_stat_t *restrict buf) 3639 { 3640 struct stat64 lbuf; 3641 int r; 3642 3643 r = fstat64(fildes, &lbuf); 3644 if (r != -1) 3645 r = rtld_stat_process(r, &lbuf, buf); 3646 return (r); 3647 } 3648 #endif 3649